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Abstract 

We present results to show that a commercially available polypropylene suture 

filament (Ethicon Prolene), following annealing and tensile creep can, after creep load 

removal, release viscoelastically stored energy over a period of several weeks.  

Specifically, over 0.1 – 1000 h, the suture undergoes a time-dependent contraction of ~4% 

and, following a short recovery time (~3 min) to a fixed strain, produces a progressively 

increasing recovery force of ~0.1 – 1 N.  We suggest that this time-dependent energy 

release may facilitate wound healing by the action of viscoelastically induced 

mechanotransduction (VIM).  Moreover, our recent (published) findings have led to 

evidence of reduced hydrophobicity from viscoelastically recovering polymeric 

filaments and speculation that this may emanate from the long-term release of electric 

charges.  Thus, we propose that the latter may enhance the VIM mechanism.  In this 

paper, we report on the direct detection of these charges and the first findings from an 

investigation involving the presence of cell cultures on Prolene samples that are (i) 

viscoelastically recovering, (ii) annealed only and (iii) in as-received condition.  From 

(i), the results demonstrate a significant increase in cell motility, with migration towards 

the suture, compared to (ii) and (iii).  This suggests greater stimulation of the wound 

healing process, an effect which is expected to continue for the duration of the 

viscoelastic recovery period. 
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1. Introduction 

Sutures are routinely used to assist the healing of wounds, since they can provide 

mechanical support to the wound area, reduce bleeding, infection risks and minimise 

scarring.  Sutures (absorbable and non-absorbable) are commonplace, and in recent 

years, these have been augmented by the incorporation of coating treatments to reduce 

microbial activity.  Moreover, emerging trends include the introduction of drug-eluting 

and stem cell-seeded sutures [1].  In addition to developments in “passive” sutures, 

there has been an upsurge of interest in “smart” sutures.  Principally, these exploit the 

use of shape-memory materials to enable self-tightening and self-knotting for deep 

wound closures, especially in key-hole surgery [1-4], but there has also been a growing 

interest in electronic sutures, with monitoring and actuation capabilities for wound 

management [1,5,6]; i.e. truly smart sutures. 

To date, the possibilities for exploiting mechanical activity in a suture material 

have received some attention, but only in two areas.  First, as mentioned above, are 

materials that possess shape-memory (temperature-sensitive) characteristics to enable 

self-knotting.  The second area exploits the development of materials with low elastic 

moduli but sufficient mechanical strength for soft tissue wound closures (e.g. midline 

laparotomy) [1,7].  In this paper, we report the first findings from a novel material 

treatment technique focused on the time-dependent mechanical characteristics of a 

commercially available suture.  The aim of this technique is to promote an improved 

wound healing response, by the suture releasing viscoelastically stored energy over a 

period of several weeks. 

 

2. Background 

2.1 Viscoelastic activity – mechanotransduction 

 Viscoelasticity is perhaps most often associated with undesirable behaviour, such 

as the creep or stress relaxation problems that may be encountered within engineering 

structures.  Nevertheless, the phenomenon can be exploited to good effect, one example 

being in the development of viscoelastically prestressed polymeric matrix composites 

(VPPMCs).  A VPPMC is produced by subjecting strong polymeric fibres to a tensile 

load so that they undergo viscoelastic creep; then, following load removal, the (loose) 

fibres are moulded within a resin matrix.  On matrix solidification, the fibres continue to 

attempt contraction due to their viscoelastically stored energy; this creates compressive 

stresses within the matrix which are counterbalanced by residual tension within the 

fibres [8].  VPPMCs based on nylon 6,6, UHMWPE and regenerated cellulose fibres 

have demonstrated mechanical property improvements of 20-60% compared with 

control (no prestress) counterparts [8-10] and additionally, may offer benefits in the 

development of novel structures such as shape-changing components [11]. 

 The knowledge gained from the above work leads one to consider whether such 

viscoelastic behaviour could be applied to areas other than engineering composites.  Its 

applicability to sutures and other medical devices (e.g. scaffolds) is one possibility.  

Mechanotransduction, i.e. the mechanical stimulation of cells to elicit electrochemical 

activity is a mechanism that can improve wound healing [12].  Given that most 

commercially available sutures are polymeric materials, they should have the capability 

for storing viscoelastic energy.  Thus it may be possible to treat a suture, prior to wound 

repair, so that the suture undergoes a small, progressive lengthwise contraction 
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throughout the healing period; i.e. the wound would be subjected to viscoelastically 

induced mechanotransduction (VIM). 

 

2.2 Viscoelastic activity – electric charge phenomena 

 In addition to viscoelastic activity producing a mechanical response, recent 

investigative work on VPPMCs has led to speculation of the occurrence of another 

phenomenon.  By analysis with the scanning electron microscope mirror effect, it was 

found that ~30% fewer electric charges were trapped at the fibre-matrix interfaces of 

VPPMC samples compared with control counterparts.  From this, it was proposed that 

viscoelastic activity within the fibres could influence electric charge interactions at the 

fibre-matrix interface regions [13]. 

 It is known that mechanical stresses, when applied to an insulating material, lead 

to an injection of electric charges [14] and, for intermediately disordered materials such 

as polymers, low mobility leads to a strong localisation (trapping) of these charges [15], 

thus enabling the storage of significant polarisation energy (∼5 eV or more per trapped 

charge) [16].  Therefore, this may be expected to occur when polymeric fibres are 

subjected to creep for VPPMC production.  It was suggested in [13] that viscoelastic 

recovery mechanisms within the fibres gradually release these charges.  Moreover, 

viscoelastic recovery from fibres investigated for VPPMC production is known to be a 

long-term phenomenon which, even at an ambient temperature of 50 °C, exceeds 20 

years [17].  The recovery is suggested to occur through the time-dependent triggering of 

molecular jumps, with longer term activity being represented by sites triggered through 

very long time constants [18,19]. 

 From the above considerations, it was speculated in [13] that the dielectric and 

viscoelastic properties of a polymer correspond to the same movement of molecular 

chains, so that the release of trapped charges may concur with the triggering of 

molecular jumps during viscoelastic activity; i.e. electric charges are released over the 

same timescale as viscoelastic recovery. 

 

2.3 Viscoelastic activity – enhanced suture performance? 

The potential success of VIM to elicit improved healing (Section 2.1), depends on 

the suture undergoing sufficient progressive lengthwise contraction during the wound 

repair period (~1000 h).  The magnitude and duration of this contraction is determined 

by the viscoelastically generated recovery strain and force output produced after the 

suture has been subjected to a period of tensile creep.  Subsequently, the treated suture 

can be applied to the wound region. 

Fig. 1(a) represents the general strain-time creep and recovery characteristics of a 

viscoelastic material.  Here, εc(t) is the (time dependent) creep strain, εi and εe are the 

elastic strains following initial loading and load release respectively.  An equation based 

on the Weibull or Kohlrausch-Williams-Watts (KWW) function [18] can be used to 

describe the time-dependent viscoelastic recovery strain εrvis(t), from a polymeric 

filament previously subjected to tensile creep: 

 



4 

 

 εrvis(t)=εr [exp(-(
t

η
r

)

βr

)] +εf (1) 

 

Where ηr and βr in the εr function represent the Weibull characteristic life and shape 

parameters respectively.  Permanent strain resulting from viscous flow is represented by 

εf.  Similarly, the time-dependent viscoelastic recovery force, F(t), from a filament 

recovering at a fixed strain, can be represented by [20]: 
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Where η and β are the associated Weibull parameters within the Fv function, ∆t is the time 

interval between releasing the creep stress and initiation of the recovery stress (Fig. 1(b)). 

 

 
 

Fig. 1. (a) General strain-time creep and recovery characteristics of a viscoelastic filament; (b) 

schematic of the creep-recovery test cycle to evaluate the recovery force-time characteristics 

from a viscoelastic filament. 
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Previous studies on the development of VPPMCs have shown that annealing the 

fibres prior to applying a creep load provides significant benefits to the magnitude and 

longevity of viscoelastic activity during recovery [8].  Thus, by subjecting suture 

filaments to a range of anneal and creep loading conditions, Eq. (1) and Eq. (2) may be 

used to assist in ascertaining the most appropriate values to maximise the possible 

effects from viscoelastic activity over the wound repair period. 

 Speculation over the possible long-term release of electric charges during 

viscoelastic recovery (Section 2.2) leads to consideration that this could affect 

hydrophobicity.  For insulating materials, there is a strong correlation between the 

presence of electric charge and loss of hydrophobicity [21].  Thus, a viscoelastically 

recovering filament could be more hydrophilic than its control counterpart.  A recent 

investigation involving the observation of water droplets on nylon monofilaments and 

fibres has indicated reduced hydrophobicity as a result of viscoelastic recovery effects 

[22, 23].  This provides some evidence of the electric charge phenomenon; moreover, it 

is recognised that the presence of electric charges is of fundamental importance in 

biological processes, including wound healing [24].  Therefore, in addition to the purely 

mechanical aspects of VIM, a viscoelastically recovering suture may, through a 

progressive release of electric charges, provide further benefits to the wound healing 

process by influencing cell motility and migration. 

 

3. Materials and methods 

3.1. Sample production and strain measurements 

Since this initial study was to evaluate the feasibility of VIM effects, a small 

number of creep-recovery strain runs were undertaken to determine a suitable 

viscoelastic recovery range from a readily available suture product.  Therefore, the 

intention was not to seek optimum materials or viscoelastic treatment conditions here; 

the current work is a precursor to a more extensive study for such purposes. 

Ethicon Prolene 2-0, a common thermoplastic (polypropylene-based) suture, was 

selected for this study.  All suture samples were annealed, unconstrained, in a fan-

assisted oven at 120°C.  Following annealing, the suture was cut into two sample 

lengths, one designated as test, the other being control.  The test sample was subjected 

to tensile creep whilst the control was positioned in close proximity to enable exposure 

to the same ambient conditions (20-21°C, 30-60% RH).  For creep loading and strain 

measurement, the test sample was attached as a loop over the upper and lower bobbins 

of a simple stretching rig, the lower bobbin being fixed to a counterbalanced platform 

with weights to achieve a specified creep stress, as previously described [25].  Time-

dependent creep and recovery strain (εrvis(t) in Fig. 1(a)) values could be recorded by 

measuring the distance between two UV-illuminated ink marks on the suture (typically 

200-250 mm apart) using a digital cursor with a precision of ±0.01 mm. 

 

3.2. Viscoelastic recovery force 

A bespoke rig with a force measurement transducer, as previously described [20], 

was used to evaluate the viscoelastic recovery force from a suture sample.  Following a 

creep period on the stretching rig, the tensile stress was released and the loose suture 

loop (with bobbins) was transferred to the force measurement rig as quickly as possible. 
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After a short period of time Δt (Fig. 1(b)), the initially loose loop became progressively 

taut due to viscoelastic recovery.  The resulting recovery force was monitored through 

the transducer at a fixed strain.  All measurements were performed under ambient 

conditions of 20-21 °C and 30-60% RH. 

 

3.3 Suture hydrophobicity 

 Section 2.3 highlighted a previous study of water droplets on nylon filaments, 

which indicated reduced hydrophobicity as a result of viscoelastic recovery effects [22, 

23].  In the current study, an electrometer (Keithley Instruments Model 610B) was 

utilised to determine whether electric charge, believed to be responsible for reduced 

hydrophobicity, could be collected.  Two suture samples, one being a viscoelastically 

recovering (test) sample, the other as control (annealed only), were each in turn inserted 

through the centre of a thin-walled copper tube (35 mm length, 12.5 mm internal 

diameter), connected to the electrometer.  In each case, the sample (~350 mm long) was 

suspended vertically, with the tube positioned mid-way.  All metal supportive structures 

were earthed.  Effectively, the arrangement of the suture sample within the electrically 

isolated tube was comparable to an air capacitor; hence the presence of a positive charge 

on the suture surface would, through electrostatic induction, cause the tube to become 

negatively charged, this being detected by the electrometer.  The return path between 

the tube and electrometer (coaxial connection) was earthed. 

 Readings of charge accumulation from the electrometer were recorded over a 3 h 

period.  Within this period, the test and control samples were repeatedly exchanged 

between successive 0.25 h measurement periods to ensure, as far as possible, consistent 

measurement conditions.  The copper tube was discharged to earth between each 

measurement period. 

 

3.4 Cell culture 

Primary human dermal fibroblasts (HDFs) were maintained in high glucose 

Dulbecco’s Modified Eagle’s Medium (DMEM) with 2mM L-Glutamine (Sigma UK).  

This was supplemented with 10% foetal bovine serum (FBS, Invitrogen, UK), 1% 

antibiotic and antimycotic (penicillin and streptomycin), and maintained in exponential 

growth at 37 °C, 5% CO2, and 95% humidity. 

 

3.5 Cellular motility 

To examine cell motility in response to the treated sutures, a 24 well plate was set 

up to contain 2 cm lengths of the material samples (n = 5 per suture treatment).  Suture 

samples were adhered to the well plate with silicone to prevent floatation and 

interference with the image capture techniques.  The control wells contained only 

silicone adhesive, and subsequent wells contained either as-packaged, annealed-only or 

annealed and prestressed suture material. 

HDFs were seeded at 1x104 cells/ ml and left until they had reached 30-40% 

confluence (approximately 3 hours).  Each well contained 500 µl supplemented cell 

culture medium to ensure visual acuity. 
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A Phasefocus Livecyte system (Phasefocus, UK) was used to perform quantitative 

phase imaging (QPI), every 10 minutes for a total duration of 12 hours.  Phase Focus 

Cell Analysis Toolbox software was used to segment and track individual cells [26], 

specifically measuring cell speed and meandering index.  This was performed at 3 hours, 

7 days, 14 days, 28 days and 42 days following the initiation of viscoelastic recovery. 

 

4. Results and discussion 

4.1. Viscoelastic recovery properties 

Fig. 2 presents the viscoelastic recovery strain and force characteristics from 

suture samples.  The data correlate well with Eqs. (1) and (2), which is consistent with 

other polymeric filament materials such as polyethylene {9], cellulose [10] and nylon 

6,6 [18, 20]. 

From the tensile creep trials investigated in this initial study, Fig. 2(a) shows the 

recovery strain characteristics from two runs.  For a fixed creep stress, these summarise 

our findings from a number of trials which demonstrated that annealing time, in 

addition to creep duration, has a significant role in the achievable recovery strain.  Thus 

although the (undesirable) permanent strain εf from Run 2 (7.4%) is greater than Run 1 

(6.0%), the available viscoelastic recovery strains (εrvis(t) – εf) over 0.1 to 1000 h are 3.8% 

and 2.6% respectively, i.e. the parameters for Run 2 would be expected to make a 

greater contribution to VIM effects. 

Fig. 2(b) shows a plot of viscoelastically generated recovery force, from the creep 

parameters used for Run 2 in Fig. 2(a).  Here, the suture loop became taut at ~3 min (i.e. 

~0.05 h for Δt), giving a force output, at a fixed εrvis(t) strain of ~12%.  The curve shows 

that the loop exceeds 2 N after 20 h; i.e. a force of 1 N for a single suture filament.  

After ~300 h, the growth in force output diminishes, suggesting that the possibility of a 

decline (e.g. from stress relaxation) is being offset by long-term viscoelastic recovery 

mechanisms. 

Evidence of an electric charge effect from suture samples undergoing viscoelastic 

recovery was demonstrated through charge collection by the electrometer arrangement 

(Section 3.3).  Charge collection (negative polarity) over successive 0.25 h periods was 

no more than ~10-3 µC; however, values within the first hour of recovery were 3-5 times 

greater for the test suture samples compared with control counterparts.  Although this 

higher charge could be detected only over the first few hours, the findings suggest that a 

recovering suture possesses positive charge polarity.  Clearly, a more detailed study is 

required, with an experimental arrangement that can provide greater sensitivity.  

Nevertheless, these preliminary results appear to concur with the prognosis that 

hydrophobicity is reduced during viscoelastic recovery. 
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Fig. 2. Plots of viscoelastic recovery in terms of (a) strain and (b) force (fixed εrvis(t) strain of ~12%); r 

is the correlation coefficient for curve fitting to Eq. (1) or (2).  For Runs 1 and 2, sutures were 

annealed at 120°C and creep stress was 135.3 MPa at 20-21°C. 

 

4.2. Cell motility 

 Fig. 3 graphically represents the short-term response of HDFs when cultured with 

suture samples that were either prestressed (after annealing), annealed-only, or as-

packaged (i.e. the commercially available product).  Although there are notable 

variations within all sample pools (n = 5), a clear trend is visible.  Control wells 

containing just the silicone adhesive had very little influence on the cell culture with an 

average meandering index of 0.270 ± 0.005 (SEM), and a mean cell speed of 0.140 ± 

(a) 

(b) 
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0.003 µm/min (SEM), indicating that the results were repeatable at each time point.  No 

statistical significance was observed between the as-packaged and annealed sutures 

although both gave a higher meandering index and cell speed than the control, 

suggesting that they had some influence on the cells.  The prestressed sutures can, 

however, be seen to have the greatest influence on meandering index and cell speed, 

especially for the first 14 days, these being typically ~0.7 au and ~0.35 µm/min 

respectively, i.e. approximately double the values from the as-packaged samples.  At 28 

and 42 days, Fig. 3 shows a progressive fall-off in these values, indicating that cell 

motility becomes less responsive to activity from the later stages of viscoelastic 

recovery in Fig. 2.  These trends are more clearly indicated by plotting the motility 

parameters as a function of viscoelastic activity, the latter being represented by the εr 

function from Eq. (1), i.e. (εrvis(t) – εf), as shown in Fig. 4.  Here, Fig. 4 indicates a 

diminishing response as the viscoelastic recovery strain becomes less than 1%.  Thus, 

although the suture material and treatment procedures are not optimised, our findings 

clearly demonstrate that viscoelastic recovery mechanisms elicit a positive effect on cell 

motility. 

 

 

Fig. 3. Cell motility metrics calculated from the tracked cells in culture with either no suture (control), 

as-packaged, annealed, or prestressed sutures.  Measurements taken at 3 hours, 7 days, 14 days, 

28 days and 42 days: (a) is the average meandering index calculated per well (n = 5); (b) is the 

mean speed of cells calculated per well (n = 5).  Error bars represent standard error of the mean. 

 

(a) 

(b) 
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Fig. 4. Plot of motility parameters as a function of net viscoelastic recovery strain (i.e. εrvis(t) – εf), 

indicating a decline in motility when the strain falls below ~1%; shaded regions represent the 

general trend.  Error bars represent standard error of the mean. 

 

 The Livecyte system (Phasefocus) was able to detect the cells in the culture, and 

accurately track their movement using a simple vector analysis algorithm.  This gave a 

value for the meandering index (arbitrary units).  As the meandering index approached a 

value of unity, the cells could be seen to be tracking in a single direction; therefore, it 

was possible to deduce that the prestressed suture would be either attracting or repelling 

the cells.  With the suggested change in hydrophobicity (the suture being positively 

charged, as discussed in Section 4.1), it is likely that the cells were tracking towards the 

suture sample.  Studies have shown human dermal fibroblasts track towards anodes and 

away from cathodes when in a charged environment [27].  Whilst this is specific to cell 

type, and cannot be assumed for other cells involved in the wound healing process, it 

does appear to support the observation of directional movement in our culture system.   

Standard tissue culture well plates (as used in this study) have a hydrophilic, negatively 

charged surface, as a means of encouraging rapid cell adhesion, and therefore 

proliferation [28].  Owing to the evenly distributed net charge, cells in basic culture 

typically exhibit random directionality due to lack of external stimulus, or in this case, 

an electric field [29].  In our system however, where there is a positively charged suture 

and a negatively charged culture surface, the cells appear to migrate in the direction of 

the positive charge; i.e. towards the suture, within the first 3 hours of recovery.  This is 

not too dissimilar to the natural process of wound healing, in which breaking down the 

epithelial barrier leads to a flow of positive charge from surrounding tissues towards the 

wound centre, thereby triggering the accumulation of cells to initiate the wound healing 

process [24, 30].  In contrast with the prestressed suture samples, the control, annealed 

and as-packaged equivalents all show notably lower meandering index values, 

indicating that cell movements were more randomly orientated; i.e. they were not 

responding to the presence of non-stressed suture samples. 

 Although classed as an independent metric, the mean cell speed has shown a 

parallel correlation with the meandering index in Figs. 3 and 4.  When the cells are not 

influenced by the suture (control), they settle and adhere randomly in the well plate, and 

have a relatively slow motility rate.  In contrast, cells in the well with the prestressed 
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suture are seen to track in a single direction and at a much faster speed.  The migration 

of fibroblasts to the wound site is one of the earliest and most critical stages of the 

wound healing response [31-32].  This is usually in response to immune cells being 

triggered, but is crucial to the laying down of the fibrous matrix within the wound site 

[33].  It is possible that the electric charge effect from prestressed sutures will assist in 

stimulating and guiding the recruitment of fibroblasts to the wound site, irrespective of 

the immunological triggers [27, 34].  A similar phenomenon has been observed with 

corneal epithelial cells, where the electric field was suggested to override 

chemicological cues to guide migration of the cells [35-36].  Thus, there is potential that 

this novel Prolene suture system may reduce healing times, whilst improving 

mechanical integrity of the wound itself. 

 Clearly, this initial study has been confined to one specific suture product.  Since 

the potential benefits from progressive mechanical contraction and electric charge 

effects on wound healing emanate from viscoelastic recovery, we suggest that any 

suture material or wound-healing structure with the potential for viscoelastic activity 

may enable these attributes to be exploited. 

 

5. Conclusions 

 By subjecting a commercially available suture filament (Ethicon Prolene) to an 

anneal and tensile creep treatment process, our initial study has demonstrated that the 

suture can undergo a viscoelastic contraction of ~4% over 0.1 – 1000 h and, following a 

short recovery time (~3 min) to a fixed strain, provides a progressively increasing 

recovery force of ~0.1 – 1 N.  Although further development is required to achieve 

optimised processing conditions, we have proposed that this suture treatment may 

facilitate wound healing through viscoelastically induced mechanotransduction (VIM).  

In addition, we believe that VIM will be augmented by the release of electric charges 

through viscoelastic activity and we report on the direct detection of these charges. 

 By using these treatment conditions on suture samples subsequently immersed 

within a human skin cell culture, we have found a significant increase in cell motility 

(meandering index, speed) and migration towards the suture, in comparison with 

samples that were in annealed-only or as-received condition.  These results indicate that 

a viscoelastically active suture should provide a greater stimulation of the wound 

healing process and the effect can be expected to continue for the duration of the 

viscoelastic recovery period. 
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