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With globally accelerating rates of environmental disturbance, coastal marine
ecosystems are increasingly prone to non-linear regime shifts that result in a loss
of ecosystem function and services. A lack of early-detection methods, and an
over reliance on limits-based approaches means that these tipping points manifest
as surprises. Consequently, marine ecosystems are notoriously difficult to manage,
and scientists, managers, and policy makers are paralyzed in a spiral of ecosystem
degradation. This paralysis is caused by the inherent need to quantify the risk and
uncertainty that surrounds every decision. While progress toward forecasting tipping
points is ongoing and important, an interim approach is desperately needed to enable
scientists to make recommendations that are credible and defensible in the face of deep
uncertainty. We discuss how current tools for developing risk assessments and scenario
planning, coupled with expert opinions, can be adapted to bridge gaps in quantitative
data, enabling scientists and managers to prepare for many plausible futures. We argue
that these tools are currently underutilized in a marine cumulative effects context but
offer a way to inform decisions in the interim while predictive models and early warning
signals remain imperfect. This approach will require redefining the way we think about
managing for ecological surprise to include actions that not only limit drivers of tipping
points but increase socio-ecological resilience to yield satisfactory outcomes under
multiple possible futures that are inherently uncertain.

Keywords: regime shift, ecosystem function, tipping point, abrupt change, deep uncertainty

INTRODUCTION

Global change is having unprecedented impacts on marine ecosystems and human well-being
(Vitousek et al., 1997; Costanza et al., 2014; Rocha et al., 2015). The cumulative effects of multiple
drivers of change can cause non-linear shifts in ecosystem functions and services, known as
tipping points or regime shifts (see Appendix for glossary). Tipping points can have catastrophic
consequences for human well-being when ecosystem services associated with people’s livelihoods
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are lost (e.g., Newfoundland cod collapse, or degradation of
water quality in Chesapeake Bay; Steele et al., 1992; Boesch
et al., 2001; Rocha et al., 2015; Selkoe et al., 2015; Hicks
et al., 2016). Coastal ecosystems are among the most heavily
impacted and are particularly prone to tipping points due to
the complex interaction of intrinsic and extrinsic drivers and
processes. These interactions result in hysteresis, where feedbacks
between intrinsic ecosystem components limit recovery even
when extrinsic drivers are removed (e.g., eutrophication-induced
bottom water anoxia results in nutrient release from the
sediments that continues to fuel algal blooms after external
nutrient loading is reduced) (Boesch et al., 2001; Nyström
et al., 2012). Intensifying human pressures increase the number
and strength of extrinsic drivers on marine ecosystems (IPBES,
2018) and are likely to raise the frequency of tipping points
(Drijfhout et al., 2015; Rocha et al., 2015). These tipping points
manifest as surprises because seemingly small drivers of change
can cumulatively cause large effects. Further, a lack of proven
ecological detection methods (de Young et al., 2008; Thrush et al.,
2009; Dakos et al., 2015; Scheffer et al., 2015; Burthe et al., 2016)
and an over-reliance on limits-based management (Charles, 1997;
Thrush et al., 2016) has impeded the ability to make decisions that
prevent tipping points.

Broad-scale limits-based management (e.g., limits on nutrient
loading) is not fit-for-purpose, because stressor thresholds
are context-sensitive (e.g., response to eutrophication depends
on multiple site-specific and temporally varying biophysical
factors; Anderson et al., 2015). Furthermore, there can be
an implicit assumption in how the monitored variable (an
ecosystem indicator) will track linearly or otherwise toward a
threshold providing an opportunity for intervention. However,
this assumption often does not consider that change can happen
fast and without warning and a crossed threshold may be
difficult to re-cross (Thrush and Dayton, 2010; but see Foley
et al., 2015). Our understanding of marine ecosystem interactions
from empirical data (experimental and observational) is often
incomplete, context-, and scale-dependent (Thrush et al., 2009;
Snelgrove et al., 2014). To date, analysis of marine time series data
has been unsuccessful in identifying generalizable early warning
signals to forecast tipping points, and theory of early warning
from “critical slowing down” and “flickering” have rarely been
demonstrated empirically (Dakos et al., 2015; Burthe et al., 2016;
Hewitt and Thrush, 2019). While continued development of
methods and data collection for forecasting tipping points is
important, it is critical that scientists and decision-makers are not
paralyzed by the deep uncertainty that surrounds this problem.

We must bridge the gap between limited empirical data
at the correct spatial and temporal resolution, models and
effective decision-making to maintain the biodiversity, ecosystem
functions, and provision of services on which humanity relies
(Knight et al., 2008; Carpenter et al., 2009; Figure 1). This
requires consideration of the socio-ecological implications of
a tipping point and the feedbacks that can lock a system
into an alternative state (Scheffer et al., 2001; Folke et al.,
2004; Nyström et al., 2012; Rocha et al., 2018). There are
various modeling approaches that can bridge data gaps,
combining qualitative and quantitative data through expert

elicitation (Canavese et al., 2014). Integrating expert opinions
with empirical data allows data collected at a local scale to
inform and address problems at the ecosystem scale. We argue
that models aimed at supporting decisions need to be linked to
management action via an iterative framework that incorporates
society (including culture), ecology, and deep uncertainty. The
first step is to combine ecological realities, societal values,
and possible actions to identify options that will increase
ecosystem resilience.

Expert opinion models have been applied in marine
spatial management, risk and impact assessment, and fisheries
assessment, identifying the most likely outcomes through
quantifying a probabilistic risk of human activities (e.g., Bayesian
Networks and fuzzy set models; Silvert, 2000; Marcot et al.,
2001; Wooldridge and Done, 2004; Cheung et al., 2005;
Stelzenmüller et al., 2010, 2011; Landuyt et al., 2013; Ban et al.,
2014; Jones and Cheung, 2018). In this context, uncertainty
is partitioned into sectors (e.g., single species distribution or
single-stressor impacts). However, in the context of tipping
points where complex interactions introduce deep uncertainty,
a more holistic approach is required. We need an approach
that is not limited to cause-and-effect relationships, known
probabilities, and quantifiable levels of uncertainty, but rather
one that considers the possibility of different socio-ecological
changes in the context of multiple plausible futures. Our key
point is that models incorporating expert opinions are currently
underutilized in a holistic marine cumulative effects’ context, but
they offer a practical way forward to bridge gaps in quantitative
data, enabling scientists and managers to consider and prepare
for many possible futures (Figure 1). Here, we discuss the
methodological and ideological considerations for using expert
opinions in models of decision scenarios that can feed into a
broader ecosystem-based management (EBM) framework with
a key focus of building resilience; a framework that is now
considered necessary to avoid further loss of societally valuable
ecosystem services (IPBES, 2018).

MODELING WITH EXPERT OPINIONS IN
THE CONTEXT OF CUMULATIVE
EFFECTS

In classical decision theory, it is assumed that probabilities
can be assigned to the occurrence of events, where a model
decision is portrayed as “clear-cut,” true or false. This theory
has limited application in tipping points, as it requires
specification of all potential future states and their probabilities
of occurrence, which are often unknown when dealing with
multiple drivers of change (Polasky et al., 2011). In this context, it
is more appropriate to qualitatively assign variables to linguistic
categories using expert opinions (e.g., “low,” “moderate,” “high”),
accompanied by a qualitative level of confidence (e.g., a “low”
increase in a stressor will be “most likely” to have a “low impact”
on biodiversity) (Liu et al., 2015). This qualitative use of expert
opinions allows progress to be made in identifying the likelihood
of various outcomes even when uncertainty is deep (see below).
There are several modeling approaches that integrate expert
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FIGURE 1 | Graphical summary of (A) the current limitations to understanding and managing marine ecosystems in the context of surprise change arising from
cumulative effects, and (B) the suggested solutions that use expert opinions to bridge the gaps between ecological knowledge, management, and society to
consider multiple plausible futures in robust decision making.

opinions with empirical data to investigate multiple ecosystem
interactions: mental models (Moon et al., 2019), fuzzy set-theory
models (Jarre et al., 2008; Zadeh, 2008), Bayesian networks
(Uusitalo, 2007; Uusitalo et al., 2016), structural equation

models (Hox and Bechger, 2009; Foley et al., 2015), agent-based
models (Grimm et al., 2005), artificial neural networks (Lek
and Guégan, 1999), or combinations of the above (Liu et al.,
2015). In the context of tipping points, they must be designed
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acknowledging both socio-ecological feedbacks and importantly,
deep uncertainty (Figure 1). Of course, expert opinion has
caveats that need to be acknowledged and built into models,
which include: (1) level of experience and confidence of experts;
(2) representation of diverse world views; (3) shifting baselines in
expert opinion over time; and (4) personal biases (Uusitalo, 2007;
Kuhnert et al., 2010; Krueger et al., 2012).

RECOGNIZING AND DEALING WITH
UNCERTAINTY

Uncertainty can be classified into five levels along a spectrum
from complete certainty to total ignorance (see Appendix;
as described by Walker et al., 2013). The expert models we
suggest can easily cope with intermediate uncertainty (levels
1–3) by exploring drivers and their interactions through
sensitivity analysis and scenario planning (Mahmoud et al.,
2009; Carpenter et al., 2015; Booth et al., 2016). While
identifying all possible interactions may seem intractable, expert
opinions offer a way of restricting combinations, and in the
case of intermediate uncertainty, experts can often rank the
likelihood of occurrence for several possible consequences
(e.g., Teck et al., 2010). Sensitivity analysis identifies and
quantifies which parts of a model contribute to uncertainty
(e.g., Wooldridge and Done, 2004), pinpointing areas that need
further expert elicitation and/or research (Saltelli et al., 2007).
Scenario planning allows ecologists and managers to work
coherently to iterate between stressor inputs and ecosystem
outcomes (Bennett et al., 2003; Mahmoud et al., 2009; Carpenter
et al., 2015; Booth et al., 2016). We can visualize this as dialing
up or dialing back extrinsic drivers and observing the outcome
on ecosystem function and the loss of intrinsic feedbacks and
interactions within a network, advancing knowledge of early
warning signals (Thrush and Dayton, 2010; Thrush et al.,
2014; Foley et al., 2015); and providing insight into the
combination and level of stressors that increase the vulnerability
to tipping points.

Besides addressing intermediate uncertainty, decisions that
manage for abrupt change need to consider deeper levels of
uncertainty (levels 4–5; Walker et al., 2013). Deep uncertainty
includes “black swan” events, which are events that lie outside
the realm of regular expectations, carry extreme impacts, and are
only identifiable on a retrospective basis (Taleb, 2007). Examples
of this include the unexpected collapse of the Newfoundland
cod fishery (and food web) and the multiple regime shifts
in Chesapeake Bay, which were driven by feedbacks between
human behavior, decisions, and multiple biophysical interactions
(Steele et al., 1992; Milich, 1999; Hicks et al., 2016). In
such contexts, experts need to collectively identify as many
interacting factors as possible, and then qualitatively assign
levels of vulnerability associated with these interactions (Box 1).
Approaching uncertainty from an exploratory perspective rather
than focusing on predicted outcomes helps stakeholders expand
the range of futures they will consider; as there is no necessity for
assignment of probability, one only need to accept the possibility
that a scenario could occur (Marchau et al., 2019).

BOX 1 | Developing decision options for managing coastal ecosystems in the
face of tipping points.

Five starting points:

1. Tipping points drivers – Use expert opinions to identify place-specific
social and biophysical variables that make a particular area prone to
a tipping point.

2. Resilience attributes – Identify social and biophysical variables that
contribute to making the area of interest resilient to change.

3. Resilience enhancing actions – List actions that would enhance the
resilience attributes.

4. Build place-specific models (e.g., Bayesian networks) that include
tipping points drivers + resilience attributes + resilience enhancing
actions + driver reducing actions (and their interactions) to explore
vulnerability to a tipping point.

5. Use modeled scenarios to inform recommendations for robust actions
that are likely to future proof the ecosystem to further cumulative
changes (and tipping points). These modeled scenarios will provide
information to participatory processes in a broader EBM framework
where trade-offs on the recommended decisions (or lack of)
can be explored.

Coastal eutrophication – an example:

Coastal eutrophication is a global driver of abrupt change in coastal areas
(e.g., Chesapeake Bay, Baltic Sea; Zimmerman and Canuel, 2000; Boesch
et al., 2001; Nyström et al., 2012; Tomczak et al., 2013; Carstensen et al.,
2014). Often risk assessments and management decisions emphasize the
cause and effect relationship between increases in the delivery of nutrients
(the driver) and the (known) response of the ecosystem, without considering
interactions between stressors (e.g., Wulff et al., 2007; Wulff et al., 2013; Plew
et al., 2018). Despite knowledge of the non-linear dynamics of cumulative
effects (Thrush and Dayton, 2010), ecosystems are still managed by this
simple cause and effect framework, where management is solely focused on
nutrients at the “source” and setting limits based on perceived thresholds. In
some contexts, these limits may prevent eutrophication-induced tipping
points, but in other contexts the coastal ecosystem flips into an alternative
state (e.g., hypoxia, prevalent algal blooms, low biodiversity, and ecosystem
service delivery), which can occur even when rational management decisions
are made (e.g., lake ecosystems; Peterson et al., 2003).

Here, we use coastal eutrophication to show how the five-step program can
be used to explore decisions that insure ecosystems against future cumulative
effects and tipping points. In our hypothetical model structure, expert opinions
would identify important drivers and actions (step 1–3) and define relationships
between the nodes (step 4) (ideally direction, magnitude, and likelihood;
Figure 2). Tipping points drivers are biophysical (blue) and social (orange)
properties of a system that make it prone to tipping points. Many of the tipping
points drivers are linked (directly or indirectly) to the resilience attributes and
the driver reducing actions. The resilience attributes are the biophysical (blue)
properties of the ecosystem that make it resilient to increased nutrient loading.
The driver reducing actions are based on social need for ecosystem services
(orange) and are actions (pink) that respond to this need by reducing the
stressor (e.g., nutrient loading). Unfortunately, these driver reducing actions
are not enough in isolation because other stressors (e.g., sediment loading,
shellfish overharvesting) diminish the resilience attributes and exacerbate the
tipping points drivers. Thus, models must also include resilience enhancing
actions, which are management actions (pink) that improve resilience and
insure against future cumulative effects (e.g., resulting from climate change). In
this example, the driver reducing actions and resilience enhancing actions
would be altered in different scenarios to assess the magnitude of the benefits
of an action for reducing vulnerability to tipping points (step 5). The magnitude
of benefit can be used to assess trade-offs between actions and their
benefits, including costs (often difficult to monetize) associated with the gain
or loss of various human values. This analysis should include the cost of
inaction. Outcomes of scenarios can inform and provide the basis for various
decision options (e.g., NEST model to explore decision options for restoration
in the Baltic Sea; Wulff et al., 2013, 2014), but importantly these scenarios must

(Continued)
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BOX 1 | Continued
inform resilience-enhancing decisions, as these are the decisions that will be
important in the context of deep uncertainty and move beyond business as
usual. Models focused on combining the social, biophysical, and
management spheres (Figure 1 in the main text) are needed because of
interactions between drivers and responses that make tipping points a
multi-dimensional and multi-faceted problem.

Tipping points are deeply uncertain and must be managed on
the basis that surprise can happen. However, decision-making
in marine management still tends to focus on optimal policies,
which aim to achieve the best possible outcome under a restricted
set of criteria and assumptions (e.g., threshold assumptions).
These criteria and assumptions are usually based on incomplete
knowledge of the current state of a system (introducing deep
uncertainty); therefore, the model that informed the policy is
unlikely to reflect reality and the desired outcome is unlikely
to be achieved. As with many fisheries, the Newfoundland cod
fishery was managed to maximize yield assuming an equilibrium
population state, but in reality, socio-ecological systems show
an element of chaos and unpredictability in population and
community fluctuations (Milich, 1999). Further, Chesapeake
Bay nutrient management initially focused on point sources of

pollution in isolation of other stressors (e.g., sediments and oyster
overharvest) (Boesch et al., 2001; Hicks et al., 2016). Such limits-
based management (e.g., on fishing intensity or nutrient input)
is an example of an optimal policy that is typically designed
to optimize exploitation within thresholds that protect some
component(s) of the ecosystem. This assumes (1) thresholds
remain the same under all conditions and (2) recovery of the
managed ecosystem component does not involve hysteresis or
is influenced by interacting stressors; assumptions that are often
false (Crain et al., 2008; Darling and Côté, 2008). In addition
to false assumptions, resource managers often fail to integrate
ecological and economic models appropriately due to difficulty in
assigning “values” to ecological functions and services, meaning
that an optimal outcome is unlikely to capture the complexities
of natural systems. Thus, policies that are considered or seen as
optimal can result in regime shifts. When uncertainty is deep
and “values” are subjective, approaches that seek robust and
flexible policies (Marchau et al., 2019) are more appropriate than
strategies defined under a narrow set of criteria and potentially
incorrect assumptions.

Progress has been made to address decisions notwithstanding
deep uncertainty, with research recommending: (1) policies
that are robust across different scenarios (e.g., robust decision-
making, info-gap decision theory) and (2) adaptive pathways

FIGURE 2 | Coastal eutrophication – a simplified model linking biophysical ecosystem properties (blue), social drivers (orange), and management actions (pink). The
hypothetical model shows how the different spheres in Figure 1 can be linked together to determine vulnerability of a coastal area to tipping points induced by
nutrient enrichment.
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where plans adapt as the system changes (Marchau et al., 2019).
Robust policies are designed to yield “satisfactory” outcomes
across a wide range of futures, and do not always maximize the
immediate output or a perceived “value” like those of optimal
policies (Rosenhead et al., 1972). While optimal policies put
all our eggs in one basket, robust policies hedge our bets
and seek a level of insurance against unknown future events.
A robust policy or collection of decisions in the context of
tipping points management may involve identifying not only
drivers of change, but also actions that could change how an
ecosystem responds to those drivers [i.e., resilience-enhancing
actions; e.g., restoration of key habitats/species (Box 1), or
fishing at levels where recruitment is likely to be successful
under changing environmental conditions]. Tipping points are
irreducibly uncertain, thus we cannot focus on predicting
occurrence, but instead we should focus on identifying a
desired future ecosystem state and developing robust plans to
navigate toward that future (Walker et al., 2013; Le Heron
et al., 2016). The incorporation of expert opinions into decision
support models enables current quantitative and qualitative
information to be used in an iterative process exploring future
narratives, while eliminating need for probabilities, absolute
numbers, and thresholds.

LINKING MULTIPLE KNOWLEDGE
SYSTEMS TO DECISION MAKING

The effects of social feedbacks on ecosystem function are
often ignored when modeling cumulative effects and abrupt
change. Hysteresis (or lags in recovery) from intrinsic ecological
feedbacks can be exacerbated in socio-ecological systems because
of inertia in human reactions to ecological change (Sugiarto
et al., 2015; Yletyinen et al., 2019), and mismatches between
time scales of social and ecological change (e.g., Baltic Sea
ecosystem response lags behind eutrophication management
action; Nyström et al., 2012; Varjopuro et al., 2014). Managers
are driven by the societal consequences of change in an
ecosystem, yet the feedbacks among ecosystem components are
often forgotten. Despite research on socio-ecological feedbacks
and hysteresis (Carpenter et al., 2006; Yletyinen et al.,
2019), most current management practices aimed at reducing
environmental degradation of marine ecosystems have kept
disciplines and knowledge systems separate (Folke, 2006). For
example, Newfoundland fishery scientists deemed traditional
ecological knowledge from the fishing community to be too
inaccurate for assessing the state of the marine environment, a
mistake that contributed to a socio-ecological collapse (Milich,
1999). Lessons from past tipping points tell us it is critical that
decision scenarios are informed by the socio-ecological system
as a whole, incorporating feedbacks and multiple knowledge
systems from the various societal players (e.g., government,
indigenous people, stakeholders, and community organizations).
Socio-ecological interactions are embedded in a broader global
socio-economic context which adds further complexity that
needs to be considered (although out of the scope of this
perspective see Österblom et al., 2017).

The social consequence of change will be context dependent.
For a governing body with a mandate to protect the marine
environment (e.g., UN Sustainable Development Goal #14 life
below water), the priority should be to protect and maintain
ecosystem function and services. Ensuring these mandates are
prescribed is a critical part of EBM. Assessing “risk” involves both
the probability of occurrence but also the severity/consequence of
the event should it occur (Cormier et al., 2013; Selkoe et al., 2015).
Since the occurrence of tipping points cannot be predicted, the
assessment of “risk” should identify the societal and ecological
harm it would cause. If the harm is high, but the probability
of occurrence is deeply uncertain, then robust decisions that
increase resilience are a way forward (Selkoe et al., 2015). Expert
opinions from multiple fields and knowledge systems to build
mind models (Folke, 2006; Moon et al., 2019) are a powerful way
to identify the vulnerability of a marine area to tipping points and
can inform participatory processes (an essential part of EBM) of
resilience-enhancing actions that can reduce this vulnerability.

Models including expert opinions feed into an EBM
framework allowing incorporation of multiple knowledge
systems (Leslie and McLeod, 2007; Stephenson et al., 2018) so
that interactive and cumulative impacts of multiple activities
can be evaluated, even in the presence of uncertainty. This
will require recognition and prioritization of trade-offs between
different human values (Lester et al., 2013). In marine socio-
ecological systems ecological functions such as nutrient cycling
and primary production are commonly traded-off against more
tangible ecosystem services such as food provisioning. However,
such tradeoffs are unreasonable as the supply of these goods
to society is underpinned by multiple, interacting processes,
functions, and supporting services (Snelgrove et al., 2014).
The loss of one ecosystem function may be accompanied
by loss of multiple ecosystem services. Decision-making that
incorporates the consequences of both ecological and social
systems, as well as the intrinsic feedbacks are therefore essential
for identifying trade-offs in possible future states when there is
deep uncertainty. All this is critical if we are to move toward the
EBM approaches required to maintain the function and services
of marine ecosystems that contribute to humanity’s well-being
(IPBES, 2018).

Given the burgeoning extrinsic forces pushing marine
ecosystems into alternative states, we must find ways to inform
effective decision making that not only focus on limiting drivers
of change, but also building resilience. We argue that we
must use the resources available today to provide practical
recommendations for the management of marine ecosystems that
are increasingly prone to tipping points. We already have the
knowledge and tools, it is now a matter of applying these in the
context of environmental surprise (associated with changes to
intrinsic interaction networks). From an ideological perspective,
this means redefining the way we think about managing socio-
ecological systems for tipping points to include “surprise” and
multiple possible futures that may be somewhat uncertain and
may not have appropriately scaled data. This approach might be
initially unpalatable to those who seek to make recommendations
based on probabilities of occurrence and known levels of risk
and uncertainty. However, the current expectation that we can
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assign a quantitative level of certainty to our actions and decisions
is paralyzing us within a spiral of accelerating degradation to
our marine environments. Holistic models driven by expert
elicitation are currently underutilized in marine socio-ecological
system management, but they offer an opportunity for generating
practical and productive information to the wicked ecological
tipping point problem (we offer five starting points in Box 1).
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APPENDIX

We recognize that many definitions and interpretation of terminology exist. Thus, we include this list of terms that are used in this
perspective piece to explicitly define our use of terminology.

Ecosystem function: The biological, geochemical, and physical changes in energy, matter, and processes that contribute to the self-
maintenance of the ecosystem. Ecosystem functions underpin ecosystem services.

Ecosystem services: The benefits that humans derive from functioning ecosystems, which are underpinned by the ecological
processes that contribute to human well-being (both directly or indirectly) (Costanza et al., 2017).

Extrinsic variable: A variable that is not part of how an ecosystem functions but can drive change in the intrinsic ecosystem
processes. For example, the delivery of land-derived sediments and nutrients into the coastal waters can be considered extrinsic
variables that drive change to an ecosystem’s intrinsic processes (Thrush et al., 2014).

Hysteresis: When ecosystems occur in different states under the same environmental conditions because of slow or altered recovery
trajectories. Hysteresis can occur due to the feedbacks between internal ecosystem components which slow or change the trajectory
of recovery back toward an original state, but they can also occur when one process lags behind another process, for example in the
context of socio-ecological systems, the ecological effect can often lag the social change (Nyström et al., 2012; Sugiarto et al., 2015).

Intrinsic variable: A variable that is included in the network of processes that make an ecosystem function. For example, the micro-
algae that grow on the seafloor are an intrinsic variable that deliver primary production and thus are integral to how the ecosystem
functions (Thrush et al., 2014).

Resilience: We refer to resilience broadly (Hodgson et al., 2015) as the capacity of an ecosystem to maintain ecosystem function and
services under stress or disturbance.

Resilience attributes: An attribute or variable that increases the resilience of the ecosystem [e.g., the presence of nutrient processing
species on the seafloor increases resilience against eutrophication (Douglas et al., 2017)].

Scenario planning: a process of identifying future scenarios that are plausible but not always the most likely (Mahmoud et al., 2009).
Tipping point: A threshold after which the ecosystem enters another state of functionality, where recovery to the former state does

not occur even when the pressure is released (Mac Nally et al., 2014). When we refer to tipping points, we are interested in tipping
points/regime shifts that occur from cumulative effects of multiple drivers of change. These drivers of change can be small, but when
they occur in combination with others, they can result in a surprise changes to an ecosystem state.

Uncertainty: The level of confidence we have in predicting an outcome. In the literature, there is a continuum of uncertainty that
goes from complete certainty to total ignorance (Walker et al., 2013):

- Level 1: Confidence in the outcome of a decision and the probability of its occurrences.
- Level 2: Can assign a probability to a range of possible consequences.
- Level 3: Can rank the likelihood of occurrence of a range of possible consequences.
- Level 4: Unable to rank the likelihood of occurrence of multiple plausible outcomes.
- Level 5: The full range of possible trajectories or consequences is impossible to fully imagine or realize.
- Intermediate uncertainty: Levels 1–3 on the spectrum of uncertainty.
- Deep uncertainty: Levels 4 and 5 on the spectrum of uncertainty.
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