Review

Microplastic Contamination of Seafood Intended for Human Consumption: A Systematic Review and Meta-Analysis

Evangelos Danopoulos,¹ Lauren C. Jenner,¹ Maureen Twiddy,¹ and Jeanette M. Rotchell²

¹Hull York Medical School, University of Hull, Hull, UK

²Department of Biological and Marine Sciences, University of Hull, Hull, UK

BACKGROUND: Microplastics (MPs) have contaminated all compartments of the marine environment including biota such as seafood; ingestion from such sources is one of the two major uptake routes identified for human exposure.

OBJECTIVES: The objectives were to conduct a systematic review and meta-analysis of the levels of MP contamination in seafood and to subsequently estimate the annual human uptake.

METHODS: MEDLINE, EMBASE, and Web of Science were searched from launch (1947, 1974, and 1900, respectively) up to October 2020 for all studies reporting MP content in seafood species. Mean, standard deviations, and ranges of MPs found were collated. Studies were appraised systematically using a bespoke risk of bias (RoB) assessment tool.

RESULTS: Fifty studies were included in the systematic review and 19 in the meta-analysis. Evidence was available on four phyla: mollusks, crustaceans, fish, and echinodermata. The majority of studies identified MP contamination in seafood and reported MP content <1 MP/g, with 26% of studies rated as having a high RoB, mainly due to analysis or reporting weaknesses. Mollusks collected off the coasts of Asia were the most heavily contaminated, coinciding with reported trends of MP contamination in the sea. According to the statistical summary, MP content was 0–10.5 MPs/g in mollusks, 0.1–8.6 MPs/g in crustaceans, 0–2.9 MPs/g in fish, and 1 MP/g in echinodermata. Maximum annual human MP uptake was estimated to be close to 55,000 MP particles. Statistical, sample, and methodological heterogeneity was high.

DISCUSSION: This is the first systematic review, to our knowledge, to assess and quantify MP contamination of seafood and human uptake from its consumption, suggesting that action must be considered in order to reduce human exposure via such consumption. Further high-quality research using standardized methods is needed to cement the scientific evidence on MP contamination and human exposures. https://doi.org/10.1289/EHP7171

Introduction

Microplastics (MPs) are broadly defined as synthetic polymeric particles <5 mm in diameter (Frias and Nash 2019; GESAMP 2015, 2016), often also including nanoplastics, which are <100 nm in diameter (Lusher et al. 2017a). They can be classified into two categories according to their origin: primary (intermediate feedstock, pellets/resin, by-products), and secondary (formed through fragmentation and degradation) (Carbery et al. 2018; Karlsson et al. 2018). MPs are diverse, originating from the wide variety of plastics produced for household products, construction material, and industrial applications. Human exposure is suggested to be principally via ingestion and inhalation (Abbasi et al. 2019; Wright and Kelly 2017). MPs are ubiquitous in the environment, with marine environments especially affected owing to the amount of plastic waste they receive (Burns and Boxall 2018; Gourmelon 2015; J Li et al. 2016). The degradation of plastic waste in the sea is the major source of MP contamination (Eriksen et al. 2014). The generation of plastic waste and mismanagement of its disposal is expected to triple by 2060, reaching 155–265 million metric tons per year (Lebreton and Andrady 2019). MPs are extremely persistent particles; over time they have contaminated all compartments of marine ecosystems, including the food web and biota across different trophic levels, such as bivalves (SY Zhao et al. 2018), crustaceans (F Zhang et al. 2019), fish, and mammals (Lusher et al. 2015; Nelms et al. 2018). MPs have been found in various parts of organisms such as the gastrointestinal (GI) tract (Sun et al. 2019), liver (Collard et al. 2017a), gills (Feng et al. 2019), and flesh (Akoueson et al. 2020; Karami et al. 2017b). Commercial seafood species are either consumed whole, such as bivalves, some crustaceans, and some small fish, or just parts of them, such as larger fish and mammals. Therefore, understanding the MP contamination of specific body parts, and their consumption by humans, is key.

Food safety is managed in terms of hazards and risk analysis, where hazards are classified into three categories according to their potential to cause a health effect: biological, chemical, and physical (EC 2002). The MP health effects that are currently under consideration include all three categories (Smith et al. 2018; Wright and Kelly 2017). MPs contain various chemicals with differing concentration (Hartmann et al. 2019), and their effects can come from the plastics' primary components (polymers), the additives that are used to enhance their attributes (plasticizers), the chemical contaminants absorbed while in the environment [e.g., polycyclic aromatic hydrocarbons (Hartmann et al. 2017; Ziccardi et al. 2016) and polychlorinated biphenyls (Engler 2012), or the microorganisms colonizing their surfaces (Viršek et al. 2017)]. MPs can thus be considered either the primary hazard or a pathway for a hazard, both linked to human health. The contamination of food intended for human consumption, with this emerging risk and the possible effects on health, has raised concern in the scientific community (Barboza et al. 2018; Diepens and Koelmans 2018; Santillo et al. 2017; Waring et al. 2018) as well as among stakeholders (GESAMP 2015, 2016) and policy makers globally (EFSA Panel on Contaminants in the Food Chain 2016). There is a growing body of evidence regarding effects in aquatic animals, but health effects on humans are still unclear (Karbalaei et al. 2018; Sharma and Chatterjee 2017; Smith et al. 2018). There is a clear need to address this emerging risk and promptly implement mitigation strategies for the protection of the environment and human health.

This systematic review focuses on seafood intended for human consumption. The aim is to map the existing evidence, appraise study quality using a standardized approach, identify knowledge

Address correspondence to Evangelos Danopoulos, Allam Medical Building, Hull York Medical School, University of Hull, Hull, HU6 7RX UK. Email: hyen7@hyms.ac.uk

Supplemental Material is available online (https://doi.org/10.1289/EHP7171). The authors declare that they have no actual or potential competing financial interests.

Received 1 April 2020; Revised 19 November 2020; Accepted 20 November 2020; Published 23 December 2020.

Note to readers with disabilities: *EHP* strives to ensure that all journal content is accessible to all readers. However, some figures and Supplemental Material published in *EHP* articles may not conform to 508 standards due to the complexity of the information being presented. If you need assistance accessing journal content, please contact ehponline@niehs.nih.gov. Our staff will work with you to assess and meet your accessibility needs within 3 working days.

gaps, and ultimately collate the data in order to quantify human exposures. Predicted human exposures calculated using modeling could consequently be used in a risk assessment framework to characterize the risk coming from MPs through the ingestion uptake route.

Methods

This review is based on a protocol published in PROSPERO (Danopoulos et al. 2019). The protocol was created in order to standardize the methods and protect against the inclusion of bias, according to the guidelines set by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses protocols (PRISMA-P) (Moher et al. 2015; Shamseer et al. 2015). In brief, only primary, peer-reviewed studies with descriptive and analytic observational study designs were eligible for inclusion. There were no publication date limits. Only studies that sampled commercially relevant seafood species were included, regardless of the species of the organism (e.g., fish, mollusks, crustaceans) or the part of the body that MPs were reported to be found in, for example, the gills, GI tract, liver, and flesh. If a study focused on the GI tract of a type of seafood, it was included only if the species of the seafood was small and it was reasonable to assume that it is usually eaten whole with the GI tract intact (e.g., anchovies, shrimps). Studies reporting on samples that were not collected as food, but are regularly consumed as such (e.g., mussels), were included. Studies must have used one of the four currently validated procedures for the identification of the chemical composition of particles: namely, Fourier-transform infrared spectroscopy (FT-IR), Raman spectroscopy (RM), pyrolysis gas chromatography/mass spectrometry, and scanning electron microscopy (SEM) plus energy-dispersive X-ray spectroscopy. All included studies must have reported the use of procedural control samples to avoid post-sampling contamination.

The following online databases/sources were searched from launch date: MEDLINE (OVID interface, 1946 onward), EMBASE (OVID interface, 1974 onward), and Web of Science core collection (Web of Science, 1900 onward). The initial search was executed on 10 July 2019. The searches were repeated on 5 October 2020 to include the most recently published papers. Search terms included: microplastic, nanoplastic, plastic/, micro^{*}, fiber^{*}, food contamination, and seafood. The full search strategy can be found in Tables S1 and S2. Study screening was completed by two independent reviewers (E.D. and L.J. for the original searches; E.D. and M.T. for the rerun of the searches) at two levels, initially reviewing titles and abstracts. Screening results were compared and disagreements discussed. Inter-rater agreement at the first level was 90%, Cohen's κ: 0.34, for the original searches, and 97%, Cohen's κ : 0.65, for the rerun. This was followed by a full paper review for potentially eligible papers. A third-party arbitrator (J.M.R.) resolved the discrepancies between the two reviewers (for both searches). Inter-rater agreement at this level was 100%, Cohen's κ : 1 for both searches. Corresponding authors were contacted when more information was required with a maximum of three emails sent. Data was extracted as sample characteristics, sampling and analysis methods, MP content in any quantified unit, composition analysis results, and procedural samples results.

Synthesis of Results

The primary outcome was reported as MP content in terms of particles per unit mass or individual organism expressed as the mean value [and standard deviation (SD) or standard error] or the range. Effort was made to convert all the data into the same unit of measurement of particles/g (wet weight) when it was appropriate, and the necessary raw data was available. The MP contents for species of the same family in the same study were pooled using the formulae for combining groups proposed by Higgins and Green (2011, Table 7.7a) (Table S3). When needed, the conversion of the fivenumber summary (sample minimum and maximum, median, lower and upper quartile) to the quantities needed for this review, was made using the methods and calculator developed by Shi et al. (2020). The calculator draws on the methods developed by Luo et al. (2018) for the estimation of the mean of the sample and the methods by Wan et al. (2014) for the estimation of the SD.

The results of the studies were weighted using the inverse of the variance method (Chen and Peace 2013). In order to collate and quantify the data, random-effects meta-analysis models were used (Higgins et al. 2019). Random-effects models were preferred over fixed-effects models because it was assumed that the samples did not share one common true effect size that was influenced equally by the same factors but, rather, a distribution of true effect sizes (Chen and Peace 2013; Harrer et al. 2019b; Veroniki et al. 2016). The DerSimonian-Laird t^2 estimator was used for all the random-effects models (DerSimonian and Laird 1986, 2015) because this accounts for variations both within and between studies. The Higgins I^2 test and the chi-squared Cochran's Q statistic were used to assess statistical heterogeneity (Higgins and Thompson 2002; Higgins et al. 2003). The I^2 test is the percentage of variability in the effect size that is not produced by sampling error. The Cochran's Q statistic refers to the null hypothesis of homogeneity and is expressed in the chi-square and *p*-values (Higgins et al. 2003).

The source of between-study statistical heterogeneity was investigated by examining statistical outliers and an influence analysis of studies. Statistical outliers were defined as studies where the 95% confidence interval (CI) of their effect size estimate, as calculated by the random-effects model, did not overlap with the 95% CI of the pooled effect size estimate (Harrer et al. 2019b). Statistical outliers of extremely large effects were specifically targeted to account for and avoid overestimations (where the lower bound of the 95% CI of the study was higher than that of the upper bound of the 95% CI of the pooled effect). To test the influence of individual studies, the models were rerun without these outliers, and the two pooled effect size estimates compared. To further test the influence of every study, the models were rerun excluding one study each time to assess each study's influence on the pooled effect size (Harrer et al. 2019b). Influence diagnostics included the I^2 and Q values (Baujat et al. 2002) and the contribution to the pooled effect size (Viechtbauer and Cheung 2010). The results of the influence analysis were examined numerically and graphically.

Methodological and sample heterogeneity were explored using subgroup analysis employing a fixed-effects (plural) model (mixed-effects model) (Harrer et al. 2019b). R (version 3.6.0; R Development Core Team) was used for all calculations and models executing all analysis via RStudio (version 1.2.1335; RStudio), using the additional packages meta (version 4.9-7; Schwarzer 2019), metaphor (version 2.1-0; Viechtbauer 2010), dmetar (Harrer et al. 2019a), robvis (McGuinness and Kothe 2019), and ggplot2 (Wickham et al. 2016). The code is provided in the Supplemental Material, "Code for R used in the meta-analysis." Each data set was assessed separately in order to determine its suitability for meta-analysis in terms of heterogeneity. The results of the meta-analysis are presented as the MP content (in MPs per gram) with a 95% CI and *p*-value. Maps were created in ArcGIS Desktop (version 10.8; Esri).

Risk of Bias/Quality Assessment

A bespoke risk of bias (RoB) assessment tool was created, rating the studies across four domains: study design, sampling, analysis, and reporting with a final overall assessment (Table S4). The tool comprises a checklist with questions covering all aspects of experimental protocol development, execution, and reporting. The rating of the studies was as follows: high, low, or unclear RoB, supported by a justification for each of the entries.

The construction of the RoB tool was based on up-to-date scientifically robust methodology by the Cochrane organization, which is the leading scientific body in the field of systematic reviews (Higgins et al. 2011, 2019). According to the guidance, the use of scales and scores (numerical) for the assessment was avoided. Instead, for each of the entries, a question was formulated in order to prompt a response that was used as the support for the judgment (Table S4). For each item in the tool, there were two entries: the answer, with additional notes when needed, and the rating. In the answer entry, a copy of the text from the study on which the decision was made is provided, allowing transparency on how the decision was made. The rating of the studies for each entry, domain, and overall study was as follows: high, low, or unclear RoB. RoB assessment was done both on the study and on the specific outcome level. This allowed for the direct comparison of the RoB rating of a specific domain of the study against a specific outcome. For example, when reviewing the sampling methodology, the sampling domain RoB rating is more relevant than that of the overall RoB rating. For the majority of the items in the tool, the rating of high or low was based on a yes/no answer or a numerical value. The rating unclear was assigned when the study did not report sufficient information to make a judgment or when the associated risk was unknown. In order to achieve maximum transparency, all items are discussed in the section "RoB tool additional explanation" in the Supplemental Material.

Weighting of Domains and Questions

A rating was given to each of the 21 items of the RoB tool; subsequently, a rating was given to each of the four domains on the basis of the rating of the individual items in it; and, finally, the overall rating was given according to the domains' rating. In order to decide the weighting of the individual entries in the checklist, three experts in the field were contacted and asked to provide their top three entries/questions of the table as the most important factors to judge the studies' RoB. All three experts concentrated on four questions: 4, 8, 13, and 15 (see "RoB tool additional explanation" in the Supplemental Material). The questions focused on two topics. First, the prevention of sample contamination and its validation by the use of procedural blank samples. Second, the use of a validated method for identifying the composition of the particles and how a spectra library would be employed to do so. This expert opinion on the importance of individual entries of the RoB tool was taken into consideration for the rating of the domain as well as the overall rating of the studies.

Publication bias was explored using the Egger's test (Egger et al. 1997) visualized in funnel plots and the precision of the effect estimate (Liberati et al. 2009). Overall assessment of the certainty of the evidence was based on the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) framework (Higgins et al. 2019) and the Environmental-GRADE (Bilotta et al. 2014) across five domains, categorized into four certainty ratings: high, moderate, low, and very low.

Results

Study Selection

The initial searches led to 2,467 publications, following the removal of duplicates. In the first level screening, 2,307 citations were excluded on the basis of their title and abstract. For the second level screening, the full text of the remaining 160 studies were evaluated, and a total of 34 studies that analyzed seafood samples met the eligibility criteria set for this review (see PRISMA flow diagram, Figure S1). The update of the searches identified 16 more studies eligible for the review, bringing the total number of included studies to 50 (Figure S1).

Study Characteristics

All the studies included are environmental field studies employing descriptive and analytic observational study designs, sampling and analyzing four phyla: mollusks, crustaceans, fish, and ehcinodermata (Table 1). Eight studies analyzed organisms coming from more than one phylum. Twenty-three studies sampled only mollusks, 15 only fish, 3 only crustaceans, and 1 only echinodermata. Five studies sampled both mollusks and crustaceans, 2 mollusks and fish, and 1 mollusks, crustaceans, and fish. The study characteristics are presented in Table 1. Twenty-eight studies used samples from Asia, 13 from Europe, 4 from the Americas, 2 from Africa, 1 from Australia/Oceania, and 2 from more than one continent (and their coasts). The overall sample size for fresh fish was n = 1,269 (n = 665 anchovies, n = 274 sardines, n = 240 painted comber, n = 20 sand lance, n = 19 bogue, n = 19 seabass, n = 12 haddock, n = 10 plaice, n = 10 mackerel); for dried fish, n = 120 (n = 30 mackerel, n = 30 croaker, n = 30mullet, n = 30 anchovies); and for canned fish, n = 842 (n = 608sprat, n = 184 sardines, n = 45 tuna, n = 5 mackerel). For the rest of the seafood, the overall sample size was n = 4,543 [mollusks n = 3,882 (n = 1,728 mussels, n = 1,015 oysters, n = 702 clams, n = 171 sea snails, n = 166 scallops, n = 100 cockles), crustaceans n = 451 (n = 262 shrimps, n = 139 crabs, and n = 50 barnacles), and echinodermata n = 210]. Two studies did not provide the exact sample size: Qu et al. (2018) reported $n \sim 760$ mussels and Wu et al. (2020) reported 10-20 samples for each species, and Teng et al. (2020) did not report sample sizes at all. Species for all samples are presented in Table 1. An additional phylogenetic tree is provided for the molluskan species in Figure S2 to facilitate reference to nomenclature. Sample size fluctuated between the studies. Although we are not aware of a gold standard as yet for the number of samples for such environmental studies, many studies used $n \ge 5$ per species, whereas others used $n \ge 30$. Only three studies in the review used <5 organisms per species (Abidli et al. 2019; Collard et al. 2017a; F Zhang et al. 2019).

FT-IR was used by 72% (n = 36) of the studies as the preferred method for identifying the chemical composition of the particles, followed by RM, which was used by 20% (n = 10) (Table 1). One study used both methods, and the other 3 combined the use of FT-IR and SEM. Twenty-three different particle-extraction processes were used (Table 1; Table S5). The most common method was that developed by Li et al. (2015), used by 11 studies. The method uses a 30% hydrogen peroxide (H₂O₂) treatment for the digestion of the samples, followed by a density-separation step using a sodium chloride (saline) solution and filtration.

RoB Within Studies

The summary of the results of the RoB assessment is illustrated in Figure 1 and in Table S6. The individual rating for each study across all domains is presented in Table S7; 13 studies (26%) were rated as having a high RoB, 26 (52%) a low RoB, and the remaining 11 (22%) an unclear RoB. The domain most often rated as of high RoB was reporting (20 studies; 47%), and the domain that was most rated as unclear RoB was analysis (20 studies; 47%). The most common issues were failure to report the results of the procedural blank samples (e.g., Hossain et al. 2020; HX Li et al. 2018; Thushari et al. 2017; J Wang et al. 2019; Wu

uc.	Outcome	Mean MPs content per mass with SD					Mean MPs content per mass with SD			Mean MPs content per mass and individual with SD							Mean MPs content per mass and individual with SD		MPs content range per mass with SD		Frequency of MPs occurrence		Mean MPs content per mass and individual with SD	
MPs MPs extraction identification	procedure references method	HX Li et al. 2018 FT-IR					Karami et al. 2017b RM			J Li et al. 2018 FT-IR							Developed their own FT-IR		Van Cauwenberghe FT-IR et al. 2015		Avio et al. 2015; FT-IR Dehaut et al. 2016		Dehaut et al. 2016 FT-IR	
	и			15 24	3	60	N	25 20	3			12	10	10		10		141 142		10		20 12		NA NA NA
	Ν		42		18	01	50				42				20		283		20				332	
	Habitat	Wild) NA			NA								Farmed Wild		Farmed Wild	Wild		Wild	
Samulina	location	Environment					Market (canned			Market							Environment		Environment		Environment		Environment	
	Sample species (common name)			Mytilus galloprovincialis (mussel) Ruditapes decussatus (clam)	Crassostrea gigas (oyster)	Hexaplex trunculus (sea snail) Rolinus brandaris (sea snail)	(TINITE DAE) OF MANAGE OF COMPANY	Thumnus tonggol (longtail tuna) Thumnus albacares (yellowfin tima)	Scombermorus commerson (mackerel)	~		Melanogrammus aeglefinus	Dicentrarchus labrax (seabass)	Pleuronectes platessa (plaice) Scromber scombrus (mackerel)	· · · · · · · · · · · · · · · · · · ·	Zygochlamys patagonica (scallop) Pecten maximus (scallop)		C. gigas (oyster) Siliaua patula (razor clam)	Perna perna (mussel)			Crangon allmanni (shrimp) Ennucula tenuis (mussel)		<i>M. edulis</i> (mussel) <i>M. trossulus</i> (mussel) <i>M. galloprovincialis</i> (mussel)
Samule	phylum/class		Bivalve mollusks		Gastronod mollusks	evention nodo neno	Fish				Fish				Bivalve mollusks		Bivalve mollusks		Bivalve mollusks			Crustacean Bivalve mollusks	Bivalve mollusks	
	Geographic location	Tunisia					h Iran					Scotland	Greece	Iceland Scotland		Chile Scotland	NSA		. Brazil		Norway		Norway	
	References	Abidli et al. 2019					Akhbarizadel et al. 2020			Akoueson et al. 2020							Baechler et al. 2020		Birnstiel et al 2019		Bour et al. 2018		Bråte et al. 2018	

Table 1. Study characteristics for seafood studies.

	(
c A		Sample	-	Sampling		;	MPs extraction	MPs identification	
Keterences	Geographic location	phylum/class	Sample species (common name)	location	Habitat	n N	procedure references	method	Outcome
Cho et al. 2019	South Korea	Bivalve mollusks		Market	Farmed	240	Karami et al. 2017a	FT-IR	Mean MPs content per mass and individual with SD
			C. gigas (oyster) M. edulis (mussel) Tapes philippinarum (clam) Patinopecten yessoensis (scallop)				50 50 50		
Collard et al. 2017a	Mediterranean Sea, English Channel	Fish		Environment	Wild	15	Collard et al. 2015	RM	Frequency of MPs occurrence
			Engraulis encrasicolus (anchovy) Sardina pilchardus (sardine)				2		
Collard et al. 2017b	English Channel, Mediterranean Sea, and Northeastern Atlantic	Fish		Environment	Wild	40	Collard et al. 2015	RM	Mean MPs content per individual
			E. encrasicolus (anchovy) S. pilchardus (sardine)				20 20		
Digka et al. 2018	Northern Ionian Sea			Environment			Mathalon and Hill 2014	FT-IR	Mean MPs content per individual with SD
		Bivalve mollusks Fish	M. galloprovincialis (mussel) S. pilchardus (sardine)		Wild/farmed Wild		30 36		
Ding et al. 2018	China	Bivalve mollusks				115	Developed their own	FT-IR	Mean MPs content per mass and individual
			Chlamys farreri (scallop) M. galloprovincialis (mussel)	Market	Farmed		50		
				Market Environment	Farmed Wild		50 15		
Ding et al. 2019	China	Bivalve mollusks		Market	NA	40	Developed their own	FT-IR and SEM	Mean MPs content per mass and individual with SD
			M. galloprovincialis (mussel) Ruditapes philippinarum (clam) Mactra veneriformis (clam)				20 10 10		
Ding et al. 2020	China		х ,	Market	NA	80	Ding et al. 2018, 2019	FT-IR	Mean MPs content per mass and individual with SD
		Bivalve mollusks	M. galloprovincialis (mussel) Dorna viridis (mussel)			120	0		
			R. philippinarum (clam) C. gigas (oyster)				20		
			Sinonovacula constricta (clam) Scapharca subcrenata (clam) Meretrix lusoria (clam)				20 20 20		
		Gastropod mollusks	Ruwcon canaliculatu (sea snail)			, 20	00		
			Dusycon cumunumun vora sum			•	20		

Table 1. (Con	ıtinued.)								
References	Geographic location	Sample phylum/class	Sample species (common name)	Sampling location	Habitat	Ν	и	MPs MPs extraction identificatio procedure references method	Dutcome
Fang et al. 2018	Bering Sea and Chukchi Sea			Environment	Wild			Digestion: Dehaut FT-IR et al. 2016; Phuong et al. 2018a Floatation/filtra- tion: Li et al. 2015	Mean MPs content per mass with SD
		Bivalve mollusks				57			
			Astarte crenata (clam) Macoma tokyoensis (clam)				28 29		
		Gastropod mollusks	× ×			43			
		, c	Retifusus daphnelloides (sea snail) Latisipho hypolispus (sea snail)			c	24 19		
		Crustaceans	Pandalus horealis (Arctic shrimp)			80	21		
Feng et al. 2019	China	Fish	Chionoecetes opilio (snow crab) Thryssa kammalensis (rednose anchovy)	Environment	Wild	19	59	Dehaut et al. 2019; FT-IR Foekema et al. 2013; Hermsen et al. 2018; Karami et al. 2017a	Mean MPs content per mass and individual with SD
Feng et al. 2020	China	Echinodermata		Environment	Wild	210		Foekema et al. 2013; FT-IR Karami et al. 2017a	Mean MPs content per mass and individual
			Strongylocentrotus intermedius				NA		
			(sea urchin) <i>Temnopleurus hardwickii</i> (sea urchin)				NA		
			Temnopleurus reevesii (sea urchin) Hemicentrotus pulcherrimus (sea				NA NA		
Hermabessie- re et al. 2019	France	Bivalve mollusks	urchin)	Environment	Wild	200		Dehaut et al. 2016 RM (no fibers)	Mean MPs content per mass with SD
			<i>M. edulis</i> (mussel) <i>C. edule</i> (cockle)				100		
Hossain et al. 2020	Bangladesh	Crustacean		Environment	Wild	30		Li et al. 2015; Su et FT-IR al. 2016	Mean MPs content per mass with SD
			Metapenaeus monocerous (brown shrimn)				20		
Karami et al. 2017b	Malaysia	Fish	Penaeus monodon (tiger shrimp)	Market (packed	NA	120	10	Karami et al. 2017a RM	Frequency of MPs
0.107			Chelon subviridis (greenback	(norm			30		
			mullet) Johnius belangerii (Belanger's aroater)				30		
			Rastrelliger kanagurta (Indian waalawal)				30		
			Stolephorus waitei (spotty-face anchovy)				30		

Table 1. (Coi	ntinued.)									
References	Geographic location	Sample phylum/class	Sample species (common name)	Sampling location	Habitat	Ν	и	MPs extraction procedure references	MPs identification method	n Outcome
Karami et al. 2018	Product of Canada, Germany, Iran, Japan, Latvia, Malaysia, Morocco, Poland, Portugal, Russia, Scotland, Thailand, and Vietuam	Fish		Market (canned	NA (792 ^a		Karami et al. 2017a	RM	Frequency of MPs occurrence
Leslie et al.	Netherlands		Canned sardines (species unknown) Canned sprats (species unknown)	Environment	Wild		184 ^a 608 ^a	Van der Horst 2011, 2013	FT-IR	Mean MPs content per mass
		Bivalve mollusks Gastropod mollusks Crutacean	M. edulis (mussel) C. gigas (oyster) Littorina littorea (sea snail) Carrinus maenas (crah)			26 10	20 6			6 C C C C C C C C C C C C C C C C C C C
HX Li et al. 2018 J Li et al.	China UK	Bivalve mollusks Bivalve mollusks	Saccostrea cucultata (oyster) M. edulis (mussel)	Environment	Wild	330 246		Li et al. 2015 J Li et al. 2016	FT-IR FT-IR	MPs content range per mass and individual Mean MPs content per
2018				Environment	Wild		162			mass with SD
J Li et al.	China	Bivalve mollusks	<i>M. edulis</i> (mussel)	Environment	Farmed Wild	390	54 30	Li et al. 2015	FT-IR	Mean MPs content ner
2016					Wild Farmed		222 168			mass and individual
Li et al. 2015	China	Bivalve mollusks		Market	Wild/farmed	144		Developed their own	FT-IR	Mean MPs content per mass with SD
			Scapharca subcrenata (clam) Tegillarca granosa (clam) Alectryonella plicatula (clam) R. philippinarum (clam) Sinonovacula constricta (clam) M. lusoria (clam) M. alloprovincialis (mussel) P. vessoensis (scallon)		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		6 18 18 18 18 18 18 18			
Lopes et al. 2020	Portugal	Fish		Environment	Wild	226)	Dehaut et al. 2016	FT-IR	Mean MPs content per individual with SD
McGoran et al. 2018	Thames Estuary, UK	Crustacean	S. pilchardus (sardine) E. encrasicolus (anchovy) Boops boops (bogue) C. crangon (brown shrimp)	Environment	Wild	116	76 131 19	Their own method without digestion	FT-IR	Mean MPs content per individual and fre- quency of occurrence

Table 1. (Co.	ntinued.)									
References	Geographic location	Sample phylum/class	Sample species (common name)	Sampling location	Habitat	Ν	и	MPs extraction procedure references	MPs identification	Outcome
Naji et al. 2018	Persian Gulf			Environment	Wild			Li et al. 2015	FT-IR, SEM	Mean MPs content per mass
		Gastropod mollusk Bivalve mollusks	Amiantis umbonella (sea snail)			30 63				
			Amiantis purpuratus (scallop) Pinctada radiate (oyster)				30 33			
Nam et al. 2019	Vietnam	Bivalve mollusk	P. viridis (mussel)	Environment	Wild	Ś		Phuong et al. 2018b	FT-IR	Mean MPs content per mass and individual with SD
Phuong et al. 2018a	. French Atlantic coasts	Bivalve mollusks		Environment	Wild/farmed	180		Phuong et al. 2018b	FT-IR	Mean MPs content per mass and individual with SD
			M. edulis (mussel) C. vivas (ovster)		NA NA		120 60			
Pozo et al. 2019	Chile	Fish	Strangomera bentincki (sardine)	NA	NA	10		Lindeque and Smerdon 2003	FT-IR	Frequency of MPs occurrence
Qu et al. 2018	China	Bivalve mollusks		Environment	Wild	~ 760		Li et al. 2015	FT-IR	MPs content range per mass and individual
			<i>M. edulis</i> (mussel) <i>P. viridis</i> (mussel)				~ 430 ~ 330			
Renzi et al. 2019	Adriatic Sea	Fish	~	Environment	Wild	160		Nuelle et al. 2014; Avio et al. 2015	FT-IR	Mean MPs content per individual
			S. pilchardus (sardine) E. encrasicolus (anchovy)				80 80			
Su et al. 2018	8 Middle-lower Yangtze River Basin, China	Bivalve mollusk	Corbicula fluminea (Asian clam)	Environment	Wild	208		Li et al. 2015; Su et al. 2016	FT-IR	Mean MPs content per mass and individual with SD
Su et al. 2019	9 China	Fish	Lateolabrax maculatus (seabass)	Environment	Wild	6		Jabeen et al. 2017	FT-IR	Mean MPs content per mass and individual with SD
Sun et al. 2019	Yellow Sea, China	Fish		Environment	Wild	380		Desforges et al. 2015	FT-IR	Mean MPs content per individual
			Setipinna taty (anchovy) Anchoviella commersonii (anchovy) Engraulis japonicus (anchovy) Ammodytes personatus (sand lance)				20 30 50			
Tanaka and Takada 2016	Tokyo Bay, Japan	Fish	E. japonicus (Japanese anchovy)	Environment	Wild	64		Foekema et al. 2013 Rochman et al. 2015	FT-IR	Mean MPs content per individual with SD
Teng et al. 2019	China	Bivalve mollusks		Environment	Farmed	306		Munno et al. 2018	FT-IR	Mean MPs content per mass and individual
			C. gigas (oyster) C. angulate (oyster) C. hongkongensis (oyster) C. sikamea (oyster)				NA NA NA			

128(12) December 2020

Table 1. (Coi	ntinued.)									
References	Geographic location	Sample phylum/class	Sample species (common name)	Sampling location	Habitat	Ν	и	M MPs extraction identi procedure references me	1Ps fication thod	Outcome
Teng et al. 2020	China	Fish	Sardinella zunasi (Japanese scaled sardine)	Environment	Wild	NA		Munno et al. 2018 FT-IR	Ŵ	ean MPs content per mass and individual
Thushari et al. 2017	Gulf of Thailand			Environment	Wild			Claessens et al. 2013 RM	M	ean MPs content per mass with SD
		Bivalve mollusk Gastropod mollusk	Saccostrea forskalii (oyster) Littoraria sp. (periwinkle, sea snail)				15 50			
Van Cauwenb- erghe and Janssen 2014	Germany	Crustacean Bivalve mollusks	Balanus amphirrite (barnacle)		Farmed	93	50	Claessens et al. 2013 RM	Μ	ean MPs content per mass with SD
J Wang et al.	Germany France South Yellow Sea,		<i>M. edulis</i> (mussel) <i>C. gigas</i> (oyster)	Environment Market Environment	bliW		72 21	Claessens et al. 2013 FT-IR	t, SEM M	ean MPs content per
2019	Korea and China	Bivalve mollusk Crustacean	Acila mirabilis (clam) C. affinis (sand shrimp)				20 10			mass with SD
Q Wang et al 2020	. China	Fish		Environment	Wild	58		Munno et al. 2018 FT-IR	Ŵ	ean MPs content per mass and individual
			Konosirus punctatus (spotted sardine)				44			UC IIIIW
			Thryssa mystax (Gangetic				8			
			Sardinella zunasi (Japanese scaled				9			
Webb et al. 2019	New Zealand	Bivalve mollusk	Perma canaliculus (mussel)	Environment	Wild	96		Claessens et al. 2013 FT-IR	Ň	ean MPs content per individual with SD and range of MPs per
Wu et al. 2020	China			Environment	Farmed			Li et al. 2015 FT-IR	Ň	mass ean MPs content per mass and individual with SD
		Fish				NA				
			Larimichthys crocea (large yellow croaker)			1	0–20 ^b			
			Konosirus punctatus (dotted giz- zard shad)			1	0–20 ^b			
		Bivalve mollusks				NA				
			Ostrea denselamellosa (oyster) Sinonovacula constricta (razor clam)			1	$0-20^{b}$ $0-20^{b}$			
		Crustacean	Parapenaeopsis hardwickii (shrimp)			1	0–20 ^b			

Table 1. (Co.	ntinued.)								
References	Geographic location	Sample phylum/class	Sample species (common name)	Sampling location	Habitat	N	MPs extraction n procedure referer	MPs n identification nces method	Outcome
F Zhang et al 2019	. China	Crustaceans		Environment	Wild	136	Masura et al. 201 (for crustacear	5 FT-IR IS)	Frequency of occur- rence per individual
			Oratosquilla oratoria (shrimp) O. kempi (shrimp) Portunus trituberculatus (crab) Carcinoplax vestita (crab) Charybdis bimaculata (crab) Charybdis variegate (crab) Portunus gracilimanus (crab) Charybdis japonica (crab)				64 1 18 15 3 3 3	ì	
SY Zhao et al. 2018	Avery Point Dock, USA	Bivalve mollusks	M. edulis (mussel)	Environment	Wild	37	Zhao et al. 2017	RM April samples FT-IR Septemb-	Mean MPs content per mass and individual with SD
								er samples	
Zhu et al. 2019	China, Maowei Sea	Bivalve mollusk	C. hongkongensis (oyster)	Environment	Wild	20	Foekema et al. 20 Karami et al. 2017a	013; FT-IR	Mean MPs content per mass and individual with SD
Zitouni et al. 2020	Tunisia	Fish	Serranus scriba (painted comber)	Environment	Wild	240	Dehaut et al. 201 Phuong et al. 2018b	6; RM	MPs content per mass with SD
Note: Outcome	s is the description of the MP	content as reported by ea	ch study. FT-IR, Fourier-transform infrare	ed spectroscopy; M	P, microplastic; N,	overall samp	le size expressed in number	of organisms per ph	ylum or class; n, sample size

ż Note: Outcome is the description of the MP content as reported by each study. FT-IR, Fourier-transform infrared spectroscopy; MP, micropiasue, n, v, expressed in number of organisms per species, sampling location, or habitat accordingly; NA, not available; RM, Raman spectroscopy; SD, standard dev ^a20 brands of canned fish were employed, 11 for sardines and 9 for sprats. Samples *n* was calculated based on the number of fish in one can per brand. ^b10–20 per species (exact *n* was not reported).

128(12) December 2020

Figure 1. Risk of bias (RoB) assessment seafood studies. The three ratings are illustrated by percentage. The numerical data for the figure is provided in Table S6. Individual rating per study and per domain is provided in Table S7. Rating was executed according to the RoB tool (see Table S4 and the "RoB tool additional explanation" section in the Supplemental Material).

et al. 2020) and the specifications of the chemical composition analysis (e.g., Collard et al. 2017a; Renzi et al. 2019). The domain of study design was rated as of low RoB across all studies. Lack of space often precludes careful description of the sampling design development, and this was not reported in any of the studies, but the description of sampling activities was adequate to infer it. Further details of the RoB assessment are discussed in the narrative analysis and the results were used to inform both qualitative and quantitative analyses.

Results on MP Contamination Levels within Seafood

The MP content results are presented in three tables, one for each phylum to facilitate comparison (Tables 2–4). The results for the echinodermata phylum (Feng et al. 2020) are presented in Table 2 along with the molluskan phylum. Studies appear in more than one table if their samples included more than one phylum of organisms. The MP content is expressed as the number of MP particles per gram of sample or per individual organism. Studies provided either the mean content (with or without the SD) or the range of content or both. Lopes et al. (2020) reported only the median and the interquartile range; the methods and calculator developed by Shi et al. (2020) were used to estimate the mean and SD. A minority of the studies reported only the frequency of samples being positive for MP contamination and were excluded from the statistical summary.

In terms of procedural blank samples results, 18% of the studies (n=9 of 50) did not report their results, whereas a surprising 36% (*n* = 18) reported that no MPs were found (Table S8). The 46% of the studies (n = 23) that did report the discovery of specific MPs content in their blank samples used their results in different ways. Thirty-five percent of the studies (34.7%; n = 8 of 23) corrected their final findings against the results of the procedural blank samples, whereas an additional 8.6% (n=2) subtracted the absolute number of discovered MPs from their results. Twenty-six percent (n = 6) considered the results to be negligible without offering justification to that effect, whereas 4.3% (n=1)did not make use of the results and did not provide an explanation. On the other hand, 13% of the studies (n = 3) tested the significance of their results statistically, and 8.6% (n=2) used the results to set detection limits. The remaining 4.3% (n = 1) did not report if or how the results were used.

Molluskan Studies

Statistical summary of effects and narrative analysis. Thirty-one studies analyzed mollusks (Table 2), but only data from 27

studies (87%) were combined in a statistical summary. Four studies were excluded: Leslie et al. (2017) used a different approach for the analysis and reported their results as MP per gram of dry weight, two studies reported results per individual organism (Birnstiel et al. 2019; Digka et al. 2018), and one reported frequency of MP occurrence (Bour et al. 2018). The range of MP content for mollusks was 0–10.5 MPs/g of organism (wet weight). The means and ranges reported by the included studies were skewed toward the lower MP content. Sixteen studies reported values <1 MP/g, and the remaining 11 reported values >1 MP/g (Figure 2).

Seven studies were rated as having a high RoB because they did not report the results for the analysis of their procedural blanks (Hermabessiere et al. 2019; HX Li et al. 2018; Thushari et al. 2017; J Wang et al. 2019; Webb et al. 2019; Wu et al. 2020; SY Zhao et al. 2018) (Table S7), an analysis step that was rated as one of the most important questions in the RoB assessment tool. Five of these studies reported MP content >1 MP/g and the rest, <1 MP/g. The study by Baechler et al. (2020) was also found to have high RoB in the domains of analysis and reporting because the majority of the analysis details were not reported. The study reporting the highest MP mean content [6.9 MPs/g; J Wang et al. (2019)] and the study reporting the highest MP range of content [2-7.1 MPs/g; HX Li et al. (2018)] were both rated as having a high RoB in two domains: sampling and reporting. J Wang et al. (2019) was additionally rated as having an unclear RoB in the analysis domain. Omitting these two studies from the statistical summary decreased the MP content to 0-7.2 MPs/g wet wt.

In terms of geographical spread, 59.2% (n = 19 of 27) of the studies sampled organisms off the coasts of Asia (52.6% of which were from China; n = 10 of 19), 18.5% (n = 5) off the coasts of Europe, 11.1% (n = 3) from the Americas, 3.7% (n = 1) from Africa, 3.7% (n = 1) from Australia/Oceania, and 3.7% (n = 1) from between the Americas and Asia (Table 2). Eighty-two percent of the studies (n = 9 of 11) that reported MP content >1 MP/g came from the coasts of Asia. In contrast, only 20% of the studies (n = 1 of 5) from Europe reported MP content >1 MP/g.

At least 15 different particle-extraction procedures were reported. The procedures can be divided into three broad categories depending on the chemical compound used to digest the samples: H_2O_2 , potassium hydroxide (KOH), and nitric acid (HNO₃) (Table S5). There are further differences between these three categories, such as time period and temperatures for digestion, the use of a density-separation step and its specifications (physical/

References	Geographic location	Sample species	Sample additional details ^a	Ν	Mean MPs/g	±SD	Range MPs/g	Composition
Abidli et al. 2019	Tunisia				1.03	0.36	0.70 ± 0.10 to 1.15 ± 0.02^{b}	Fibers: PP 100%; fragments: PP 60%, PE 40%: films: PP 50%. PF 50%
		Mytilus galloprovincialis Ruditapes decussatus Crassostrea gigas		15 24 3	NA NA 1.48	0.02		
		Hexaplex trunculus Bolinus brandaris		<i>ч</i> 0	0./U NA	NA NA		
Akoueson et al. 2020								PET, PE
Baechler et al. 2020	Scotland Chile USA	Zygochlamys patagonica Pecten maximus		10 10	0.29 0.17^c	0.10 0.9	0.16-0.47 0.06-0.35	PET, acrylic, aramid
Bimetial at al	D*ozil	C. gigas Siliqua patula	Farmed Wild	141 142	0.35 0.16	0.04 0.02	0.1 ± 0.02 to 0.85 ± 0.41 0.09 ± 0.01 to 0.62 ± 0.33 $16.6 \pm 6.6 \pm 0.31$ 2 ± 17 s ^d	Ekharer DA - frormanter DMMA
DITISUEL ET AL. 2019	DIAZII						0.11 王 7.17 01 0.0 王 0.01	rioeis: rA, maginems: rivuvia
David of 1 2010	N	Perna perna P. perna	Farmed Wild	10 10			11 100 e	10 אין ער 12 סמ
Bour et al. 2018 Bråte et al. 2018	norway Norway	Emucua tenus Mytilus spp.		332	0.97	2.61	41.1% 0–7.9	CP 63.9%, Parking lot tar and EVA from 18.7%, PET 9.9%, acrylic 2.9%,
Cho et al. 2019	South Korea							PP 1.2%, PE 1%, PA <1% PE, PP, PS, and polyester, accounting for >80% of MPs
		C. gigas M. edulis		09 09	0.07 0.12	0.06	0-0.19 0-0.35	
		Tapes philippinarum Patinopecten yessoensis		9 0	0.08	0.31	0.03-1.08	
Digka et al. 2018	Northern Ionian	All species M. galloprovincialis		240 80	$0.15 \\ 1.9^{f}$	0.20 0.2		75% PE, 12.5% PP, 12.5% PTFE
Ding et al. 2018	oca China	Chlamys farreri	Farmed	50			3.2-7.1	CP, PP, PTFE
		M. galloprovincialis	Farmed	50	3.17		2.0–12.8	
Ding et al. 2019	China			3	٩		0.16-0.74	RY 48.92%, PET 33.87%, CPE 9.68%, PTFE 4.84%, PS 2.15%, PE+PP 0.54%
		M. galloprovincialis	Qingdao	10	0.16	0.13		
		Ruditapes philippinarum Mactra veneriformis	Dongying Dongying	10 10	0.74 0.31	0.24 0.54 0.27		
Ding et al. 2020	China		NA	140			0.8-4.4	Qingdao: RY 41.5%, PET, 16.4%, CPE, 11.8%, PVC, 10.3% Xiamen: RY 44.4%, PVDF 24.2%, CPE 14.0%, PVC 6.8%, PET 5.1%
		M. galloprovincialis Perna viridis R. philippinarum		$\begin{array}{c} 10\\ 10\\ 20 \end{array}$				

Table 2. Molluskan seafood microplastic content results.

. (Continue	L) Geographic	-	Sample					
	location	Sample species	additional details ^a	Ν	Mean MPs/g	±SD	Range MPs/g	Composition
×	Bering Sea and Chulchi Sea	C. gigas Sinonovacula constricta Scapharca subcrenata Meretrix Lusoria Busycon canaliculatu		20 20 20 20 20 20 20				PA 46%, PE 23%, PET 18%, CP 13%
		Astarte crenata Macoma tokyoensis Retifusus daphnelloides Lativipho kvvolivous		28 24 10	0.08 0.03 0.12	0.07 0.05 0.07 0.007	0-0.12 0-0.08 0.05-0.13 0.02-0.03	
208	China	endenod (n ondrenner	bliW	210	1	70000		CP 36.65%, PET/polyester 16.29% PE 14.03%, PP 13.12%, PP-PE 7.69%, PA 4.07%, RY 3.17%, PAN 2.71%, PU 1.36%, PVA-PE 0.90%
		Strongylocentrotus intermedius Temnopleurus hardwickii Temnopleurus reevesii		NA NA NA				, ,
e et	France	nemicentrotus puicherrimus		ΥN				PE 36.8%, ABS 32.5% and SBR 26.3%, PP, PS, PET >5%
		M. edulis	Le Portel Baie des Veys	50 50	0.25 0.15	0.16 0.06	0.15-0.25	
		C. edule	Baie d'Authie Baie des Veys	50 50	0.74 0.19	0.35 0.08	0.19–0.74	
	Netherlands							Not specified
		C. gigas	Eastern Scheldt Rhine Estuary	ω ω	87 30			
		M. edulis	Eastern Scheldt Ter Heijde, North	10 10	105 19			
018	China	Littorina littorea Saccostrea cucullata	Eastern Scheldt	$\frac{10}{330}$	20		1.5-7.2	PET 34%, PP 19%, PE, 14%, PS, 8%, CD 0% DMC6% DA 4% DDS 3%
~	UK	M. edulis		162			0.72-2.89	UF, 8%, FVU 0%, FA, 4%, EFS 3% Polvester 43%. RY 26%. CL 14%
			Edinburgh Filey	12	1.23 2.55	0.25 0.44		
			Hastings-A Hastings-B	30 18	1.59 2.37	$0.51 \\ 0.90$		
			Brighton Plymouth	18 24	0.95 0.72	$0.18 \\ 0.16$		
			Cardiff Wallasey	30 12	2.89 1.65	0.62 0.23		
		M. edulis						PP 17%, polyester 17%, RY 17%, acrylic 13%, CL 9%, PE 4%, PGR 4%

Table 2. (Continue	ed.)							
References	Geographic location	Sample species	Sample additional details ^a	Ν	Mean MPs/g	±SD	Range MPs/g	Composition
			Supermarket live (farmed)	36	0.91	0.19		
			Supermarket proc- essed (farmed/	48	1.37	0.24		
J Li et al. 2016	China		WILU				0.9-4.6	CP 41.1%, PET 16.3%, PTA 10.9%, POM 7% PE 3.1%, PNMA 2.3%
		M. edulis M. edulis	Wild Farmed	222 168	2.7 1.6			
Li et al. 2015	China						2.1-10.5	PE, PET, PA (no %)
		Scapharca subcrenata Tegillarca granosa M. galloprovincialis P. yessoensis Alectryonella plicatula Sinonovacula constricta R. philippinarum M. huovic		6 18 6 8 8 8 8	10.45 4.13 2.39 5.77 2.08 4.10 2.08	4.4 1.72 0.78 1.28 1.18 1.07		
		Cyclina sinensis		30	3.98	1.38		
Naji et al. 2018	Persian Gulf	Amiantis umbonella A. purpuratus Pincrada radiata		30 30 33	۲ ۲			PE, PET, nylon (no %)
Nam et al. 2019	Vietnam	P. viridis	Wild	ŝ	0.29	0.14		PP 31%, Polyester 23%, PE 15%, PVA 8% PA 8% Ruhher 8% PS 7%
Phuong et al. 2018a	French Atlantic coasts	M solution		001	5C 0			0.0,1.7.0.0,1.8.0.00
		M. edults C. gigas		00 60	0.23 0.18	0.20 0.16		PF 41%, PE 38% PE $\sim 50\%$, PP $\sim 25\%$
Qu et al. 2018	China	M. edulis P. viridis		~ 430 ~ 330			05.6-26.1	PET /4%, KY, PE, PVC and PP
Su et al. 2018	China	Corbicula fluminea		208		0	0.3-4.9	Polyester 33%, PP 19%, PE 9%
			S1 Lake	NA NA	0.72	0.19		
			S3 River	NA	4.88	2.31		
			S4 River	NA	1.43	0.47		
			S5 Kiver S6 River	NA NA	2.21	0.77		
			S7 River	NA	0.86	0.48		
			58 Lake S9 Lake	NA NA	0.29 0.29	0.26 0.26		
			S10 Lake	NA	0.42	0.15		
			S11 Lake S12 Estuary	NA	1.11	1.10		
			S13 Estuary	NA	2.71	0.20		
			S14 Estuary S15 Lake	NA	0.55	0.02		
			S16 Lake S17 Lake	NA NA	0.78 1.72	0.13 1.15		
			S18 River	NA	1.22	0.53		

Geographic References location Teng et al. 2019 China Thushari et al. Gulf of Thailand 2017		Comelo					
Teng et al. 2019 China Thushari et al. Gulf of Thailand 2017	Sample species	sample additional details ^a	Ν	Mean MPs/g	± SD	Range MPs/g	Composition
Teng et al. 2019 China Thushari et al. Gulf of Thailand 2017		S19 Lake S20 Lake	NA NA NA	3.70 2.19	2.33 1.32		
107	C. spp.	S21 Lake	NA 306	0.68 0.62	0.32 0.88	0.11–2.35 0–0.57	CP 41.34%, PE 22.97% PA, PET, PS (no %)
	Saccostrea forskalii		15				
		Angsila Bangsaen Samaesarn	NA NA NA	0.57 0.37 0.43	0.22 0.03 0.04		
	Littoraria sp.	:	50				
		Angsila Bangsaen Samassam	NA NA NA	0.23 0 0 17	0.02		
Van		Dalliacsall	EN1	11.0	00.0		Not specified
autor and Jansen 2014							
Germany	M. edulis						
		No depuration After depuration	36 36	0.36 0.24	0.07 0.07		
France	C. gigas	4					
	0	No depuration After depuration	11 10	0.47 0.35	$0.16 \\ 0.05$		
J Wang et al. South Yellow 2019 Sea	Acila mirabilis		20	6.9	2.1		Not specified
Webb et al. 2019 New Zealand Wu et al. 2020 China	Perna canaliculus	Wild Farmed	96	0.03	0.04	0-0.48	PE, PA, acrylic, RY, nylon, PVA CL. PET. PP. PE. PA. acrylonitrile
	Ostrea denselamellosa		10-20	0.31	0.10		
	(oyster)						
	Sinonovacula constricta (ra-		10-20	0.21	0.05		
SY Zhao et al. USA 2018	M. edulis		37	0.6	1.2	0-5.1	PP 44.7%, polyester 21.2%, CL 11.8%, nvlon 3.5%, PE 2.3%, PS 2.3 %, etc.
Zhu et al. 2019 China	C. hongkongensis		20	0.8	0.2	0.7 - 1.1	RY 50%, polyester 39%

crylo-nitrile: PE, polyethylene: PET, polyethylene terephthalate: PCR, propylene glycol ricinoleate: PMMA, polymethyl methacrylate: PNMA, polyvivyl acrylanide): POM, polymerized oxidized material: PP, polypropylene: PS, polysynene: PTA, Polyester terephthalie acid: PTE, polyeropriate for each study regarding sampling turther geographic location, sampling origin (environment, market), habitat (wild, farmed) and sample further processing information dependencies. PMC and program origin (environment, market), habitat (wild, farmed) and sample further processing information b^bCalculated from MPs/g.
^{*} Calculated from MPs/g.
^{*} Program of the procedural blank results.
^{*} Program of MPs/individual occurrence on the sample.
^{*} Program of MPs/individ

⁸Echinodermata phylum. ^{*h*}Expressed as mean ± 2 standard errors (95% confidence interval). ^{*r*}Total number of particles per gram of dry tissue.

Table 3. Crustacean seafood	microplastic	content	results
-----------------------------	--------------	---------	---------

References	Geographic location	Sample	Ν	Mean MPs/g	± SD	Freq.	Composition
Bour et al. 2018 Fang et al. 2018	Norway Bering Sea and Chukchi Sea	Crangon allmanni	20			65%	PE 54%, PP 16.8% PA 46%, PE 23%, PET 18%, CP 13%
		Chionoecetes opilio	59	0.14	0.08		
		Pandalus borealis	21	0.24	0.19		
Hossain et al. 2020	Bangladesh						PA, RY
	-	Metapenaeus monocerous	20	3.87	1.05		
		Penaeus monodon	10	3.40	1.23		
Leslie et al. 2017	Netherlands	Carcinus maenas	9	0			Not specified
McGoran et al. 2018 Thushari et al. 2017	UK Gulf of Thailand	C. crangon	116 50	1^a	0	6%	Polyester 33%, nylon 20%, PP 15% PA, PET, PS (no %)
		Balanus amphitrite ^b	NA	0.57	0.22		· · · · · ·
		B. amphitrite ^c	NA	0.37	0.03		
		B. amphitrite ^d	NA	0.43	0.04		
J Wang et al. 2019	South Yellow Sea, Korea and China	Crangon affinis	10	8.6	2.6		Not specified
Wu et al. 2020	China	Parapenaeopsis hardwickii	10-20	0.25	0.08		CE, PE
F Zhang et al. 2019	China	* *				25%	PET 65%, PP 10%
		Oratosquilla oratoria	64				
		O. kempi	1				
		Portunus trituberculatus	30				
		Carcinoplax vestita	18				
		Charybdis bimaculata	15				
		C. variegate	4				
		P. gracilimanus	3				
		Charybdis japonica	1				

Note: Studies reported MP content results either as the mean MP content (with or without the SD) or the frequency of samples positive for MP presence. MP content is expressed as number of MP particles per gram of tissue (wet weight) unless otherwise stated. Freq., frequency of samples positive for MP presence; CP, cellophane; MPs, microplastics; *N*, sample size expressed in number of organisms; PA, polyamide (nylon); PE, polyethylene; PET, polyethylene terephthalate; PP, polypropylene; RY, rayon; SD, standard deviation. ^aMPs/individual organism.

^bSampling site: Angsila.

Sampling site: Bangsaen.

^dSampling site: Samaesarn.

chemical), the use of further chemicals, and the pore size of the filters. Many studies poorly reported the procedure used, in some cases, missing crucial details of the analysis protocol. In terms of MP content, of the 12 studies that used H_2O_2 for digestion (exclusively or not), 67% (n=8 of 12) reported MP content >1 MP/g. In most cases, the use of H_2O_2 was accompanied by a subsequent density-separation step (88% of the studies; n=7 of 8), suggesting that process was more effective in extracting MPs from biota than the methods using KOH and HNO₃ for digestion.

Samples examined by the studies came either directly from the environment or from markets, which opens up two associated issues: post-collection MP contamination, and the effects following any depuration period. It has been argued that depuration might be effective in extracting MPs from bivalves, with two studies testing this hypothesis (Birnstiel et al. 2019; Van Cauwenberghe and Janssen 2014). Birnstiel et al. (2019) concluded that depuration (over a 4-d period) significantly reduced MP content in their samples (Perna perna). Similarly, Van Cauwenberghe and Janssen (2014) found that a 3-d depuration was effective in removing a large proportion of MP contamination (in Mytilus edulis and Crassostrea gigas). Although the results of these two studies are promising in terms of the reduction of MP contamination, more research is needed to address a number of issues mainly around the methodology of the depuration procedure. For example, the time of depuration required may vary between different species, and the use of seawater that has already been filtered specifically to target MPs, is also key. The effect of depuration cannot be assessed in this review because in most cases, when bivalves have been acquired from markets, it is not known whether they have undergone a depuration process or not. Therefore, it is not clear whether MP contamination after the collection of seafood has a significant effect, or if it is mitigated by depuration. Five studies collected samples only from markets (Cho et al. 2019; Ding et al. 2019, 2020; Li et al. 2015; Akoueson et al. 2020), 3 from both the environment and markets (Ding et al. 2018; J Li et al. 2018; Van Cauwenberghe and Janssen 2014), and the other 23 from the environment (Table 1). The samples collected directly from the environment had a broader range of MP content (0.03-6.9 MPs/g) than the samples collected from a market (0.15-3.93 MPs/g) (Table 2).

The importance of the source (farmed or wild) has been highlighted in previous research (Mathalon and Hill 2014). From the studies that collected mollusks only from markets, only one reported sampling both farmed and wild organisms. Li et al. (2015) stated that MP content was significantly higher in farmed samples but did not report separate data for the MPs contents of the two groups. Ding et al. (2018) collected samples from markets and the environment but did not compare the two groups. Instead, they tested wild vs. farmed organisms and reported farmed mussels contained more MPs (3.17 MPs/g) than wild (2 MPs/g). In contrast, J Li et al. (2018) reported higher anthropogenic debris content in wild mussels per gram (1.6 items/g) than farmed (1.1 items/g), but more in farmed mussels per individual organism. The study by Van Cauwenberghe and Janssen (2014) sampled only farmed organisms. The results of the 23 studies that collected only environmental samples were contradictory. Four studies sampled both wild and farmed organisms of the same species. J Li et al. (2016) found more MPs in wild mussels (2.7 MPs/g) than in farmed ones (1.6 MPs/g). Phuong et al. (2018a) reported higher detection rates for MPs in farmed samples (oysters 93%, mussels 90%) compared with the wild ones (oysters 80%, mussels 65%). Digka et al. (2018) did not detect a difference between the ingestion of MPs in wild (47.5%) and farmed (45%) mussels. Birnstiel et al. (2019) also found the wild mussels to be more contaminated than farmed, but this difference was not significant (analysis of variance F1,36 = 0.006, p = 0.94). Of the rest of the environmental studies, 1 analysed wild and farmed organisms of different species (Baechler et al. 2020), 2

Table 4. Fish microp	lastic content results.								
References	Geographic location	Sample	Ν	MPs/g	±SD	MPs/ individual	±SD	Frequency	Composition
Akhbarizadeh et al. 2020	Iran			1.28	0.04				PET 36.6%, PS 17.6%, PP 13.5%, PS-PP 10.2%, PS-PET 7.9%, nylon 7.1%, PVC 3.9%, LDPE 3.2%
Akoueson et al.	Scotland	Thunnus tonggol T. albacares Scombermorus commerson Melanogrammus aeglefinus	$\begin{array}{c} 25^a\\ 20^a\\ 5^a\\ 12\end{array}$	$\begin{array}{c} 0.15 \\ 0.10 \\ 0.15 \\ 1.07^{b} \end{array}$	0.05 0.04 0.03 0.12				CL 62%, PET 19%, CP 15%, poly-
0707	Greece Iceland	Dicentrarchus labrax Pleuronectes platessa	10 10	1.04^{b} 1.31^{b}	0.07 0.11				oteun +% CL 43%, CP 14%, PET 11% PE 41%, PET 14%, CL 14%, CP 9%
	Scotland	Scromber scombrus	10	0.58^{b}	0.10			- - - -	PET 25%, CL 25%, CP 25%, PP 9%, PA 8%, PAN 8%
Collard et al. 2017a	Mediterranean Sea English Channel	Engraulis encrasicolus Sardina pilchardus	13					9 MPs found in 8 of the 10 livers	PE
Collard et al. 2017b									PE 37%, PP 26%, PET 16%, PAN 7%, PS 5%, PA 5%, PEG 2%, PBMA 2%
	Mediterranean Sea, Bay	E. encrasicolus	20			0.85			
	English Channel, Bay of Biscav	S. pilchardus	20			0.53			
Digka et al. 2018	Northern Ionian Sea	S. pilchardus	36			1.8	0.2		PE 55.5%, PP 27.7%, PET 5.5%, pc 5 5% DTFF 5 5%
Feng et al. 2019	China	Thryssa kammalensis	19	11.19	1.28	22.21	1.70		CP 33.5%, PP 15.0%, PE 13%, ny- lon 8.0% DFT 4.5%
Karami et al. 2017b	Malaysia	Chelon subviridis (packed	30					29 MPs in flesh; 7 MPs in organs	PP, 47.2%, PE 41.6%, PS 5.56%, PET 2.77%, NY6 2.77%
		dried) Johnius belangerii Rastrelliger kanagurta Stolephorus waitei	30 30						
Karami et al. 2018	Product of Canada, Germany, Iran, Japan, Latvia, Malaysia, Morocco, Poland, Portugal, Russia, Scotland, Thailand,	sardines and sprats (canned, unknown species)	206					MPs found in 35% of sample	PP 33.3%, PET 33.3%, PE 16.6%, PVC 16.6%
Lopes et al. 2020	and vietnam Portugal								PP 21%, PE 16%, CL 16%, RY 13%, styrene/acrylic copolymer 11%, polyacrylate 8%, NY6 4%, PET 4%, polymeric epoxy plas- ticizer 4%
		S. pilchardus E. encrasicolus Boops boops	76 131 19			0.23 0.5 0.34	$0.04 \\ 0.6 \\ 0.6$		
Pozo et al. 2019	Chile	Strangomera bentincki	10					MPs found in 30% of sample	PET 75%, PE 25%

128(12) December 2020

Renzi et al. 2019Adriatic SeaS. pilchardus80Su et al. 2019ChinaS. pilchardus8000Sun et al. 2019ChinaE. encrasicolus900Sun et al. 2019ChinaE. encrasicolus900Sun et al. 2019ChinaE. encrasicolus900Sun et al. 2019ChinaE. encrasicolus2000Tanaka andTokyo Bay, JapanEngraulis japonicus28064Takada 2016ChinaSardinella cumari28064Teng et al. 2020ChinaSardinella cumasiNA0.771Q Wang et al.ChinaChinaSardinella cumasiNA0.771	dus 80 dus 80 icolus 80 rax maculatus 9 e personatus 50 taty 50 tats commersonii 280 cus 64 a zunasi NA	0	4.63 1.25 0.35		
Su et al. 2019 S. pilchardus 80 Sun et al. 2019 China E. encrasicolus 9 0 0 Sun et al. 2019 China Lateolabrax maculatus 9 0 0 Sun et al. 2019 China Lateolabrax maculatus 9 0 0 Sun et al. 2019 China Lateolabrax maculatus 9 0 0 Sun et al. 2019 China Lateolabrax maculatus 20 0 0 Takada 2016 Tokyo Bay, Japan Engraulis japonicus 280 64 Takada 2016 China Sardinella cumasi 0.44 0.77 1 Q Wang et al. China China Sardinella cumasi NA 0.77 1	dus 80 dus 80 icolus 80 rax maculatus 9 e taty 20 es personatus 50 tat commersonii 280 cus 64 a zunasi NA	0	4.63 1.25 0.35		
Su et al. 2019 Sun et al. 2019ChinaE. encrasicolus80 900Sun et al. 2019ChinaLateolabrax maculatus900Sun et al. 2019ChinaSetipiuna taty2000Tanaka and Takada 2016Tokyo Bay, JapanEngraulis japonicus280Tanaka and Teng et al. 2020ToinaSardinella zunasi0.771Q Wang et al.ChinaOthinaChina0.771	icolus 80 rax maculatus 9 taty 20 es personatus 50 lla commersonii 280 cus 64 a zunasi NA	0	1.25 0.35		PP 50%, PVC 30%, PTFE 10%, DA 10%
Su et al. 2019ChinaLateolabrax maculatus900Sun et al. 2019ChinaLateolabrax maculatus900Sun et al. 2019ChinaSetipinna tary20Sun at al. 2019ChinaSetipinna tary20Annodytes personatus50Annodytes personatus30Anaka andTokyo Bay, JapanE. japonicus280Takada 2016ChinaSardinella zunasiNA0.771Q Wang et al.ChinaO Wang et al.China2020	rax maculatus 9 taty 20 es personatus 50 lla commersonii 30 s japonicus 280 cus 64 a zunasi NA	0	0.35		PVC 93%, PET 7%
Sun et al. 2019 China Sun et al. 2019 China Setipiura tary 20 Ammodytes personatus 50 Anchoviella conmersonii 30 Engraulis japonicus 280 Takada 2016 Teng et al. 2020 China Q Wang et al. China 2020	taty 20 es personatus 50 lla commersonii 30 s japonicus 280 cus 64 a zunasi NA		0.35		
Setipina taty20Setipina taty50Anmodytes personatus50Anmodytes personatus50Anchoviella commersonii30Anada 2016Tokyo Bay, JapanTaada 2016Tokyo Bay, JapanTaada 2016Tokyo Bay, JapanTaada 2016Tokyo Bay, JapanTaada 2016Tokyo Bay, JapanBardinella zunasiNAQ Wang et al.China2020China	taty 20 es personatus 50 Ila commersonii 30 s japonicus 280 cus 64 a zunasi NA		0.35		Organic oxidation polymers 40%, PE 22%. PA 11%
Animodyres personatus 50 Anchoviella commersonii 30 Anchoviella commersonii 30 Takada 2016 Tokyo Bay, Japan E. japonicus 280 Takada 2016 Tokyo Bay, Japan E. japonicus 64 Teng et al. 2020 China Sardinella zunasi NA 0.77 1 Q Wang et al. China Sardinella zunasi NA 0.77 1	es personatus 50 lla commersonii 30 s japonicus 280 cus 64 a zunasi NA				
Anchoviella commersonii30Tanaka andTokyo Bay, JapanEngraulis japonicus280Takada 2016E. japonicus64Teng et al. 2020ChinaSardinella zunasiNA0.771Q Wang et al.ChinaOtina20200.771	lla commersonii 30 s japonicus 280 cus 64 a zunasi NA		0.54		
Tanaka and Takada 2016Tokyo Bay, JapanEngraulis japonicus280Takada 2016E. japonicus64Teng et al. 2020ChinaSardinella zunasiNA0.771Q Wang et al.ChinaSardinella zunasiNA0.771	s japonicus 280 cus 64 a zunasi NA		0.40		
Tanaka and Tokyo Bay, Japan <i>E. japonicus</i> 64 Takada 2016 Teng et al. 2020 China <i>Sardinella zunasi</i> NA 0.77 1 Q Wang et al. China 2020	cus 64 a zunasi NA		0.39		
Teng et al. 2020 China Sardinella zunasi NA 0.77 1 Q Wang et al. China 2020 2020	a zunasi NA		2.3	2.5	PE 52.0%, PP 43.3%, PS 2.0%, E/P
Q Wang et al. China 2020		0.77 1.42	2.84	1.93 MPs found in 78.8%	CP 61.0%, PET 29.0%, PP 6.0%,
2020				of sample	PA 2.4%, PAN 1.6% CP 77 5% PET 16 9% PP 2 5%
					PAN 0.9%, PE 0.5%, PVAc
					0.5%, PA 0.4%, PS 0.4%, PB
Konosirus punctatus 44 0.12 0	s punctatus 44	0.12 0.14	3.71	3.39	0.2.0, 1, 0.2.0
Thryssa mystax 8 0.09 0	nystax 8	0.05 0.05	1.65	1.39	
Sardinella zunasi 6 0.02 0	a zunasi 6	0.02 0.02	0.74	0.76	
Wu et al. 2020 China					
Larimichthys crocea 10–20 0 0	thys crocea 10–20	0			
Konosirus punctatus 10–20 0 0	s punctatus 10–20	0			
Zitouni et al. 2020 Tunisia <i>Serranus scriba</i> 240 2.90 1	scriba 240	2.90 1.54			PEVA, HD-PE, LD-PE, PA or nvlons. PEMA

nylon-o; P.A., polyamude (nylon); PAN, polyacrylonutrite; PB, polybutene; PBMA, poly (butyl methacrylate); PC, polyachbonate; PE, polyethylene-co-methyl acryla late; PEVA, polyethylene-vinyl-acetate; PP, polypropylene; PS, polystyrene; PTFE, polytetrafluoroethylene; PVAc, polyvinyl acetate; PVC, polyvinyl chloride; SD, standard deviation. "Cans of fish." ^bNot significantly different for the procedural blank results.

Figure 2. The overall microplastics per gram (MPs/g) content for mollusks illustrated in a \log_{10} scale. Points represent mean MPs/g values for the studies, where reported. Whiskers represent the reported ranges of MPs/g.

analyzed farmed organisms (Teng et al. 2019; Wu et al. 2020), and the remaining 16 analyzed wild organisms. No pattern between wild and farmed organisms emerged in a review of the data.

In terms of validating the chemical composition as actual MPs, 10 studies (32%) did not report how many of the extracted particles were analyzed for polymeric composition. The remaining 21 studies (68%) reported percentages ranging from 0.9% to 100%. Eight studies (26%) analyzed 100% of the particles (Cho et al. 2019; Ding et al. 2018, 2019, 2020; Nam et al. 2019; Phuong et al. 2018a; Webb et al. 2019; Wu et al. 2020), one 80% (Hermabessiere et al. 2019), and the rest 0.9–36% (Table S9). Following on from this, it is noteworthy that 16 (52%) of the studies, once these particles have been isolated, did not state the percentage of similarity compared with the spectral library that was used as the level of acceptance.

To investigate the relationship between all these variables, a series of statistical tests were executed. Only seven studies reported all the variables needed for the analysis (Hermabessiere et al. 2019; J Li et al. 2016, 2018; Phuong et al. 2018a; Su et al. 2018; Teng et al. 2019; Zhu et al. 2019) (Table S9). Data was examined to detect whether they were normally distributed by fitting a series of Shapiro-Wilk's tests (Ennos and Johnson 2018). Pearson correlation analysis was used for the normally distributed data and Spearman correlation analysis for the data not normally distributed (Ennos and Johnson 2018). There was a significant negative correlation between the MPs-per-gram content, the percentage of the particles that were analyzed [p = 0.024, correlation coefficient R = -0.86 (Figure S3A)] and the number of particles analyzed [p = 0.0004, R = -1](Figure S3B)]. There was also a significant positive correlation between the MP content and the similarity index of the spectral library (p = 0.054, R = 0.75) (Figure 3).

No significant correlation (Spearman correlation analysis) was found between the percentage of the verified MPs and the percentage of the particles that were analyzed (p = 0.1667), the number of particles analyzed (p = 0.2357), nor the similarity index of the spectral library (p = 0.356).

Ten percent of the studies (n=3 of 31) did not report any results on the polymeric composition of the particles (Leslie et al.

Figure 3. Pearson correlation analysis between the amount of microplastics per gram (MPs/g) in mussels and the percentage of similarity compared with the spectral library that has been used as the level of acceptance. R is the Pearson correlation coefficient with the corresponding p-value. The gray-shaded area represents the 95% confidence belt.

2017; Van Cauwenberghe and Janssen 2014; J Wang et al. 2019) (Table 2). A key difference between the rest of the studies is that 53.6% (n = 15 of 28) reported finding either cellulose, cellophane (CP), or rayon in their samples and reported them as part of the plastic material, whereas the other half did not. It is unclear whether this is because they were not considered plastic or because they were not found. Looking at the percentages of composition attributed to these materials, it became clear that their inclusion as MPs had a substantial effect on the MP content results. Across the studies that did not report cellulose-related material, polyethylene (PE) was the most abundantly discovered polymer, followed closely by polypropylene (PP). In the rest of the molluskan studies, CP was the most abundant material followed by polyethylene terephthalate (PET), rayon, and polyester.

Meta-analysis of MP content results. Two molluskan classes were included-bivalves and gastropods-constituting six molluskan families: clams, cockles, mussels, oysters, scallops, and sea snails (Table 1). The data for all the species of the same family per study were combined, resulting in 32 different sample data sets from 19 studies (Table S10). Sample heterogeneity between the classes and families was assessed in subgroup analyses using mixed-effects models that showed no significant difference between the overall effect between the two classes (Q = 0.82, p = 0.37) but a significant difference between the six families (Q = 33.73, p < 0.01) (Figure 4). Subgroup analysis was also used to identify whether further sample characteristics and methods variability might have affected heterogeneity. A significant difference was also identified between samples that were collected directly from the environment (n = 23) and those collected indirectly, that is, from a market (n = 9)(Q = 29.33, p < 0.01) (Table S11), coinciding with the findings of the narrative analysis concerning this sample characteristic. Significant differences were identified between the 16 different geographical origins of the samples, Q = 698.52, p < 0.01, and the three different RoB ratings Q = 15.42, p < 0.01 (Table S11). In light of these results, analyses using random-effects models were fitted separately for each of the six families of mollusks. In doing so, the heterogeneity between the different families of mollusks could be addressed. Further characteristics were explored within each family analysis separately. The effects that the habitat and feeding parameters had in terms of farmed vs. wild organisms could not be modeled owing to the lack of information because one study (Ding et al. 2019) did not report this characteristic and two studies (Phuong et al. 2018a; Li et al. 2015) collected both farmed and wild organisms and did not provide differentiated results (Table S10).

Subgroup	Standardized Mean Difference	SMD	95% CI
clams			
Baechler et al. (2020)	<u>.</u>	0.16	[0.16 ,0.16]
Cho et al. (2019)		0.34	[0.26,0.42]
Ding et al. (2019)	*	0.52	[0.32,0.73]
Fang et al. (2018)	The second s	0.07	[0.05,0.10]
Su et al. (2018)		4.24	[3.82,4.00]
J Wang et al. (2019)		6.90	[5.98.7.82]
Random effects model	•	1.10	[0.90, 1.30]
$I^2 = 99\%$ [99%; 99%], $\chi_6^2 = 790.29~(p < 0.01)$			• • •
cockles			
Hermabessiere et al. (2019)		0.46	[0.39,0.54]
Random effects model	1	0.46	[0.39, 0.54]
not applicable			
mussels		0.07	10.60 1 051
Brate et al. (2018)		0.97	[0.69,1.25]
Ding et al. (2019)		0.12	[0.09,0.15]
Hermabessiere et al. (2019)		0.29	[0.17.0.23]
J Li et al. (2018) ^a		1.74	[1.62.1.86]
J Li et al. (2018) ^b		0.91	[0.85,0.97]
Li et al. (2015)	-	2.39	[1.78,3.00]
Nam et al. (2019)		0.29	[0.17,0.41]
Phuong et al. (2018a)	· · · ·	0.23	[0.19,0.27]
Van Cauwenberghe and Janssen (2014)		0.36	[0.34,0.38]
Webb et al. (2019)	Tes .	0.03	[0.02,0.04]
Bandom effects model	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.60	[0.27,0.99]
$I^2 = 100\%$ [99%; 100%], $\chi^2_{11} = 2373.34$ ($p < 0.01$)	0.57	[0.42,0.72]
oysters			
Abidli et al. (2019)		1.48	[1.46,1.50]
Baechler et al. (2020)		0.35	[0.34,0.36]
Cho et al. (2019) Rhuang at al. (2019a)		0.07	[0.05,0.09]
Filuony et al. (2010a) Teng et al. (2019)	*	0.18	[0.14,0.22]
Van Cauwenberghe and Janssen (2014)		0.47	[0.38.0.56]
Zhu et al. (2019)		0.80	[0.71,0.89]
Random effects model		0.57	[0.20, 0.93]
$I^2 = 100\%$ [100%; 100%], $\chi_6^2 = 10963.32$ ($p < 0.0$	1)		
scallops			
Akoueson et al. (2020)		0.29	[0.23,0.35]
Cho et al. (2019)	The second se	0.08	[0.06,0.10]
Bandom effects model		2.34 0.48	[1.72,2.96]
$l^2 = 98\%$ [96%; 99%], $\chi_2^2 = 89.28$ (<i>p</i> < 0.01)		0.40	[0.20, 0.77]
sea snails			
Abidli et al. (2019)		0.70	[0.63,0.77]
Fang et al. (2018)		0.08	[0.05,0.10]
Random effects model	†	0.39	[–0.22, 1.00]
$I^- = 100\%$, $\chi_1^- = 265.84$ ($p < 0.01$)			
Fixed effects (plural) model	<u>i</u>	0.54	[0.48,0.60]
$l^2 = 100\% [100\%; 100\%]$. $\gamma_r^2 = 33.73 (p < 0.01)$			[0.15, 1.15]
,	-5 0 5		

Figure 4. Forest plot for subgroup analysis between six molluskan families using a mixed-effects model (random-effects model for studies within each category and fixed-effect model between family categories). Studies were weighted using the inverse of the variance method (Chen and Peace 2013). The *x*-axis represents the standardized mean difference expressed in microplastics per gram (MPs/g). The vertical line is the line of null effect where MP content is 0. The gray boxes represent the pooled effect estimate and the lines the 95% confidence interval (CI). The size of the boxes is proportional to the study weight. The diamonds are the combined point estimates and CI for each of the subgroups. The dotted line is the overall pooled effect for all subgroups with a corresponding diamond. The red box is the 95% prediction interval. The a (superscript) samples collected form the environment; b (superscript) samples collected form the market (J Li et al. 2018).

Clams. Seven studies that analyzed clams were included in the meta-analysis (Figure 4). The model revealed high statistical heterogeneity of the pooled effect: $I^2 = 99.2\%$ and chi-square = 790.29, p < 0.01. Two statistical outlier studies of extremely large effects were detected: J Li et al. (2015) and J Wang et al. (2019); the overlap between the 95% CIs between the individual studies and the pooled results of the model are presented in the forest plot in Figure 4. An influence analysis revealed that they were also the most influential

studies in terms of heterogeneity (I^2) and overall effect (Figure S4A,B) (Viechtbauer and Cheung 2010). Two studies were rated as of high RoB (Baechler et al. 2020; J Wang et al. 2019). Fitting the model without these studies increased the MP content from 1.1 MPs/g to 1.25 MPs/g [(95% CI: 0.70, 1.79), p < 0.01] but did not affect heterogeneity (Figure S5). Therefore, the results of the statistical outlier test, the influence analysis and the RoB rating justified the exclusion of the Baechler et al. (2020) and the J Wang et al.

Study	TE seTE	SMD	SMD	95% CI Weight
Bråte et al. (2018) Cho et al. (2019) Ding et al. (2019)	0.97 0.14 0.12 0.01 0.29 0.05	· · ·	0.97 0.12 0.29	[0.69,1.25] 10.1% [0.09,0.15] 12.2% [0.18,0.40] 11.8%
J Li et al. (2018)" J Li et al. (2018) ^b Li et al. (2015) Nam et al. (2019) Phuong et al. (2018a)	1.74 0.06 0.91 0.03 2.39 0.31 0.29 0.06 0.23 0.02		1.74 0.91 - 2.39 0.29 0.23	[1.62, 1.86] 11.7% [0.85, 0.97] 12.1% [1.78, 3.00] 6.1% [0.17, 0.41] 11.7% [0.19, 0.27] 12.2%
Van Cauwenberghe and Janssen (2014) Overall MPs content (mussels RoB) Prediction interval Heterogeneity: $l^2 = 99\%$, $\tau^2 = 0.10$, $p < 0.01$	0.36 0.01	-2 -1 0 1 2 MPs/a	0.36	[0.34,0.38] 12.2% [0.50,0.92] 100.0% [-0.07,1.49]

Figure 5. Forest plot for random-effects model results for mussels without the two high risk of bias (RoB) studies (Hermabessiere et al. 2019; SY Zhao et al. 2018). The *x*-axis represents the standardized mean difference (SMD) expressed in microplastics per gram (MPs/g). TE is the MP content reported by each study, and seTE is the calculated standard error. The vertical line is the line of null effect where MP content is 0. The gray boxes represent the pooled effect estimate and the whiskers, the 95% confidence interval (CI). The size of the boxes is proportional to the study weight. The diamond is the combined point estimate and 95% CI, and the dotted line is the overall pooled effect. The black box represents the 95% prediction interval. The a (superscript) samples collected form the environment; b (superscript) samples collected form the market (J Li et al. 2018).

(2019) data from the meta-analysis. A subgroup analysis using a random-effects model also revealed that there was a significant difference between the five countries/regions included in the meta-analysis (Q = 274.41, p < 0.01), the use of FT-IR (n = 6) and RM (n = 1) (Q = 58.16, p < 0.01), and the source of the samples [environment, n = 5; market, n = 2 (Q = 44.96, p < 0.01)] (Table S11).

Mussels. Eleven studies reporting mussel MP content were included in the meta-analysis. The analysis did not include the results of the processed mussel samples coming from supermarkets in the study by J Li et al. (2018) study nor the samples after depuration in the Van Cauwenberghe and Janssen (2014) study in order to improve the homogeneity of the data. The mean content was 0.57 MPs/g [95% CI: (0.42, 0.72), p < 0.01] with a high heterogeneity: $I^2 = 99.5\%$, chi-square = 2,373.34, p < 0.01 (Figure 4). The two studies by J Li et al. (2015, 2018) were determined to be statistical outliers of extremely large effect (Figure 4). An influence analysis also identified the same studies as the most influential studies in terms of contribution to the effect size (Figure S6A), whereas the study by Webb et al. (2019) was found to be the major contributor to the heterogeneity I^2 (Figure S6B) and a major influence on the pooled result (Figure S7). The geographical origin of the samples was also found to be associated with significant differences in the MP content (Q = 949.96, p < 0.01), but no significant differences of the source of the samples was found [environment, n = 9; market, n = 3 (Q = 0.38, p = 0.54)] (Table S11). The influence in choice of FT-IR (n=8), RM (n=3), or both (n=1) also revealed a significant difference (Q = 12.21, p < 0.01; Table S11), where the use of FT-IR was associated with higher MP content. The RoB rating analysis showed that there was a significant difference between the three ratings (Q = 13.11, p < 0.01). In light of these results, in order to improve the quality of the data, we fitted a model omitting the results of the three studies rated as of high RoB (Hermabessiere et al. 2019; Webb et al. 2019; SY Zhao et al. 2018). The results of the model are shown in Figure 5, where MP content was 0.71 MPs/g [(95% CI: 0.50, 0.92), p < 0.01], and heterogeneity was high ($I^2 = 99.3\%$, chi-square = 1,170.31, p < 0.01). Although J Li et al. (2015, 2018) were identified as statistical outliers and the major influencers of the effect size, they were not omitted from the analysis because they were rated as having low RoB. Therefore, it was assumed that the difference in their results was due to variability in the measurements rather than methodological or experimental factors.

Oysters. Seven studies were included in the oysters' metaanalysis (Figure 4). The mean content was 0.57 MPs/g [95% CI: (0.20, 0.93), p < 0.01]. Heterogeneity was high $(I^2 = 99.9\%)$, chi-square = 10,963.32, p < 0.01). One study (Abidli et al. 2019) was detected as a statistical outlier of extremely large effects (Figure 4) and which was also rated as having an unclear RoB. An influence analysis identified the same study to be the primary influencer in terms of I^2 heterogeneity and effect size results (Figure S8A,B). Excluding this study from the model resulted in a reduced mean content of 0.41 MPs/g (95% CI: 0.25, 0.57) with high heterogeneity $(I^2 = 99.6\%, \text{chi-square} = 1,308.55, p < 0.01)$. One study was rated as having a high RoB (Baechler et al. 2020). Excluding this study from the model resulted in a higher content of $0.60 \,\mathrm{MPs/g}$ with a broader CI [(95% CI: -0.06, 1.26), p = 0.07] and high heterogeneity $(I^2 = 99.9\%, \text{chi-square} = 10,570, p < 0.01)$. Excluding both studies from the model in a further sensitivity analysis, justified by the previous findings, resulted in a mean content of 0.42 MPs [(95% CI: 0.19, 0.65), p < 0.01] and high heterogeneity ($I^2 = 99.1\%$, chi-square = 432.73, p < 0.01) (Figure 6). Subgroup analysis showed that there was a significant difference between the six different countries/regions of origin of the samples (Q = 10,866.76, p < 0.01). No significant difference was found between the use of

Figure 6. Forest plot for random-effects model for oysters, sensitivity analysis results without the high-risk of bias study (Baechler et al. 2020), and the statistical outlier of extremely large effects (Abidli et al. 2019). The *x*-axis represents the standardized mean difference (SMD) expressed in microplastics per gram (MPs/g). TE is the MP content reported by each study, and seTE is the calculated standard error. The vertical line is the line of null effect where MP content is 0. The gray boxes represent the pooled effect estimate and the whiskers the 95% confidence interval (CI). The size of the boxes is proportional to the study weight. The diamond is the combined point estimate and 95% CI, and the dotted line is the overall pooled effect. The black box represents the 95% prediction interval. Note: an., analysis.

FT-IR (n = 5) and RM (n = 2) (Q = 1.33 p = 0.25) nor between the origin of the sample [environment, n = 5; market, n = 2 (Q = 1.78, p = 0.18)] (Table S11). The results of the subgroup analysis were interpreted with caution owing to the low number of the studies, in a similar manner to the clams' family analysis.

Scallops/sea snails. Three studies were included in the scallops' meta-analysis and the mean content was 0.48 MPs/g [95% CI: (0.20, 0.77), p < 0.01] with high heterogeneity ($l^2 = 97.8\%$, chi-square = 89.28, p < 0.01) (Figure 4). All studies were rated as of low RoB. The study by J Li et al. (2015) was identified as a statistical outlier of extremely large effects (Figure 4). Further influence and subgroup analysis were not appropriate owing to the limited number of studies.

The results of the two studies on sea snails were not found to be appropriate for meta-analysis (Figure 4). The CIs for this family included negative values (95% CI: -0.22, 0.99) and the statistical heterogeneity was extremely high ($l^2 = 99.6\%$). Therefore, the studies were only included in the statistical summary and the narrative analysis.

After the completion of the separate analysis for each family of mollusks, a random-effects model was fitted, again including studies for all families but excluding the five high-RoB studies (Baechler et al. 2020; Hermabessiere et al. 2019; J Wang et al. 2019; Webb et al. 2019; SY Zhao et al. 2018) (Figure S9). The mean content was 0.78 MPs/g [(95% CI: 0.58, 0.97), p < 0.01] and heterogeneity was still high ($I^2 = 99.8\%$, chi-square = 14,491.45, p < 0.01). The results of this model represent the best estimation for MP content of all molluskan families.

Publication bias. The RoB across studies was examined using funnel plots (Borenstein et al. 2009), plotted separately for the different families of mollusks (Figure S10A–D). The results of the Egger's test of the intercept show that the asymmetry was not substantial for clams (p = 0.07), oysters (p = 0.58), and scallops (p = 0.09) but was substantial for mussels (p < 0.01) (Egger et al. 1997). The power of the Egger's test was lower for the clams, oysters, and scallops because the number of the included studies was <10. The robustness of the eligibility criteria of the review might have excluded studies that would possibly have improved the symmetry of the funnel plots. Regarding the crustacean and the fish studies, their results were not expressed in a way that they could be statistically appraised. Publication bias is addressed in the statistical summary/narrative analysis.

Crustaceans studies. Nine studies sampled crustaceans (Table 3), with three reporting the frequency of MP detection. McGoran et al. (2018) reported that only 6% of their samples tested positive for MP contamination, F Zhang et al. (2019) reported the level to be 25%, and the study by Bour et al. (2018) elevated the level to 65%. All three studies were rated as having an unclear RoB in the domains of sampling, analysis, and reporting (Table S7). Regarding the remaining six studies, the study by Leslie et al. (2017) could not be used for comparison owing to methodological issues in the particle-extraction protocol (as mentioned above). Therefore, the statistical summary included the other five studies (Fang et al. 2018; Hossain et al. 2020; Thushari et al. 2017; J Wang et al. 2019; Wu et al. 2020). The range of MP content was from 0.14 ± 0.08 to 8.6 ± 2.6 MPs/g (Figure 7). Four of these studies were rated as having a high RoB (Table S7) and could account for the major difference in these results. Three of these studies have already been appraised in the molluskan analysis previously (Thushari et al. 2017; J Wang et al. 2019; Wu et al. 2020). The study by Hossain et al. (2020) was found to have a high RoB in the domain of sampling and an unclear RoB in the domains of analysis and reporting (Table S7) because they did not report vital information of their analysis, such as the results of the procedural blank samples. Regarding the particle-

Figure 7. The overall microplastics per gram (MPs/g) content for crustacean families of shrimps, barnacles, and crabs; illustrated in a log_{10} scale. Points represent mean MPs/g values and whiskers represent the corresponding standard deviations (SDs). The results of Hossain et al. (2020) and Thushari et al. (2017) have been pooled per family and species, respectively. A, shrimps; B, barnacles; C, crabs.

extraction process, McGoran et al. (2018) did not use any type of digestion but, rather, dissected samples in 1-cm sections and examined them under a dissection microscope. This approach may have significantly affected the findings in that visual inspection in 1-cm dissections may not be adequate to discover and identify particles that can be <1-cm long. Three chemicals were used for digestion of the samples: H_2O_2 (37.5% of the studies; n=3 of 8), KOH (25%; n=2), and HNO₃ (25%; n=2), and a combination of KOH and H_2O_2 (12.5%; n = 1). Fifty percent of the studies (n=4) followed the digestion with a densityseparation process (Table S5). Five studies (56%) sampled from the broader area off the coasts of Asia (Hossain et al. 2020; Thushari et al. 2017; J Wang et al. 2019; Wu et al. 2020; F Zhang et al. 2019), one between Asia and America (Fang et al. 2018), and the rest from Europe (33%) (Bour et al. 2018; Leslie et al. 2017; McGoran et al. 2018) (Table 3). All studies included in the statistical summary came from Asia and the Americas. All studies used samples collected directly from their habitat and all samples were wild apart from one (Wu et al. 2020), and 89% (n=8 of 9) used FT-IR for spectral analysis. In terms of polymeric composition, the most abundant were PE and polyamide (nylon) (PA) followed by PP and PET (Table 1). Fifty-six percent of the studies (n=5) (Fang et al. 2018; Leslie et al. 2017; McGoran et al. 2018; Thushari et al. 2017; J Wang et al. 2019) did not report the similarity index of the spectral library, and only 44% (n=4) (Fang et al. 2018; Leslie et al. 2017; McGoran et al. 2018; Wu et al. 2020) reported the proportion of extracted particles analyzed for composition. Therefore, executing correlation analysis was not possible owing to the lack of data.

The statistical summary was based on five studies, four of which were rated as having a high RoB; therefore, the confidence in those results was deemed to be low. Sample heterogeneity could not be assessed in depth owing to the small number of studies. However, variability was identified throughout the research protocols as in the molluskan studies. The available data on crustaceans were not found to be appropriate for meta-analysis. There were only three studies (Fang et al. 2018; Hossain et al. 2020; J Wang et al. 2019) that provided the necessary data (Table 3). These analyzed two different families (shrimps and crabs), comprising five different species: shrimps: *Crangon affinis, Metapenaeus monocerous, Pandalus borealis, Penaeus monodon*; crabs: *Chionoecetes opilio*, making it unreasonable to collate data with such sample heterogeneity.

Fish studies. Eighteen studies analyzed fish, with 4 reporting the discovery of MPs in the samples or the rate of discovery (Collard et al. 2017a; Karami et al. 2017b, 2018; Pozo et al. 2019) (Table 4). Two studies (Akhbarizadeh et al. 2020; Karami et al. 2018) used canned samples (whole fish), and 1 (Karami et al. 2017b) used dried fish (flesh and organs) (Table 1). Akhbarizadeh et al. (2020) reported 1.28 ± 0.04 MPs/g in canned tuna. Karami et al. (2017b, 2018) did not report MP content (Table 4). These samples had undergone substantial processing; therefore, it would not be reasonable to pool data including them because the fish might have been exposed to airborne MP contamination in some part of processing. From the remaining 13 studies, 7 reported MP content per mass, with a range of 0-11.9 MPs/g (Figure S11), 6 reported MP content only per individual organism, and 3 reported MP content expressed both per mass and per individual organism, with a range of 0.23–22.21 MPs/individual (Figure S12). Only 3 of the studies reported the weight of the samples used (Digka et al. 2018; Renzi et al. 2019; Sun et al. 2019), allowing a conversion from MP content per individual to MP content per mass (Table S12).

All the studies apart from one (Akoueson et al. 2020) collected organisms directly from the environment, and one study did not report the origin of their samples (Pozo et al. 2019). Sixty-one percent of the samples (n = 11 of 18 studies) were wild organisms (Table 1). Regarding the particle-extraction process, 39% used KOH (n=7 of 18), 22% used H₂O₂ (n=4), 17% (n=3) a combination of KOH and H₂O₂, 11% (n=2) used a combination of sodium hypochlorite and methanol, 5% (n=1) used HNO₃, and 5% (n=1) used the enzyme proteinase-K (Table S5). Forty-four percent (n=8 of 18) combined the digestion with a density-separation process. Sixty-seven percent (n=12) used FT-IR, and 33% (n=6) used RM. Fifty percent of the samples came from Asia (n=9), 33% from Europe (n=6), 5.6% (n=1) from Africa, 5.6% (n=1) from South America, and 5.6% (n=1) from multiple continents (Table 4).

There were seven studies that sampled anchovies (six species; Table 1) reporting a range of 0.35-22.21 MPs/individual. The highest MP content $(22.21 \pm 1.7 \text{ MPs/individual})$ was reported by Feng et al. (2019). It was the only study that used the gut, gills, and skin of the samples for analysis, reporting a significant difference of MPs in the different tissues of gut and gill (F = 39.911, degrees of freedom = 2, p = 0.001). They did not report the MP content per tissue per species; therefore, the direct comparison with the rest of the studies would be inappropriate. Feng et al. (2019) attributed the higher MP content to the highly polluted sampling area of Haizhou Bay, the habitat, and to the feeding habits of the species (Thryssa kammalensis). Excluding this study brings the range to 0.35-2.3 MPs/individual. The study reporting the second highest MP content was Tanaka and Takada (2016), which was rated as having an unclear RoB owing to missing information regarding sampling and analysis (Table S7). The higher amount of MP content could also be attributed to the fact the samples came from Tokyo Bay, which is situated off the highly urbanized and industrialized Tokyo metropolitan area.

Six studies sampled sardines (three species; Table 1), reporting a range of 0.23–4.63 MPs/individual. The relatively high value of 4.63 MPs/individual was reported by the study by Renzi

et al. (2019), which was rated as having a high RoB. Information was not reported regarding sampling and analysis, the most important being the use of replicate samples, and any details around the composition identification process. Excluding this high-RoB study brings the range to 0.23-3.71 MPs/individual. Of the four studies that reported only MPs/individual, only two reported on the size of them (i.e., weight). The study by Renzi et al. (2019) used considerably larger samples (20.22 g ± 4.2) than Digka et al. (2018) (9.63 g ± 1.46), which would account for the higher MP content per individual. All the studies that sampled anchovies and sardines used the stomach or whole GI tract of the organism for the analysis.

Four studies sampled the flesh of larger fish. Two studies reported the absence of MP contamination in seabass (*Lateolabrax maculatus*) (Su et al. 2019), in yellow croaker (*Larimichthys crocea*) and dotted gizzard shad (*Konosirus punctatus*) (Wu et al. 2020), whereas Akoueson et al. (2020) did not discover MP content significantly different from the procedural blank samples results. Only the study by Zitouni et al. (2020) reported a content of 2.9 ± 1.54 MPs/g in painted comber (*Serranus scriba*). This study was rated as having an unclear RoB in two domains of sampling and analysis and a high RoB in the domain of reporting (Table S7), resulting in an overall high RoB. The main factor was the unclear reporting of the procedural samples results. Therefore, the results of the study were excluded from the statistical summary. Wu et al. (2020) was also rated as of high RoB owing to the lack of reporting of the procedural blank samples results.

Regarding the MPs polymer composition, the most prevalent polymers for fish were PE and PP, followed by PET and CP (Table 4). Forty-four percent of the studies (n = 8 of 18) did not report on the accepted similarity index to the spectra library, whereas 39% (n = 7) did not report how many suspected MP particles they analyzed (Table S13).

Comparison between species, different body parts used for analysis and the geographical origin of the samples was hindered because not all studies reported the MP content per mass but only MPs per individual organism. MP content was associated with the part of the organism used for analysis and the RoB rating. Methodological heterogeneity identified in sampling and analysis was similar to the molluskan and crustacean studies. Five studies (Akoueson et al. 2020; Feng et al. 2020; Su et al. 2019; Q Wang et al. 2020; Zitouni et al. 2020) provided the necessary data for meta-analysis of MP content per mass and five (Digka et al. 2018; Feng et al. 2020; Lopes et al. 2020; Tanaka and Takada 2016; Q Wang et al. 2020) per individual organism, but all of them sampled different families/species of fish (Table 1), which prevented comparison; therefore, meta-analysis was not attempted. One study (Feng et al. 2020) sampled the phylum echinodermata and reported a content of 0.82 MPs/individual or 1 MP/g in the edible part (gonad) of sea urchins (4 species; Table 2).

Summary of Evidence

The summary of evidence table (Table 5) presents the results of the systematic review, integrating the meta-analysis results as well as the results of the statistical summary and the narrative analysis. The description of the certainty of the evidence as well as the justification for downgrading and upgrading evidence can be found in the certainty framework assessment in Table S14. In brief, RoB rating downgraded the certainty of the evidence only in the case of the crustacean studies because 80% of the studies included (n = 4 of 5) were rated as having a high RoB. Heterogeneity was high across all the families of organisms and downgraded all the evidence by one grade. Conversely, data were not downgraded regarding the three domains of indirectness, imprecision, and publication bias because the evidence was not found to be affected by these factors.

Table 5. Summary of effects.

	Number			Certainty of the
Seafood category	of studies	Outcomes	95% CI	evidence ^a
Average MPs/g content ^b				
Mollusks				Low ^c
Clams	5	1.25	± 0.55	
Mussels	9	0.71	± 0.21	
Oysters	5	0.42	± 0.23	
Scallops	3	0.48	± 0.29	
Overall	14	0.78	± 0.2	
Range of MPs/g content ^d				
Mollusks	21	0-10.5		Moderate
Crustaceans	2	0.1-8.6		Low
Range of MPs/individual content ^{d}				
Fish				Moderate
Anchovies	6	0.35-2.3		
Sardines	6	0.23-4.63		
Lance	1	0.54		
Bogue	1	0.34 ± 0.6 S	D	
Overall fish	9	0.23-4.63		
Echinodermata				Moderate
Sea urchins	1	0.82		
Range of MPs/g content				
Fish				Moderate
Anchovies	3	0.01-0.09		
Sardines	4	0.02 - 0.77		
Lance	1	0.08		
Comber	1	2.9 ± 1.54 S	D	
Croaker	1	0		
Seabass	1	0		
Overall fish	10	0-2.9		
Echinodermata				Moderate
Sea urchins	1	1		

Note: Data represent MP content in global seafood samples (mollusks, crustaceans, fish), meta-analysis results, and statistical analysis results. Certainty of the evidence was rated according to Higgins et al. (2019). MP, microplastic; SD, standard deviation. ^aAll studies were upgraded owing to the absence of confounders according to the results

of the assessment of the certainty of evidence. Details for the assessment are provided in Table S11.

^cOwing to high heterogeneity (see assessment of the certainty of evidence in Table S11).

^dStatistical summary results.

Regarding the three upgrading domains, large effects and dose response did not apply in these studies, whereas all studies were upgraded by one grade owing to the lack of confounders.

Human Exposure to MPs through Seafood

According to the Food and Agriculture Organization of the United Nations (FAO 2020a), global human consumption for fish and seafood in 2017 was 20.38 kg/capita per year; breaking down as fish at 15.21 kg/capita per year, mollusks at 2.65 kg/capita per year, crustaceans at 2.06 kg/capita per year, and cephalopods at 0.47 kg/capita per year (live-weight equivalent). The data by the FAO cover 173 countries around the world (FAO 2020a) and indicate significant variability in fish and seafood consumption by country, ranging from 0.25 kg/capita per year in Afghanistan to 90.71 kg/capita per year in Iceland.

Combining the data for global human consumption of seafood with the outcomes of the statistical summary in this review results in an extrapolation of yearly MP uptake of 0–27,825 MPs from mollusks, 206–17,716 MPs from crustaceans, and 31–8,323 MPs from fish (Table 6). The total maximum yearly MP uptake from all seafood categories, based on FAO (2020a) data could be as high as 53,864 MPs. Seafood consumption between countries varies greatly and is predominantly connected to geography and culture. For example, it is estimated that people in Angola

Table 6. Yearly microplastic uptake from the consumption of seafood.

Yearly uptake	MPs	95% CI
Mean yearly uptake ^a		
Mollusks		
Clams	3.312	+1.431
Mussels	1,881	± 557
Oysters	1,113	± 610
Scallops	1,272	±769
Overall	2,067	± 503
Range of yearly uptake ^b		
Invertebrates		
Mollusks	0-27,825	
Crustaceans	206-17,716	
Fish		
Anchovies	31-279	
Sardines	62-2,387	
Lances	230	
Combers	8,323	
Overall fish	31-8,323	

Note: The consumption has been calculated for each family and then pooled for each of the three phyla; mollusks, crustaceans, and fish corresponding to the yearly global seafood consumption data (FAO 2020a). CI, confidence interval; MPs, microplastics. ^aBased on the meta-analysis results.

^bBased on the statistical summary results.

consume 0.01 kg of mollusks per year, whereas in Hong Kong this rises to 15.32 kg per year (FAO 2020a). The variations of projected maximum yearly MP uptake from global consumption of mollusks is illustrated in Figure 8, for crustaceans in Figure S13, and for fish in Figure S14. The numerical data for the maps can be found in Table S15.

Discussion

Although this is not the first review on this topic, it represents the first systematic review concerning MP contamination of seafood intended for human consumption. Two recent reviews (Hantoro et al. 2019; Toussaint et al. 2019) presented evidence of human exposure to MP through the consumption of seafood but did not critically collate evidence in order to quantify MP uptake. A recent review by Cox et al. (2019) reported MP content of 1.48 MPs/g for seafood, which is consistent with the higher end of the results reported here. The review by Cox et al. (2019) included studies that were rejected by the screening process for this review. For instance, the studies by De Witte et al. (2014) and Davidson and Dudas (2016) were rejected because a particle composition identification process was not included. Using only visual observation for the identification of MP particles can lead to overestimations (Rocha-Santos and Duarte 2015; Strungaru et al. 2019; S Zhang et al. 2019). The inclusion of such studies in these reviews could explain this overestimation.

Fifty studies were systematically reviewed, and the overall quality of the evidence was assessed as low to moderate (Table 5). RoB rating was correlated with fluctuations in the MP content results across all phyla. This suggests that the bespoke quality assessment tool was successful in detecting the most important parts of the studies' protocol and execution, from formulating the rationale to reporting of results. According to the meta-analysis, the MP content in mollusks was 0.78 MPs/g (95% CI: 0.58, 0.97) (Figure S9). Meta-analysis was executed primarily separately for the different molluskan families to address sample and statistical heterogeneity. The range of MP content was found to be 0–2.9 MPs/g in fish, 0.1–8.6 MPs/g in crustaceans, and 0–10.5 MPs/g in mollusks (Table 5), extrapolating to yearly consumptions of 31–8,323, 206–17,716, and 0–27,825 MPs, respectively (Table 6).

Seafood consumption between countries varies greatly. Countries that are the highest producers of seafood are not

Figure 8. Predicted global yearly maximum microplastic (MP) particles uptake through mollusk consumption. The data have been calculated using the FAO (2020a) consumption data for the different mollusks' families per country and the maximum MPs/g content of mollusks derived from the statistical summary results herein. The numerical data is shown in Table S15. MP data were classified in 10 categories using quantile classification for illustration purposes. The hatched areas illustrate countries for which data on mollusk consumption were not available.

necessarily the ones that consume it. According to FAO (2020b), Spain is the leading producer of mussels for human consumption, reaching 250,000 metric tons per year, but it is not the highest consumer (42.38 kg/capita per year) (FAO 2020a). China is also a leader in mussel production (600,000 metric tons), but a large proportion is used as fish food. Other major producers are Chile, Thailand, and New Zealand (Guillen et al. 2019). Corrections for the calculation should include information on where the seafood is produced/caught and where it is consumed. Unfortunately, information at this level of granularity is not readily available. A recent study by Guillen et al. (2019) attempted to calculate the global seafood production and consumption footprint using FAO consumption data and modeling, reporting China to be the major global producer and consumer and also as being self-sufficient for the most part (Guillen et al. 2019).

Other media have also been identified as vectors of MPs via the ingestion route with varying MP concentrations, such as sugar (0.44 MPs/g) (Cox et al. 2019), whereas in our previous work, salt was found to have an MP content of 0-1,674 MPs/kg (Danopoulos et al. 2020a), tap water 0-628 MPs/L, and bottled water 0-4,889 MPs/L (Danopoulos et al. 2020b). Further systematic reviews are needed to robustly assess MP contamination and human exposures from all food categories.

In addition to food ingestion, atmospheric MP contamination presents an additional pathway for MP human exposures (Chen et al. 2020), related to direct exposures via inhalation (Wright et al. 2020) and indirect exposures via nondietary ingestion routes of hand-to-mouth behavior (Gasperi et al. 2018), inadvertent ingestion (Abbasi et al. 2019), and occupational exposures (Gallagher et al. 2015). Recent studies have started to quantify indoor and outdoor air MP levels, for example, Dris et al. (2017) reported concentrations of 1.0–60 MPs/m³ (indoor) and 0.3–1.5 MPs/m³

(outdoor) in air, whereas Liu et al. (2019) measured levels of $0-4.18 \text{ MPs/m}^3$ in outdoor air. A recent review has attempted to extrapolate to human exposures, reporting annual inhalation of $1.9 \times 10^3 - 1.0 \times 10^5$ MPs (indoors) and $0 - 3.0 \times 10^7$ MPs (outdoors) (Zhang et al. 2020). These additional pathways must be included in an aggregate human exposure scenario to account for multiple pathways, routes, and media (U.S. EPA 2019; IPCS 2009). A direct comparison between the magnitude of exposure via different pathways is not advisable at this point given that the end point of the exposures might be different and the internal doses of MPs are likely to vary and depend on the physicochemical MP characteristics (e.g., size, hydrophilicity) (Galloway 2015) and the responses of the barrier organ, that is, the GI tract (Keshav and Bailey 2013; Vancamelbeke and Vermeire 2017) and the lower regions of the respiratory tract (Timbrell 2009). The presence of MPs has been confirmed in both human lung tissue (Pauly et al. 1998) and the GI tract (Schwabl et al. 2019). There is evidence that occupational exposure to high levels of airborne MPs can impact upon human health (Donaldson and Tran 2004; Gallagher et al. 2015; Pauly et al. 1998), but further research is needed to understand whether dietary MPs exposures can have a detrimental effect on the human GI system.

In terms of the most prevalent polymeric compositions in mollusks, discounting the studies that did not report cellulose-related material, PE was the most abundantly detected polymer, followed closely by PP. In the rest of the studies, CP was the most abundant material followed by PET, rayon, and polyester; their reported MP levels might have been inflated by the inclusion of these materials. In crustaceans, the more prevalent polymers were PE and PA, and in fish PE and PP. Consensus is needed in the definition of MPs because some studies included nonsynthetic or semisynthetic polymers in their results. Across the families of organisms, PE and PP were the most dominant, corresponding to the global plastic production trends (Plastics Europe 2019). According to the European Plastics Industry Association, for the past 14 y, the plastics with the highest demand and distribution by resin have been PE (combined low- and high-density PE) followed by PP, polyvinyl chloride, polyurethane, PET, and expanded polystyrene/polystyrene (Plastics Europe 2008, 2017, 2018, 2019).

Narrative analysis showed that molluskan MP contamination was skewed toward content of <1 MP/g and that there seemed to be a correlation of higher MP values in samples from Asia. A geographical variation in MP content was observed whereby a majority of studies (82%; n = 9 of 11) reporting an MP content of >1 MP/g were from the coasts of Asia, in contrast to only one study from Europe. It is important to note that this correlation might be artificial owing to more research being conducted in Asia. However, a recent report by the Ocean Conservancy and McKinsey Center for Business and Environment (2015) argued that more than 50% of the plastic pollution of the oceans, originating from land, comes from five Asian countries (Jambeck et al. 2015). The pattern of MPs contamination of the oceans (surface/ column water and sediments) has been the subject of intensive recent research, but their results are contradictory (Li et al. 2019; Olivatto et al. 2019; Pan et al. 2019; Yu et al. 2018; C Zhang et al. 2019; J Zhao et al. 2018). The systematic review on MP environmental occurrence by Burns and Boxall (2018) point to higher contamination close to urban and industrial coastal areas and rivers for surface waters. In contrast, other research and reviews report higher MP and plastic concentrations in the convergence zones of the subtropical gyres and higher concentrations in the open ocean than in coastal areas (Avio et al. 2017; Barrows et al. 2018; Cózar et al. 2014; Eriksen et al. 2014). Therefore, it is not yet possible to draw conclusions on geographical patterns of MP contamination, and further research is needed.

The contamination of organisms is likely to be affected by the level of contamination of their environment, followed by their feeding habits and physiology. The differences in the amount of MPs between mollusks and the other two phyla can be attributed to the fact that they are filter or bottom feeders. Their physiology renders them a natural filtering system of the oceans, making them vulnerable to MP contamination. In fish, apparent organs for MPs aggregation include the GI tract and gills, which indeed were the focus of many of the studies (Digka et al. 2018; McGoran et al. 2018; Sun et al. 2019; Tanaka and Takada 2016). On the other hand, MPs were not discovered in the studies that analyzed the flesh of larger fish.

Sampling directly or indirectly from the environment and whether the organisms were wild or farmed were recognized as important factors for their contamination. Regarding wild vs. farmed organisms, analysis was inconclusive. A controlled environment might seem more protected against the contamination of farmed organisms, but if the farm is situated in an MPcontaminated area, the water quality will have an impact. In addition, Karbalaei et al. (2020) identified MP contamination in three brands of commercial fishmeal; the use of such fishmeal could have cumulative effects in farmed seafood (Karbalaei et al. 2020). A significant difference was found between the molluskan families collected directly from the environment and those collected indirectly (i.e., from markets), with the first found to be more heavily contaminated with MPs. The depuration procedure that some mollusks are subjected to before being commercially available was proposed as one possible mitigating factor.

A wide range of methodological heterogeneity was detected across the studies regarding sampling and analysis. The size of the sampling regime has a direct effect on the power of the study in terms of both internal and external validity, that is, whether the results can be used to extrapolate to a general population (Higgins et al. 2019). Sampling size is inherently connected to the overall sampling design of the study and is a function of the project's objective, sampling approach, cost, environmental variability, and tolerable error (U.S. EPA 2000, 2002; Zhang 2007). The European Commission, through the Institute for Environment and Sustainability (EC 2013), produced guidelines that raised the minimum amount of sampled specimens to 50 per species and age group, a level that was not reached by many of the studies in this review. It should be noted that this recommendation applies to monitoring the ingestion of litter by fish over time or between different locations. These guidelines speak to the need for more robust sampling. Furthermore, the majority of the studies did not use a robust sampling design, such as a simple random, stratified, or systematic design but, rather, used a judgmental sampling design. However, a judgmental sampling design should be avoided in environmental studies because it can affect the quality of the study and introduce bias (Zhang 2007).

Results were associated with the different particle-extraction procedures and the specifications of the composition identification methods, highlighting the varying effectiveness of research protocols. It has been argued in recent reviews (Miller et al. 2017; Lusher et al. 2017b; Silva et al. 2018) and method papers (Claessens et al. 2013; Collard et al. 2015; Dehaut et al. 2016) that the use of different chemical and physical treatments for the extraction of particles can influence the effectiveness of the procedure or even further degrade and damage the particles. Although the performance of these procedures is not the focus of this review, it highlights the methodological heterogeneity in the field and the need for consensus. These variations in methods are likely to affect results, under- or overrepresenting MP content. Major differences were found in the processes that were implemented to extract possible MP particles from the tissue of the organisms, specifically in the use of different chemicals for the digestion of the samples and the use of a density-separation process.

Further important variations were identified in the composition identification process in terms of the quantity of analyzed particles and the specification of the analysis protocol. Following on from the extraction step, there was a lack of consensus on the percentage of particles isolated that need to be analyzed for composition in order to extrapolate safely to the whole sample. In most cases, this would be a function of available time and resources given that composition analysis is time consuming, labor intensive, and expensive. Nevertheless, it can be assumed that the larger the number/proportion of the analyzed particles, the higher our confidence in the results. The number/proportion of particles undergoing composition analysis should also be considered in relation to the percentage of particles confirmed as MPs, as well as the accepted percentage of similarity compared with the spectral library. Correlation analysis found that as the absolute number of particles and the proportion of particles analyzed increased, the MPs/g content was reduced. This leads to the logical assumption that as the numbers of particles tested increase, the better the quality of the research protocol, and the less they are detected in samples. A further finding was that the use of higher spectral similarity indexes was found to be more robust. As the similarity index rose from 60% to 70% and 80%, the MPs-pergram content also rose. This suggests that as inclusion criteria become more stringent, higher MPs content is identified. One would expect that the lower the similarity index, the more particles would be confirmed as MPs, and thus the greater the MPs-per-gram content would be observed. This is the opposite of what these results showed. In order to explore this further, correlation analysis was carried out between the percentage of the verified MPs and the rest of the variables (the percentage of particles that were analyzed, the number of particles analyzed, the similarity index of the spectral library), but no significant correlation was found. It should be noted

that these results were based on the results of only seven studies, but this analysis can be repeated in the future when more data are available to produce more robust results.

RoB assessment revealed a few focal areas as the source of studies' weaknesses. The most frequently recognized issue was the use of procedural blank samples and the reporting, or not, of their results. In some cases (8.6%; n = 2 of 23; Table S8), studies that did report the results, did not further clarify how the results were used, whereas in many studies (26%, n = 6 of 23), the authors reported that the amount of MPs discovered in procedural samples was inconsequential without offering any more evidence to their conclusion (e.g., statistical tests). The specifics around their use also varied greatly in terms such as the number of samples used and whether they tested the reagents used in the experiments.

Recent reviews by Hermsen et al. (2018) and Koelmans et al. (2019) proposed quality assessment systems for MPs research regarding biota samples and water samples, respectively, similar to the RoB tool used in the present meta-analysis. Both reviews identified high levels of variability in methods and recognized the need for harmonization and transparency in methodology and reporting. There is an evident need for harmonization and/or standardization in all aspects of the research protocols in order to increase confidence in the results (Hartmann et al. 2019). There is a subtle but significant difference between the two terms. Although they both refer to reducing the variations in the methodology, harmonization is less stringent and allows some variation, whereas standardization implies complete absence of variations. Standardization cannot be achieved throughout all aspects of scientific experimental protocols, but best practices for analytical procedures and quality assurance and control tools can be set as the minimum standard for designing, executing, and reporting experiments (Johnson et al. 2020). The lack of such harmonized methods hinders the acquisition of reliable and reproducible data. This need is also highlighted by current interlaboratory efforts to achieve these goals by the Joint Research Center (JRC 2019) of the European Commission, the German Federal Institute for Materials Research and Testing, and the Vrije Universiteit Microplastics Interlaboratory Study and Workshops (https://science.vu.nl/en/research/environment-andhealth/projects/microplastics-ws-and-ils/index.aspx). Our findings coincide with recent reviews by Hermsen et al. (2018) and Koelmans et al. (2019), who in proposing quality assessment systems for MPs research also identified a high level of variability in methods and the need for harmonization and transparency in reporting.

Statistical heterogeneity, which is the quantified variability of data, is the product of clinical and/or methodological variability among the studies of the meta-analysis (Higgins et al. 2019; Rücker et al. 2008). Clinical heterogeneity refers to the variability of the sample characteristics, and methodological heterogeneity refers to the variability of methods. Measuring the statistical heterogeneity in meta-analysis can be used to evaluate whether all the studies are measuring the same thing. In the present review, the effect measure of interest (MP content) was a tangible physical measure, and it is possible to be confident that the studies are indeed measuring the same thing. Specifically, in order to strengthen this confidence, the use of a chemical composition identification method was set as an inclusion criterion. Furthermore, heterogeneity can inform whether it is appropriate to combine data from different studies (Borenstein et al. 2009). The wide scope of the present review predetermined that the diversity of the included studies would be high. Diversity existed regarding both sample characteristics (e.g., more than 40 species of mollusks; Figure S2) and the studies' methods (e.g., 23 different particle-extraction processes; Table S5). Nevertheless, the studies were judged to be homogeneous enough to produce a meaningful summary. This decision was based on the similarity of the physiological characteristics of the sample population as well as the intended use of the organisms as seafood. Heterogeneity was recognized before the execution of the meta-analysis and was partially addressed by using random-effects models instead of fixed-effect models. Throughout the meta-analysis applied to the molluskan families, statistical heterogeneity given that measured by the I^2 value was found to be high. The confidence in the I^2 values was limited owing to the small number of studies. All attempts to decrease heterogeneity by excluding highly influential studies and statistical outliers were unsuccessful. Subgroup analysis showed that significant differences existed between the geographical origins of the samples across all the different molluskan families. Therefore, there is a high probability that the residual heterogeneity was caused by diversity in the geographical origin of the samples.

Human health effects related to MP exposures, and indeed the levels of MPs in human subjects, are only recently being investigated, but there is a growing body of literature to support evidence of uptake (Abbasi et al. 2019; Gallagher et al. 2015; Schwabl et al. 2019) and detrimental impacts (Dong et al. 2020; Gallo et al. 2018; Stock et al. 2019). Recently reported potential human effects include GI and liver toxicity (Chang et al. 2020; W Wang et al. 2019) as well as neurotoxicity (Prüst et al. 2020). The key identified exposure route is ingestion (along with inhalation) (Chang et al. 2020; Hale et al. 2020), with seafood being a major medium of exposure (van Raamsdonk et al. 2020; YL Wang et al. 2020). Key toxic mechanisms include cytotoxicity via oxidative stress (Chang et al. 2020), gene expression alteration and genotoxicity (YL Wang et al. 2020) changes to the gut microbiota (van Raamsdonk et al. 2020), metabolism disorders, and inflammatory reactions (Chang et al. 2020). Evidence comes from animal studies and human cell lines. Although the findings are in some cases contradicting (van Raamsdonk et al. 2020) and further research is undoubtedly needed, there is also no evidence that MP human exposure is safe (Leslie and Depledge 2020). Seafood is an important source of protein for populations around the world, and it may be time to implement the precautionary principle (Kriebel et al. 2001), based on the existing scientific evidence, and take steps in policy, industry, and society to minimize human exposures to foodborne MPs where possible.

Strengths and Limitations

This systematic review collates evidence from multiple studies and estimates human MP exposures via seafood consumption. The review used robust methodology and a bespoke RoB assessment tool to appraise the quality of the studies. Although heterogeneity was acknowledged throughout the review, the strategies used to remediate it had limited success. Extrapolating to human MP uptake through seafood was based only on the species for which evidence was available, thus affecting the external validity of the results.

Conclusions

Fundamentally, the vast majority of studies included in the present review found MPs in the seafood samples. The data support the hypothesis that seafood is a major verified vector for human exposure to MPs. The levels of MP contamination varied in different phyla of organisms from fish (0-2.9 MPs/g), to echinodermata (1 MPs/g), to crustaceans (0.1-8.6 MPs/g) and mollusks (0-10.5 MPs/g).

A key finding of this work is the need for harmonization and standardization of methods and procedures throughout the research process, starting from sampling design on through to reporting. The bespoke RoB assessment tool used in the present review and the narrative analysis along with the GRADE certainty framework identified the following areas that would benefit from improvement, clarification, and further research:

- In order to reduce RoB, there is a need for overall methodological improvement in study design (sampling and analysis) and execution.
- Sampling design must be linked to the aim of the study and a rationale should be provided, particularly for sample size and location.
- High standards of laboratory practices should be followed to avoid post-sampling contamination.
- The use and detailed reporting of procedural blank samples must be instituted to account for post-sampling MP contamination.
- There is a need for harmonization of the procedure that is used to extract particles from the tissues of organisms because varying effectiveness can significantly affect results and hamper comparisons across studies.
- The use of a verified technique for the identification of the composition of the particles is imperative to avoid under- or overrepresentation. In particular, a consensus is needed in the definition of MPs because some studies include nonsynthetic and/or nonsynthetic polymers in their results.
- Consensus is needed for the protocol of the composition identification process in the proportion of particles analyzed, which spectra library is used, and what minimum accepted similarity index to the spectra library is allowed.
- Consensus is needed on the definition of MPs in terms of size, which is perhaps also related to body compartment exposure/uptake characteristics.
- Reporting should include details of the organisms' characteristics, such as weight, to facilitate conversion to other units and comparison between studies.
- Further research is needed on the effectiveness of depuration on the mitigation of MP contamination of mollusks.

Acknowledgments

This research was supported by a Ph.D. scholarship within the "Health Inequalities and emerging environmental contaminants— Places and People" cluster funded by the University of Hull. The recipient of the scholarship is Evangelos Danopoulos.

References

- Abbasi S, Keshavarzi B, Moore F, Turner A, Kelly FJ, Dominguez AO, et al. 2019. Distribution and potential health impacts of microplastics and microrubbers in air and street dusts from Asaluyeh County, Iran. Environ Pollut 244:153–164, PMID: 30326387, https://doi.org/10.1016/j.envpol.2018.10.039.
- Abidli S, Lahbib Y, Trigui El Menif N. 2019. Microplastics in commercial molluscs from the lagoon of Bizerte (Northern Tunisia). Mar Pollut Bull 142:243–252, PMID: 31232300, https://doi.org/10.1016/j.marpolbul.2019.03.048.
- Akhbarizadeh R, Dobaradaran S, Nabipour I, Tajbakhsh S, Darabi AH, Spitz J. 2020. Abundance, composition, and potential intake of microplastics in canned fish. Mar Pollut Bull 160:111633, PMID: 33181921, https://doi.org/10.1016/j.marpolbul. 2020.111633.
- Akoueson F, Sheldon LM, Danopoulos E, Morris S, Hotten J, Chapman E, et al. 2020. A preliminary analysis of microplastics in edible versus non-edible tissues from seafood samples. Environ Pollut 263(pt A):114452, PMID: 32302891, https://doi.org/10.1016/j.envpol.2020.114452.
- Avio CG, Gorbi S, Regoli F. 2015. Experimental development of a new protocol for extraction and characterization of microplastics in fish tissues: first observations in commercial species from Adriatic Sea. Mar Environ Res 111:18–26, PMID: 26210759, https://doi.org/10.1016/j.marenvres.2015.06.014.
- Avio CG, Gorbi S, Regoli F. 2017. Plastics and microplastics in the oceans: from emerging pollutants to emerged threat. Mar Environ Res 128:2–11, PMID: 27233985, https://doi.org/10.1016/j.marenvres.2016.05.012.
- Baechler BR, Granek EF, Hunter MV, Conn KE. 2020. Microplastic concentrations in two Oregon bivalve species: spatial, temporal, and species variability. Limnol Oceanogr Lett 5(1):54–65, https://doi.org/10.1002/lol2.10124.
- Barboza LGA, Vethaak AD, Lavorante BRBO, Lundebye AK, Guilhermino L. 2018. Marine microplastic debris: an emerging issue for food security, food safety and

human health. Mar Pollut Bull 133:336–348, PMID: 30041323, https://doi.org/10. 1016/j.marpolbul.2018.05.047.

- Barrows APW, Cathey SE, Petersen CW. 2018. Marine environment microfiber contamination: global patterns and the diversity of microparticle origins. Environ Pollut 237:275–284, PMID: 29494921, https://doi.org/10.1016/j.envpol.2018.02.062.
- Baujat B, Mahé C, Pignon JP, Hill C. 2002. A graphical method for exploring heterogeneity in meta-analyses: application to a meta-analysis of 65 trials. Stat Med 21(18):2641–2652, PMID: 12228882, https://doi.org/10.1002/sim.1221.
- Bilotta GS, Milner AM, Boyd IL. 2014. Quality assessment tools for evidence from environmental science. Environ Evid 3(1):14, https://doi.org/10.1186/2047-2382-3-14.
- Birnstiel S, Soares-Gomes A, da Gama BAP. 2019. Depuration reduces microplastic content in wild and farmed mussels. Mar Pollut Bull 140:241–247, PMID: 30803639, https://doi.org/10.1016/j.marpolbul.2019.01.044.
- Borenstein M, Hedges LV, Higgins JPT, Rothstein H. 2009. Introduction to Meta-Analysis. Chichester, UK: John Wiley & Sons.
- Bour A, Avio CG, Gorbi S, Regoli F, Hylland K. 2018. Presence of microplastics in benthic and epibenthic organisms: influence of habitat, feeding mode and trophic level. Environ Pollut 243(pt B):1217–1225, PMID: 30267918, https://doi.org/10.1016/j. envpol.2018.09.115.
- Bråte ILN, Hurley R, Iversen K, Beyer J, Thomas KV, Steindal CC, et al. 2018. *Mytilus* spp. as sentinels for monitoring microplastic pollution in Norwegian coastal waters: a qualitative and quantitative study. Environ Pollut 243(pt A):383– 393, PMID: 30212794, https://doi.org/10.1016/j.envpol.2018.08.077.
- Burns EE, Boxall ABA. 2018. Microplastics in the aquatic environment: evidence for or against adverse impacts and major knowledge gaps. Environ Toxicol Chem 37(11):2776–2796, PMID: 30328173, https://doi.org/10.1002/etc.4268.
- Carbery M, O'Connor W, Palanisami T. 2018. Trophic transfer of microplastics and mixed contaminants in the marine food web and implications for human health. Environ Int 115:400–409, PMID: 29653694, https://doi.org/10.1016/j.envint.2018.03.007.
- Chang X, Xue Y, Li J, Zou L, Tang M. 2020. Potential health impact of environmental micro- and nanoplastics pollution. J Appl Toxicol 40(1):4–15, PMID: 31828819, https://doi.org/10.1002/jat.3915.
- Chen DG, Peace KE. 2013. Applied Meta-Analysis with R. Boca Raton, FL: CRC Press.
- Chen G, Feng Q, Wang J. 2020. Mini-review of microplastics in the atmosphere and their risks to humans. Sci Total Environ 703:135504, PMID: 31753503, https://doi.org/10.1016/j.scitotenv.2019.135504.
- Cho Y, Shim WJ, Jang M, Han GM, Hong SH. 2019. Abundance and characteristics of microplastics in market bivalves from South Korea. Environ Pollut 245:1107– 1116, PMID: 30682745, https://doi.org/10.1016/j.envpol.2018.11.091.
- Claessens M, Van Cauwenberghe L, Vandegehuchte MB, Janssen CR. 2013. New techniques for the detection of microplastics in sediments and field collected organisms. Mar Pollut Bull 70(1–2):227–233, PMID: 23601693, https://doi.org/10. 1016/j.marpolbul.2013.03.009.
- Collard F, Gilbert B, Compère P, Eppe G, Das K, Jauniaux T, et al. 2017a. Microplastics in livers of European anchovies (*Engraulis encrasicolus, L.*). Environ Pollut 229:1000–1005, PMID: 28768577, https://doi.org/10.1016/j.envpol. 2017.07.089.
- Collard F, Gilbert B, Eppe G, Parmentier E, Das K. 2015. Detection of anthropogenic particles in fish stomachs: an isolation method adapted to identification by Raman spectroscopy. Arch Environ Contam Toxicol 69(3):331–339, PMID: 26289815, https://doi.org/10.1007/s00244-015-0221-0.
- Collard F, Gilbert B, Eppe G, Roos L, Compère P, Das K, et al. 2017b. Morphology of the filtration apparatus of three planktivorous fishes and relation with ingested anthropogenic particles. Mar Pollut Bull 116(1–2):182–191, PMID: 28065554, https://doi.org/10.1016/j.marpolbul.2016.12.067.
- Cox KD, Covernton GA, Davies HL, Dower JF, Juanes F, Dudas SE. 2019. Human consumption of microplastics. Environ Sci Technol 53(12):7068–7074, PMID: 31184127, https://doi.org/10.1021/acs.est.9b01517.
- Cózar A, Echevarría F, González-Gordillo JI, Irigoien X, Ubeda B, Hernández-León S, et al. 2014. Plastic debris in the open ocean. Proc Natl Acad Sci USA 111(28):10239–10244, PMID: 24982135, https://doi.org/10.1073/pnas.1314705111.
- Danopoulos E, Jenner L, Twiddy M, Rotchell JM. 2019. Microplastics contamination of food intended for human consumption and drinking water: a systematic review. PROSPERO: international prospective register of systematic reviews. CRD42019145290. https://www.crd.york.ac.uk/prospero/display_record.php?ID= CRD42019145290 [5 December 2020].
- Danopoulos E, Jenner L, Twiddy M, Rotchell JM. 2020a. Microplastic contamination of salt intended for human consumption: a systematic review and metaanalysis. SN Appl Sci 2(12):1950, https://doi.org/10.1007/s42452-020-03749-0.
- Danopoulos E, Twiddy M, Rotchell JM. 2020b. Microplastic contamination of drinking water: a systematic review. PLoS One 15(7):e0236838, PMID: 32735575, https://doi.org/10.1371/journal.pone.0236838.
- Davidson K, Dudas SE. 2016. Microplastic ingestion by wild and cultured Manila clams (*Venerupis philippinarum*) from Baynes Sound, British Columbia. Arch

Environ Contam Toxicol 71(2):147-156, PMID: 27259879, https://doi.org/10.1007/s00244-016-0286-4.

- De Witte B, Devriese L, Bekaert K, Hoffman S, Vandermeersch G, Cooreman K, et al. 2014. Quality assessment of the blue mussel (*Mytilus edulis*): comparison between commercial and wild types. Mar Pollut Bull 85(1):146–155, PMID: 24969855, https://doi.org/10.1016/j.marpolbul.2014.06.006.
- Dehaut A, Cassone AL, Frère L, Hermabessiere L, Himber C, Rinnert E, et al. 2016. Microplastics in seafood: benchmark protocol for their extraction and characterization. Environ Pollut 215:223–233, PMID: 27209243, https://doi.org/10.1016/j. envpol.2016.05.018.
- Dehaut A, Hermabessiere L, Duflos G. 2019. Current frontiers and recommendations for the study of microplastics in seafood. Trends Analyt Chem 116:346– 359, https://doi.org/10.1016/j.trac.2018.11.011.
- DerSimonian R, Laird N. 1986. Meta-analysis in clinical trials. Control Clin Trials 7(3):177–188, PMID: 3802833, https://doi.org/10.1016/0197-2456(86)90046-2.
- DerSimonian R, Laird N. 2015. Meta-analysis in clinical trials revisited. Contemp Clin Trials 45(pt A):139–145, PMID: 26343745, https://doi.org/10.1016/j.cct.2015.09.002.
- Desforges JPW, Galbraith M, Ross PS. 2015. Ingestion of microplastics by zooplankton in the northeast Pacific Ocean. Arch Environ Contam Toxicol 69(3):320–330, PMID: 26066061, https://doi.org/10.1007/s00244-015-0172-5.
- Diepens NJ, Koelmans AA. 2018. Accumulation of plastic debris and associated contaminants in aquatic food webs. Environ Sci Technol 52(15):8510–8520, PMID: 29925231, https://doi.org/10.1021/acs.est.8b02515.
- Digka N, Tsangaris C, Torre M, Anastasopoulou A, Zeri C. 2018. Microplastics in mussels and fish from the Northern Ionian Sea. Mar Pollut Bull 135:30–40, PMID: 30301041, https://doi.org/10.1016/j.marpolbul.2018.06.063.
- Ding JF, Li JX, Sun CJ, He CF, Jiang FH, Gao FL, et al. 2018. Separation and identification of microplastics in digestive system of bivalves. Chin J Anal Chem 46(5):690–697, https://doi.org/10.1016/S1872-2040(18)61086-2.
- Ding JF, Li JX, Sun CJ, Jiang FH, He CF, Zhang M, et al. 2020. An examination of the occurrence and potential risks of microplastics across various shellfish. Sci Total Environ 739:139887, PMID: 32758939, https://doi.org/10.1016/j.scitotenv. 2020.139887.
- Ding JF, Li JX, Sun CJ, Jiang FH, Ju P, Qu LY, et al. 2019. Detection of microplastics in local marine organisms using a multi-technology system. Anal Methods 11(1):78–87, https://doi.org/10.1039/C8AY01974F.
- Donaldson K, Tran CL. 2004. An introduction to the short-term toxicology of respirable industrial fibres. Mutat Res 553(1–2):5–9, PMID: 15288528, https://doi.org/10. 1016/j.mrfmmm.2004.06.011.
- Dong CD, Chen CW, Chen YC, Chen HH, Lee JS, Lin CH. 2020. Polystyrene microplastic particles: in vitro pulmonary toxicity assessment. J Hazard Mater 385:121575, PMID: 31727530, https://doi.org/10.1016/j.jhazmat.2019.121575.
- Dris R, Gasperi J, Mirande C, Mandin C, Guerrouache M, Langlois V, et al. 2017. A first overview of textile fibers, including microplastics, in indoor and outdoor environments. Environ Pollut 221:453–458, PMID: 27989388, https://doi.org/10. 1016/j.envpol.2016.12.013.
- EC (European Council). 2002. Regulation (EC) No 178/2002. Of the European Parliament and of the Council of 28 January 2002 laying down the general principles and requirements of food law, establishing the European Food Safety Authority and laying down procedures in matters of food safety. https:// www.legislation.gov.uk/eur/2002/178/contents/data.pdf [5 December 2020].
- EC. 2013. Guidance on monitoring of marine litter in European Seas: a guidance document within the Common Implementation Strategy for the Marine Strategy Framework Directive. Joint Research Centre–Institute for Environment and Sustainability; MSFD Technical Subgroup on Marine Litter. http://www.ramoge. org/documents/MSFD%20Guidance%20on%20Monitoring%20Marine%20Litter_ 2013_online.pdf [accessed 3 December 2019].
- EFSA Panel on Contaminants in the Food Chain. 2016. Presence of microplastics and nanoplastics in food, with particular focus on seafood. EFSA J 14(6):4501, https://doi.org/10.2903/j.efsa.2016.4501.
- Egger M, Smith GD, Schneider M, Minder C. 1997. Bias in meta-analysis detected by a simple, graphical test. BMJ 315(7109):629–634, PMID: 9310563, https://doi.org/ 10.1136/bmj.315.7109.629.
- Engler RE. 2012. The complex interaction between marine debris and toxic chemicals in the ocean. Environ Sci Technol 46(22):12302–12315, PMID: 23088563, https://doi.org/10.1021/es3027105.
- Ennos AR, Johnson ML. 2018. *Statistical and Data Handling Skills in Biology*. Harlow, UK: Pearson.
- Eriksen M, Lebreton LCM, Carson HS, Thiel M, Moore CJ, Borerro JC, et al. 2014. Plastic pollution in the world's oceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS One 9(12):e111913, PMID: 25494041, https://doi.org/10.1371/journal.pone.0111913.
- Fang C, Zheng RH, Zhang YS, Hong FK, Mu JL, Chen MY, et al. 2018. Microplastic contamination in benthic organisms from the arctic and sub-Arctic regions. Chemosphere 209:298–306, PMID: 29933166, https://doi.org/10.1016/j.chemosphere. 2018.06.101.

- FAO (Food and Agriculture Organization of the United Nations). 2020a. Fishery Statistical Collections; Consumption of Fish and Fishery Products. FAOSTAT -Food Balance Sheets [Online]. Rome, Italy: FAO. http://www.fao.org/fishery/ statistics/global-consumption/en [accessed 22 October 2020].
- FAO. 2020b. GLOBEFISH Information and Analysis on World Fish Trade. Bivalves Market Reports. Bivalve production increasing due to positive demand patterns [Online]. Rome, Italy: FAO. http://www.fao.org/in-action/globefish/ market-reports/resource-detail/en/c/1253633/ [accessed 11 February 2020].
- Feng Z, Wang R, Zhang T, Wang J, Huang W, Li J, et al. 2020. Microplastics in specific tissues of wild sea urchins along the coastal areas of northern China. Sci Total Environ 728:138660, PMID: 32361354, https://doi.org/10.1016/j.scitotenv. 2020.138660.
- Feng Z, Zhang T, Li Y, He XR, Wang R, Xu JT, et al. 2019. The accumulation of microplastics in fish from an important fish farm and mariculture area, Haizhou Bay, China. Sci Total Environ 696:133948, PMID: 31442723, https://doi.org/10. 1016/j.scitotenv.2019.133948.
- Foekema EM, De Gruijter C, Mergia MT, van Franeker JA, Murk AJ, Koelmans AA. 2013. Plastic in North Sea fish. Environ Sci Technol 47(15):8818–8824, PMID: 23777286, https://doi.org/10.1021/es400931b.
- Frias JPGL, Nash R. 2019. Microplastics: finding a consensus on the definition. Mar Pollut Bull 138:145–147, PMID: 30660255, https://doi.org/10.1016/j.marpolbul. 2018.11.022.
- Gallagher LG, Li W, Ray RM, Romano ME, Wernli KJ, Gao DL, et al. 2015. Occupational exposures and risk of stomach and esophageal cancers: update of a cohort of female textile workers in Shanghai, China. Am J Ind Med 58(3):267–275, PMID: 25611949, https://doi.org/10.1002/ajim.22412.
- Gallo F, Fossi C, Weber R, Santillo D, Sousa J, Ingram I, et al. 2018. Marine litter plastics and microplastics and their toxic chemicals components: the need for urgent preventive measures. Environ Sci Eur 30(1):13, PMID: 29721401, https://doi.org/10.1186/s12302-018-0139-z.
- Galloway TS. 2015. Micro- and nano-plastics and human health. In: Marine Anthropogenic Litter. Bergmann M, Gutow L, Klages M, eds. Cham, Switzerland: Springer International, 343–366.
- Gasperi J, Wright SL, Dris R, Collard F, Mandin C, Guerrouache M, et al. 2018. Microplastics in air: are we breathing it in? Curr Opin Environ Sci Health 1:1–5, https://doi.org/10.1016/j.coesh.2017.10.002.
- GESAMP (Joint Group of Experts on Scientific Aspects of Marine Environment Protection). 2015. Sources, Fate and Effects of Microplastics in the Marine Environment: A Global Assessment London, UK: International Maritime Organization. https://ec.europa.eu/environment/marine/good-environmental-status/ descriptor-10/pdf/GESAMP_microplastics%20full%20study.pdf [accessed 2 April 2018].
- GESAMP. 2016. Sources, Fate and Effects of Microplastics in the Marine Environment: Part 2 of a Global Assessment. London, UK: International Maritime Organization. http://www.gesamp.org/site/assets/files/1275/sourcesfate-and-effects-of-microplastics-in-the-marine-environment-part-2-of-a-globalassessment-en.pdf [accessed 15 March 2019].
- Gourmelon G. 2015. Global plastic production rises, recycling lags. World Watch Institute [Online]. http://www.plastic-resource-center.com/wp-content/ uploads/2018/11/Global-Plastic-Production-RisesRecycling-Lags.pdf [accessed 5 December 2020].
- Guillen J, Natale F, Carvalho N, Casey J, Hofherr J, Druon JN, et al. 2019. Global seafood consumption footprint. Ambio 48(2):111–122, PMID: 29845576, https://doi.org/ 10.1007/s13280-018-1060-9.
- Hale RC, Seeley ME, La Guardia MJ, Mai L, Zeng EY. 2020. A global perspective on microplastics. J Geophys Res Oceans 125(1):e2018JC014719, https://doi.org/10. 1029/2018JC014719.
- Hantoro I, Löhr AJ, Van Belleghem FGAJ, Widianarko B, Ragas AMJ. 2019. Microplastics in coastal areas and seafood: implications for food safety. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 36(5):674–711, PMID: 30973067, https://doi.org/10.1080/19440049.2019.1585581.
- Harrer M, Cuijpers P, Furukawa T, Ebert DD. 2019a. dmetar: Doing Meta-Analysis in R. http://dmetar.protectlab.org [accessed 5 December 2020].
- Harrer M, Cuijpers P, Furukawa TA, Ebert DD. 2019b. Doing Meta-Analysis in R: A Hands-On Guide. https://bookdown.org/MathiasHarrer/Doing_Meta_Analysis_ in_R/ [accessed 5 December 2020].
- Hartmann NB, Hüffer T, Thompson RC, Hassellöv M, Verschoor A, Daugaard AE, et al. 2019. Are we speaking the same language? Recommendations for a definition and categorization framework for plastic debris. Environ Sci Technol 53(3):1039–1047, PMID: 30608663, https://doi.org/10.1021/acs.est.8b05297.
- Hartmann NB, Rist S, Bodin J, Jensen LHS, Schmidt SN, Mayer P, et al. 2017. Microplastics as vectors for environmental contaminants: exploring sorption, desorption, and transfer to biota. Integr Environ Assess Manag 13(3):488–493, PMID: 28440931, https://doi.org/10.1002/ieam.1904.
- Hermabessiere L, Paul-Pont I, Cassone AL, Himber C, Receveur J, Jezequel R, et al. 2019. Microplastic contamination and pollutant levels in mussels and cockles

collected along the channel coasts. Environ Pollut 250:807–819, PMID: 31039474, https://doi.org/10.1016/j.envpol.2019.04.051.

- Hermsen E, Mintenig SM, Besseling E, Koelmans AA. 2018. Quality criteria for the analysis of microplastic in biota samples: a critical review. Environ Sci Technol 52(18):10230–10240, PMID: 30137965, https://doi.org/10.1021/acs.est.8b01611.
- Higgins JPT, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, et al. 2011. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. BMJ 343(Oct):d5928, PMID: 22008217, https://doi.org/10.1136/bmi.d5928.
- Higgins JPT, Green SP. 2011. Cochrane Handbook for Systematic Reviews of Interventions. Chichester, UK: Wiley-Blackwell.
- Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, et al. 2019. Cochrane Handbook for Systematic Reviews of Interventions. Version 6.0 (updated July 2019). London, UK: Cochrane. https://training.cochrane.org/ cochrane-handbook-systematic-reviews-interventions [accessed 28 October 2020].
- Higgins JPT, Thompson SG. 2002. Quantifying heterogeneity in a meta-analysis. Stat Med 21(11):1539–1558, PMID: 12111919, https://doi.org/10.1002/sim.1186.
- Higgins JPT, Thompson SG, Deeks JJ, Altman DG. 2003. Measuring inconsistency in meta-analyses. BMJ 327(7414):557–560, PMID: 12958120, https://doi.org/10. 1136/bmj.327.7414.557.
- Hossain MS, Rahman MS, Uddin MN, Sharifuzzaman SM, Chowdhury SR, Sarker S, et al. 2020. Microplastic contamination in Penaeid shrimp from the Northern Bay of Bengal. Chemosphere 238:124688, PMID: 31524623, https://doi.org/10. 1016/j.chemosphere.2019.124688.
- IPCS (International Programme on Chemical Safety). 2009. Principles and methods for the risk assessment of chemicals in food: Environmental Health Criteria 240. Geneva, Switzerland: World Health Organization. https://apps.who.int/iris/ bitstream/handle/10665/44065/WHO_EHC_240_eng.pdf?sequence=152 [accessed 19 April 2019].
- Jabeen K, Su L, Li J, Yang D, Tong C, Mu J, et al. 2017. Microplastics and mesoplastics in fish from coastal and fresh waters of China. Environ Pollut 221:141– 149, PMID: 27939629, https://doi.org/10.1016/j.envpol.2016.11.055.
- Jambeck JR, Geyer R, Wilcox C, Siegler TR, Perryman M, Andrady A, et al. 2015. Marine pollution. Plastic waste inputs from land into the ocean. Science 347(6223):768–771, PMID: 25678662, https://doi.org/10.1126/science.1260352.
- Johnson AC, Ball H, Cross R, Horton AA, Jürgens MD, Read DS, et al. 2020. Identification and quantification of microplastics in potable water and their sources within water treatment works in England and Wales. Environ Sci Technol 54(19):12326–12334, PMID: 32852201, https://doi.org/10.1021/acs.est.0c03211.
- JRC (Joint Research Centre of the European Commission). 2019. Call for laboratories to participate in proficiency tests on microplastics in drinking water and sediments [Online]. https://ec.europa.eu/jrc/en/science-update/calllaboratories-participate-proficiency-tests-microplastics-drinking-water-andsediments [accessed 20 July 2020].
- Karami A, Golieskardi A, Choo CK, Larat V, Karbalaei S, Salamatinia B. 2018. Microplastic and mesoplastic contamination in canned sardines and sprats. Sci Total Environ 612:1380–1386, PMID: 28898945, https://doi.org/10.1016/j. scitotenv.2017.09.005.
- Karami A, Golieskardi A, Choo CK, Romano N, Ho YB, Salamatinia B. 2017a. A highperformance protocol for extraction of microplastics in fish. Sci Total Environ 578:485–494, PMID: 27836345, https://doi.org/10.1016/j.scitotenv.2016.10.213.
- Karami A, Golieskardi A, Ho YB, Larat V, Salamatinia B. 2017b. Microplastics in eviscerated flesh and excised organs of dried fish. Sci Rep 7(1):5473, PMID: 28710445, https://doi.org/10.1038/s41598-017-05828-6.
- Karbalaei S, Golieskardi A, Watt DU, Boiret M, Hanachi P, Walker TR, et al. 2020. Analysis and inorganic composition of microplastics in commercial Malaysian fish meals. Mar Pollut Bull 150:110687, PMID: 31699500, https://doi.org/10.1016/j. marpolbul.2019.110687.
- Karbalaei S, Hanachi P, Walker TR, Cole M. 2018. Occurrence, sources, human health impacts and mitigation of microplastic pollution. Environ Sci Pollut Res Int 25(36):36046–36063, PMID: 30382517, https://doi.org/10.1007/s11356-018-3508-7.
- Karlsson TM, Arneborg L, Broström G, Almroth BC, Gipperth L, Hassellöv M. 2018. The unaccountability case of plastic pellet pollution. Mar Pollut Bull 129(1):52– 60, PMID: 29680567, https://doi.org/10.1016/j.marpolbul.2018.01.041.
- Keshav S, Bailey A. 2013. The Gastrointestinal System at a Glance. Chichester, UK, Wiley-Blackwell.
- Koelmans AA, Mohamed Nor NH, Hermsen E, Kooi M, Mintenig SM, De France J. 2019. Microplastics in freshwaters and drinking water: critical review and assessment of data quality. Water Res 155:410–422, PMID: 30861380, https://doi.org/10. 1016/j.watres.2019.02.054.
- Kriebel D, Tickner J, Epstein P, Lemons J, Levins R, Loechler EL, et al. 2001. The precautionary principle in environmental science. Environ Health Perspect 109(9):871–876, PMID: 11673114, https://doi.org/10.1289/ehp.01109871.
- Lebreton L, Andrady A. 2019. Future scenarios of global plastic waste generation and disposal. Palgrave Commun 5(1):6, https://doi.org/10.1057/s41599-018-0212-7.

- Leslie HA, Brandsma SH, van Velzen MJM, Vethaak AD. 2017. Microplastics en route: field measurements in the Dutch river delta and Amsterdam canals, wastewater treatment plants, North Sea sediments and biota. Environ Int 101:133–142, PMID: 28143645, https://doi.org/10.1016/j.envint.2017.01.018.
- Leslie HA, Depledge MH. 2020. Where is the evidence that human exposure to microplastics is safe? Environ Int 142:105807, PMID: 32599356, https://doi.org/ 10.1016/j.envint.2020.105807.
- Li HX, Ma LS, Lin L, Ni ZX, Xu XR, Shi HH, et al. 2018. Microplastics in oysters Saccostrea cucullata along the Pearl River Estuary, China. Environ Pollut 236:619–625, PMID: 29433102, https://doi.org/10.1016/j.envpol.2018.01.083.
- Li J, Green C, Reynolds A, Shi H, Rotchell JM. 2018. Microplastics in mussels sampled from coastal waters and supermarkets in the United Kingdom. Environ Pollut 241:35–44, PMID: 29793106, https://doi.org/10.1016/j.envpol.2018.05.038.
- Li J, Qu X, Su L, Zhang W, Yang D, Kolandhasamy P, et al. 2016. Microplastics in mussels along the coastal waters of China. Environ Pollut 214:177–184, PMID: 27086073, https://doi.org/10.1016/j.envpol.2016.04.012.
- Li J, Yang D, Li L, Jabeen K, Shi H. 2015. Microplastics in commercial bivalves from China. Environ Pollut 207:190–195, PMID: 26386204, https://doi.org/10.1016/j. envpol.2015.09.018.
- Li R, Zhang L, Xue B, Wang Y. 2019. Abundance and characteristics of microplastics in the mangrove sediment of the semi-enclosed Maowei Sea of the south China Sea: new implications for location, rhizosphere, and sediment compositions. Environ Pollut 244:685–692, PMID: 30384074, https://doi.org/10.1016/j. envpol.2018.10.089.
- Li WC, Tse HF, Fok L. 2016. Plastic waste in the marine environment: a review of sources, occurrence and effects. Sci Total Environ 566–567:333–349, PMID: 27232963, https://doi.org/10.1016/j.scitotenv.2016.05.084.
- Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, et al. 2009. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 339:b2700, PMID: 19622552, https://doi.org/10.1136/bmj.b2700.
- Lindeque PK, Smerdon GR. 2003. Temporal transcription of two Antennapedia class homeobox genes in the marine copepod Calanus helgolandicus. Mar Biotechnol (NY) 5(6):604–615, PMID: 14583812, https://doi.org/10.1007/s10126-002-0119-5.
- Liu K, Wang X, Fang T, Xu P, Zhu L, Li D. 2019. Source and potential risk assessment of suspended atmospheric microplastics in Shanghai. Sci Total Environ 675:462–471, PMID: 31030152, https://doi.org/10.1016/j.scitotenv.2019.04.110.
- Lopes C, Raimundo J, Caetano M, Garrido S. 2020. Microplastic ingestion and diet composition of planktivorous fish. Limnol Oceanogr Lett 5(1):103–112, https://doi.org/10.1002/lol2.10144.
- Luo D, Wan X, Liu J, Tong T. 2018. Optimally estimating the sample mean from the sample size, median, mid-range, and/or mid-quartile range. Stat Methods Med Res 27(6):1785–1805, PMID: 27683581, https://doi.org/10.1177/0962280216669183.
- Lusher AL, Hernandez-Milian G, O'Brien J, Berrow S, O'Connor I, Officer R. 2015. Microplastic and macroplastic ingestion by a deep diving, oceanic cetacean: the True's beaked whale *Mesoplodon mirus*. Environ Pollut 199:185–191, PMID: 25667115, https://doi.org/10.1016/j.envpol.2015.01.023.
- Lusher A, Hollman P, Mendoza-Hill J. 2017a. Microplastics in Fisheries and Aquaculture: Status of Knowledge on Their Occurrence and Implications for Aquatic Organisms and Food Safety. Fisheries and Aquaculture Technical Paper. 615. Rome, Italy: Food and Agriculture Organization of the United Nations. http://www.fao.org/3/a-i7677e.pdf [accessed 12 September 2019].
- Lusher AL, Welden NA, Sobral P, Cole M. 2017b. Sampling, isolating and identifying microplastics ingested by fish and invertebrates. Anal Methods 9(9):1346–1360, https://doi.org/10.1039/C6AY02415G.
- Masura J, Baker JE, Foster GD, Arthur C, Herring C. 2015. Laboratory methods for the analysis of microplastics in the marine environment: recommendations for quantifying synthetic particles in waters and sediments. NOAA Technical Memorandum. NOS-OR&R-48. Washington, DC: National Oceanic and Atmospheric Administration, U.S. Department of Commerce. https://repository. library.noaa.gov/view/noaa/10296 [accessed 6 February 2019].
- Mathalon A, Hill P. 2014. Microplastic fibers in the intertidal ecosystem surrounding Halifax Harbor, Nova Scotia. Mar Pollut Bull 81(1):69–79, PMID: 24650540, https://doi.org/10.1016/j.marpolbul.2014.02.018.
- McGoran AR, Cowie PR, Clark PF, McEvoy JP, Morritt D. 2018. Ingestion of plastic by fish: a comparison of Thames Estuary and Firth of Clyde populations. Mar Pollut Bull 137:12–23, PMID: 30503418, https://doi.org/10.1016/j.marpolbul.2018.09.054.
- McGuinness L, Kothe E. 2019. robvis: visualize the results of risk-of-bias (rob) assessments. https://github.com/mcguinlu/robvis [accessed 5 December 2020].
- Miller ME, Kroon FJ, Motti CA. 2017. Recovering microplastics from marine samples: a review of current practices. Mar Pollut Bull 123(1–2):6–18, PMID: 28886920, https://doi.org/10.1016/j.marpolbul.2017.08.058.
- Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. 2015. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev 4(1):1, PMID: 25554246, https://doi.org/10. 1186/2046-4053-4-1.

- Munno K, Helm PA, Jackson DA, Rochman C, Sims A. 2018. Impacts of temperature and selected chemical digestion methods on microplastic particles. Environ Toxicol Chem 37(1):91–98, PMID: 28782833, https://doi.org/10.1002/etc.3935.
- Naji A, Nuri M, Vethaak AD. 2018. Microplastics contamination in molluscs from the northern part of the Persian Gulf. Environ Pollut 235:113–120, PMID: 29276957, https://doi.org/10.1016/j.envpol.2017.12.046.
- Nam PN, Tuan PQ, Thuy DT, Quynh LTP, Amiard F. 2019. Contamination of microplastic in bivalve: first evaluation in Vietnam. Vietnam J Earth Sci 41(3):252– 258, https://doi.org/10.15625/0866-7187/41/3/13925.
- Nelms SE, Galloway TS, Godley BJ, Jarvis DS, Lindeque PK. 2018. Investigating microplastic trophic transfer in marine top predators. Environ Pollut 238:999– 1007, PMID: 29477242, https://doi.org/10.1016/j.envpol.2018.02.016.
- Nuelle MT, Dekiff JH, Remy D, Fries E. 2014. A new analytical approach for monitoring microplastics in marine sediments. Environ Pollut 184:161–169, PMID: 24051349, https://doi.org/10.1016/j.envpol.2013.07.027.
- Ocean Conservancy, McKinsey Center for Business and Environment. 2015. *Stemming the Tide: Land-Based Strategies for a Plastic-Free Ocean*. New York, NY: Ocean Conservancy and McKinsey & Company. https://oceanconservancy. org/wp-content/uploads/2017/04/full-report-stemming-the.pdf [accessed 15 November 2019].
- Olivatto GP, Martins MCT, Montagner CC, Henry TB, Carreira RS. 2019. Microplastic contamination in surface waters in Guanabara Bay, Rio De Janeiro, Brazil. Mar Pollut Bull 139:157–162, PMID: 30686414, https://doi.org/10. 1016/j.marpolbul.2018.12.042.
- Pan Z, Guo H, Chen H, Wang S, Sun X, Zou Q, et al. 2019. Microplastics in the northwestern Pacific: abundance, distribution, and characteristics. Sci Total Environ 650(pt 2):1913–1922, PMID: 30286357, https://doi.org/10.1016/j.scitotenv. 2018.09.244.
- Pauly JL, Stegmeier SJ, Allaart HA, Cheney RT, Zhang PJ, Mayer AG, et al. 1998. Inhaled cellulosic and plastic fibers found in human lung tissue. Cancer Epidemiol Biomarkers Prev 7(5):419–428, PMID: 9610792.
- Phuong NN, Poirier L, Pham QT, Lagarde F, Zalouk-Vergnoux A. 2018a. Factors influencing the microplastic contamination of bivalves from the French Atlantic coast: location, season and/or mode of life? Mar Pollut Bull 129(2):664–674, PMID: 29106937, https://doi.org/10.1016/j.marpolbul.2017.10.054.
- Phuong NN, Zalouk-Vergnoux A, Kamari A, Mouneyrac C, Amiard F, Poirier L, et al. 2018b. Quantification and characterization of microplastics in blue mussels (*Mytilus edulis*): protocol setup and preliminary data on the contamination of the French Atlantic coast. Environ Sci Pollut Res Int 25(7):6135–6144, PMID: 28382446, https://doi.org/10.1007/s11356-017-8862-3.
- Plastics Europe. 2008. The Compelling Facts about Plastics. An Analysis of Plastics Production, Demand and Recovery for 2006 in Europe. Brussels, Belgium: Plastics Europe. https://www.plasticseurope.org/application/files/2815/1689/ 9283/2006compelling_fact_PubJan2008.pdf [accessed 1 July 2019].
- Plastics Europe. 2017. Plastics—the Facts 2017: An Analysis of European Plastics Production, Demand and Waste Data. https://www.plasticseurope.org/application/ files/5715/1717/4180/Plastics_the_facts_2017_FINAL_for_website_one_page.pdf [accessed 12 November 2018].
- Plastics Europe. 2018. Plastics—the Facts 2018: An Analysis of European Plastics Production, Demand and Waste Data. https://www.plasticseurope.org/application/ files/6315/4510/9658/Plastics_the_facts_2018_AF_web.pdf [accessed 1 July 2019].
- Plastics Europe. 2019. Plastics—the Facts 2019: An Analysis of European Plastics Production, Demand and Waste Data. https://www.plasticseurope.org/application/ files/1115/7236/4388/FINAL_web_version_Plastics_the_facts2019_14102019.pdf [accessed 1 July 2019].
- Pozo K, Gomez V, Torres M, Vera L, Nuñez D, Oyarzún P, et al. 2019. Presence and characterization of microplastics in fish of commercial importance from the Biobío region in central Chile. Mar Pollut Bull 140:315–319, PMID: 30803650, https://doi.org/10.1016/j.marpolbul.2019.01.025.
- Prüst M, Meijer J, Westerink RHS. 2020. The plastic brain: neurotoxicity of microand nanoplastics. Part Fibre Toxicol 17(1):24, PMID: 32513186, https://doi.org/ 10.1186/s12989-020-00358-y.
- Qu X, Su L, Li H, Liang M, Shi H. 2018. Assessing the relationship between the abundance and properties of microplastics in water and in mussels. Sci Total Environ 621:679–686, PMID: 29197287, https://doi.org/10.1016/j.scitotenv.2017.11.284.
- Renzi M, Specchiulli A, Blašković A, Manzo C, Mancinelli G, Cilenti L. 2019. Marine litter in stomach content of small pelagic fishes from the Adriatic Sea: sardines (*Sardina pilchardus*) and anchovies (*Engraulis encrasicolus*). Environ Sci Pollut Res Int 26(3):2771–2781, PMID: 30484055, https://doi.org/10.1007/s11356-018-3762-8.
- Rocha-Santos T, Duarte AC. 2015. A critical overview of the analytical approaches to the occurrence, the fate and the behavior of microplastics in the environment. Trends Analyt Chem 65:47–53, https://doi.org/10.1016/j.trac.2014.10.011.
- Rochman CM, Tahir A, Williams SL, Baxa DV, Lam R, Miller JT, et al. 2015. Anthropogenic debris in seafood: plastic debris and fibers from textiles in fish and bivalves sold for human consumption. Sci Rep 5:14340, PMID: 26399762, https://doi.org/10.1038/srep14340.

- Rücker G, Schwarzer G, Carpenter JR, Schumacher M. 2008. Undue reliance on l² in assessing heterogeneity may mislead. BMC Med Res Methodol 8(1):79, PMID: 19036172, https://doi.org/10.1186/1471-2288-8-79.
- Santillo D, Miller K, Johnston P. 2017. Microplastics as contaminants in commercially important seafood species. Integr Environ Assess Manag 13(3):516–521, PMID: 28440928, https://doi.org/10.1002/ieam.1909.
- Schwabl P, Köppel S, Königshofer P, Bucsics T, Trauner M, Reiberger T, et al. 2019. Detection of various microplastics in human stool: a prospective case series. Ann Intern Med 171(7):453–457, PMID: 31476765, https://doi.org/10.7326/M19-0618.
- Schwarzer G. 2019. meta: an R package for meta-analysis. R News 7(3):40–45. https://cran.r-project.org/doc/Rnews/Rnews_2007-3.pdf [accessed 5 December 2020].
- Shamseer L, Moher D, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. 2015. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ 350(Jan):g7647, PMID: 25555855, https://doi.org/10.1136/bmj.g7647.
- Sharma S, Chatterjee S. 2017. Microplastic pollution, a threat to marine ecosystem and human health: a short review. Environ Sci Pollut Res Int 24(27):21530– 21547, PMID: 28815367, https://doi.org/10.1007/s11356-017-9910-8.
- Shi J, Luo D, Weng H, Zeng XT, Lin L, Chu H, et al. 2020. Optimally estimating the sample standard deviation from the five-number summary. Res Synth Methods 11(5):641–654, PMID: 32562361, https://doi.org/10.1002/jrsm.1429.
- Silva AB, Bastos AS, Justino CIL, da Costa JAP, Duarte AC, Rocha-Santos TAP. 2018. Microplastics in the environment: challenges in analytical chemistry—a review. Anal Chim Acta 1017:1–19, PMID: 29534790, https://doi.org/10.1016/j. aca.2018.02.043.
- Smith M, Love DC, Rochman CM, Neff RA. 2018. Microplastics in seafood and the implications for human health. Curr Environ Health Rep 5(3):375–386, PMID: 30116998, https://doi.org/10.1007/s40572-018-0206-z.
- Stock V, Böhmert L, Lisicki E, Block R, Cara-Carmona J, Pack LK, et al. 2019. Uptake and effects of orally ingested polystyrene microplastic particles in vitro and in vivo. Arch Toxicol 93(7):1817–1833, PMID: 31139862, https://doi.org/10. 1007/s00204-019-02478-7.
- Strungaru SA, Jijie R, Nicoara M, Plavan G, Faggio C. 2019. Micro- (nano) plastics in freshwater ecosystems: abundance, toxicological impact and quantification methodology. Trends Analyt Chem 110:116–128, https://doi.org/10.1016/j.trac.2018.10.025.
- Su L, Cai H, Kolandhasamy P, Wu C, Rochman CM, Shi H. 2018. Using the Asian clam as an indicator of microplastic pollution in freshwater ecosystems. Environ Pollut 234:347–355, PMID: 29195176, https://doi.org/10.1016/j.envpol.2017.11.075.
- Su L, Deng H, Li B, Chen Q, Pettigrove V, Wu C, et al. 2019. The occurrence of microplastic in specific organs in commercially caught fishes from coast and estuary area of east China. J Hazard Mater 365:716–724, PMID: 30472457, https://doi.org/10.1016/j.jhazmat.2018.11.024.
- Su L, Xue Y, Li L, Yang D, Kolandhasamy P, Li D, et al. 2016. Microplastics in Taihu Lake, China. Environ Pollut 216:711–719, PMID: 27381875, https://doi.org/10. 1016/j.envpol.2016.06.036.
- Sun X, Li Q, Shi Y, Zhao Y, Zheng S, Liang J, et al. 2019. Characteristics and retention of microplastics in the digestive tracts of fish from the Yellow Sea. Environ Pollut 249:878–885, PMID: 30965539, https://doi.org/10.1016/j.envpol.2019.01.110.
- Tanaka K, Takada H. 2016. Microplastic fragments and microbeads in digestive tracts of planktivorous fish from urban coastal waters. Sci Rep 6:34351, PMID: 27686984, https://doi.org/10.1038/srep34351.
- Teng J, Wang Q, Ran W, Wu D, Liu Y, Sun S, et al. 2019. Microplastic in cultured oysters from different coastal areas of China. Sci Total Environ 653:1282–1292, PMID: 30759568, https://doi.org/10.1016/j.scitotenv.2018.11.057.
- Teng J, Zhao J, Zhang C, Cheng B, Koelmans AA, Wu D, et al. 2020. A systems analysis of microplastic pollution in Laizhou Bay, China. Sci Total Environ 745:140815, PMID: 32726698, https://doi.org/10.1016/j.scitotenv.2020.140815.
- Thushari GGN, Senevirathna JDM, Yakupitiyage A, Chavanich S. 2017. Effects of microplastics on sessile invertebrates in the eastern coast of Thailand: an approach to coastal zone conservation. Mar Pollut Bull 124(1):349–355, PMID: 28760587, https://doi.org/10.1016/j.marpolbul.2017.06.010.
- Timbrell JA. 2009. *Principles of Biochemical Toxicology*. 4th ed. New York, NY: Informa Healthcare.
- Toussaint B, Raffael B, Angers-Loustau A, Gilliland D, Kestens V, Petrillo M, et al. 2019. Review of micro- and nanoplastic contamination in the food chain. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 36(5):639–673, PMID: 30985273, https://doi.org/10.1080/19440049.2019.1583381.
- U.S. EPA (U.S. Environmental Protection Agency). 2019. *Guidelines for Human Exposure Assessment*. EPA/100/B-19/001. Washington, DC: U.S. EPA. https://www.epa.gov/sites/production/files/2020-01/documents/guidelines_for_human_exposure_assessment_final2019.pdf [accessed 29 May 2020].
- U.S. EPA. 2000. Guidance for Data Quality Assessment. Practical Methods for Data Analysis. EPA QA/G-9. QA00 Update. EPA/600/R-96/084. Washington, DC: U.S. EPA. https://www.epa.gov/sites/production/files/2015-06/documents/g9-final.pdf [accessed 5 March 2020].

- U.S. EPA. 2002. Guidance on Choosing a Sampling Design for Environmental Data Collection, for Use in Developing a Quality Assurance Project Plan. EPA QA/G-5S. EPA/240/R-02/005. Washington, DC: U.S. EPA. https://www.epa.gov/sites/ production/files/2015-06/documents/g5s-final.pdf [accessed 27 February 2020].
- Van Cauwenberghe L, Devriese L, Galgani F, Robbens J, Janssen CR. 2015. Microplastics in sediments: a review of techniques, occurrence and effects. Mar Environ Res 111:5–17, PMID: 26095706, https://doi.org/10.1016/j.marenvres. 2015.06.007.
- Van Cauwenberghe L, Janssen CR. 2014. Microplastics in bivalves cultured for human consumption. Environ Pollut 193:65–70, PMID: 25005888, https://doi.org/ 10.1016/j.envpol.2014.06.010.
- Van der Horst A. 2011. De bepaling van het drooggewicht van dierlijke producten, waterbodem, zwevend stof en zuiveringsslib door middel van vriesdrogen. [Analysis of dry weight in animal products, sediments, suspended particulate matter and wastewater treatment sludge by freeze drying. In Dutch.] VM Standard protocol W-DRW-100. Amsterdam, Netherlands: Institute for Environmental Studies, Vrije Universiteit University Amsterdam.
- Van der Horst A. 2013. Destructie van vetarm dierlijk en plantaardig materiaal m. b.v. een microgolfoven. [Destruction of non-fatty animal and plant material by microwave. In Dutch.] IVM Standard protocol W-DE-001. Amsterdam, Netherlands: Institute for Environmental Studies, Vrije Universiteit University Amsterdam.
- van Raamsdonk LWD, van der Zande M, Koelmans AA, Hoogenboom RLAP, Peters RJB, Groot MJ, et al. 2020. Current insights into monitoring, bioaccumulation, and potential health effects of microplastics present in the food chain. Foods 9(1):72, PMID: 31936455, https://doi.org/10.3390/foods9010072.
- Vancamelbeke M, Vermeire S. 2017. The intestinal barrier: a fundamental role in health and disease. Expert Rev Gastroenterol Hepatol 11(9):821–834, PMID: 28650209, https://doi.org/10.1080/17474124.2017.1343143.
- Veroniki AA, Jackson D, Viechtbauer W, Bender R, Bowden J, Knapp G, et al. 2016. Methods to estimate the between-study variance and its uncertainty in metaanalysis. Res Synth Methods 7(1):55–79, PMID: 26332144, https://doi.org/10. 1002/jrsm.1164.
- Viechtbauer W. 2010. Conducting meta-analyses in R with the metafor package. J Stat Softw 36(3):1–48. http://www.jstatsoft.org/v36/i03/, https://doi.org/10.18637/ jss.v036.i03.
- Viechtbauer W, Cheung MWL. 2010. Outlier and influence diagnostics for metaanalysis. Res Synth Methods 1(2):112–125, PMID: 26061377, https://doi.org/10. 1002/jrsm.11.
- Viršek MK, Lovšin MN, Koren Š, Kržan A, Peterlin M. 2017. Microplastics as a vector for the transport of the bacterial fish pathogen species Aeromonas salmonicida. Mar Pollut Bull 125(1–2):301–309, PMID: 28889914, https://doi.org/10. 1016/j.marpolbul.2017.08.024.
- Wan X, Wang W, Liu J, Tong T. 2014. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol 14(1):135, PMID: 25524443, https://doi.org/10.1186/1471-2288-14-135.
- Wang J, Wang M, Ru S, Liu X. 2019. High levels of microplastic pollution in the sediments and benthic organisms of the South Yellow Sea, China. Sci Total Environ 651(pt 2):1661–1669, PMID: 30316086, https://doi.org/10.1016/j.scitotenv. 2018.10.007.
- Wang Q, Zhu X, Hou C, Wu Y, Teng J, Zhang C, et al. 2020. Microplastic uptake in commercial fishes from the Bohai Sea, China. Chemosphere 263:127962, PMID: 32841876, https://doi.org/10.1016/j.chemosphere.2020.127962.
- Wang W, Gao H, Jin S, Li R, Na G. 2019. The ecotoxicological effects of microplastics on aquatic food web, from primary producer to human: a review. Ecotoxicol Environ Saf 173:110–117, PMID: 30771654, https://doi.org/10.1016/j. ecoenv.2019.01.113.
- Wang YL, Lee YH, Chiu IJ, Lin YF, Chiu HW. 2020. Potent impact of plastic nanomaterials and micromaterials on the food chain and human health. Int J Mol Sci 21(5):1727, PMID: 32138322, https://doi.org/10.3390/ijms21051727.

- Waring RH, Harris RM, Mitchell SC. 2018. Plastic contamination of the food chain: a threat to human health? Maturitas 115:64–68, PMID: 30049349, https://doi.org/ 10.1016/j.maturitas.2018.06.010.
- Webb S, Ruffell H, Marsden I, Pantos O, Gaw S. 2019. Microplastics in the New Zealand green lipped mussel *Perna canaliculus*. Mar Pollut Bull 149:110641, https://doi.org/10.1016/j.marpolbul.2019.110641.
- Wickham H, Chang W, Henry L, Pedersen TL, Takahashi K, Wilke C, et al. 2016. ggplot2: elegant graphics for data analysis. https://ggplot2.tidyverse.org [accessed 5 December 2020].
- Wright SL, Kelly FJ. 2017. Plastic and human health: a micro issue? Environ Sci Technol 51(12):6634–6647, PMID: 28531345, https://doi.org/10.1021/acs.est. 7b00423.
- Wright SL, Ulke J, Font A, Chan KLA, Kelly FJ. 2020. Atmospheric microplastic deposition in an urban environment and an evaluation of transport. Environ Int 136:105411, PMID: 31889555, https://doi.org/10.1016/j.envint.2019.105411.
- Wu FZ, Wang YJ, Leung JYS, Huang W, Zeng JN, Tang YB, et al. 2020. Accumulation of microplastics in typical commercial aquatic species: a case study at a productive aquaculture site in China. Sci Total Environ 708:135432, PMID: 31806295, https://doi.org/10.1016/j.scitotenv.2019.135432.
- Yu X, Ladewig S, Bao S, Toline CA, Whitmire S, Chow AT. 2018. Occurrence and distribution of microplastics at selected coastal sites along the southeastern United States. Sci Total Environ 613–614:298–305, PMID: 28917168, https://doi.org/10.1016/ j.scitotenv.2017.09.100.
- Zhang C. 2007. Fundamentals of Environmental Sampling and Analysis. Hoboken, NJ: Wiley.
- Zhang C, Zhou H, Cui Y, Wang C, Li Y, Zhang D. 2019. Microplastics in offshore sediment in the Yellow Sea and East China Sea, China. Environ Pollut 244:827– 833, PMID: 30390456, https://doi.org/10.1016/j.envpol.2018.10.102.
- Zhang F, Wang X, Xu J, Zhu L, Peng G, Xu P, et al. 2019. Food-web transfer of microplastics between wild caught fish and crustaceans in East China Sea. Mar Pollut Bull 146:173–182, PMID: 31426144, https://doi.org/10.1016/j.marpolbul.2019. 05.061.
- Zhang Q, Xu EG, Li J, Chen Q, Ma L, Zeng EY, et al. 2020. A review of microplastics in table salt, drinking water, and air: direct human exposure. Environ Sci Technol 54(7):3740–3751, PMID: 32119774, https://doi.org/10.1021/acs.est.9b04535.
- Zhang S, Wang J, Liu X, Qu F, Wang X, Wang X, et al. 2019. Microplastics in the environment: a review of analytical methods, distribution, and biological effects. Trends Analyt Chem 111:62–72, https://doi.org/10.1016/j.trac.2018.12.002.
- Zhao J, Ran W, Teng J, Liu Y, Liu H, Yin X, et al. 2018. Microplastic pollution in sediments from the Bohai Sea and the Yellow Sea, China. Sci Total Environ 640– 641:637–645, PMID: 29870939, https://doi.org/10.1016/j.scitotenv.2018.05.346.
- Zhao S, Danley M, Ward JE, Li D, Mincer TJ. 2017. An approach for extraction, characterization and quantitation of microplastic in natural marine snow using Raman microscopy. Anal Methods 9(9):1470–1478, https://doi.org/10. 1039/C6AY02302A.
- Zhao SY, Ward JE, Danley M, Mincer TJ. 2018. Field-based evidence for microplastic in marine aggregates and mussels: implications for trophic transfer. Environ Sci Technol 52(19):11038–11048, PMID: 30156835, https://doi.org/10.1021/acs. est.8b03467.
- Zhu J, Zhang Q, Li Y, Tan S, Kang Z, Yu X, et al. 2019. Microplastic pollution in the Maowei Sea, a typical mariculture bay of China. Sci Total Environ 658:62–68, PMID: 30577027, https://doi.org/10.1016/j.scitotenv.2018.12.192.
- Ziccardi LM, Edgington A, Hentz K, Kulacki KJ, Kane Driscoll S. 2016. Microplastics as vectors for bioaccumulation of hydrophobic organic chemicals in the marine environment: a state-of-the-science review. Environ Toxicol Chem 35(7):1667–1676, PMID: 27093569, https://doi.org/10.1002/etc.3461.
- Zitouni N, Bousserrhine N, Belbekhouche S, Missawi O, Alphonse V, Boughatass I, et al. 2020. First report on the presence of small microplastics (≤3 µm) in tissue of the commercial fish *Serranus scriba* (Linnaeus. 1758) from Tunisian coasts and associated cellular alterations. Environ Pollut 263(pt A):114576, PMID: 32315922, https://doi.org/10.1016/j.envpol.2020.114576.