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Direct observation of long chain enrichment in flow-
induced nuclei from molecular dynamics simulations
of bimodal blends

Muhammad Anwar,a,‡ and Richard S. Graham ∗a,¶

Modelling of flow-induced nucleation in polymers suggest that long chains are enriched in nuclei,
relative to their melt concentration. This enrichment has important consequences for the nucle-
ation rate and mechanism, but cannot be directly observed with current experimental techniques.
Instead, we ran united atom molecular dynamics simulations of bimodal polyethylene blends,
comprising linear chains at a 50:50 mix of long (1000 carbon) and short (500-125 carbon) chains,
under shear flow. We developed a method to extract the nucleus composition during a transient
start-up flow. Our simulations show significant and systematic enrichment of long-chains for all
nucleus sizes up to and beyond the critical nucleus. This enrichment is quantitatively predicted by
the recent polySTRAND model [Read et al. Phys. Rev. Lett. 2020, 124,147802]. The same model
parameters also correctly capture the nucleus induction time in our simulations. All parameters of
the model were fitted to a small subset of our data in which long chain enhancement was absent.
We conclude that long-chain enrichment is central to the mechanism of flow-induced nucleation
and that this enrichment must be captured to correctly predict the nucleation rate.

1 Introduction
Flow-induced crystallisation (FIC) in polymers1–3 is a central
problem in polymer science. Flow dramatically enhances the
nucleation rate, leading to much faster crystallisation kinetics
and, ultimately, controls the crystal morphology4–13. A predictive
molecular understanding of polymer FIC would be enormously
useful to the worldwide polymer processing industry, as it would
enable control of crystalline properties through processing condi-
tions. Despite extensive experimental progress a critical difficulty
remains14: nucleation is extremely rapid and highly localised,
meaning nucleation events cannot be observed directly in experi-
ments. In such situations there is an important role for Molecular
Dynamics (MD) simulations to complement experiments. The ex-
tremely high spatio-temporal resolution of MD simulations can
inform models and distinguish between competing theoretical
ideas. This emergent approach is particularly important in soft
matter where wide spatiotemporal separations are common. Re-
cent pioneering work on direct MD simulations of polymer nucle-
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ation during flow15–17 has overcome the numerous technical bar-
riers, allowing detailed observation of the key nucleation physics
for monodisperse chains. Although recent work18 has presented a
method to estimate the critical nucleus volume from experiments,
via the Hoffman and Lauritzen model19, MD data provide signifi-
cantly more detail, particularly under flow, and require essentially
no model interpretation.

Unfortunately, the molecular weight and temperature ranges
achievable in simulations are significantly below those of exper-
iments and industrial processing14,20. Thus, recent work has fo-
cused on using MD to inform more coarse-grained approaches to
polymer FIC14, in order to reach the temperatures and molecular
weights relevant to experiments and processing. There has been
intense recent activity in this area14–17,21–24. The newly pub-
lished polySTRAND24 model integrates MD15,22, kinetic Monte
Carlo simulations25,26 and thermodynamic modelling27–29 to
produce an analytic continuum model for flow induced nucle-
ation in polymers. It accounts, in detail, for the effect of polydis-
persity on both flow and nucleation dynamics. In particular, long
chains deform strongly and so attach more readily than shorter,
less deformed chains. Consequently, the model predicts that, rel-
ative to their melt concentration, long chains are enriched in nu-
clei. Thus, multiple chain lengths cooperate in nontrivial ways to
determine the nucleation barrier. This barrier height sets the nu-
cleation rate via an exponential dependence and so correctly pre-
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dicting the long chain enrichment is essential to quantitative FIC
modelling. Hence, polydispersity plays a dominant role in FIC in
both experiments and industrial polymer processing, where poly-
disperse melts are ubiquitous.

Long chain enrichment explains the experimentally observed
super-exponential growth in the nucleation rate with shear
rate10. However, scattering data by Kimata et al.7 appar-
ently contradict this. Their experiments demonstrated no over-
representation of long chains in shish structures. However these
experiments and the model pertain to different stages of the
crystallisation process. The polySTRAND model predicts enrich-
ment in nuclei around the critical size24. In contrast, post-
nucleation growth is thermodynamically favourable so recruits
all chains equally, giving the melt distribution in well-developed
crystals. Consequently, there is a clear need for direct observa-
tion of the composition of flow-induced nuclei around the crit-
ical size. Unfortunately, this is beyond the spatio-temporal res-
olution of existing experimental techniques. Instead, we em-
ploy MD and exploit its extremely high spatio-temporal resolu-
tion to complement experiments. Prior flow-induced nucleation
simulations in MD15–17,22,23 have considered only monodisperse
chains, which precludes long chain enrichment. In this work we
present MD results from entangled bidisperse chains, of widely
separated lengths. We choose this blend composition to provide
the strongest possible long chain enrichment from a blend that
is computationally tractable and for which both species are en-
tangled. In our flow-induced nucleation simulations we observe
significant and systematic enrichment of long-chains for all nu-
cleus sizes up to and beyond the critical nucleus. We are able
to quantitatively capture this enrichment with the polySTRAND
model24. Our work provides a direct quantitative validation of
this key model prediction24, which is impossible with current ex-
perimental techniques.The same model parameters also correctly
captures the nucleus induction time seen in our simulations. This
shows that long-chain enrichment is central to the mechanism of
flow-induced nucleation in polydisperse systems and that long-
chain enrichment must be captured to correctly predict the nucle-
ation rate.

2 Simulations

2.1 Force-field

We run simulations using a united atom model, which was pro-
posed by Paul et al.30 and then modified by Waheed et al.31,32.
It has been used extensively by Rutledge and co-workers15,33–35,
Schilling and co-workers17,36,37 and Graham and co-workers22 to
study crystallisation under quiescent and under flow conditions.
In this model, CH2 and CH3 groups are represented by beads or
“united atoms”. These beads interact with each other via bonded
and non-bonded potentials. The non-bonded interaction consists
of Lennard Jones interactions and can be expressed by the follow-
ing relation for a distance ri j between monomers i and j:

U(ri j) = 4εi j[(
σi j

ri j
)12− (

σi j

ri j
)6],ri j ≤ 2.5σi j

U(ri j) = 0,ri j > 2.5σi j. (1)

The bonded potential, which acts between monomers along the
chain, consists of a harmonic bond potential

U(ri j) =
1
2

K(ri j−R)2, (2)

a harmonic bond angle potential

U(θ) =
1
2

Kθ (θ −θ0)
2, (3)

where θ is the angle between two consecutive bonds, and a dihe-
dral potential

U(φ ,) =
1
2
[K1φ (1−cosφ)+K2φ (1−cos2φ)+K3φ (1−cos3φ)] (4)

where φ is the dihedral angle defined by three consecutive bonds.
We provide parameters for all potentials in table 1. The model

has been optimised using experimental data to reproduce the
dynamical and structural properties of the melt, thermophysical
properties such as the melting point, and the rotator phase crystal
structure.

Table 1 Force-field parameters for our M simulations: all parameters are
from 38, except for the Lennard Jones cutoff radius which is from 33.

Potential Parameters
Harmonic bond bond length = 1.53 Å

K = 700 kcal/mol Å2

Bond Angle Kθ = 120 kcal/mol
θ0 = 109.5◦

Dihedral K1φ = 1.6 kcal/mol
K2φ = -0.867 kcal/mol
K3φ = 3.24 kcal/mol

Lennard Jones σ = 4.01 A◦

ε (CH2−CH2) = 0.112 kcal/mol
ε (CH3−CH3) = 0.112 kcal/mol
ε (CH2−CH3)= 0.112 kcal/mol
Cut off = 2.5 σ

2.2 Order parameters

2.2.1 Crystallinity order parameter

We differentiate the crystalline regions from a melt using a
crystallinity order parameter, which has been used recently by
Schilling and co-workers17,36,37 and in our previous work22. This
order parameter is based on the local alignment of segments of
chains.

• First of all, we create a neighbour list of every bead i,
which contain neighbouring beads j within a cut-off radius
of rc = 1.5σ of bead i. It is ensured that bead i and j do not
belong to the same chain.

• We associate a unit vector ê to every bead i pointing from
the centre of the bead i−1 to the centre of the bead i+1.
Then, we determine the angle between particle i and each
of its neighbours j.
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θi j = arccos(êi · ê j)

{
≤ 10◦ “aligned”

> 10◦ “non-aligned”
. (5)

Now, the beads having more “aligned” neighbours than the
threshold value (8 monomers in our study) are defined as
crystalline beads. This threshold value is determined from
the analysis of the probability distribution of aligned neigh-
bours in the bulk melt. We draw a probability distribution
of aligned neighbours for an equilibrated melt and select
the threshold number of aligned neighbours to be the value
where the probability reaches zero on the right-hand side
of the bell shape curve of the probability distribution. This
shows that no melt particles in the system have more aligned
neighbours than this threshold value. Hence, if any particle
has more aligned neighbours than this threshold value, it is
a crystalline particle.

• Finally, the clusters of crystalline particles are identified us-
ing a standard clustering algorithm. The crystalline clusters
in the system are identified by picking a random bead in the
system and checking if it is crystalline or not. If it is crys-
talline, we count it as the first bead of this cluster and ex-
amine its neighbours. If any neighbouring bead is also crys-
talline, it is counted as the second bead of the same cluster.
Similarly, we move recursively from neighbour to neighbour
to compute the cluster size. If a bead does not have any
new crystalline neighbours, then we move to the next bead
to identify the second cluster in the system and so on. At the
end, all cluster sizes are compared and the largest cluster is
identified.

We note here that, in our simulations, whenever a nucleus that
is significantly bigger than the critical nucleus (as define later) is
seen, this always develops into a large crystalline structure.

2.2.2 Nematic order parameter

As suggested by Nicholson and Rutledge16, we used the Kuhn
step nematic order parameter P2,K to measure the flow-induced
alignment of chains. We split the chains into Kuhn segments,
each Kuhn segment (denote as KL) consists of 12 consecutive
beads along the chain for this polyethylene model16 and P2,K is
the largest eigenvalue of

Qαβ =
1

NK

NK

∑
j=1

(
3
2

û jα û jβ −
1
2

δαβ

)
, (6)

where NK is the number of Kuhn segments in the system, û j is the
unit vector parallel to the end-to-end vector of Kuhn segment j, δ

is the Kronecker delta and α,β = x,y,z.39. This order parameter
is close to unity when all chains are parallel to each other and
close to zero when all chains are oriented randomly.

2.3 Simulation details

We have performed molecular dynamics simulations of mono-
disperse and binary mixtures of linear polymer chains to study
nucleation under shear flow. The mono-disperse system consists

Table 2 Details of simulated systems.

System N #NL #NS %ML %MS
M_1K 300000 300 - 100 -

B_50-500 300000 150 300 50 50
B_50-250 300000 150 600 50 50
B_50-125 300000 150 1200 50 50

of 300 chains of length 1000 beads and the binary blends consists
of longer chains of length 1000 beads, while the lengths of shorter
chains were varied from 500 to 125 bead in different simulations.
We denote mono-disperse system as “M_1K” and binary systems
with 50% chains of length 500 beads, 50% chains of length 250
beads and 50% chains of length 125 beads as “B_50-500”, “B_50-
250” and “B_50-125” respectively. We provide complete informa-
tion for these systems in table 2. We also denote the total number
of beads, long chain beads and short chains beads in the system
as M, ML and MS respectively.

We performed all shear simulations under constant volume and
constant temperature conditions. The use of NVT for these crys-
tallisation simulations is appropriate as, for this study, we focus
on nucleation, which is a local process and the critical nucleus
size is very small compared to the whole system. Hence densifi-
cation due to crystallisation has a negligible effect on the overall
system for nuclei around the critical size. The shear flow was
generated via Lees Edwards boundary conditions40 and the DPD
thermostat41. This protocol has been used previously to study
polymer crystallisation under flow17,22. We used the friction co-
efficient for the thermostat to be 0.5 τ−1 and the cut-off radius to
be Rc = 1.3σ , where τ =

√
mσ 2

kBT and m is the mass of the bead,
kB is the Boltzmann constant, T is the temperature in Kelvin and
σ is the size of the beads. The integration timestep used in the
simulations at 380K was 0.0069τ, which in real units is 5.84 fem-
toseconds. We used the ESPResSo42 molecular dynamics package
for all simulations.

2.4 Equilibration
To produce equilibrated binary blends, we began with an equili-
brated system of 300 monodisperse chains of 1000 beads (C1000)
from our previous work22. We cut 150 of the chains at the cen-
tre and simulated in NVT at 550K until the short chains diffused
through their radius of gyration. We then cut all short chains
again and reequilibrated as before, then repeated this process one
further time. This produced a series of binary blends of 150 long
chains of 1000 beads blended at a monomer fraction of 0.5 with
short chains of length 500, 250 and 125 monomers, all equili-
brated at 550K. The blend with short chains of 125 monomers
has the widest possible separation of molecular weights, while the
short chains remain entangled, and we expect to see the strongest
long chain enrichment in this system. We then maintained a tem-
perature of 550K, but changed the density to that of the desired
crystallisation temperature, T c, (380K) at 1 atm and ran a short
NVT simulation to allow this density change to relax. Finally we
quenched to Tc to produce a fully relaxed system at Tc with the
correct density.
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2.5 Start-up shear flow
After the quench to Tc we imposed a continuous start-up shear at
a rate γ̇ and ran the simulation until the entire box crystallised.
We ran these shear simulations at three different shear rates, γ̇ =

7× 107, 13.1× 107 and 24.8× 107 1/sec. The Rouse time for the
C1000 chains at 380K, obtained from analysis of direct non-linear
shear simulations and time-temperature superposition results22,
is 155.2 ns. Thus the Rouse Weissenberg numbers WiR = γ̇τRL,
where τRL is the long chain Rouse time, for our chosen shear rates
are 10.9, 20.3 and 38.5. The Rouse Weissenberg numbers for
each chain length are shown in table 3. To sample the nucleation
statistics, we ran 4-8 repeats of this start-up shear flow for each
shear rate and each blend in table 2.

Table 3 Rouse Weissenberg numbers at 380K, from Rouse scaling of the
C1000 τR, for each shear rate and chain length in our study.

γ̇ γ̇τR γ̇τR γ̇τR γ̇τR
[1/sec] C1000 C500 C250 C125
7×107 10.9 2.725 0.681 0.170

13.1×107 20.3 5.08 1.27 0.317
24.8×107 38.5 9.63 2.41 0.602

2.6 Simulation analysis techniques
Below we describe a series of techniques to extract useful nucle-
ation information from our simulation trajectories.

2.6.1 Nucleus induction time

In molecular dynamics simulations of the nucleation process, es-
timation of the induction time is an important task. In order to
estimate the induction times, we used the crystallinity order pa-
rameter, as described in section 2.2, to identify the largest cluster
in the system for all trajectories and performed a mean first pas-
sage time (MFPT) analysis43 to estimate the induction time for
nucleation. This approach is based on classical nucleation theory
to find the induction time. The mean first passage time analysis is
performed on the evolution of the largest cluster in the system to
define the average time of the first appearance of a cluster with
size nmax:

τ(nmax) =
1
M

M

∑
i=1

τ
(i)
nmax , (7)

where M is the total number of trajectories and τ
(i)
nmax is the time

when a cluster with size nmax first appears. As nucleation is fol-
lowed by fast cluster growth, τ(nmax) has a sigmoidal shape and
can be fitted by the equation:

τ(nmax) = 0.5τ
∗[1+ erf(Z

√
π(nmax−n∗))], (8)

where τ∗ is the induction time, n∗ is the critical nucleus size, Z is
the Zeldovich factor and the error function is erf = 2√

π

∫ x
0 e−x2

dx.
This mean first passage time has been successfully used for this
purpose in many recent studies17,22,33–36. Equation (8) captures
the MFPT data from our simulations well. Figure 1 shows the fits
for two representative simulations involving different blends and
shear rates.
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Fig. 1 Comparison of the mean first passage time (MFPT) data from sim-
ulations with fitting from equation (8), for two representative simulations
involving different blends and shear rates.

2.6.2 Nucleus composition

We also developed a histogram method to efficiently extract good
statistical resolution of the nucleus composition from our MD tra-
jectories during a transient start-up flow. We extracted this com-
position data, as follows. We saved configurations every 20,000
timesteps and separated these by accumulated strain, γ, into win-
dows of 0.5 strain units. For each configuration we identified the
largest 7 separate clusters using the crystallinity order parame-
ter. For each strain window we binned all identified clusters by
total cluster size, NT , into bins of width 20 monomers. We re-
jected any bin with fewer than 10 clusters. Within each strain-NT

bin we computed the monomer fraction of clusters by summing
over long chain monomers in all clusters and dividing by the total
monomers summed over all clusters. This approach captures data
from all clusters, not just those that successfully nucleate. We
then repeated this analysis over only successful nuclei. To define
a successful nucleus, we began with a cluster of 500 monomers
and traced these back in time. Moving backwards to the previ-
ous snapshot, we identified the successful cluster as the cluster
that contains the largest number of the original 500 monomers.
We continue to track backwards until the cluster has less than 10
monomers. We then repeated the above analysis, but considering
only successful clusters. Beyond a cluster size of 200 monomers
the data for ’all’ and ’successful’ nuclei are identical so we omit
the data for ’all’ clusters. Finally, we repeated this whole analysis
of nucleus composition, but replacing sums over monomers with
sums over chain stems in the nucleus. This provides a map for the
chain composition of growing nuclei.

3 The polySTRAND model
The polySTRAND model is a nearly analytic continuum model of
flow-induced nucleation in polymers. It was derived24 via sys-
tematic multiscale modelling, involving the coordinated use of
MD from monodisperse chains16, highly coarse-grained kinetic
Monte Carlo simulations of polydisperse chains25,26 and ther-
modynamic modelling to produce a low-dimensional projection
of the nucleation problem24,27,28. The kinetic Monte-Carlo al-
gorithm used in the derivation of the polySTRAND model is the
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Graham and Olmsted (GO) model25,26. The model predicts that
stems and monomers from long chains are enriched for nucleus
sizes around and below the critical nucleus.

In the derivation of the polySTRAND model, only MD data on
monodisperse polymers was used. Such data clearly produce no
information about long chain enhancement. Thus long chain en-
hancement arises naturally from generalising the model to poly-
disperse systems. The polySTRAND model makes assumptions
about the nucleus structure and these determine the quantitative
details of the long chain enhancement. Our MD data test these
assumptions both qualitatively and quantitatively.

3.1 Model summary

Throughout this article we use the GO-polySTRAND24 variant of
this model, which agrees closely with kinetic Monte Carlo simu-
lations25,26,29 that implement the physics described below. The
polySTRAND model considers nuclei to be ellipsoids of NS stems
and NT monomers. For a given NS and NT , the quiescent nucleus
potential comprises a bulk energy gain proportional to the nu-
cleus size, NT , and a surface area cost proportional to the surface
area, S. Hence the potential is Unuc =−εBNT +µSS(NT ,NS), where
εB is the free energy of crystallisation per monomer, µS is the sur-
face energy cost, with all energies in units of kBT . Flow is imposed
by subtracting the flow-induced entropic changes due to the Kuhn
step nematic order (P2,K) from the entropy penalty for crystallisa-
tion, which is implicitly contained in εB. Under flow, each chain
length acquires a different nematic order and so has a distinct
attachment rate. Thus, the stem attachment k+st and detachment
k−st rates have the ratio k+st /k−st = φi exp(−∆Unuc +ΓP2,Ki), where φi

and P2,Ki are the melt monomer fraction and Kuhn step nematic
order, respectively, of species i and Γ is a dimensionless order-one
model parameter, linking nematic order to reduction in entropy
penalty. A Γ value of one means that changing the nematic order
of a Kuhn step from isotropic to fully aligned leads to an entropy
loss of kBT . Stems comprise of crystallised segments of a single
chain and existing stems attach or detach monomers along the
same chain, whose volume fraction at the nucleus surface is taken
to be 1. Thus the ratio of rates for existing stems is identical to
k+st /k−st but with φi = 1. The polySTRAND model provides an an-
alytic expression for the nucleus free energy, F({wi},{vi},NT ,Ns),
where wi and vi are the stem and monomer fractions, respectively.
This free energy is minimised over {wi},{vi} and Ns, subject to
the constraints ∑i wi = 1 and ∑i vi = 1, which are imposed via La-
grange multipliers. This minimisation can be performed nearly
analytically and requires the numerical solution of only a single
non-linear equation. Thus, taking q = Ns/NT , the free energy of a
nucleus is given by

F(NT ,Ns) = NT ∑
i

[
qwi(2logwi− logφi)− vi logvi

+(vi−qwi) log(vi−qwi)− (ΓP2,Ki)vi
]

+NS logq− εBNT +µSS(NT ,NS),

(9)

where all free energies are given in units of kBT . Minimisation
over {wi,vi} with ∑i wi = ∑i vi = 1 yields the optimised stem and

monomer fractions,

wi = Bφi
exp(ΓP2,Ki)

1−Aexp(ΓP2,Ki)
, vi = Bφiq

exp(ΓP2,Ki)[
1−Aexp(ΓP2,Ki)

]2 , (10)

where A and B are Lagrange multipliers, determined by,

∑
i

qφi exp(ΓP2,Ki)(
1−Aexp(ΓP2,Ki)

)2 = ∑
i

φi exp(ΓP2,Ki)

1−Aexp(ΓP2,Ki)
, (11)

and

B =

(
∑

i

φi exp(ΓP2,Ki)

1−Aexp(ΓP2,Ki)

)−1

(12)

Here, equation (11) is solved numerically for A and equation (12)
provides B directly. See ref24 for full mathematical details. In
equation (10) the fraction of stems of species i in the nucleus
is enhanced by a factor of exp(ΓP2,Ki)

1−Aexp(ΓP2,Ki)
, while the fraction of

monomers is enhanced by a further factor of 1− Aexp(ΓP2,Ki)

in the denominator. As long chains are the most readily de-
formed under flow, the polySTRAND model predicts enrichment
of long-chain stems and further enrichment of monomers from
long chains. Hence the model predicts that long-chain stems are
enriched relative to the melt monomer distribution and that these
stems are longer than average. This predicted nucleus structure
is seen directly in our MD simulations (see section 4.2).

3.2 Nucleation composition and barrier under flow

The nucleation barrier under flow can be calculated from the
polySTRAND model as follows. For specified values of NT ,Ns, {φi}
and {P2,Ki}, the normalisation constants A and B can be found by
numerical solution of equation (11) and direct substitution into
equation (12). The values of A and B then provide the chain and
monomer fractions, {vi} and {wi}, via equation (10). Substitution
of these fractions into equation (9) provides the 2-dimensional
barrier F(NT ,Ns). This 2D barrier is projected onto a single co-
ordinate, NT , as follows. For a given NT , numerical minimisation
of F(NT ,NS) over NS gives N∗S , the optimum number of strands.
Leading order fluctuations about N∗S are included via

FpS(NT ) = F(NT ,N∗S )+ ln

(
1

2π

∂ 2F
∂N2

S

∣∣∣∣
NS=N∗S

)
, (13)

where ∂ 2F
∂N2

S
is computed via the standard central difference ex-

pression and where FpS(NT ) denotes the 1D polySTRAND bar-
rier with Ns fluctuations. The same method computes Fq

pS, the
polySTRAND barrier for quiescent chains. Finally, subtracting the
change in the barrier due to chain deformation, Fq

pS−FpS, from a

full calculation of the quiescent GO model barrier, Fq
GO

26 provides
the overall nucleation barrier,

Ffinal(NT ) = Fq
GO(NT )−

(
Fq

pS(NT )−FpS(NT )
)
, (14)

The quiescent GO model barrier can be readily and cheaply com-
puted from the nearly analytic algorithm in Appendix A of Jolley
and Graham29. Read et al.24 showed that, by this method, the
polySTRAND model captures very closely the nucleation barrier
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in the GO model25, obtained by direct Monte Carlo simulation29.
We then search numerically over NT to find the barrier peak F∗.

The calculation above provides the nucleus composition,
namely the monomer and chain fractions, at the N∗S correspond-
ing to each NT . This composition varies only weakly with Ns about
N∗S so we compute the composition at N∗S and neglect the weak ef-
fect of fluctuations about N∗S on the composition. This calculation
provides the nucleus monomer and chain fraction at each value
of NT .

3.3 Modelling the induction time during a start-up flow

Our MD simulations are performed in start-up flow where the
nematic order P2K evolves transiently. This means that the nucle-
ation rate begins at the quiescent value and grows as the chain
deformation increases. Hence the extracted induction time is
the average over a dynamically increasing nucleation rate. Here
we describe how to calculate the corresponding quantity in the
polySTRAND model.

We write the nucleation rate per simulation box as Ṅ(t) =
Ṅ0ξ (t), where Ṅ0 is the quiescent nucleation rate per simulation
box and ξ (t) is the ratio of the flow induced and quiescent nucle-
ation rates. The nucleation rate per simulation box is the product
of the quiescent nucleation rate per unit volume, Ṅq, and the sim-
ulation box volume V . Thus the probability, S(t), that the simula-
tion box has survived (ie not nucleated) at t obeys the differential
equation

dS
dt

=−Ṅ0ξ (t)S(t). (15)

This equation has the solution

S(t) = exp
(
−
∫ t

0
Ṅ0ξ (t ′)dt ′

)
. (16)

As the probability density, P(t), of a nucleation event at time t
is given by P(t) = − dS

dt , we have P(t) = Ṅ0ξ (t)S(t) (from equa-
tion (15)). Substituting this expression into the expectation inte-
gral for the induction time and using equation (16) gives

< τ >=
∫

∞

0
tP(t)dt

=
∫

∞

0
tṄ0ξ (t)exp

(
−
∫ t

0
Ṅ0ξ (t ′)dt ′

)
dt

(17)

In the polySTRAND model the ratio of nucleation rates, ξ (t),
is dominated by the Boltzmann factor of the change in barrier
height24,28, hence ξ (t) = exp(F∗q −F∗

Λ
(t)), where F∗q and F∗

Λ
(t) are

the quiescent and flow-induced nucleation barriers, respectively.
Both barriers can be calculated by the method in section 3.2. For
this calculation we take P2,K for the short and long chains from a
series of simulation snapshots, using the process in section 2.2.2.
This allows F∗

Λ
({P2,K}) to be computed at a set of discrete time

points, which can be used to numerically evaluate the integrals in
equation (17) to provide the induction time for each blend and
flow rate.

3.4 Determining parameters to compare with simulations
To compare to our simulations, the polySTRAND model requires
3 barrier parameters (Γ, εB and µs), to compute the nucleation
barrier and degree of long-chain enrichment, along with an ad-
ditional kinetic parameter Ṅ0 required to compute the induction
time. We can obtain the barrier parameters from independent
quiescent simulations alone. However, the single kinetic parame-
ter must be obtained from our FIC simulations, as detailed below.
Usually the polySTRAND model requires further parameters to
compute P2,Ki under flow and the crystallisation growth kinetics.
However, here MD provides P2,Ki and computing the enrichment
and induction time does not require the growth kinetics.

3.4.1 Barrier parameters

In the polySTRAND model, the parameters εB and µs determine
the quiescent nucleation barrier. The corresponding quiescent
barrier for our MD system was determined by Yi et al.35 via sur-
vival probability analysis and classical nucleation theory. We used
their projection formulae to obtain the quiescent barrier height,
∆F∗, and the critical nucleus size, n∗ and matched these in the
polySTRAND model by adjusting εB and µs, obtaining −0.1459
and 0.89 respectively. We took the default value of Γ = 1 and ex-
tracted the nematic order for each chain length, P2,KL/S, directly
from MD, using equation (6).

3.4.2 Kinetic parameter

The single kinetic parameter is the nucleation rate per simulation
box Ṅ0. We cannot obtain this from quiescent simulation as direct
MD simulations of quiescent nucleation at 380K are not computa-
tionally feasible. Instead we obtained Ṅ0 by fitting equation (17)
to a limited subset of MD data, in which there is no long chain en-
hancement. Specifically, we used our simulated induction times
for the systems M_1K, B_50-500 and B_50-250, at WiR = 38.5. At
this high shear rate these three blends have nearly the same in-
duction time in both the simulations and the model (see figure 2),
thus we balanced the fit across these three blends to obtain the
value Ṅ0 = 5.4× 10−79 ns−1. We emphasize that only a limited
amount of induction time data was used in fitting this parameter
and that no long chain enhancement occurred in these fitted data.
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Fig. 2 Induction time for 50:50 PE blends at 380K with long chains of
1000 beads. Both the short chain length and shear rate vary. Points are
MD simulation results and lines are results from the polySTRAND model.
The simulation results for M_1K are from ref 22.
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4 Simulation results and comparison with
the polySTRAND model

4.1 Induction time

We extracted induction times from our MD simulations, using the
methods in section 2.6.1, and these are plotted in figure 2. This
figure shows how the induction time varies with both flow rate
and blend composition. In this plot the long chain length is 1000
beads in all cases, whereas the short chain length varies between
1000 (monodisperse) and 125 beads (see table 2). At the high-
est shear rate, WiR = 38.5, there is only a very weak variation
of the induction time with blend composition. At this shear rate
all three molecular weights (C1000, C500 and C125) are at a
Rouse Weissenberg number exceeding one (see table 3) hence all
chains deform similarly during the initial part of the shear tran-
sient. Since nucleation occurs during this early part of the tran-
sient then the induction time is independent of polydispersity for
these three simulations. We note that as the shear rate lowers, dif-
ferences in induction time between the blends emerge and grow.
At WiR = 20.3 the induction time begins to rise with decreasing
short chain length and this effect is stronger still at WiR = 10.9.
This suggests that as the shear rate reduces there is a greater sep-
aration in deformation between the short and long chains.

Figure 2 also shows the calculated induction times from the
polySTRAND model, using the calculation method in section 3.2
and the parameters in section 3.4. The variation of the induction
time with both shear and blend composition is captured quantita-
tively by the polySTRAND model. All parameters are determined
from independent quiescent simulations, apart from Ṅ0, which is
fitted to the WiR = 38.5 data alone.

4.2 Long chain enrichment

We extracted the degree of long chain enrichment from our MD
simulations using the methods in section 3.4. For the blends
B_50-500 and B_50-250, we did not see any significant long-
chain enrichment at any of the 3 shear rates. However for the
most widely separated blend (B_50-125) we saw significant long
chain enrichment at both shear rates. These results are shown
in figures 3 and 4. For the monomer fraction, at lower strains
(fig. 3(a-c)) the nucleus composition matches the melt composi-
tion. However, at larger strains, where the difference in chain
deformation between the two species is more pronounced, a dif-
ference in the nucleus monomer fraction and the melt fraction
emerges and grows systematically (fig. 3)(d-j). A similar picture
is seen for the chain fraction in figure 4. Again the chain fraction
matches the melt monomer composition at low strains but begins
to deviate at larger strains as the differences in chain deforma-
tion become more pronounced. The chain fraction is less widely
separated than the monomer fraction. Thus our simulations show
that long-chain stems are enriched in nuclei and there is an even
greater enrichment of monomers from long chains. Consequently,
these long-chain stems are typically longer than the average stem
length. This leads to a specific nucleus structure which is exem-
plified in the nucleus snapshot shown in figure 5. This nucleus
has a core of elongated long chain stems (red), while the short-

chain stems (grey) are fewer and shorter and these tend to plug
the gaps around the long-chain stem core. These results provide
clear evidence in MD of the enrichment of long chains as pre-
dicted by the polySTRAND model24.

We now compare the calculations of the polySTRAND model
with the long-chain enrichment extracted from our MD simu-
lations. For this comparison all parameter are obtained from
independent quiescent simulations (see section 3.4.1). The
polySTRAND calculations for B_50-125, for each strain window,
at WiR = 10.9 are plotted in figures 3 and 4, where strain win-
dows of width 1 were used. The model captures the simula-
tion data well for both {vi} and {wi}. Both the data and model
show a constant composition for each window, independent of
nucleus size, NT . Thus, we can extract a single composition value
from each strain window by averaging over each NT for which
there is simulation data. The resulting average composition sep-
arations for monomers, vL− vS, and stems, wL−wS, are plotted
against nematic order difference, P2,KL−P2,KS, in figure 6 for both
shear rates. The model quantitatively captures all of these simu-
lation results, from independently determined parameters. Fur-
thermore, the model predicts that different shear rates collapse to
a mastercurve and the simulations are consistent with this. The
polySTRAND model also correctly predicts no significant long-
chain enrichment for the other blends in this study (B_50-500 and
B_50-250). The model parameters that capture the long-chain
enrichment, simultaneously capture the induction time data (see
figure 2).

In this work, the MD data are well-described with a value of
Γ = 1, where this parameter connects the change in nematic or-
der of a Kuhn segment to entropy loss. In our previous work24,
we obtained values of this parameter for a set of MD simulations
and two experimental systems. Fitting to nucleation rate data
from MD simulations of monodisperse C150 PE chains16 gives
Γ = 0.65. By fitting to FIC experiments on isotactic polypropylene
and isotactic poly-1-butene, we found Γ values of 4.3 and 1.3 re-
spectively. Thus, there is some evidence that Γ depends weakly
on the chemical structure of the polymer chains. The small dif-
ference in Γ required to describe the MD data from reference16

and our data herein may be due either to uncertainties in the qui-
escent barrier or due to differences in the density of chain ends
arising from the large differences in polydispersity between the
two simulation set-ups.

5 Conclusions
In conclusion, we ran MD simulations of bimodal blends of lin-
ear polyethylene under flow and tracked crystal nucleation. In
these simulations we observed directly that nuclei are enriched
with long chains, as predicted by the polySTRAND model24. Fur-
thermore in MD this enrichment is independent of nucleus size,
up to and just beyond the critical nucleus size and the enrich-
ment data from two different shear rates collapse onto a master-
curve of composition against nematic order difference between
the short and long chains. In both the simulations and the model,
long chain stems are enriched and there is a further enrichment
of long chain monomers. Consequently, the nucleus structure in
MD comprises a core of elongated long chain stems, with the rarer
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Fig. 3 Nucleus monomer distribution for our bimodal blend, B_50-125, at 380 K (a-j) during a start-up shear flow at WiR = 10.9. The upper (blue) and
lower (orange) symbols correspond to monomers from long and short chains, respectively. Stars correspond to all observed clusters, while hexagons
correspond to data only from clusters that successfully nucleate. The lines are results from the polySTRAND model 24 (see the main text for details).
Here γ is the shear strain, SC/LC refers to short/long chains, Suc means only successful nuclei, All means all observed nuclei and Γ is a parameter of
the polySTRAND model.

and shorter short-chain stems plugging the gaps around this long-
chain stem core (see figure 5). Our results show that the key
role of nematic order, identified from nucleation simulations of
monodisperse chains16, extends to polydisperse systems. There
is prior indirect evidence of this long chain enrichment from the
super-exponential behaviour of the nucleation rate in shear exper-
iments and from the polySTRAND model. However, our MD simu-
lations provide a direct quantification of this effect. This combina-
tion of experiments, simulation and modelling constitutes strong
evidence for the importance of long chain enrichment in the flow-
induced nucleation mechanism.

The polySTRAND model24 makes assumptions about the nu-
cleus structure. Specifically, that chains within the nucleus are
arranged into stems and each stem contains a single chain. These
assumptions determine the quantitative degree of long chain en-
hancement and lead to specific predictions about the long-chain
enhancement, which were tested by our MD data. The most sig-

nificant prediction is that the fraction of both long chain stems
and monomers are enriched, with monomers being more en-
riched than stems. The polySTRAND model quantitatively cap-
tures the degree of long chain monomer and stem enrichment in
our simulations. This comparison required only a small number
of free parameters, which we obtained from a minimal subset of
the induction time data in which long chain enhancement was
absent. The same model parameters also correctly capture the
nucleus induction time seen in our simulations, for all four blends
at a range of shear rates. The qualitative and quantitative success
of the polySTRAND model in capturing details of the nucleation
seen in our MD simulations supports the validity of the physical
assumptions made in deriving this model.

There is a developing body of evidence supporting the role
of nematic precursors in polymer nucleation13,44–50, particularly
under flow. Although, investigating nematic precursors was not
an aim of this study, we can draw some conclusions from our re-
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Fig. 4 Nucleus chain distribution for our bimodal blend, B_50-125, at 380 K (a-j) during a start-up shear flow at WiR = 10.9. The legend is the same as
figure 3.

n=66

n=83

n=92

n=112

n=131

n=160

n=194

(a)

n=66

n=83

n=92

n=112

n=131

n=160

n=194

(b)
Fig. 5 Simulation snapshot showing the typical nucleus structure from
blend B_50-125, for a nucleus of 66 monomers at WiR = 20 and a shear
strain of 6.45. Only crystallised monomers are shown and long and short
chain monomers are coloured red and grey, respectively. The viewing
directions are perpendicular (a) and parallel (b) to the nucleus stem axis.

sults. First, the polySTRAND model tracks the arrangement of
monomers within oriented strands inside the nucleus, but not the
ordering of these strands within the nucleus. This level of de-
scription is consistent with nucleation into a nematic precursor.
Second, our results show that nematic order is the key order-
parameter controlling the induction time (figure 2) and nucleus

composition (figure 6), which is also consistent with nucleation
into a nematic precursor. We cannot make a definitive statement
at this stage and further work is needed, with MD positioned to
play a useful role. Chain stiffness is likely to promote nematic
phases, as in experiments on PEEK18,47,50, and stiffness can read-
ily be controlled in MD simulations by adjusting the bonded in-
teractions in the forcefield.

Long-chain enrichment is central to the structure of flow-
induced nuclei from polydisperse systems and this long-chain en-
richment must be captured to correctly predict the nucleation
rate. Evidence across experiments, simulations and modelling
shows that polydispersity plays a central role in flow-induced
nucleation as multiple chain lengths co-operate in nontrivial
ways to compose the growing nucleus. Experiments and simu-
lations across several chemistries (polyethylene, polypropylene10

and isotactic poly-1-butene51) can all be described by the same
model. This is strongly suggestive of universal behaviour in poly-
mer FIC that transcends the chemical composition of the chains.
This is supported by experimental evidence of the universal role
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Fig. 6 The difference in nucleus composition between long and short chains, for blend B_50-125, against the difference in nematic order parameter for
monomer fraction (a) and stem (chain) fraction (b). Comparison of MD simulations at 380K with the polySTRAND model 24.

of critical mechanical work in determining the nucleation den-
sity and onset of shish kebab structures across many different
polymer chemistries5,6,52,53. We conclude that, polydispersity
has a central role in the mechanism of flow-induced nucleation.
As the polySTRAND model24 predicts this effect quantitatively it
provides a tool for the control of FIC by tailoring the molecular
weight distribution and processing conditions.
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