
OR I G I N A L A R T I C L E

Non-parametric regression for networks

Katie E. Severn | Ian L. Dryden | Simon P. Preston

School of Mathematical Sciences, University of

Nottingham, Nottingham, UK

Correspondence

Ian Dryden, School of Mathematical Sciences,

University of Nottingham, University Park,

Nottingham, NG7 2RD, UK.

Email: ian.dryden@nottingham.ac.uk

Funding information

Engineering and Physical Sciences Research

Council, Grant/Award Number:

EP/T003928/1

Network data are becoming increasingly available, and so there is a need to develop

a suitable methodology for statistical analysis. Networks can be represented as graph

Laplacian matrices, which are a type of manifold-valued data. Our main objective is

to estimate a regression curve from a sample of graph Laplacian matrices conditional

on a set of Euclidean covariates, for example, in dynamic networks where the

covariate is time. We develop an adapted Nadaraya–Watson estimator which has

uniform weak consistency for estimation using Euclidean and power Euclidean

metrics. We apply the methodology to the Enron email corpus to model smooth

trends in monthly networks and highlight anomalous networks. Another motivating

application is given in corpus linguistics, which explores trends in an author's writing

style over time based on word co-occurrence networks.
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1 | INTRODUCTION

Networks are of wide interest and able to represent many different phenomena, for example, social interactions and connections between regions

in the brain (Ginestet et al., 2017; Kolaczyk, 2009). The study of dynamic networks has recently increased as more data of this type are becoming

available (Rastelli et al., 2018), where networks evolve over time. In this paper we develop some non-parametric regression methods for modelling

and predicting networks where covariates are available. An application for this work is the study of dynamic networks derived from the Enron

email corpus, in which each network corresponds to communications between employees in a particular month (Diesner et al., 2005). Another

motivating application is the study of evolving writing styles in the novels of Jane Austen and Charles Dickens, in which each network is a

representation of a novel based on word co-occurrences, and the covariate is the time that writing of the novel began (Severn et al., 2020). In

both applications, the goal is to model smooth trends in the structure of the dynamic networks as they evolve over time.

An example of previous work on dynamic network data is Friel et al. (2016), who embedded nodes of bipartite dynamic networks in a latent

space, motivated by networks representing the connection of leading Irish companies and board directors. We will also use embeddings in our

work, although the bipartite constraints are not present. Further approaches include object functional principal components analysis (Dubey &

Mueller, 2020) applied to time-varying networks from New York taxi trip data; multi-scale time series modelling (Kang et al., 2017) applied to mag-

netoencephalography data in neuroscience; and quotient space space methodology applied to brain arterial networks (Guo & Srivastava, 2020).

The analysis of networks is a type of object-oriented data analysis (Marron & Alonso, 2014), and important considerations are to decide what

are the data objects and how they are represented. We consider datasets where each observation is a weighted network, denoted Gm ¼ðV,EÞ ,
comprising a set of nodes, V¼fv1,v2,…,vmg , and a set of edge weights, E¼fwij :wij ≥0,1≤ i, j ≤mg , indicating that nodes vi and vj are either

connected by an edge of weight wij>0, or else unconnected (if wij ¼0). An unweighted network is the special case with wij� {0, 1}. We restrict

attention to networks that are undirected and without loops, so that wij=wji and wii ¼0, then any such network can be identified with its graph

Laplacian matrix L¼ðlijÞ, defined as
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lij ¼
�wij, if i≠ jP

k ≠ iwik , if i¼ j

(

for 1≤ i, j ≤m. The graph Laplacian matrix can be written as L¼D�A , in terms of the adjacency matrix, A¼ðwijÞ , and the degree matrix D¼
diag

Pm
j¼1w1j,…,

Pm
j¼1wmj

� �
¼diagðA1mÞ, where 1m is the m-vector of ones. The ith diagonal element of D equals the degree of node i. The space

of m�m graph Laplacian matrices is of dimension m(m�1)/2 and is

Lm ¼fL¼ðlijÞ : L¼ LT ; lij ≤08i≠ j; L1m ¼0mg, ð1Þ

where 0m is the m-vector of zeroes. In fact the space Lm is a closed convex subset of the cone of centred symmetric positive semi-definite m�m

matrices and Lm is a manifold with corners (Ginestet et al., 2017).

Since the sample space Lm for graph Laplacian data is non-Euclidean, standard approaches to non-parametric regression cannot be applied

directly. In this paper, we use the statistical framework introduced in Severn et al. (2020) for extrinsic analysis of graph Laplacian data, in which

“extrinsic” refers to the strategy of mapping data into a Euclidean space, where analysis is performed, before mapping back to Lm . The choice of

mapping enables freedom in the choice of metric used for the statistical analysis, and in various applications with manifold-valued data analysis

there is evidence of advantage in using non-Euclidean metrics (Dryden et al., 2009; Pigoli et al., 2014).

A summary of the key steps in the extrinsic approach is:

i) embedding to another manifold Mm by raising the graph Laplacian matrix to a power,

ii) mapping from Mm to a (Euclidean) tangent space TνðMmÞ in which to carry out statistical analysis,

iii) inverse mapping from the tangent space TνðMmÞ to the embedding manifoldMm,

iv) reversing the powering in i), and projecting back to the graph Laplacian space Lm,

⁣

which we explain in more detail as follows. First write L¼UΞUT by the spectral decomposition theorem, with Ξ¼diagðξ1,…,ξmÞ and U¼
ðu1,…,umÞ , where fξigi¼1,…,m are the eigenvalues of L, which are non-negative as any L is positive semi-definite, and fuigi¼1,…,m are the

corresponding eigenvectors. We consider the following map which raises the graph Laplacian to the power α> 0:

FαðLÞ ¼ Lα ¼UΞαUT :Lm ! ImageðLmÞ�Mm: ð2Þ

In this paper we take Mm to be the Euclidean space of symmetric m�m matrices. In terms of Fα(�) we define the power Euclidean distance

between two graph Laplacians as

dαðL1,L2Þ¼ kFαðL1Þ�FαðL2Þk, ð3Þ

where kXk¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
traceðXTXÞ

q
is the Frobenius norm, also known as the Euclidean norm. For the special case α¼1 , (3) is just the Euclidean

distance. Severn et al. (2020) further considered a Procrustes distance which includes minimization over an orthogonal matrix, approximately

allowing relabelling of the nodes, and in this case the embedding manifold Mm is a Riemannian manifold known as the size-and-shape space

(Dryden & Mardia, 2016, p. 99). However, in this paper for simplicity and because the labelling is known, we shall just consider the power

Euclidean metric.

After the embedding data are mapped to a tangent space TνðMmÞ of the embedding manifold at ν using the bijective transformation

π�1
ν :Mm !TνðMmÞ:

In our applications we take ν¼0 and the tangent coordinates are v¼ vechðHFαðLÞHTÞ, where vech() is the vector of elements above and including

the diagonal and H is the Helmert sub-matrix (Dryden & Mardia, 2016, p. 49). The main point of note is that the tangent space is a Euclidean

space of dimension m(m�1)/2. Hence, multivariate linear statistical analysis can be carried out in TνðMmÞ ; for example, Severn et al. (2020)

considered estimation, two-sample hypothesis tests, and linear regression.

After carrying out statistical analysis, the fitted values are then transformed back to the graph Laplacian space as follows:

PL∘Gα∘πν : TνðMmÞ!Lm ð4Þ
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where Gα :Mm !Mm is a map that reverses the power, and PL :Mm !Lm is the projection to the closest point in the graph Laplacian space

using Euclidean distance. The projection PL is obtained by solving a convex optimization problem using quadratic programming, and the solution

is therefore unique. See Severn et al. (2020) for full details of this framework.

For visualizing results, it is useful to map the data and fitted regression lines in Lm into ℝ2. In this paper we do so using principal component

analysis (PCA) such that the two plotted dimensions reflect the two orthogonal dimensions of greatest sample variability in the tangent space

(Severn et al., 2020).

2 | NADARAYA–WATSON ESTIMATOR FOR NETWORK DATA

2.1 | Nadaraya–Watson estimator

We first review the classical Nadaraya–Watson estimator (Nadaraya, 1965; Watson, 1964) before defining an analogous version for data on Lm .

Consider the regression problem where we want to predict an unknown variable yðxÞ�ℝ with known covariates x�ℝp for the dataset of inde-

pendent and identically distributed random variables ({Y1,X1},… , {Yn,Xn}) observed at ({y1, x1},… , {yn, xn}) with E{jYj} <∞. The aim is to estimate the

regression function

mðxÞ¼ E½yðxÞjx�:

The Nadaraya–Watson estimator is

m̂ðxÞ¼
Pn

i¼1Khðx�xiÞyiPn
i¼1Khðx�xiÞ

, ð5Þ

where Kh≥0 is a kernel function with bandwidth h> 0.

Consider now a version of the regression problem with y(x) replaced with an m�m graph Laplacian matrix LðxÞ�Lm with known covariates

x�ℝp and dataset ({L1, x1},… , {Ln, xn}) with EfjðLÞijjg<∞, i¼1,…,m; j¼1,…,m. We wish to estimate the regression function

ΛðxÞ¼ E½LðxÞjx�:

A natural analogue of m̂ðxÞ in (5) for graph Laplacian data given covariates x�ℝp is

L̂NWðxÞ¼
Pn

i¼1Khðx�xiÞLiPn
i¼1Khðx�xiÞ

¼
Xn
i¼1

WhiðxÞLi, ð6Þ

where

WhiðxÞ¼ Khðx�xiÞXn

i¼1
Khðx�xiÞ

≥0

and note that
Pn

i¼1WhiðxÞ¼1. A common choice of kernel function is the Gaussian kernel

KhðuÞ¼ 1

h
ffiffiffiffiffiffi
2π

p exp �kuk2
2h2

 !
, ð7Þ

which is bounded above and strictly positive for all u. We use a truncated version of (7) such that KhðuÞ¼0 for kuk>c (with c large) in order that

this truncated kernel has compact support, as required by theoretical results presented later. Wherever L̂NW is defined (meaning that at least one

of the Kh(x� xi) is non-zero) it is a sum of positively weighted graph Laplacians. Since the space Lm is a convex cone (Ginestet et al., 2017), itself

defined as the sum of positively weighted graph Laplacians, thus L̂NWðtÞ�Lm as required.

The estimator in (6) can equivalently be written as the graph Laplacian that minimizes a weighted sum of squared Euclidean distances, d1, to

the sample data
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L̂NWðxÞ¼ arg inf
L � Lm

Xn
i¼1

WhiðxÞd1ðLi ,LÞ2 ¼ arg inf
L � Lm

Xn
i¼1

WhiðxÞkLi�Lk2, ð8Þ

using weighted least squares. In principle, the Euclidean distance d1 in (8) can be replaced with a different distance metric, d, though solving for

the estimator entails an optimization on the manifold Lm , which can be theoretically and computationally challenging. Hence, instead we

generalize to other distances via an extrinsic approach and define

L̂NW,dðxÞ¼PL arg inf
L �Mm

Xn
i¼1

WhiðxÞdðLi ,LÞ2
 !

, ð9Þ

which is simpler provided, as here, the embedding manifold Mm is chosen such that the optimization is straightforward. The projection is needed

to map back to the graph Laplacian space Lm . For the power Euclidean metric, dα, consider the Nadaraya–Watson estimator in the tangent space

TνðMmÞ,

L̂Mm ,αðxÞ¼
Xn
i¼1

WhiðxÞπ�1
ν ðFαðLiÞÞ, ð10Þ

in terms of which, after mapping back to Lm using (4), the resulting Nadaraya–Watson estimator in the graph Laplacian space is

L̂NW,αðxÞ¼PL∘Gα∘πν L̂Mm ,αðxÞ
� �

: ð11Þ

When α¼1 this simplifies to (6).

2.2 | Uniform weak consistency

First we show that the Nadaraya–Watson estimator for graph Laplacians (6) is uniformly weakly consistent.

Let

Jn ¼ E
ð���L̂NWðxÞ�ΛðxÞ

���2μðdxÞ� �
ð12Þ

where μ is the probability measure of x.

Proposition 1. Suppose the kernel function Kh is non-negative on ℝp , bounded above, has compact support and is strictly positive in a

neighbourhood of the origin. If E{k Lk2} <∞, as h!0 and nhp!∞ it follows that Jn!0. Hence, the Nadaraya–Watson estimator L̂NWðxÞ is
uniformly weakly consistent for the true regression function ΛðxÞ.

Proof. Consider the univariate regression problem for the (i, j)th element of L̂NWðxÞ. From Devroye and Wagner (1980) we know that under the

conditions of the proposition we have

Jn,ij ¼ E
ð

L̂NWðxÞ
� �

ij
� ΛðxÞð Þij

����
����
2

μðdxÞ
( )

!0 , i¼1,…,m; j¼1,…,m,

as h!0 and nhp!∞; and since

Jn ¼
Xm
i¼1

Xm
j¼1

Jn, ij,

thus Jn!0.

The result can be extended to the power Euclidean distance based Nadaraya–Watson estimator (11). Let
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Jn,α ¼ E
ð���L̂NW,αðxÞ�ΛðxÞ

���2μðdxÞ� �
: ð13Þ

where μ is the probability measure of x.

Proposition 2. Under the conditions of Proposition 1 it follows that Jn, α!0. Hence, the power Euclidean Nadaraya–Watson estimator L̂αðxÞ is

uniformly weakly consistent for the true regression function ΛðxÞ.

Proof. First embed the graph Laplacians in the Euclidean manifold Mm and map to a tangent space TνðMmÞ. Consider the univariate regression

problem for the (i, j)th element of π�1
ν ðFαðLðxÞÞÞ. Again from Devroye and Wagner (1980) (and also see Spiegelman & Sacks, 1980) we know

that under the conditions of the proposition we have uniform weak consistency in the tangent space:

Jn,α,ij ¼ E
ð

L̂Mm ,αðxÞ
� �

ij
�π�1

ν FαðΛðxÞÞð Þij
����

����
2

μðdxÞ
( )

!0 , i¼1,…,m; j¼1,…,m,

as h!0 and nhp!∞. Also, using the continuous mapping theorem and Pythagorean arguments as in Severn et al. (2020), we have

0≤ Jn,α ≤
Xm
i¼1

Xm
j¼1

Jn,α, ij !0,

as h!0 and nhp!∞.

2.3 | Bandwidth selection

The result that the power Euclidean Nadaraya–Watson estimator is uniformly weakly consistent gives reassurance that the method is a sensible

practical approach to non-parametric regression for predicting networks. The result is asymptotic, however, which leaves open the question of

how to choose the bandwidth, h, in practice. One way to do so is to select it via cross-validation (Efron & Tibshirani, 1993) as follows. Denote by

L̂�iðx;hÞ a Nadaraya–Watson estimator at x, based on distance metric d, with bandwidth h, trained on all the training observations excluding the

ith. Selection of bandwidth by cross-validation then involves choosing h to minimize the criterion

Xn
i¼1

d Li , L̂�iðxi;hÞÞ
2
:

�
ð14Þ

3 | APPLICATION: ENRON EMAIL CORPUS

The Enron dataset was made public during the legal investigation of Enron by the Federal Energy Regulatory Commission (Klimt & Yang, 2004)

and an overview can be found in Diesner et al. (2005). Similar to Shetty and Adibi (2004) we use this data to form social networks between m¼
151 employees and the data are available from Rossi and Ahmed (2015). For each month we create a network with employees as nodes. The

edges between nodes have weights that are the number of emails exchanged between the two employees in the given month. The networks we

consider are for the whole months from June 1999 (month 1) to May 2002 (month 36), and we standardize by dividing by the trace of the graph

Laplacian for each month. The aim is to model smooth trends in the structure of the dynamic networks as they evolve over time, and we also wish

to highlight anomalous months where the network is rather unusual compared to the fitted trend.

In Figure 1 we plot the distances between consecutive monthly graph Laplacians using the Euclidean distance (a) and the square root

Euclidean distance (b). Some of the largest successive distances are at times

We provide a PCA plot of the first two PC scores in Figure 2a,b and include the Nadaraya–Watson estimator projected into the space of the

first two PCs. Here the bandwidth has been chosen by cross-validation as h¼2 for the Euclidean case and h¼1 for the square root Euclidean

metric. The Nadaraya–Watson estimator provides a smooth path through the data, and the structure is clearer in the square root

Euclidean metric plot.

We are interested in finding anomalies in the Enron dynamic networks, and so we compute the distances from each network to the fitted

value from the Nadaraya–Watson estimate. Figure 2 shows these residual distances of each graph Laplacian to the fitted Nadaraya–Watson
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values for (c) the Euclidean metric and (d) the square root Euclidean metric. Some of the largest residuals are months 1, 7, and 35 for Euclidean

and 7, 33, 34, and 35 for the square root Euclidean metric, and these are candidates for anomalies.

From Figure 2b it looks like there is an approximate horseshoe shape in the PC score plot which could be an example of the horseshoe effect

(Diaconis et al., 2008; Kendall, 1971; Morton et al., 2017). We might conclude there is a change point in the data around months 20–26 from

these plots but this may be misleading (Kendall, 1970). Explained in (Mardia et al., 1979, p. 412), the horseshoe effect occurs when the distances

which are “large,” between data points, appear the same as those that are “moderate.” Morton et al. (2017) described this as a “saturation
property” of the metric, and so on the PCA plot the point corresponding to a “large” time is pulled in closer to time 1 than we intuitively would

expect.

As an alternative to PCA, which seeks to address this horseshoe effect, we consider multidimensional scaling (MDS) with a Mahalanobis

metric in the tangent space (Mardia et al., 1979, p.31) between two graph Laplacians Lk and Ll, at times k and l, respectively, which is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðπ�1

0 ðFαðLkÞÞ�π�1
0 ðFαðLlÞÞ�μÞTΣ�1

kl ðπ�1
0 ðFαðLkÞÞ�π�1

0 ðFαðLlÞÞ�μÞ
q

,

where μ and Σkl are the mean and covariance matrix of π�1
0 ðFαðLkÞÞ�π�1

0 ðFαðLlÞÞ , respectively. Here we take μ as 0 and consider an isotropic

AR(1) model which has covariance matrix

Σkl ¼ σ2ρjk�lj

1�ρ
Imðm�1Þ

2
,

which is a diagonal matrix where the diagonal elements are the variance of elements and we have assumed a 0 covariance between any other

elements. Writing yk ¼ π�1
0 ðFαðLkÞÞ and vk ¼ π�1

0 ðFαðLk�1ÞÞ we estimate ρ by least squares ρ¼ðPn
k¼2y

T
kvkÞ=ð

Pn
k¼2v

T
kvkÞ and we take σ¼1 as this is

just an overall scale parameter. The Mahalanobis metric between graph Laplacians, Lk and Ll can now be written as

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ρ

ρjk�lj ðπ�1
0 ððFαðLkÞÞ�π�1

0 ðFαðLlÞÞÞTðπ�1
0 ðFαðLkÞÞ�π�1

0 ðFαðLlÞÞÞ
r

¼
ffiffiffiffiffiffiffiffiffiffiffi
1�ρ

ρjk�lj

r
kπ�1

0 ðFαðLkÞÞ�π�1
0 ðFαðLlÞÞk¼

ffiffiffiffiffiffiffiffiffiffiffi
1�ρ

ρjk�lj

r
kFαðLkÞ�FαðLlÞk¼

ffiffiffiffiffiffiffiffiffiffiffi
1�ρ

ρjk�lj

r
dαðLk ,LlÞ:

The plots of MDS with the Mahalanobis distance are given in Figure 3a,b. In both plots there are large distances between the first few and last

few observations compared to the central observations, which is broadly in keeping with Figure 1a,b although the middle observations do seem

F IGURE 1 Distances, dðLi�1,LiÞ, i¼2,…,36, between consecutive observations for the monthly Enron networks for (a) the Euclidean metric,
d1, and (b) the square root Euclidean metric, d1/2
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too close together in the MDS plots. We consider an alternative estimate in choosing ρ that maximizes the variance explained by the first PC

score for each example, shown in Figure 3c,d. These final MDS plots are more in agreement with the distance plots of Figure 1. In particular in

Figure 3d we see that months

Finally we consider the main features of all the results from Figures 1–3 and we see that the 7th, 34th, and 35th months stand out as strong

anomalies. The 7th month corresponds to December 1999, and this is picked out to be an anomaly in Wang et al. (2014), believed to coincide with

Enron's tentative sham energy deal with Merrill Lynch created to meet profit expectations and boost the stock price. Months 34 and

35 correspond to March and April 2002 and these correspond to the former Enron auditor, Arthur Andersen, being indicted for obstruction of jus-

tice (The Guardian, 2006).

4 | APPLICATION: 19TH CENTURY NOVEL NETWORKS

We consider an application where it is of interest to analyse dynamic networks from the novels of Jane Austen and Charles Dickens. The

7 novels of Austen and 16 novels of Dickens were represented as samples of network data by Severn et al. (2020). Each novel is

represented by a network where each node of the network is a word, and edges are formed with weights proportional to the number of

times a pair of words co-occurs closely in the text. For each novel we produce a network counting pairwise word co-occurrences, and

F IGURE 2 PCA plots showing the data and Nadaraya–Watson curves, and residual plots for the Enron network data. In each plot the red
digits indicate the observation number (month index). In the upper plots the black lines show the Nadaraya–Watson regression curves in the
space of the first two principal components, using (a) the Euclidean metric, d1, and h¼2; (b) the square root Euclidean metric, d1/2, and h¼1. We
performed the calculations for various values h¼0:5,1,2,4,8, and the chosen value of h was whichever that was optimal with respect to (14).
Plots (c) and (d) are corresponding residual plots showing distance dðL̂i,LiÞ between the fitted values L̂i and the observations Li
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words are said to co-occur if they appear within five words of each other in the text. A choice that needs to be made is if we allow

co-occurrences over sentence boundaries and chapter boundaries (Evert, 2008, Section 3), and for this dataset we allow it. The data are

obtained from CLiC (Mahlberg et al., 2016).

We take the node set V as the m¼1000 most common words across all the novels of Austen and Dickens. A pre-processing step

for the novels is to normalize each graph Laplacian, in order to remove the gross effects of different lengths of the novels, by dividing

each graph Laplacian by its own trace, resulting in a trace of 1 for each novel. Our key statistical goal is to investigate the authors' evolving writing

styles, by carrying out non-parametric regression with a graph Laplacian response on the year t that each novel was written.

We apply the Nadaraya–Watson regression to the Jane Austen and Charles Dickens networks separately to predict their writing styles at

different times. The response is a graph Laplacian and the covariate is time t for each novel, with a separate regression for each novelist. We

compared using the metrics d1 and d1/2. For each author a Nadaraya–Watson estimate was produced for every 6 months within the period the

author was writing. We compared different bandwidths, h, in the Gaussian kernel. The results are shown in Figure 4 plotted on the first and

second principal component space for all the novels.

For both metrics for Dickens when h¼1 the regression lines are not at all smooth. For both metrics with h¼2 the regression

line for Dickens appears to show an initial smooth trend, then a turning point around the years 1850 and 1851 (between David

Copperfield and Bleak House which are novels 16 and 17 in Figure 4). After 1851 there is much less dependence on time. This change

in structure is especially evident in the h¼4 plot for both metrics, which has the smallest value of the cross-validation criterion (14) out

F IGURE 3 MDS plots using the Mahalanobis metric for (a) the Enron data withα¼1 and (b) with α¼1=2 using an overall estimate from ρ,
and the Mahalanobis metric when ρ is estimated to maximize the variance explained by PC1 for (c) the Enron data with α¼1 and (d) with α¼1=2.
The red digits indicate the observation number (month index)
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of these choices h� {1, 2, 4}. In the year 1851 Dickens had a tragic year including his wife having a nervous breakdown, his father dying

and his youngest child dying (Charles Dickens Info, 2020). We see that the possible turning point is around the same time as these

significant events.

F IGURE 4 Regression paths for Austen novels (blue) between the years 1794 to 1815, numbered 1–7 according to chronology of the novels,
and for Dickens novels (red) between the years 1836 and 1870, numbered 8–23; using (left to right) d= d1 and d= d1/2, with bandwidth (top to
bottom) h¼1, 2, 4, of which h¼4 gave the smallest value of the cross-validation criterion (14)
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As there are far fewer novels written by Austen it is less obvious if there is any turning point in her writing, however it is clear that Lady Susan

(Novel 1) is an anomaly, not fitting with the regression curve that does follow Austen's other works more closely. Lady Susan is Austen's earliest

work and is a short novella published 54 years after Austen's death.

5 | DISCUSSION

The two applications presented involve a scalar covariate, but the Nadaraya–Watson estimator is appropriate to more general covariates, for

example, spatial covariates. A further extension would be to adapt the method of kriging, also referred to as Gaussian process prediction. Kriging

is a geospatial method for prediction at points on a random field (e.g., see Cressie, 1993), and Pigoli et al. (2016) considered kriging for manifold-

valued data. The kriging predictor of an unknown graph Laplacian L(x) on a random field with known coordinates x for the dataset ({L1, x1},… , {Ln,

xn}) is of the form ZðxÞ¼Pn
i¼1bðxiÞLi , where the weights, b(xi), are determined by minimizing the mean square prediction error for a given

covariance function.

The Nadaraya–Watson estimator can also be applied in a reverse setting where some variable ti is dependent on the graph Laplacian Li, which

can be written as ti ¼ tðLiÞ. This could be used if, for example, one had the times networks were produced and then wanted to predict the time a

new network was produced. In this case the Nadaraya–Watson estimator is a linear combination of known ti values, weighted by the graph

Laplacian distances, given by

t̂ðLÞ¼
Pn

i¼1KhðdðL,LiÞÞtiPn
i¼1KhðdðL,LiÞÞ

, ð15Þ

where d can be any metric between two graph Laplacians. Severn (2019) provided an application of this approach using the Gaussian kernel

defined in (7), predicting the time that a novel was written using the network graph Laplacian as a covariate.

Other metrics could also be used, for example the Procrustes metric of Severn et al. (2020). To solve (9) for the Procrustes metric, the

algorithm for obtaining a weighted generalized Procrustes mean given in Dryden and Mardia (2016, Chapter 7) can be implemented.

In Euclidean space⁣s there are more general results for the Nadaraya–Watson estimator including weak convergence in Lp norm, rather than

p¼2 results that we have used (Devroye & Wagner, 1980; Spiegelman & Sacks, 1980). More general results also exist; for example, see

Walk (2002), including strong consistency. It will be interesting to explore which of these results can be extended to graph Laplacians, although

the additive properties of the p¼2 case have been particularly important in the proofs of the propositions in this paper.
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