This document is the Accepted Manuscript version of a Published Work that appeared in final form in Environmental Science and Technology, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acs.est.0c00514

The effects of polyester microfibers on functionally important microphytobenthos and sediment-dwelling infauna.

Julie A Hope^{*1}, Giovanni Coco² and Simon F Thrush¹

⁵ ¹Institute of Marine Science, University of Auckland, Private Bag 92019, Auckland, New Zealand

6 ² School of Environment, University of Auckland, Private Bag 92019, Auckland, New Zealand

7 Keywords: Benthic microalgae, ecology, ecosystem function, estuarine systems, microplastics,

4

9 Abstract: Microplastics are accumulating in coastal soft sediments, the majority of which are 10 fibres. Despite this, little is known about the potential ecological effects of fibrous material on 11 functionally important benthic organisms. For instance, the microphytobenthos (MPB) and 12 deposit-feeding bivalves which are critical for soft sediment ecosystem functions such as nutrient 13 cycling. Red polyester microfibers $(1.8 \pm 0.9 \text{ mm})$ were added at varying concentrations (0% -14 XX% DW sediment) to the surface 1cm of sediment in the chambers. The effects of increasing 15 microfiber concentrations on microphytobenthic (MPB) biomass (chl a) and composition (fatty 16 acid (FA) biomarkers) were evaluated after a total exposure period of XX days. Half the chambers 17 were exposed to a 12 h light/dark cycle, to allow photosynthesis to occur, while the remaining

⁸ MPB, soft sediment, ecological effects.

18 chambers were exposed to extremely low light levels (XX PAR level) that would inhibit 19 photosynthesis. After an initial 35 day MPB growth period, four deposit-feeding bivalves, 20 Macomona liliana, were added to each chambers. M.liliana is a dominant and functionally 21 important bivalve in New Zealand sediments. These were added after the initial MPB growth to 22 determine whether any effects of microfibers on their food resource (the MPB) affected the 23 burrowing behavior and energy levels of these grazers. After a further XX days (total duration XX 24 days), sediment porewater nutrient concentrations (a proxy of ecosystem function) were evaluated 25 and related to changes in the MPB and *M.liliana*Results suggest that microfibers additions 26 influenced both the quantity (biomass) and quality (FA biomarkers) of the MPB. Fewer diatoms and an increase in phycocyanin pigments associated with cyanobacteria, emphasized the potential 27 28 for shifts in the MPB community with increasing microfiber concentrations. The change in MPB 29 quality coincided with up to 75% reductions in bivalve energy reserves, and reduced *M.liliana* 30 burrowing activity... Under light conditions (which allowed the MPB to photosynthesise), nitrate 31 + nitrite (together as NO_x) and ammonium (NH₄⁺) concentrations were elevated at the highest 32 microfiber concentrations. When the light was blocked (dark conditions) only NH₄⁺ concentrations 33 increased. The difference in porewater nutrient stores suggests that photosynthesis in the MPB 34 together with M.liliana burrowing moderates the effect of microfibers on soft sediment nutrient 35 cycling. These findings demonstrate the potential for microfibers to alter soft sediment ecosystems 36 and influence ecological functions through complex feedbacks at the base of the benthic foodweb.

37 Introduction

Waste water¹, runoff² and fishing gear³ are all significant sources of microplastics (particles <5mm), with this debris contributing to the accumulation of microplastics in coastal soft

40 sediments. Microplastic particles have now been detected in sediments and waters in freshwater⁴, 41 marine¹, estuarine^{5,6}, and deep-sea⁷ ecosystems and have even been detected in remote Arctic⁸ and 42 Antarctic⁹ waters, far from urban sources. The extent and ubiquity of microplastics emphasizes the 43 need to understand the ecological effects it may have, particularly in soft sediments that are a 44 potential sink for this contaminant^{7,10}.

Despite growing concerns about the quantity and diversity of microplastics in marine sediments, 45 46 we have limited information on the potential ecological effects of their accumulation. While microplastics are a diverse suite of contaminants rather than a single entity, we need to better 47 48 characterize the effects of different morphologies, sizes and chemical compositions both in the 49 field and in controlled laboratory studies with specific classes as these properties may affect their influence on organisms and ecological processes¹¹. Although microfibers often dominant marine 50 samples¹², representing up to 95% of microplastics found in marine waters^{8,13,14}, sediments^{10,15} and 51 organisms¹⁶ in some cases, the majority of uptake or exposure experiments in the laboratory have 52 used microplastic fragments or beads¹⁷⁻¹⁹. Polyester, the majority of which is composed of 53 54 polyethylene terephthalate (PET), is often the most prevalent fiber type detected in marine systems¹⁰. However, polyester microfibers are under represented in ecological experiments. We 55 56 therefore know relatively little regarding the effects of microfibers on functionally important sediment dwelling organisms^{20,21} and ecosystem function despite their prevalence. Similarly to 57 many microplastic fragments, different microfibers can leach toxic additives²²⁻²⁴ as well as adsorb 58 other environmental contaminants^{1,25,26}. Polyester microfibers therefore have the potential to affect 59 marine organisms through ingestion or changes to the biochemical environment, ^{20,21} and deserve 60 61 greater attention.

62 Functionally important benthic organisms. Microplastic ingestion has recently been explored in marine worms^{27,28} and shellfish^{17,29}, and freshwater phytoplankton³⁰. Several studies have been 63 conducted on benthic filter feeders^{19,31} and zooplankton^{32,33}, due to the potential role of these 64 65 organisms in filtering microplastics from the water column. However, once on the seafloor, microplastics will interact with benthic organisms that have different feeding behaviours³⁴. 66 Intertidal deposit-feeding bivalves are functionally important³⁵, contributing to ecosystem 67 68 productivity, nutrient cycling and water quality. Deposit-feeders graze on microphytobenthos 69 (MPB) inhabiting the surface layers of sediment and as these surface layers are where sediment microplastics accumulate^{36,37}, deposit feeders and the MPB may be particularly vulnerable to 70 microplastics³⁸. Nonetheless, there remains a lack of information on interactions between these 71 72 benthic organisms and microplastics³⁹.

73 When bivalves are exposed to contaminants or other stressors, their burial capacity⁴⁰, activity levels^{41,42} and feeding behaviours^{17,19} may be affected. These behavioral changes are likely 74 75 associated with changes in their energy reserves, growth and weight, as documented for other 76 invertebrates^{30,43-45}. A number of mechanisms have been proposed to explain the depletion of 77 energy reserves during stress. Firstly, stressful conditions can increase the energy demands of an organism, thus reducing energy reserves^{46,47}. Alternatively, a decrease in food or nutrient intake 78 79 may limit the synthesis of lipids, carbohydrates, proteins as the organisms redirect metabolic processes to counteract toxicity effects⁴⁷. Reduced intake of energy may also result from the 80 ingestion of these comparatively low quality particles compared to food⁴⁴, as well as gut blockage 81 and irritation due to ingestion⁴³. As infaunal energy and activity levels change, grazing pressure 82 83 and nutrient release are altered. This feeds back to the MPB, with potential effects on MPB biomass^{27,35} and composition⁴⁸. These changes may also lead to the loss of oxidized 84

microhabitats⁴⁹ further altering nutrient cycles^{27,50} with knock on effects on ecosystem
productivity.

MPB can account for up to 90% of estuarine primary productivity^{51,52} with highly nutritious 87 diatoms typically dominating soft sediment habitats^{53,54}. While other habitats may be dominated 88 by less nutritious cyanobacteria these have functionally different roles to diatoms⁵⁵ therefore a 89 90 shift in these taxa can alter ecosystem function. MPB such as diatoms act as an efficient nutrient 91 filter on the sediment surface, mediating the flux of dissolved inorganic nitrogen at the sedimentwater interface preventing eutrophication^{56,57,58}. Conversely, cyanobacteria often benefit from 92 stressors like nutrient enrichment^{59,60} and they often utilize less nutritious carbon sources such as 93 oil and microplastics⁶¹. MPB and deep-dwelling deposit feeders are vital for ecosystem function, 94 95 yet there is a lack of information on the effects of microplastic contamination on these organisms 96 or ecosystem functions such as nutrient cycling.

The effects of various microplastic on primary producers is still widely debated⁶². Decreases in 97 98 algal biomass and photosynthesis associated with microplastic contamination have been observed 99 with a number of planktonic primary producers^{18,62,63}. Others have detected little or no effects^{64–66} and there are just a few passing observations of the impact on MPB²⁷. These studies have been 100 101 critical to assess the potential effects of this emerging contaminant on marine life, however 102 variable plastic types, unrealistic concentrations, and the use of algal monocultures has contribute 103 to the divergent conclusions in the literature. Further complicating this picture, is growing evidence that synthetic polymers can provide a substrate that benefits various microbes^{48,67,68}. Microplastics 104 105 could therefore modify interactions and feedbacks associated with the MPB that are vital for soft sediment ecosystem structure and function⁶⁹. 106

107 **Energy reserves and fatty acid biomarkers.** Together with total lipids and glycogen reserves, fatty acids are a source of metabolic energy and nutrients to all organisms^{70,71} including bivalves. 108 109 Fatty acid (FA) biomarkers are useful indicators of general ecosystem health⁷², sources of organic matter⁷³ and can reveal trophic links⁷⁴. FAs are also valuable for assessing organisms' responses 110 to environmental stressors like changes in salinity and temperature⁷¹, heavy metal contamination⁷⁵ 111 and chemical stressors⁷⁶ and therefore could be useful in assessing the potential stress of 112 113 microplastics in the marine environment. While individual FAs cannot be assigned to specific 114 organisms, changes in the presence and ratios of these biomarkers can reflect changes in the taxonomic or functional groups in sediment communities^{77,78} as well as the dietary intake⁷⁹ or 115 116 metabolism⁸⁰ of MPB and bacteria in consumers. The essential fatty acids, Eicosapentaenoic acid (EPA, 20:5ω3) and Docosahexaenoic acid (DHA, 22:6ω3) are synthesized by many primary 117 118 producers but are primarily associated with diatoms and dinoflagellates, respectively.

EFAs cannot be efficiently synthesized by bivalves de novo^{81,82} and the relative importance of 119 DHA or EPA can be species specific⁸³. However, variation in the ratio between EFAs can indicate 120 121 a shift between different taxa available to the consumer, the dietary intake of primary producers or the metabolism of energy reserves due to stress⁷⁷. The 'diatom index' of Antonio & Richoux⁸⁴ is 122 123 one such useful indicator to determine the dominance of diatoms over other taxa. This index 124 utilizes multiple FAs to determine compositional shifts in the MPB community as well as change 125 to the dietary intake or metabolism of EFAs (Supp. table 1). The metabolism of EFAs during 126 periods of stress can also be species-specific, with one often selectively retained over another depending on the organisms current requirements for growth and reproduction⁸¹. 127

128 Methods

129 Experimental design. We investigate the effects of long-term exposure to varying 130 concentrations of polyester microfibers, on the quality & quantity of MPB in the sediment, using 131 FA biomarker and pigment analysis. The effects on the burrowing behavior and energy reserves 132 of a functionally important deposit-feeding bivalve Macomona liliana were also assessed, as well 133 as the FA biomarkers present in the bivalves. We hypothesize that increasing microfiber 134 contamination could negatively influence the lipid energy reserves in deep-dwelling deposit 135 feeding bivalves and subsequently alter their burrowing capacity. We anticipate that as the 136 complex feedbacks between bivalves and MPB are altered, ecosystem functions will be modified. Few studies have examined the effects of environmentally relevant microfiber concentrations²⁰. 137 138 Instead, the majority of studies, to date, have exposed organisms to microplastic fragments or beads at exceptionally high concentrations to assess chronic effects⁸⁵. In the present study, 139 microfibers were added at relatively low concentrations (1-50mg kg⁻¹ WW sediment), with the 140 141 potential effects assessed after a relatively long exposure period instead. This allowed the 142 evaluation of the benthic community changes associated with long-term exposure to increasing 143 microplastic concentrations. Sediment mesocosms containing red polyester fibers (6 levels of 144 microplastic additions, 2 light conditions, 3 replicates) were incubated for 35 days in light and dark 145 conditions to allow the MPB and biofilm to develop. Four adult *M. liliana* (20-30mm shell length) were added to the sediment surface of each mesocosm at a density of 90 individual m⁻² after 35 146 147 days. Any bivalves remaining on the surface after the initial 12 h were replaced with fresh, healthy 148 bivalves. Only one bivalve emerged from the sediment and died during the incubation experiment, 149 which was removed within 12 h. The chambers were incubated for a further 40 days before 150 sampling.

151 Materials & organisms used in the experiment. Sediment ($D_{50} = 220 \mu m$) was collected from Waiwera harbour on 17th November 2017 and sieved to 500µm to exclude large infauna and shell 152 153 fragments. Red, polyester (PET) microfibers were collected by washing new polyester fleece 154 blankets multiple times in a pre-cleaned washing machine. The machine was fitted with an external 155 25µm filter sock on the outflow pipe to collect shed fibers. Additionally fibers were also collected 156 from dry blankets using a fabric shaver. Microfibers were sieved through a 5mm sieve to exclude 157 macrofibers (>5mm) then air dried prior to use. A subset of the fibers were visually inspected 158 under a Leica MS5 microscope with a 40 x magnification to confirm only microfibers (<5mm) 159 were used. The mean length of measured fibers was 1.8 ± 0.9 mm (n=40). The chemical 160 composition of the microfibers was confirmed to be polyester (PET) by Fourier Transform Infrared 161 Spectroscopy (FTIR) with spectra compared with the database from Primpke and others⁸⁶. Full 162 details of the method are available in the supplementary material alongside an example spectra 163 match (Supp Fig 1).

164 M. liliana is a common tellenid bivalve found in intertidal soft sediments throughout New 165 Zealand³⁵. Their deep position in the sediment bed (5-10cm depth) and deposit feeding behavior can facilitate coupled N-cycling processes by increasing the interface of oxic-anoxic sediment⁸⁷. 166 167 These functionally important bivalves were selected as they extract and feed on MPB and detritus 168 on the sediment surface, by extending their inhalant siphon to the sediment-water interface⁸⁸. As they move around and feed, M. liliana rework the sediment stimulating nutrient regeneration⁸⁹ and 169 excreting inorganic nitrogen, both of which stimulate the MPB³⁵. Often this results in complex 170 171 interactions between the MPB and *M. liliana*, with positive effects of nutrient remineralization often counteracting grazing pressure⁹⁰. 172

Experimental set up. Sieved and homogenized sediment was added to 36 chambers (300mm (dia.) x 360mm (h)), to a total depth of 11cm. Red polyester fibers were mixed and evenly distributed into individual 1kg batches of wet sieved sediment at the selected concentrations (0, 10, 30, 100, 300 and 500mg fibers kg⁻¹ wet weight sediment). These sediments were added as a surficial layer (1cm) to each mesocosm. Controls were prepared separately, without the addition of PET fibers to reduce risk of cross contamination.

179 Each chamber was carefully filled with filtered seawater ($25\mu m$) so as not to resuspend fibers and the chambers allowed to overflow gently at a rate of ~ 0.05 L sec⁻¹ throughout the experiment. 180 181 Slow flow velocities limited the loss of microplastics into the overlying water while preventing 182 nutrient or oxygen depletion. To evaluate the interaction between microplastic contamination and 183 MPB photosynthesis and biofilm development, and infaunal activity, half the sediments were 184 incubated under a diurnal (12 h/12 h) light regime and half in 24 h darkness (n=18). Cotton shade 185 cloth was used to reduce the incident light reaching the sediment surface in dark chambers (>90% 186 reduction). Chambers were randomly distributed under four double Aqua One Reflector Fluroglow 187 T8 (40W) units suspended 30cm above the sediment surface. Each unit was fitted with 2 x 1.2m 188 T8 sunlight fluorescent bulbs. Photosynthetically active radiation (PAR, 400-700nm) was 189 measured using a Li-Cor LI-190R quantum sensor coupled with a Li-Cor data-logger (Li-Cor, 190 USA) to ensure all light chambers received adequate light (ambient light of ~200 µmol photons m⁻ 2 s⁻¹) at the sediment surface. External sources of light and contamination were excluded from the 191 192 experimental area using black-out curtains.

193 Post exposure sample collection. Duplicate sediment core samples (2.6cm ID, 2cm depth) were 194 collected from each chamber for porewater nutrient analysis, with four small core samples (1cm 195 ID, 0-1cm depth) were pooled and frozen immediately for biochemical analysis. Sediment for biochemical analysis was freeze-dried and homogenized then sub-sampled for various biomolecular analysis. To visualize the dominant MPB present across treatments, surface scrapes of the sediment were collected, and fixed in 2.5% Gluteraldehyde solution.

After sediment core samples were extracted, individual bivalves were carefully removed, intact, from each chamber by gentle sieving. One bivalve from each chamber was placed on clean control sediment to measure bivalve reburial rates over a 20 h period following Cummings & Thrush⁴⁰. At each time interval (0.5, 2, 4, 12 and 20 h) the number of bivalves that were fully reburied into the sediment were recorded. Any remaining on the surface after 24 h were assumed to be 'immobile'. *M. liliana* from the mesocosms were immediately frozen in liquid nitrogen for biochemical analyses and to quantify the number of ingested fibers.

Biochemical and sediment property analysis. Sediment porosity, organic matter and sediment grain size were determined from homogenized and freeze dried sediments (see supplementary materials). Determination of chlorophyll a followed Lorenzen⁹¹ using a 90% acetone extraction. Porewater was extracted and filtered through GF/F filters and Nitrate (NO_3^-) and nitrite (NO_2^-) together as NOx, ammonium (NH_4^+) and phosphate (PO_4^{3-}) concentrations determined using a Lachat QuickChem 8500+ FIA (Zellweger Analytics Inc. Milwaukee, Wisconsin, 53218, USA).

Diatom cells were sonicated, digested in 30% H₂O₂, and mounted on permanent slides using naphrax. No quantitative analysis of the community was attempted, but the dominant taxa were examined by light microscopy across the microplastic treatments. As permanent slides destroy some MPB taxa (cyanobacteria, green algae), only diatoms were visualized. A phycocyanin assay was also adopted to quantify any changes in the cyanobacteria community⁹².

M. liliana were freeze-dried, the tissue extracted from shells and homogenized for microscopic
 analysis. One full bivalve from each chamber was digested in 10% KOH⁹³ for 48 h after an initial

219 heating of the sample to 40°C for 6 h. Samples were gently vacuum filtered through GF/F filters 220 before red microfibers were quantified and measured by light microscopy. During all steps, 221 atmospheric contamination was determined from the presence of microfibers on clean dampened filter papers and procedural blanks were run with each new batch of samples⁹³. Total lipid contents 222 were extracted from bivalve tissue using a modified Bligh & Dyer method⁹⁴ and contents 223 determined using the sulfo-phospho vanillin (SPV) spectrophotometric method⁹⁵. The total fatty 224 225 acid (TFA) composition was determined for control and high treatments only following a one-step direct transesterification method^{96,97}. Full details are in available in the supplementary methods. 226 227 Due to limited time and resources, and the interest in the role of photosynthesizing MPB, FAs 228 were only processed for sediments and bivalves incubated under light conditions. Subsequently, 229 bivalve total lipid contents were only assessed for those held under light conditions.

Identified FAs were first expressed as a percentage of the total FAs identified in each sample and designated as X:Y ω Z, where X in the number of carbons, Y is the number of double bonds and Z is the position of the ultimate double bond from the terminal methyl. The ratio of DHA/EPA⁷⁷ and the 'diatom index' of Antonio & Richoux⁸⁴ were employed as diatom and food quality indicators for sediment and animals to assess the effects of microplastic contamination in addition to some other indicator FAs (Supp. table 1).

Data analysis. The effects of microplastic additions and light on biochemical properties and FA biomarkers of the sediment and bivalves were assessed by separate two-way PERMANOVAs (v.7, PRIMER-E, Ivybridge, UK) based on Euclidean distances (Table 1). Euclidean distance matrices of biochemical sediment properties, nitrogen stocks and bivalve reburial rates were used to assess the effects of microfiber additions and to determine if the effects were modulated by the light conditions of the experiment (light/dark). Relationships between MPB quality indicators and sediment properties (Supp. Table 1 and Table 1) were then explored and visualized using principal
components analysis (PCO,⁹⁸). All data used in PCO analyses were normalized using a fourth-root
transformation. No FA biomarkers were included in the multivariate analysis, as data were only
available for the control and highest microplastic additions (0g & 0.5g treatments).

246 **Results & discussion**

Effects on sediment microbial communities. Sediments are a known sink for microplastic^{7,10}, 247 248 and MPB communities will undoubtedly interact with microplastics depositing on soft sediments 249 due to their position at the sediment-water interface. Nonetheless, few studies that have 250 investigated the influence of microplastics on soft sediment MPB communities, although a number of studies have noted infaunal ingestion of microplastics can affect MPB biomass¹⁹. While up to 251 95% of microplastics detected in soft sediments are fibers^{8,15,16} there are only a few studies on the 252 influence of microfiber ingestion^{20,21} and none that investigate the effects of microfibers on various 253 254 compartments of benthic ecosystems including the MPB.

255 In the present study, microfibers were added to surface sediments and incubated the sediments 256 over a relatively long experimental period. Multivariate analysis on the Euclidean matrix of 257 biochemical traits suggested that the light conditions of the incubation experiment and the 258 microfiber additions resulted in interacting effects on MPB and sediment properties, infauna 259 behavior and condition and sediment nutrient stocks (Table 1). The observed results were 260 reinforced by principal components ordinations (Fig 1). The ordination illustrates a clear 261 separation between the microfiber treatment groups with differences modulated by the light 262 regime. Porewater NO_x (-84%), sediment organic matter content of the sediment surface (-52%) 263 and M. liliana burrowing activity (-51%) were highly correlated to the first PCO axis (72%) 264 variance explained).

Compartment	Parameter	data	Factor	Pseudo- F	p (perm) or	
					p (mc)	
	Euclidean matrix	all	L * M	37.0	< 0.001	
	MPB biomass	11	L	3.96	< 0.01 +	
Sediment	(chl a)	all	М	110.72	< 0.001	
	OM%	all	L x M	4.85	< 0.05	
	Ρ (μΜ)	all	-	-	-	
	$\mathrm{NH_{4}^{+}}(\mu\mathrm{M})$	all	М	3.56	< 0.05	
	$NO_{x}\left(\mu M ight)$	all	L x M	21.85	< 0.001	
	Cyano biomass (phycocyanin)	all	L	4.79	< 0.05	
			М	2.73	0.05	
	BaFAs (C15:0+C17:0)	all	-	-	-	
	Diatom index	0g & 0.5g	М	10.72	< 0.05	
	(sed)	L only	IVI	10.75	(mc)	
	0/ 504	0g & 0.5g	М	(2.29)	< 0.01	
	70 LFA	L only	1 V1	03.38	(mc)	
		0g & 0.5g	М	25.62	< 0.01	
	ĽΓΑ/ ΠΑ	L only	1 V1	23.03	(mc)	
M. liliana	Reburial rate	all	Μ	47.1	< 0.001	
	Bivalve biomass	all	-	-	-	
	Lipid content	L only	М	14.65	< 0.001	

Table 1: Results of univariate PERMANOVA tests for differences in sediment and biochemicalproperties using light regime and microplastic concentration as predictors.

$\omega 3:\omega 6$ ratio	0g & 0.5g				
indicator)	L only	-	-	-	
Diatom index	0g & 0.5g				
(biv)	L only	-	-	-	
DHA/EPA	0g & 0.5g				
(biv)	L only	-	-	-	

Significant (P<0.05) main effects or interactions are displayed together with PERMANOVA
Pseudo-F (number) and significance levels (p (perm) and p (mc) when monte carlo permutation
tests were performed.

270

271 The second PCO axis (13%) was correlated to the overall MPB (r=-0.40) and cyanobacteria (r=-272 0.40) biomass (Fig 1), with the overall MPB biomass decreasing with microfiber additions in the 273 light (Fig 2A). In control sediments, however, the MPB biomass increased significantly from 2µg g^{-1} at the start of the experiment to $14\mu g g^{-1}$ at the end under light conditions (Fig 2A), indicating 274 275 MPB growth under these conditions. Fatty acid biomarkers associated with diatoms were only 276 processed for the extreme ends of the treatment gradient; 0g (control) and 0.5g (highest) microfiber 277 treatments respectively. However, these indicated a reduction in the proportion of diatoms with 278 microfibers compared to controls (Fig 2B).

279

280 Figure 1: Principal components ordination (PCO) of biochemical variables. PCO1 explained 281 71.9% of the variation, PCO2 explained 13.1% while PCO3 (not presented) explained an 282 additional 7.3% of the variation. Symbols: Black open symbols - light conditions; grey closed 283 symbols – dark conditions. Shapes represent microfiber additions; triangles – 0g; inverted triangle 284 -0.01g; squares -0.03g; diamonds -0.1g; circles -0.3g and stars -0.5g microfiber additions. 285 The correlation circle overlays measured variables that were influencing the dissimilatory between 286 the samples. All data were fourth-root transformed prior to analysis. Chl a - MPB biomass; Cphyco – Cyanobacteria biomass; NH_4^+ – porewater NH_4^+ concentration (μ M). NO_x – porewater 287 $NO_x (NO_2^- + NO_3^-)$ concentration (μM). Reburial – reburial rate of *M. Liliana*. OM – organic 288 289 matter has been removed for clarity of the plot but lay in the same trajectory as NO_x.

Figure 2: A) Mean (\pm SE) chlorophyll a content (MPB biomass) of the sediment surface for all microplastic treatments in light chambers (white bars) and dark chambers (grey bars). B) Mean (\pm SE) diatom index of the sediment surface for control (0g) and high (0.5g) microplastic treatments (n=3).

290

295 MPB biomass and the proportion of diatoms were correlated with one another, so the reduction 296 in overall biomass was related to the reduction in the diatoms (Fig 3A). This coincided with a small 297 increase in the pigment, phycocyanin, associated with cyanobacteria, with microfiber additions 298 (Fig 3B). This increase was apparent under both light and dark conditions, with higher microfiber 299 additions (Fig 3B). These results suggest that increasing microfiber contamination has the potential 300 to alter the MPB community composition and consequently the functional role of the MPB. For 301 example, less nutritious diatoms which are a preferred food resource for benthic fauna, and more cyanobacteria will alter the nutritional quality of the basal food resource⁵⁴ with implications for 302 303 the marine foodweb.

Figure 3: A) Correlation between the diatom index and chlorophyll a content of the sediment surface ($r_s^2 = 0.71$, P<0.05, n=3). B) Phycocyanin content (cyanobacteria biomass) of sediment as a function of microplastic additions. The concentrations are displayed for pre-incubated sediments (striped bars), and sediments incubated under light (white bars) and dark (dark bars) conditions.

309

310 Changes to sediment nitrogen stocks were detected (Fig 4A-B). Porewater NO_x was detectable 311 in the dark, control sediments and remained close to the detection limits regardless of microfiber 312 treatment (Fig 4B). Conversely, while porewater NO_x in light sediments were within the detection 313 limits of the auto-analyzer at the end of the experiment in controls, NO_x was elevated with 314 microfiber additions (Fig 4A). Furthermore, porewater NH₄⁺ increased with microfiber additions 315 regardless of the light conditions (Fig 4B). Altered nutrient uptake by the MPB can be induced by 316 other stressors and this can shift a system towards greater heterotrophy⁹⁹, alter functional roles and restructure foodwebs¹⁰⁰. Shifts in the microbial community (phycocyanin content) were correlated 317 318 with porewater DIN concentrations (Fig 1 & Supp. Fig 2). The changes to nitrogen stocks supports

the findings of Cluzard et al.⁵⁰, who observed elevated NH_4^+ during clam/microplastic incubations. Furthermore, shifts in the MPB community will alter their relationship with bacteria in the sediment¹⁰¹, with subsequent feedbacks to the MPB and nutrient pathways. Cluzard et al⁴⁹ proposed that the elevated NH_4^+ detected in their study was due to a reduction in denitrifying bacteria or denitrification rates in the presence of microplastics, so this is warrants further investigation.

Figure 4: A) Mean (\pm SE) porewater NH₄⁺(μ M) with increasing microplastic contamination (n=3). White bars – light conditions; grey bars – dark conditions. B) Mean (\pm SE) porewater NO_x concentration (NO₂⁻ & NO₃⁻, μ M) with increasing microplastic contamination (n=3).

325

Both autotrophs and heterotrophs have been shown to exploit microplastics as a carbon source^{102,103}, therefore it seems plausible that cyanobacteria, and perhaps heterotrophic bacteria, were benefiting over diatoms, from the addition of microfibers. Blue-green algae can survive and even maintain growth in darkness under anaerobic, or reduced conditions^{104,105}. In our dark conditions, over 90% of the light was blocked for several weeks. In addition, our light conditions 334 were on a 12 h light:dark cycle, resulting in a 12 h dark period. Mimicking natural light cycles 335 restricts MPB oxygen production periods, while excluding it entirely in 24 h dark conditions. Cyanobacteria can turn sediments anaerobic within in minutes in the dark¹⁰⁶, therefore it is 336 337 plausible that cyanobacteria were benefiting both from the light regimes and the microfiber 338 additions. Our results advocate that microplastics have the potential to influence the net stocks of NH_4^+ , and NO_x in sediment, with consequences for nutrient cycling in soft sediment habitats. 339 340 These effects may not only be isolated to coastal sediments in the photic zone, however, with microplastics increasingly recorded in deep-sea sediments^{7,37,107}. The presence of microfibers were 341 342 influencing benthic communities that are important players for various biogeochemical processes^{108–110} and altering sediment nutrient stocks in both light and dark conditions. This could 343 344 have profound consequences for biogeochemical processes from coastal waters to shelf sea 345 sediments. We therefore recommend further investigation of these interactions.

346 The results of the univariate and multivariate analyses suggest that light conditions influence the 347 interaction between photosynthesizing MPB, infaunal burrowing, nutrient pools and microfibers 348 in the sediment. UV weathering is an important mechanism by which plastics degrade in the natural environment¹¹¹ and previous studies have observed oxidative stress in cell-based bioassays due to 349 the leachates from weathered polyethylene terephthalate (PET)¹¹². UV weathering of the plastic 350 351 fibers can result in the liberation of chemicals from the plastic into the surrounding environment¹¹². 352 Microfibers used in the present study were composed of PET, therefore the effects of fibers on 353 MPB community changes, nutrient stores could potentially be the result of chemicals leaching 354 from the fibers under UV lights.

While no visual quantification or identification of MPB taxa was attempted, fixed diatom slides were inspected and indicated a shift towards smaller cells at higher microfiber concentrations 357 (Pers. Obs). Smaller diatom cells typically have lower nutrient requirements, turnover quicker and 358 exhibit lower net productivity than larger cells¹¹³. This was likely related to the stress of the 359 microfiber additions and/or the shift in competition between cyanobacteria, microbes and diatoms 360 for available porewater nutrients. Due to the digestion of the MPB in H₂O₂, no visual assessment 361 of cyanobacteria was possible from the slides but as noted above phycocyanin pigments associated 362 with cyanobacteria increased. Higher turnover of small MPB cells and higher degradation rates 363 would help explain the elevated sediment organic matter (OM) content observed at the highest microfiber additions with OM positively correlated to porewater NH₄⁺ ($r_s^2 = 0.56$), NOx ($r_s^2 =$ 364 0.54) and cyanobacteria biomass ($r_s^2 = 0.44$). MPB are the primary source of labile organic matter 365 in soft sediment systems^{114,115}. Changes to the quality and quantity of this OM source has been 366 367 previously been demonstrated to shift the balance between nitrogen recycling and nitrogen release processes^{116,117}. Therefore, the detected changes in the quantity and quality of MPB during the 368 369 present study, and the changes to nitrogen pathways that this caused was reflected in our elevated 370 sediment nitrogen stocks. Both heterotrophic bacteria and cyanobacteria are able to fix nitrogen in low nitrogen systems in the absence of oxygen^{106,118} and as nitrogen fixers can utilize a wide range 371 of carbon sources including those of lower quality ¹¹⁹. These organisms therefore have the potential 372 373 to outcompete diatoms if biogeochemical processes were altered by increasing microplastic 374 contamination. Adjustments to diatom-bacteria interactions can lead to taxonomical shifts in the MPB community as well as modifying biogeochemical processes^{101,114}. Our results suggest this is 375 376 particularly likely if the movement of deep-dwelling infauna was reduced, and the transport of 377 nutrients to the MPB at the sediment-water interface is limited.

378 Effects on deep dwelling deposit-feeder. Bioturbation can influence MPB communities and
379 biogeochemical gradients by altering the transfer of sediment nutrients across the sediment-water

interface and stimulating biogeochemical processes^{120,121}. In the present study, the burrowing 380 381 activity of *M. liliana* was reduced, after long-term exposure to high microfiber additions regardless 382 of the light regime (Fig 5A). The number of fibers ingested varied from 0 to 11 fibers per bivalve, 383 with the length varying between 50 and 1400µm (Supp. Fig 3A-B). Less active bivalves from high 384 microfiber treatments (0.3-0.5g), also exhibited reduced lipid energy reserves (up to 75% less) (Fig. 385 5B). This supports growing evidence that microplastics can decrease energy reserves in a variety of marine organisms^{21,39,44,45}. M. liliana with lower energy reserves coincided with treatments 386 containing lower quality and quantity of primary producers (Supp. Fig 4A, r²=0.81, P<0.05). As 387 diatoms can dominate sediments that are moderately to highly bioturbated¹²², changes to the 388 389 quantity and quality of MPB and an increase cyanobacteria could also be feedbacks caused by 390 modified bivalve behavior which would reduce the transfer of porewater nitrogen up to the MPB on the sediment surface 123. 391

Figure 5: A) Mean (\pm SE) reburial time of *M. liliana* at increasing microplastic concentrations (n=3). No significant differences were observed between light (open circles) and dark (filled

392

circles) treatments across each microplastic concentration. Time >20 h represent organisms that remained on the sediment surface for the duration reburial trials. Polynomial curves were fitted to the light (dashed line) ($y = 123.36x^2 + 107.02x + 0.8058$, $r^2 = 0.98$) and the dark (solid line, y = -84.52 $x^2 + 83.41x + 2.21$, $r^2 = 0.99$) treatments and illustrate the mean reburial times increased with increasing microplastic contamination. B) Mean (\pm SE) of total lipid energy reserves in *M. liliana* tissue across increasing microplastic concentrations.

401 FA biomarkers from bivalve tissue such as the diatom index and DHA/EPA ratio are often used to assess the nutritional status of consumers^{124,125}. Despite lower bivalve energy reserves and 402 403 changes to the quality of the MPB community, these ratios were preserved in M. liliana tissues 404 (Supp. Fig 4B). This suggests that although basal food quantity and quality were altered by the 405 presence of microfibers, the quality of the bivalves was not affected over the timescale of the 406 experimental exposure (40 days). However, the selective uptake or depletion of particular FAs 407 over others may not occur over this short period. It is also likely that feeding activity of the bivalves 408 was reduced as activity levels were lower. Similar Tellenid bivalves in Europe, Macoma balthica, 409 modulate their dietary intake if food quality is low in order to conserve energy¹²⁶ and it is likely 410 that M. Liliana would conserve the essential FAs associated with diatoms over other lipids and 411 FAs over this experimental period if their feeding was reduced.

Adverse microplastic-effects on feeding activity has been demonstrated previously (Wegner et al., 2012). Through various feedbacks, we anticipate that these potential effects on the nutritional quality of the primary food resource may lead to long-term effects on the nutritional quality of the bivalves for higher trophic levels. We emphasize the need to investigate this area further with greater knowledge of both trophic and non-trophic interactions required to fully understand the potential implications. Despite a lack of changes in the FA quality of *M. liliana*, this study has

418 illustrate a reduction in the basal food quality and quality and a depletion in the overall lipid energy 419 stores of the bivalves. Observed changes to the MPB community were related to lower overall 420 energy reserves of the bivalves as well as the behavior of this functionally important depositfeeder. Changes to bivalve behavior feeds back to the quantity and quality of MPB¹²³, which in 421 422 turn leads to even less nutritious food resources for the bivalves and further depleting energy 423 reserves and so forth. In addition to the influence of bioturbation on MPB, changes in grazing 424 pressure can modify the MPB¹²⁷. M. liliana are functionally similar to other tellenid bivalves found 425 in sediments in the northern hemisphere such as Macoma balthica and Macomona arenaria 426 (Hayward et al., 1996). We therefore stress the need to further explore the influence of 427 microplastics on functionally important benthic organisms in these complex ecological networks. 428 While the majority of studies to date have focused on the impact of microplastic ingestion in marine suspension feeding bivalves^{29,128}, there is increasing evidence that deposit-feeding bivalves 429 are also susceptible to microplastics pollution^{38,39}. This is sensible given that deposit feeders graze 430 431 at the sediment-water interface, and sediments are the ultimate sink for marine microplastics^{7,10}. Changes in MPB¹⁹ and phytoplankton biomass⁶² have previously been noted but evidence of the 432 433 complex feedbacks between functionally important organisms at the base of the benthic foodweb, 434 caused by microplastics contamination is lacking. The direct and indirect effects of microfiber 435 pollution and the feedbacks and interactions between functionally important organisms and 436 processes requires further exploration. This is a relatively new area of research and therefore we 437 must continue to increase the complexity of the systems we study in the laboratory in order to 438 detect potential shifts in ecosystem structure and functions that underpin ecosystem service 439 delivery.

440 Our results suggest that microfiber additions may influence the interactions between the MPB, 441 microbes and infauna with ramifications for ecosystem functions such as nutrient cycling and 442 productivity if the MPB community is altered. This suggests that over and above issues related to 443 ingestion such as gut blockage, false satiation and bioaccumulation in higher organisms, the 444 structure and function of soft sediment ecosystems and the foundation of our marine foodwebs 445 could potentially be influenced. We know that MPB and infauna play significant roles in elemental cycling due to their interactions with the microbial community^{121,129} and our observations stress 446 447 that microplastics have the potential to alter the interactions and feedbacks that involve MPB, infauna and N-cycling microbial communities^{55,120}. We suggest that future investigations quantify 448 449 changes to both nutrient and gas fluxes, as well as determining compositional changes to the 450 microbial community in addition to MPB, as we believe this is an attractive avenue of future 451 research.

Soft sediment systems around the world are under pressure from not only microplastic contamination but increasing nutrient and sediment loads ^{130,131}. We must comprehend the potential influence of microplastic accumulation on soft sediment ecological networks. In particular, the interactions between microplastics, soft sediment ecological communities and ecosystem functions such as nutrient cycling in the face of multiple anthropogenic pressures.

457

458 ASSOCIATED CONTENT

459 **Supporting information.**

460 The supporting information is available free of charge on the ACS publications website at DOI:

461 Additional information as noted in the text (PDF)

24

462 AUTHOR INFORMATION

463 **Corresponding author**

464 *Email: julie.hope@auckland.ac.nz

465 **ORCHID**

466 Julie Anne Hope: 0000-0001-6165-230X

467 Author contributions

468 *‡*These authors contributed equally.

The manuscript was written through contributions of all authors. JAH conceived the paper and produced the first draft of the manuscript. JAH carried out the experiment, collected and processed samples. JAH analysed data with advice from SFT and GC. All authors contributed to the ideas presented in this paper, drafts of the manuscript and gave final approval for publication. All authors have given approval to the final version of the manuscript.

474 ACKNOWLEDGEMENTS

JAH would like to acknowledge funding from two anonymous philanthropic donors through the "Oceans of Change" project and the 'Microphytes & Microplastics" project. The authors also wish to thank Erica Zarate and Saras Green of the Mass Spectrometry Centre, Auckland Science Analytical Services, The University of Auckland, for assistance with analysis of FAMEs by GC-MS, and to Raphael Bang for data processing. We also wish to thank Samantha Ladewig for helpful comments on the manuscript, and the technical staff (Errol Murray, Maria Mugica and Peter

- 481 Browne) at the Leigh Marine Laboratory, Institute of Marine Science, University of Auckland for
- 482 their help with the experimental set up and sample processing.

483 Disclosures

- 484 The authors declare no competing financial interest.
- 485 References
- 486 (1) Cole, M.; Lindeque, P.; Halsband, C.; Galloway, T. S. Microplastics as Contaminants in the
 487 Marine Environment: A Review. *Mar. Pollut. Bull.* 2011, 62 (12), 2588–2597.
 488 https://doi.org/10.1016/j.marpolbul.2011.09.025.
- Wagner, M.; Scherer, C.; Alvarez-muñoz, D.; Brennholt, N.; Bourrain, X.; Buchinger, S.;
 Fries, E.; Grosbois, C.; Klasmeier, J.; Marti, T.; et al. Microplastics in Freshwater
 Ecosystems: What We Know and What We Need to Know. *Environ. Sci. Eur.* 2014, *26*(12), 1–9.
- 493 (3) Andrady, A. L. Microplastics in the Marine Environment. *Mar. Pollut. Bull.* 2011, 62 (8),
 494 1596–1605. https://doi.org/10.1016/j.marpolbul.2011.05.030.
- 495 (4) Wagner, M.; Lambert, S. Freshwater Microplastics: Emerging Environmental
 496 Contaminants?; 2018; Vol. 58. https://doi.org/10.1007/978-3-319-61615-5.
- 497 (5) Maes, T.; Van der Meulen, M. D.; Devriese, L. I.; Leslie, H. A.; Huvet, A.; Fr?re, L.;
- Robbens, J.; Vethaak, A. D. Microplastics Baseline Surveys at the Water Surface and in
 Sediments of the North-East Atlantic. *Front. Mar. Sci.* 2017, *4* (May), 135.
 https://doi.org/10.3389/fmars.2017.00135.

501	(6)	Browne, M	. A.; Galloway	, T. S.; Thorr	ipson, R	. C. Spatial I	Patterns of	Plastic	Debris along
502		Estuarine	Shorelines.	Environ.	Sci.	Technol.	2010,	44,	3404-3409.
503		https://doi.o	org/10.1021/es9	903784e.					

- Woodall, L. C.; Sanchez-Vidal, A.; Canals, M.; Paterson, G. L. J.; Coppock, R.; Sleight, V.;
 Calafat, A.; Rogers, A. D.; Narayanaswamy, B. E.; Thompson, R. C. The Deep Sea Is a
 Major Sink for Microplastic Debris. *R. Soc. Open Sci.* 2014, *1* (4), 140317.
 https://doi.org/10.1098/rsos.140317.
- 508 (8) Lusher, A. L.; Tirelli, V.; O'Connor, I.; Officer, R. Microplastics in Arctic Polar Waters:
 509 The First Reported Values of Particles in Surface and Sub-Surface Samples. *Sci. Rep.* 2015,
- 510 5 (October), 1–9. https://doi.org/10.1038/srep14947.
- 511 Waller, C. L.; Griffiths, H. J.; Waluda, C. M.; Thorpe, S. E.; Loaiza, I.; Moreno, B.; (9) 512 Pacherres, C. O.; Hughes, K. A. Microplastics in the Antarctic Marine System: An 513 Emerging Area of Research. Sci. Total Environ. 2017, 598, 220-227. 514 https://doi.org/10.1016/j.scitotenv.2017.03.283.
- 515 (10) Browne, M. A.; Crump, P.; Niven, S. J.; Teuten, E.; Tonkin, A.; Galloway, T.; Thompson,
 516 R. Accumulation of Microplastic on Shorelines Woldwide: Sources and Sinks. *Environ. Sci.*517 *Technol.* 2011, 45, 9175–9179.
- 518 (11)Rochman, C. M.; Brookson, C.; Bikker, J.; Djuric, N.; Earn, A.; Bucci, K.; Athey, S.; 519 Huntington, A.; McIlwraith, H.; Munno, K.; et al. Rethinking Microplastics as a Diverse 520 Contaminant Suite. Environ. Toxicol. Chem. 2019, 38 (4), 703–711. https://doi.org/10.1002/etc.4371. 521

- 522 (12) Cole, M. A Novel Method for Preparing Microplastic Fibers. Sci. Rep. 2016, 6, 34519.
 523 https://doi.org/10.1038/srep34519.
- 524 (13) Desforges, J. W.; Galbraith, M.; Dangerfield, N.; Ross, P. S. Widespread Distribution of
- Microplastics in Subsurface Seawater in the NE Pacific Ocean. *Mar. Pollut. Bull.* 2014, 79
 (1–2), 94–99. https://doi.org/10.1016/j.marpolbul.2013.12.035.
- 527 (14) Kanhai, D. La; Officer, R.; Lyashevska, O.; Thompson, R.; O'Connor, I. Microplastic
 528 Abundance, Distribution and Composition along a Latitudinal Gradient in the Atlantic
 529 Ocean. *Mar. Pollut. Bull.* 2017, *115* (1–2), 307–314.
- (15) Claessens, M.; Meester, S. De; Landuyt, L. Van; Clerck, K. De; Janssen, C. R. Occurrence
 and Distribution of Microplastics in Marine Sediments along the Belgian Coast. *Mar. Pollut. Bull.* 2011, 62 (10), 2199–2204. https://doi.org/10.1016/j.marpolbul.2011.06.030.
- 533 (16) Li, W. C.; Tse, H. F.; Fok, L. Plastic Waste in the Marine Environment: A Review of
 534 Sources, Occurrence and Effects. *Sci. Total Environ.* 2016, 566–567, 333–349.
 535 https://doi.org/10.1016/j.scitotenv.2016.05.084.
- (17) Xu, X.; Lee, W. T.; Chan, A. K. Y.; Lo, H. S.; Shin, P. K. S.; Cheung, S. G. Microplastic
 Ingestion Reduces Energy Intake in the Clam Atactodea Striata. *Mar. Pollut. Bull.* 2017, *124*, 798–802. https://doi.org/10.1016/j.marpolbul.2016.12.027.
- 539 (18) Bhattacharya, P.; Lin, S.; Turner, J. P.; Ke, P. C. Physical Adsorption of Charged Plastic
 540 Nanoparticles Affects Algal Photosynthesis. J. Phys. Chem. C 2010, 114 (39), 16556–
 541 16561. https://doi.org/10.1021/jp1054759.
- 542 (19) Green, D. S.; Boots, B.; O'Connor, N. E.; Thompson, R. Microplastics Affect the Ecological 28

- 543 Functioning of an Important Biogenic Habitat. *Environ. Sci. Technol.* 2017, *51* (1), 68–77.
 544 https://doi.org/10.1021/acs.est.6b04496.
- 545 (20) de Orte, M. R.; Clowez, S.; Caldeira, K. Response of Bleached and Symbiotic Sea
 546 Anemones to Plastic Microfiber Exposure. *Environ. Pollut.* 2019, 249, 512–517.
 547 https://doi.org/10.1016/j.envpol.2019.02.100.
- Watts, A. J. R.; Urbina, M. A.; Corr, S.; Lewis, C.; Galloway, T. S. Ingestion of Plastic
 Microfibers by the Crab Carcinus Maenas and Its Effect on Food Consumption and Energy
 Balance. *Environ. Sci. Technol.* 2015, 49, 14597–14604.
 https://doi.org/10.1021/acs.est.5b04026.
- 552 (22) Bejgarn, S.; MacLeod, M.; Bogdal, C.; Breitholtz, M. Toxicity of Leachate from
 553 Weathering Plastics: An Exploratory Screening Study with Nitocra Spinipes. *Chemosphere*554 2015, *132*, 114–119. https://doi.org/10.1016/j.chemosphere.2015.03.010.
- Browne, M. A.; Niven, S. J.; Galloway, T. S.; Rowland, S. J.; Thompson, R. C. Microplastic
 Moves Pollutants and Additives to Worms, Reducing Functions Linked to Health and
 Biodiversity. *Curr. Biol.* 2013, 23 (23), 2388–2392.
 https://doi.org/10.1016/j.cub.2013.10.012.
- Morais, D. S.; Guedes, R. M.; Lopes, M. A. Antimicrobial Approaches for Textiles : From
 Research to Market. *Materials (Basel)*. 2016, 9 (498), 1–21.
 https://doi.org/10.3390/ma9060498.
- 562 (25) Antunes, E.; Garcia, F. a. P.; Ferreira, P.; Blanco, a.; Negro, C.; Rasteiro, M. G. Modelling
 563 PCC Flocculation by Bridging Mechanism Using Population Balances: Effect of Polymer

- 564 Characteristics on Flocculation. *Chem. Eng. Sci.* 2010, 65 (12), 3798–3807.
 565 https://doi.org/10.1016/j.ces.2010.03.020.
- (26) Coffin, S.; Dudley, S.; Taylor, A.; Wolf, D.; Wang, J.; Lee, I.; Schlenk, D. Comparisons of
 Analytical Chemistry and Biological Activities of Extracts from North Pacific Gyre Plastics
 with UV-Treated and Untreated Plastics Using in Vitro and in Vivo Models. *Environ. Int.*2018, *121* (July), 942–954. https://doi.org/10.1016/j.envint.2018.10.012.
- 570 Green, D. S.; Boots, B.; Sigwart, J.; Jiang, S.; Rocha, C. Effects of Conventional and (27)571 Biodegradable Microplastics on a Marine Ecosystem Engineer (Arenicola Marina) and 572 Sediment Nutrient Cycling. Environ. Pollut. 2016. 208. 426-434. 573 https://doi.org/10.1016/j.envpol.2015.10.010.
- 574 Wright, S. L.; Rowe, D.; Thompson, R. C. Microplastic Ingestion Decreases Energy (28)575 Reserves in Marine Worms. Curr. Biol. 2013, 23 (23),R1031–R1033. 576 https://doi.org/10.1016/j.cub.2013.10.068.
- 577 (29) Cauwenberghe, L. Van; Claessens, M.; Vandegehuchte, M. B.; Janssen, C. R. Microplastics
 578 Are Taken up by Mussels (Mytilus Edulis) and Lugworms (Arenicola Marina) Living in
 579 Natural Habitats. *Environ. Pollut.* 2015, 199, 10–17.
 580 https://doi.org/10.1016/j.envpol.2015.01.008.
- (30) Besseling, E.; Wang, B.; Luerling, M.; Koelmans, A. A. Nanoplastic Affects Growth of S.
 Obliquus and Reproduction of D. Magna. *Environ. Sci. Technol.* 2014, 48 (20), 12336–
 12343. https://doi.org/10.1021/es503001d.
- 584 (31) Sussarellu, R.; Suquet, M.; Thomas, Y.; Lambert, C.; Fabioux, C.; Pernet, M. E. J.; Le Goïc,

585	N.; Quillien, V.; Mingant, C.; Epelboin, Y.; et al. Oyster Reproduction Is Affected by
586	Exposure to Polystyrene Microplastics. Proc. Natl. Acad. Sci. 2016, 113 (9), 2430-2435
587	https://doi.org/10.1073/pnas.1519019113.

- 588 (32)Cole, M.; Lindeque, P.; Fileman, E.; Halsband, C.; Goodhead, R.; Moger, J.; Galloway, T.
- 589 S. Microplastic Ingestion by Zooplankton. Environ. Sci. Technol. 2013, 47, 6646–6655.
- 590 Cole, M.; Lindeque, P. K.; Fileman, E.; Clark, J.; Lewis, C.; Halsband, C.; Galloway, T. S. (33) 591 Microplastics Alter the Properties and Sinking Rates of Zooplankton Faecal Pellets. 592 Environ. Sci. Technol. 2016, 50 (6), 3239–3246. https://doi.org/10.1021/acs.est.5b05905.
- 593 (34)Setälä, O.; Norkko, J.; Lehtiniemi, M. Feeding Type Affects Microplastic Ingestion in a 594 Coastal Invertebrate Community. Mar. Pollut. Bull. 2016, 102 (1), 95-101. 595 https://doi.org/10.1016/j.marpolbul.2015.11.053.
- 596 Thrush, S. F.; Hewitt, J. E.; Gibbs, M.; Lundquist, C.; Norkko, A. Functional Role of Large (35)597 Organisms in Intertidal Communities: Community Effects and Ecosystem Function. Ecosystems 2006, 9 (6), 1029–1040. https://doi.org/10.1007/s10021-005-0068-8. 598
- 599 Carson, H. S.; Colbert, S. L.; Kaylor, M. J.; McDermid, K. J. Small Plastic Debris Changes (36)Water Movement and Heat Transfer through Beach Sediments. Mar. Pollut. Bull. 2011, 62 600 601 (8), 1708–1713. https://doi.org/10.1016/j.marpolbul.2011.05.032.
- 602 Martin, J.; Lusher, A.; Thompson, R. C.; Morley, A. The Deposition and Accumulation of (37)603 Microplastics in Marine Sediments and Bottom Water from the Irish Continental Shelf. Sci. 604 *Rep.* 2017, 7 (1), 1–9. https://doi.org/10.1038/s41598-017-11079-2.
- 605 Depledge, M. H.; Galgani, F.; Panti, C.; Caliani, I.; Casini, S.; Fossi, M. C. Plastic Litter in (38) 31

606 the Sea. **2013**, *92*, 2012–2014.

- 607 (39) Bour, A.; Haarr, A.; Keiter, S.; Hylland, K. Environmentally Relevant Microplastic
 608 Exposure Affects Sediment-Dwelling Bivalves. *Environ. Pollut.* 2018, 236, 652–660.
 609 https://doi.org/10.1016/j.envpol.2018.02.006.
- 610 (40) Cummings, V. J.; Thrush, S. F. Behavioural Response of Juvenile Bivalves to Terrestrial
 611 Sediment Deposits: Implications for Post-Disturbance Recolonisation. *Mar. Ecol. Prog.*612 Ser. 2004, 278, 179–191. https://doi.org/10.3354/meps278179.
- 613 (41) Woodin, S. A.; Volkenborn, N.; Pilditch, C. A.; Lohrer, A. M.; Wethey, D. S.; Hewitt, J.
- E.; Thrush, S. F. Same Pattern, Different Mechanism: Locking onto the Role of Key Species
 in Seafloor Ecosystem Process. *Sci. Rep.* 2016, 6 (May), 1–11.
 https://doi.org/10.1038/srep26678.
- 617 (42) Volkenborn, N.; Polerecky, L.; Wethey, D. S.; Woodin, S. A. Oscillatory Porewater
 618 Bioadvection in Marine Sediments Induced by Hydraulic Activities of Arenicola Marina.
 619 *Limnol. Oceanogr.* 2010, 55 (3), 1231–1247. https://doi.org/10.4319/lo.2010.55.3.1231.
- 620 Besseling, E.; Wegner, A.; Foekema, E. M.; Van Den Heuvel-Greve, M. J.; Koelmans, A. (43) 621 A. Effects of Microplastic on Fitness and PCB Bioaccumulation by the Lugworm Arenicola Technol. 622 Marina (L.). Environ. Sci. 2013, 47 (1), 593-600. https://doi.org/10.1021/es302763x. 623
- (44) Wright, S. L.; Thompson, R. C.; Galloway, T. S. The Physical Impacts of Microplastics on
 Marine Organisms: A Review. *Environ. Pollut.* 2013, *178*, 483–492.
 https://doi.org/10.1016/j.envpol.2013.02.031.

32

627	(45)	Cole, M.	; Lindeque, P.; F	ileman, E.;	Halsband	l, C.; Gal	loway, T.	S. Th	e Impact of
628		Polystyre	ne Microplastics c	on Feeding,	Function	and Fecu	ndity in t	he Mari	ne Copepod
629		Calanus	Helgolandicus.	Environ.	Sci.	Technol.	2015,	49,	1130–1137.
630		https://doi	i.org/10.1021/es50	4525u.					

- (46) Mayor, D. J.; Solan, M.; Mcmillan, H.; Killham, K.; Paton, G. I. Effects of Copper and the
 Sea Lice Treatment, Slice, on Nutrient Release from Marine Sediments. *Mar. Pollut. Bull.*2009, 58 (4), 552–558. https://doi.org/10.1016/j.marpolbul.2008.11.015.
- 634 (47) Patil, A. Protein Changes in Different Tissues of Freshwater Bivalve Parreysia Cylindrical
 635 after Exposure to Indoxacarb. *Recent Res. Sci. Technol.* 2011, 3 (3), 140-142.
- (48) Harrison, J. P.; Schratzberger, M.; Sapp, M.; Osborn, A. M. Rapid Bacterial Colonization
 of Low-Density Polyethylene Microplastics in Coastal Sediment Microcosms. *BMC Microbiol.* 2014, *14* (1), 1–15. https://doi.org/10.1186/s12866-014-0232-4.
- 639 (49) Bertics, V. J.; Ziebis, W. Biodiversity of Benthic Microbial Communities in Bioturbated
 640 Coastal Sediments Is Controlled by Geochemical Microniches. *ISME J.* 2009, *3* (11), 1269–
 641 1285. https://doi.org/10.1038/ismej.2009.62.
- 642 (50)Cluzard, M.; Kazmiruk, T. N.; Kazmiruk, V. D.; Bendell, L. I. Intertidal Concentrations of 643 Microplastics and Their Influence on Ammonium Cycling as Related to the Shellfish 644 Arch. 69. Industry. Environ. Contam. Toxicol. 2015, 310-319. https://doi.org/10.1007/s00244-015-0156-5. 645
- 646 (51) Jones, H. F. E.; Pilditch, C. A.; Hamilton, D. P.; Bryan, K. R.; Jones, H. F. E.; Pilditch, C.
 647 A.; Hamilton, D. P.; Karin, R. Impacts of a Bivalve Mass Mortality Event on an Estuarine

- Food Web and Bivalve Grazing Pressure. New Zeal. J. Mar. Freshw. Res. 2017, 51 (3),
 370–392. https://doi.org/10.1080/00288330.2016.1245200.
- (52) Underwood, G. J. C.; Kromkamp, J. C. Primary Production by Phytoplankton and
 Microphytobenthos in Estuaries. In *Advances in Ecological Research*; Netherlands institute
 of Ecology, 1999; pp 93–153.
- (53) Aberle, N.; Beutler, M.; Moldaenke, C.; Wiltshire, K. H. "Spectral Fingerprinting" for
 Specific Algal Groups on Sediments in Situ: A New Sensor. *Arch. für Hydrobiol.* 2006, *167*(1), 575–592. https://doi.org/10.1127/0003-9136/2006/0167-0575.
- 656 (54) Müller-Navarra, D. C.; Brett, M. T.; Liston, A. M.; Goldman, C. R. A Highly Unsaturated
 657 Fatty Acid Predicts Carbon Transfer between Primary Producers and Consumers. *Nature*658 2000, 403 (6765), 74–77. https://doi.org/10.1038/47469.
- (55) Stal, L. J. Cyanobacterial Mats and Stromatolites. In *Ecology of Cyanobacteria II*; Springer,
 Dordrecht, 2012; pp 65–125. https://doi.org/10.1007/978-94-007-3855-3.
- (56) McGlathery, K. J.; Sundbäck, K.; Anderson, I. C. The Importance of Primary Producers for
 Benthic Nitrogen and Phosphorus Cycling. In *Estuarine Nutrient Cycling: The Influence of Primary Producers*; Nielsen, S. L., Banta, G. T., Pedersen, M. F., Eds.; Springer, Dordrecht,
 2004; pp 231–261. https://doi.org/10.1007/978-1-4020-3021-5 9.
- 665 (57) Seitzinger, S. P.; Styles, R. M.; Pilling, I. E.; Beach, W. P.; Seitzinger, S. P.; Styles, R. M.;
 666 Pilling, I. E. Benthic Microalgal and Phytoplankton Production in Barnegat Bay, New
 667 Jersey (USA): Microcosm Experiments and Data Synthesis. *J. Coast. Res.* 2001, No. 32.
- 668 (58) Cerco, C. E.; Seitzinger, S. P. Measured and Modeled Effects of Benthic Algae on 34

669

Eutrophication in Indian River-Rehoboth Bay, Delaware. Estuaries 1997, 20 (1), 231-248.

670 (59) Le Moel, M.; Gascuel-odoux, C.; Ménesguen, A.; Souchon, Y.; Étrillard, C.; Levain, A.;

- Moatar, F.; Pannard, A.; Souchu, P.; Lefebvre, A.; et al. Eutrophication: A New Wine in an
 Old Bottle? *Sci. Total Environ.* 2019, 651, 1–11.
 https://doi.org/10.1016/j.scitotenv.2018.09.139.
- (60) Paerl, H. W. Mitigating Toxic Planktonic Cyanobacterial Blooms in Aquatic Ecosystems
 Facing Increasing Anthropogenic and Climatic Pressures. *Toxins (Basel)*. 2018, *10* (76), 1–
 16. https://doi.org/10.3390/toxins10020076.
- 677 (61) Sarmah, P.; Rout, J. Cyanobacterial Degradation of Low-Density Polyethylene (LDPE) by
 678 Nostoc Carneum Isolated from Submerged Polyethylene Surface in Domestic Sewage
 679 Water. *Energy, Ecol. Environ.* 2019, *4* (5), 240–252. https://doi.org/10.1007/s40974-019680 00133-6.
- (62) Prata, J.; da Costa, J.; Lopes, I.; Duarte, A.; Rocha-Santos, T. Effects of Microplastics on
 Microalgae Populations: A Critical Review. *Sci. Total Environ.* 2019, 665, 400–405.
 https://doi.org/10.1016/j.scitotenv.2019.02.132.
- (63) Zhang, C.; Chen, X.; Wang, J.; Tan, L. Toxic Effects of Microplastic on Marine Microalgae
 Skeletonema Costatum: Interactions between Microplastic and Algae. *Environ. Pollut.*2017, 220, 1282–1288. https://doi.org/10.1016/j.envpol.2016.11.005.
- (64) Lagarde, F.; Olivier, O.; Zanella, M.; Daniel, P.; Hiard, S.; Caruso, A. Microplastic
 Interactions with Freshwater Microalgae: Hetero-Aggregation and Changes in Plastic
 Density Appear Strongly Dependent on Polymer Type. *Environ. Pollut.* 2016, *215* (August),

690 331–339. https://doi.org/10.1016/j.envpol.2016.05.006.

- 691 (65) Sjollema, S. B.; Redondo-hasselerharm, P.; Leslie, H. A.; Kraak, M. H. S.; Vethaak, A. D.
- 692 Do Plastic Particles Affect Microalgal Photosynthesis and Growth? *Aquat. Toxicol.* 2016,
- 693 *170*, 259–261. https://doi.org/10.1016/j.aquatox.2015.12.002.
- 694 (66) Bergami, E.; Pugnalini, S.; Vannuccini, M. L.; Manfra, L.; Faleri, C.; Savorelli, F.; Dawson,
- K. A.; Corsi, I. Long-Term Toxicity of Surface-Charged Polystyrene Nanoplastics to
 Marine Planktonic Species Dunaliella Tertiolecta and Artemia Franciscana. *Aquat. Toxicol.*2017, 189 (July), 159–169. https://doi.org/10.1016/j.aquatox.2017.06.008.
- (67) Harrison, J. P.; Sapp, M.; Schratzberger, M.; Osborn, A. M. Interactions Between
 Microorganisms and Marine Microplastics: A Call for Research. *Mar. Technol. Soc. J.*2011, 45 (2), 12–20. https://doi.org/10.4031/MTSJ.45.2.2.
- Michels, J.; Stippkugel, A.; Lenz, M.; Wirtz, K.; Engel, A. Rapid Aggregation of BiofilmCovered Microplastics with Marine Biogenic Particles. *Proc. R. Soc. B* 2018, 285,
 20181203.
- (69) Hope, J. A.; Paterson, D. M.; Thrush, S. F. The Role of Microphytobenthos in SoftSediment Ecological Networks and Their Contribution to the Delivery of Multiple
 Ecosystem Services. J. Ecol. 2019, No. 10.1111/1365-2745.13322.
 https://doi.org/10.1111/1365-2745.13322.
- (70) Brett, M. T.; Muller-Navarra, D. C. The Role of Highly Unsaturated Fatty Acids in Aquatic
 Food Web Processes. *Freshw. Biol.* 1997, *38* (3), 483–499. https://doi.org/10.1046/j.1365 2427.1997.00220.x.

36

711	(71)	Gonçalves, A.; Marques, J.; Gonçalves, F. Fatty Acids' Profiles of Aquatic Organisms:
712		Revealing the Impacts of Environmental and Anthropogenic Stressors. In Fatty acids;
713		IntechOpen, Ed.; 2017; pp 89–118.

- 714 (72) Parrish, C. C. Lipids in Marine Ecosystems. *ISRN Oceanogr.* 2013, 2013, 1–16.
 715 https://doi.org/10.5402/2013/604045.
- (73) Bergamino, L.; Dalu, T.; Richoux, N. B. Evidence of Spatial and Temporal Changes in
 Sources of Organic Matter in Estuarine Sediments: Stable Isotope and Fatty Acid Analyses.
 Hydrobiologia 2014, *732* (1), 133–145. https://doi.org/10.1007/s10750-014-1853-1.
- (74) Hanson, C. E.; Hyndes, G. A.; Wang, S. F. Differentiation of Benthic Marine Primary
 Producers Using Stable Isotopes and Fatty Acids: Implications to Food Web Studies. *Aquat. Bot.* 2010, *93* (2), 114–122. https://doi.org/10.1016/j.aquabot.2010.04.004.
- (75) Croizier, G. Le; Schaal, G.; Gallon, R.; Fall, M.; Le Grand, F.; Munaron, J.; Rouget, M.;
 Machu, E.; Le Loc'H, F.; Laë, R.; et al. Trophic Ecology Influence on Metal
 Bioaccumulation in Marine Fish: Inference from Stable Isotope and Fatty Acid Analyses. *Sci. Total Environ.* 2016, *573* (HAL Id : hal-01482789), 83–95.
- 726 (76) Filimonova, V.; Gonçalves, F.; Marques, J. C.; de Troch, M.; Gonçalves, A. Fatty Acid
 727 Profiling as Bioindicator of Chemical Stress in Marine Organisms : A Review. *Ecol. Indic.*728 2016, 67, 657–672.
- 729 (77) Budge, S. M.; Parrish, C. C. Lipid Biogeochemistry of Plankton, Settling Matter and
 730 Sediments: 2. Fatty Acids. *Org Geochem 29 1547-59, 1998 U0043* 1998, *29* (5).
- 731 (78) Hardison, A. K.; Canuel, E. A.; Anderson, I. C.; Tobias, C. R.; Veuger, B.; Waters, M. N. 37

- Microphytobenthos and Benthic Macroalgae Determine Sediment Organic Matter
 Composition in Shallow Photic Sediments. *Biogeosciences* 2013, *10* (8), 5571–5588.
 https://doi.org/10.5194/bg-10-5571-2013.
- (79) Passarelli, C.; Meziane, T.; Thiney, N.; Boeuf, D.; Jesus, B.; Ruivo, M.; Jeanthon, C.;
 Hubas, C. Seasonal Variations of the Composition of Microbial Biofilms in Sandy Tidal
 Flats: Focus of Fatty Acids, Pigments and Exopolymers. *Estuar. Coast. Shelf Sci.* 2015, *153*, 29–37. https://doi.org/10.1016/j.ecss.2014.11.013.
- 739 (80) Jónasdóttir, S. H.; Wilson, R. J.; Gislason, A.; Heath, M. R. Lipid Content in Overwintering
 740 Calanus Finmarchicus across the Subpolar Eastern North Atlantic Ocean. *Limnol.*741 *Oceanogr.* 2019, 9999, 1–15. https://doi.org/10.1002/lno.11167.
- (81) Nevejan, N.; Saez, I.; Gajardo, G.; Sorgeloos, P. Energy vs. Essential Fatty Acids: What Do
 Scallop Larvae (Argopecten Purpuratus) Need Most? *Comp. Biochem. Physiol. B Biochem. Mol. Biol.* 2003, *134* (4), 599–613. https://doi.org/10.1016/S10964959(03)00020-4.
- (82) Bassim, S.; Chapman, R. W.; Tanguy, A.; Moraga, D.; Tremblay, R. Predicting Growth and
 Mortality of Bivalve Larvae Using Gene Expression and Supervised Machine Learning. *Comp. Biochem. Physiol. Part D Genomics Proteomics* 2015, *16*, 59–72.
 https://doi.org/10.1016/j.cbd.2015.07.004.
- (83) Knauer, J.; Southgate, P. C. A Review of the Nutritional Requirements of Bivalves and the
 Development of Alternative and Artificial Diets for Bivalve Aquaculture. *Rev. Fish. Sci.*1999, 7 (3–4), 241–280. https://doi.org/10.1080/10641269908951362.

753	(84)	Antonio, E. S.; Richoux, N. B. Trophodynamics of Three Decapod Crustaceans in a
754		Temperate Estuary Using Stable Isotope and Fatty Acid Analyses. Mar. Ecol. Prog. Ser.
755		2014, 504, 193–205. https://doi.org/10.3354/meps10761.

- (85) Van Cauwenberghe, L.; Devriese, L.; Galgani, F.; Robbens, J.; Janssen, C. R. Microplastics
 in Sediments: A Review of Techniques, Occurrence and Effects. *Mar. Environ. Res.* 2015, *111*, 5–17. https://doi.org/10.1016/j.marenvres.2015.06.007.
- 759 (86) Primpke, S.; Wirth, M.; Lorenz, C.; Gerdts, G. Reference Database Design for the
 760 Automated Analysis of Microplastic Samples Based on Fourier Transform Infrared (FTIR
 761) Spectroscopy. 2018, 5131–5141.
- 762 (87) Gilbert, F.; Aller, R. C.; Hulth, S. The Influence of Macrofaunal Burrow Spacing and
 763 Diffusive Scaling on Sedimentary Nitrification and Denitrification: An Experimental
 764 Simulation and Model Approach. J. Mar. Res. 2003, 61, 101–125.
- (88) Grant, C.; Hay, B. A Review of the Issues Related to the Depletion of Populations of
 Selected Infaunal Bivalve Species in the Hauraki Gulf Marine Park. In *Report Prepared for the Hauraki Gulf Forum. Auckland*; AquaBio Consultants Ltd., 2003.
- (89) Norkko, A.; Villna, A.; Norkko, J.; Valanko, S.; Pilditch, C. Size Matters: Implications of
 the Loss of Large Individuals for Ecosystem Function. *Sci. Rep.* 2013, *3* (2646), 1–7.
 https://doi.org/10.1038/srep02646.
- (90) Weerman, E.; Herman, P.; van de Koppel, J. Macrobenthos Abundance and Distribution on
 a Spatially Patterned Intertidal Flat. *Mar. Ecol. Prog. Ser.* 2011, 440, 95–103.
 https://doi.org/10.3354/meps09332.

774	(91)	Lorenzen, C	C. J.	Determination	of Chlorophyll	and Pheo-F	igments:	Spectroph	otometric
775		Equations.		Limnol.	Oceanogr.	1967,	12	(2),	343–346.
776		https://doi.o	rg/10	0.4319/lo.1967.	12.2.0343.				

- 777 Horváth, H.; Kovács, A. W.; Riddick, C.; Présing, M. Extraction Methods for Phycocyanin (92) 778 Determination in Freshwater Filamentous Cyanobacteria and Their Application in a 779 Shallow Eur. 48 278-286. Lake. J. Phycol. 2013, (3),780 https://doi.org/10.1080/09670262.2013.821525.
- (93) Lusher, A.; Hurley, R.; Iversen, K. B. *Testing of Methodology for Measuring Microplastics in Blue Mussels (Mytilus Spp) and Sediments, and Recommendations for Future Monitoring of Microplastics (R&D Project)*; NIVA, R. N. 7209-2017, Ed.; NIVA, 2017.
 https://doi.org/10.13140/RG.2.2.24399.59041.
- 785 (94) Bligh, E.; Dyer, W. A Rapid Method of Total Lipid Extraction and Purification. *Can. J.*786 *Biochem. Physiol* 1959, *37*, 911–917.
- (95) Byreddy, A. R.; Gupta, A.; Barrow, C. J.; Puri, M. A Quick Colorimetric Method for Total
 Lipid Quantification in Microalgae. *J. Microbiol. Methods* 2016, *125*, 28–32.
 https://doi.org/10.1016/j.mimet.2016.04.002.
- (96) Lepage, G.; Roy, C. C. Direct Transesterification of All Classes of Lipids in a One Step
 Reaction. J. Lipid Res. 1986, 27, 114–120.
- (97) Zárate, E. V.; Díaz De Vivar, M. E.; Avaro, M. G.; Epherra, L.; Sewell, M. A. Sex and
 Reproductive Cycle Affect Lipid and Fatty Acid Profiles of Gonads of Arbacia Dufresnii
 (Echinodermata: Echinoidea). *Mar. Ecol. Prog. Ser.* 2016, 551, 185–199.

795 https://doi.org/10.3354/meps11711.

- 796 (98) Anderson, M.; Gorley, R. N.; Clarke, K. R. PERMANOVA+ for PRIMER. Guide to
 797 Software and Statistical Methods; 2008.
- 798 (99) Wiegner, T. W.; Sitzinger, S. P.; Breitburg, D. L.; Sanders, J. G. The Effects of Multiple
- Stressors on the Balance between Autotrophic and Heterotrophic Processes in an Estuarine
 System. *Estuaries* 2003, *26* (2A), 352–364.
- (100) Svensson, F.; Norberg, J.; Snoeijs, P. Diatom Cell Size, Coloniality and Motility: Trade Offs between Temperature, Salinity and Nutrient Supply with Climate Change. *PLoS One*
- 803 **2014**, *9* (10). https://doi.org/10.1371/journal.pone.0109993.
- Koedooder, C.; Stock, W.; Willems, A.; Mangelinckx, S.; Marzinelli, E. M.; Campbell, A.
 H. Diatom-Bacteria Interactions Modulate the Composition and Productivity of Benthic
 Diatom Biofilms. *Front. Microbiol.* 2019, 10, 1–11.
 https://doi.org/10.3389/fmicb.2019.01255.
- 808 (102) Moore, C. J.; Moore, S. L.; Leecaster, M. K. A Comparison of Plastic and Plankton in the
 809 North Pacific Central Gyre. *Mar. Pollut. Bull.* 2001, *42* (12), 1297–1300.
- 810 (103) Oberbeckmann, S.; Loeder, M. G. J.; Gerdts, G.; Osborn, M. A. Spatial and Seasonal 811 Variation in Diversity and Structure of Microbial Biofilms on Marine Plastics in Northern 812 European 2014, 90 (2),478–492. Waters. FEMS Microbiol. Ecol. 813 https://doi.org/10.1111/1574-6941.12409.
- (104) Pinckney, J. L.; Paerl, H. W.; Tester, P.; Richardson, T. L. The Role of Nutrient Loading
 and Eutrophication in Estuarine Ecology. *Environ. Health Perspect.* 2001, *109* (Supplement 41

816 5), 699–706.

- (105) Summers, M. L.; Wallis, J. G.; Campbell, E. L.; Meeks, J. C. Genetic Evidence of a Major
 Role for Glucose-6-Phosphate Dehydrogenase in Nitrogen Fixation and Dark Growth of the
 Cyanobacterium Nostoc Sp. Strain ATCC 29133. *J. Bacteriol.* 1995, *177* (21), 6184–6194.
 https://doi.org/10.1128/jb.177.21.6184-6194.1995.
- (106) Villbrandt, M.; Stal, L. J.; Krumbein, W. E. Interactions between Nitrogen Fixation and
 Oxegenic Photosynthesis in a Marine Cyanobacterial Mat. *FEMS Microbiol. Ecol.* 1990,
 74, 59–71.
- (107) Willis, K. A.; Eriksen, R.; Wilcox, C.; Hardesty, B. D. Microplastic Distribution at Different
 Sediment Depths in an Urban Estuary. *Front. Mar. Sci.* 2017, *4* (December), 1–8.
 https://doi.org/10.3389/fmars.2017.00419.
- (108) Douglas, E. J.; Pilditch, C. A.; Kraan, C.; Schipper, L. A.; Lohrer, A. M.; Thrush, S. F.
 Macrofaunal Functional Diversity Provides Resilience to Nutrient Enrichment in Coastal
 Sediments. *Ecosystems* 2017, 1–13. https://doi.org/10.1007/s10021-017-0113-4.
- (109) Hale, R.; Godbold, J. A.; Sciberras, M.; Dwight, J.; Wood, C.; Hiddink, J. G.; Solan, M.
 Mediation of Macronutrients and Carbon by Post-Disturbance Shelf Sea Sediment
 Communities. *Biogeochemistry* 2017, *135* (1–2), 121–133. https://doi.org/10.1007/s10533017-0350-9.
- (110) Sciberras, M.; Tait, K.; Brochain, G.; Hiddink, J. G.; Hale, R.; Godbold, J. A.; Solan, M.
 Mediation of Nitrogen by Post-Disturbance Shelf Communities Experiencing Organic
 Matter Enrichment. *Biogeochemistry* 2017, *135* (1–2), 135–153.

42

837

https://doi.org/10.1007/s10533-017-0370-5.

- 838 (111) Bandow, N.; Will, B. V.; Wachtendorf, V.; Simon, F.-G. Contaminant Release from Aged
 839 Microplastic. *Environmental Chem.* 2017, *14*, 394–405.
- 840 (112) Rummel, C. D.; Escher, B. I.; Sandblom, O.; Plassmann, M. M.; Arp, H. P. H.; Macleod,
- M.; Jahnke, A. Effects of Leachates from UV-Weathered Microplastic in Cell-Based
 Bioassays. *Environ. Sci. Technol.* 2019, 53, 9214–9223.
 https://doi.org/10.1021/acs.est.9b02400.
- 844 (113) Wu, Y.; Jeans, J.; Suggett, D. J.; Finkel, Z. V; Campbell, D. A.; Flynn, K. J.; Krause, J. W.
 845 Large Centric Diatoms Allocate More Cellular Nitrogen to Photosynthesis to Counter
 846 Slower RUBISCO Turnover Rates. *Front. Mar. Sci.* 2014, *1* (Article 68), 1–11.
 847 https://doi.org/10.3389/fmars.2014.00068.
- (114) Tobias, C.; Giblin, A.; Mcclelland, J.; Tucker, J.; Peterson, B. Sediment DIN Fluxes and
 Preferential Recycling of Benthic Microalgal Nitrogen in a Shallow Macrotidal Estuary.
 Mar. Ecol. Prog. Ser. 2003, 257, 25–36. https://doi.org/10.3354/meps257025.
- (115) Middelburg, J. J.; Soetaert, K.; Herman, P. M. J.; Heip, C. H. R. Denitrification in Marine
 Sediments: A Model Study. *Global Biogeochem. Cycles* 1996, *10* (4), 661–673.
- (116) Eyre, B. D.; Maher, D. T.; Squire, P. Quantity and Quality of Organic Matter (Detritus)
 Drives N2 Effluxes (Net Denitrification) across Seasons, Benthic Habitats, and Estuaries. *Global Biogeochem. Cycles* 2013, 27 (4), 1083–1095.
 https://doi.org/10.1002/2013GB004631.
- 857 (117) Fulweiler, R. W.; Brown, S. M.; Nixon, S. W.; Jenkins, B. D. Evidence and a Conceptual 43

858		Model for	the Co-Occurr	ence of N	Vitrogen F	Fixation ar	nd Deniti	rification	in Hetero	trophic
859		Marine	Sediments.	Mar.	Ecol.	Prog.	Ser.	2013,	482,	57–68.
860		https://doi.	.org/10.3354/me	eps10240.						
861	(118)	Newell, S.	E.; Pritchard,	K. R.; Fo	ster, S. Ç	Q.; Fulweil	ler, R. W	7. Molecul	lar Evide	nce for
862		Sediment	Nitrogen Fixa	tion in	a Tempe	rate New	r Englan	nd Estuar	y. 2016 ,	1–21.
863		https://doi.	org/10.7717/pe	erj.1615.						
864	(119)	Eckford, I	R.; Cook, F. D	.; Saul, I	D.; Aislał	oie, J.; Fo	oght, J. l	Free-Livin	g Hetero	trophic
865		Nitrogen-F	Fixing Bacteria	Isolated fr	com Fuel-	Contamina	ated Anta	arctic Soils	s. Appl. E	'nviron.

- 866 Microbiol. 2002, 68 (10), 5181-5185. https://doi.org/10.1128/AEM.68.10.5181-867 5185.2002.
- 868 (120) Tuominen, L.; Mäkelä, K.; Lehtonen, K. .; Haahti, H.; Hietanen, S.; Kuparinen, J. Nutrient 869 Fluxes, Porewater Profiles and Denitrification in Sediment Influenced by Algal 870 Sedimentation and Bioturbation by Monoporeia Affinis. Estuar. Coast. Shelf Sci. 1999, 49 (1), 83–97. https://doi.org/10.1006/ecss.1999.0492. 871
- 872 (121) Laverock, B.; Gilbert, J. A.; Tait, K.; Osborn, A. M.; Widdicombe, S. Bioturbation: Impact 873 on the Marine Nitrogen Cycle. Biochem. Soc. Trans. 2011, 39 (1), 315-320. 874 https://doi.org/10.1042/BST0390315.
- 875 (122) Uthicke, S. Sediment Bioturbation and Impact of Feeding Activity of Holothuria 876 (Halodeima Atra and Stichopus Chloronotus), Two Sediment Feeding Holothurians, at Lizard Island, Great Barrier Reef. Bull. Mar. Sci. 1999, 64 (1), 129-141. 877
- 878 (123) Thrush, S. F.; Hewitt, J. E.; Parkes, S.; Lohrer, A. M.; Pilditch, C.; Woodin, S. A.; Wethey,

879		D. S.; Chiantore, M.; De Juan, S.; Kraan, C.; et al. Experimenting with Ecosystem
880		Interaction Networks in Search of Threshold Potentials in Real-World Marine Ecosystems.
881		Ecology 2014, 95 (6), 1451–1457. https://doi.org/10.1890/13-1879.1.
882	(124)	Ruano, F.; Ramos, P.; Quaresma, M.; Bandarra, N. M.; Pereira-da Fonseca, I. Evolution of
883		Fatty Acid Profile and Condition Index in Mollusc Bivalves Submitted to Different
884		Depuration Periods. Rev. Port. Ciéncias Veterinárias 2012, 111, 75-84.
885	(125)	Jaschinski, S.; Brepohl, D. C.; Sommer, U. Carbon Sources and Trophic Structure in an
886		Eelgrass Zostera Marina Bed, Based on Stable Isotope and Fatty Acid Analyses. Mar. Ecol.
887		Prog. Ser. 2008, 358 (1), 103–114. https://doi.org/10.3354/meps07327.
888	(126)	Hummel, H.; Bogaards, R. H.; Bachelet, G.; Caron, F.; Sola, J. C. The Respiratory
889		Performance and Survival of the Bivalve Macoma Balthica (L.) at the Southern Limit of Its
890		Distribution Area: A Translocation Experiment. J. Exp. Mar. Bio. Ecol. 2000, 251, 85–102.
891	(127)	Bennett, A.; Bianchi, T. S.; Means, J. C. The Effects of PAH Contamination and Grazing
892		on the Abundance and Composition of Microphytobenthos in Salt Marsh Sediments (Pass
893		Fourchon, LA, U.S.A.): II: The Use of Plant Pigments as Biomarkers. Estuar. Coast. Shelf
894		Sci. 2000, 50, 425–439. https://doi.org/10.1006/ecss.1999.0572.
895	(128)	Cauwenberghe, L. Van; Janssen, C. R. Microplastics in Bivalves Cultured for Human
896		Consumption. Environ. Pollut. 2014, 193, 65–70.
897		https://doi.org/10.1016/j.envpol.2014.06.010.

898 (129) Sundbäck, K.; Miles, A. Role of Microphytobenthos and Denitrification for Nutrient
 899 Turnover in Embayments with Floating Macroalgal Mats: A Spring Situation. *Aquat.*

900

Microb. Ecol. **2002**, *30*, 91–101.

- 901 (130) Townsend, M.; Thrush, S. F.; Hewitt, J. E.; Lohrer, A. M.; Mccartain, L. Behavioural
 902 Changes in the Tellinid Bivalve Macomona Liliana (Iredale , 1915) Following Exposure to
 903 a Thin Terrigenous Sediment Deposition Event: Evidence from Time-Lapse Photography.
 904 *Cah. Biol. Mar.* 2014, *55* (October), 475–483.
- 905 (131) Gongol, C.; Savage, C. Spatial Variation in Rates of Benthic Denitrification and
 906 Environmental Controls in Four New Zealand Estuaries. 2016, 556, 59–77.
 907 https://doi.org/10.3354/meps11865.

908