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Abstract: Microplastics are accumulating in coastal soft sediments, the majority of which are 9 

fibres.  Despite this, little is known about the potential ecological effects of fibrous material on 10 

functionally important benthic organisms. For instance, the microphytobenthos (MPB) and 11 

deposit-feeding bivalves which are critical for soft sediment ecosystem functions such as nutrient 12 

cycling. Red polyester microfibers (1.8 ± 0.9mm) were added at varying concentrations (0% - 13 

XX% DW sediment) to the surface 1cm of sediment in the chambers.  The effects of increasing 14 

microfiber concentrations on microphytobenthic (MPB) biomass (chl a) and composition (fatty 15 

acid (FA) biomarkers) were evaluated after a total exposure period of XX days. Half the chambers 16 

were exposed to a 12 h light/dark cycle, to allow photosynthesis to occur, while the remaining 17 
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chambers were exposed to extremely low light levels (XX PAR level) that would inhibit 18 

photosynthesis. After an initial 35 day MPB growth period, four deposit-feeding bivalves, 19 

Macomona liliana, were added to each chambers.  M.liliana is a dominant and functionally 20 

important bivalve in New Zealand sediments. These were added after the initial MPB growth to 21 

determine whether any effects of microfibers on their food resource (the MPB) affected the 22 

burrowing behavior and energy levels of these grazers. After a further XX days (total duration XX 23 

days), sediment porewater nutrient  concentrations (a proxy of ecosystem function) were evaluated 24 

and related to changes in the MPB and M.lilianaResults suggest that microfibers additions 25 

influenced both the quantity (biomass) and quality (FA biomarkers) of the MPB. Fewer diatoms 26 

and an increase in phycocyanin pigments associated with cyanobacteria, emphasized the potential 27 

for shifts in the MPB community with increasing microfiber concentrations.  The change in MPB 28 

quality coincided with up to 75% reductions in bivalve energy reserves, and reduced M.liliana 29 

burrowing activity. . . Under light conditions (which allowed the MPB to photosynthesise), nitrate 30 

+ nitrite (together as NOx) and ammonium (NH4
+) concentrations were elevated at the highest 31 

microfiber concentrations. When the light was blocked (dark conditions) only NH4
+ concentrations 32 

increased. The difference in porewater nutrient stores suggests that photosynthesis in the MPB 33 

together with M.liliana burrowing moderates the effect of microfibers on soft sediment nutrient 34 

cycling. These findings demonstrate the potential for microfibers to alter soft sediment ecosystems 35 

and influence ecological functions through complex feedbacks at the base of the benthic foodweb. 36 

Introduction 37 

Waste water1, runoff2 and fishing gear3 are all significant sources of microplastics (particles 38 

<5mm), with this debris contributing to the accumulation of microplastics in coastal soft 39 
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sediments. Microplastic particles have now been detected in sediments and waters in freshwater4, 40 

marine1, estuarine5,6, and deep-sea7 ecosystems and have even been detected in remote Arctic8 and 41 

Antarctic9 waters, far from urban sources. The extent and ubiquity of microplastics emphasizes the 42 

need to understand the ecological effects it may have, particularly in soft sediments that are a 43 

potential sink for this contaminant7,10.  44 

Despite growing concerns about the quantity and diversity of microplastics in marine sediments, 45 

we have limited information on the potential ecological effects of their accumulation. While 46 

microplastics are a diverse suite of contaminants rather than a single entity, we need to better 47 

characterize the effects of different morphologies, sizes and chemical compositions both in the 48 

field and in controlled laboratory studies with specific classes as these properties may affect their 49 

influence on organisms and ecological processes11. Although microfibers often dominant marine 50 

samples12, representing up to 95% of microplastics found in marine waters8,13,14, sediments10,15 and 51 

organisms16 in some cases, the majority of uptake or exposure experiments in the laboratory have 52 

used microplastic fragments or beads17–19. Polyester, the majority of which is composed of 53 

polyethylene terephthalate (PET), is often the most prevalent fiber type detected in marine 54 

systems10. However, polyester microfibers are under represented in ecological experiments. We 55 

therefore know relatively little regarding the effects of microfibers on functionally important 56 

sediment dwelling organisms20,21 and ecosystem function despite their prevalence. Similarly to 57 

many microplastic fragments, different microfibers can leach toxic additives22–24 as well as adsorb 58 

other environmental contaminants1,25,26. Polyester microfibers therefore have the potential to affect 59 

marine organisms through ingestion or changes to the biochemical environment, 20,21 and deserve 60 

greater attention. 61 
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Functionally important benthic organisms. Microplastic ingestion has recently been explored 62 

in marine worms27,28 and shellfish17,29, and freshwater phytoplankton30. Several studies have been 63 

conducted on benthic filter feeders19,31 and zooplankton32,33, due to the potential role of these 64 

organisms in filtering microplastics from the water column. However, once on the seafloor, 65 

microplastics will interact with benthic organisms that have different feeding behaviours34. 66 

Intertidal deposit-feeding bivalves are functionally important35, contributing to ecosystem 67 

productivity, nutrient cycling and water quality. Deposit-feeders graze on microphytobenthos 68 

(MPB) inhabiting the surface layers of sediment and as these surface layers are where sediment 69 

microplastics accumulate36,37, deposit feeders and the MPB may be particularly vulnerable to 70 

microplastics38. Nonetheless, there remains a lack of information on interactions between these 71 

benthic organisms and microplastics39. 72 

When bivalves are exposed to contaminants or other stressors, their burial capacity40, activity 73 

levels41,42 and feeding behaviours17,19 may be affected. These behavioral changes are likely 74 

associated with changes in their energy reserves, growth and weight, as documented for other 75 

invertebrates30,43–45. A number of mechanisms have been proposed to explain the depletion of 76 

energy reserves during stress. Firstly, stressful conditions can increase the energy demands of an 77 

organism, thus reducing energy reserves46,47. Alternatively, a decrease in food or nutrient intake 78 

may limit the synthesis of lipids, carbohydrates, proteins as the organisms redirect metabolic 79 

processes to counteract toxicity effects47. Reduced intake of energy may also result from the 80 

ingestion of these comparatively low quality particles compared to food44, as well as gut blockage 81 

and irritation due to ingestion43. As infaunal energy and activity levels change, grazing pressure 82 

and nutrient release are altered. This feeds back to the MPB, with potential effects on MPB 83 

biomass27,35 and composition48. These changes may also lead to the loss of oxidized 84 
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microhabitats49 further altering nutrient cycles27,50 with knock on effects on ecosystem 85 

productivity. 86 

MPB can account for up to 90% of estuarine primary productivity51,52 with highly nutritious 87 

diatoms typically dominating soft sediment habitats53,54. While other habitats may be dominated 88 

by less nutritious cyanobacteria these have functionally different roles to diatoms55 therefore a 89 

shift in these taxa can alter ecosystem function. MPB such as diatoms act as an efficient nutrient 90 

filter on the sediment surface, mediating the flux of dissolved inorganic nitrogen at the sediment-91 

water interface preventing eutrophication56,57,58. Conversely, cyanobacteria often benefit from 92 

stressors like nutrient enrichment59,60 and they often utilize less nutritious carbon sources such as 93 

oil and microplastics61. MPB and deep-dwelling deposit feeders are vital for ecosystem function, 94 

yet there is a lack of information on the effects of microplastic contamination on these organisms 95 

or ecosystem functions such as nutrient cycling.  96 

The effects of various microplastic on primary producers is still widely debated62. Decreases in 97 

algal biomass and photosynthesis associated with microplastic contamination have been observed 98 

with a number of planktonic primary producers18,62,63. Others have detected little or no effects64–66 99 

and there are just a few passing observations of the impact on MPB27. These studies have been 100 

critical to assess the potential effects of this emerging contaminant on marine life, however 101 

variable plastic types, unrealistic concentrations, and the use of algal monocultures has contribute 102 

to the divergent conclusions in the literature. Further complicating this picture, is growing evidence 103 

that  synthetic polymers can provide a substrate that benefits various microbes48,67,68. Microplastics 104 

could therefore modify interactions and feedbacks associated with the MPB that are vital for soft 105 

sediment ecosystem structure and function69.  106 
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Energy reserves and fatty acid biomarkers. Together with total lipids and glycogen reserves, 107 

fatty acids are a source of metabolic energy and nutrients to all organisms70,71 including bivalves. 108 

Fatty acid (FA) biomarkers are useful indicators of general ecosystem health72, sources of organic 109 

matter73 and can reveal trophic links74. FAs are also valuable for assessing organisms’ responses 110 

to environmental stressors like changes in salinity and temperature71, heavy metal contamination75 111 

and chemical stressors76 and therefore could be useful in assessing the potential stress of 112 

microplastics in the marine environment. While individual FAs cannot be assigned to specific 113 

organisms, changes in the presence and ratios of these biomarkers can reflect changes in the 114 

taxonomic or functional groups in sediment communities77,78 as well as the dietary intake79 or 115 

metabolism80 of MPB and bacteria in consumers. The essential fatty acids, Eicosapentaenoic acid 116 

(EPA, 20:5ω3) and Docosahexaenoic acid (DHA, 22:6ω3) are synthesized by many primary 117 

producers but are primarily associated with diatoms and dinoflagellates, respectively.  118 

EFAs cannot be efficiently synthesized by bivalves de novo81,82 and the relative importance of 119 

DHA or EPA can be species specific83. However, variation in the ratio between EFAs can indicate 120 

a shift between different taxa available to the consumer, the dietary intake of primary producers or 121 

the metabolism of energy reserves due to stress77. The ‘diatom index’ of Antonio & Richoux84 is 122 

one such useful indicator to determine the dominance of diatoms over other taxa. This index 123 

utilizes multiple FAs to determine compositional shifts in the MPB community as well as change 124 

to the dietary intake or metabolism of EFAs (Supp. table 1). The metabolism of EFAs during 125 

periods of stress can also be species-specific, with one often selectively retained over another 126 

depending on the organisms current requirements for growth and reproduction81.  127 

Methods 128 
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Experimental design. We investigate the effects of long-term exposure to varying 129 

concentrations of polyester microfibers, on the quality & quantity of MPB in the sediment, using 130 

FA biomarker and pigment analysis. The effects on the burrowing behavior and energy reserves 131 

of a functionally important deposit-feeding bivalve Macomona liliana were also assessed, as well 132 

as the FA biomarkers present in the bivalves. We hypothesize that increasing microfiber 133 

contamination could negatively influence the lipid energy reserves in deep-dwelling deposit 134 

feeding bivalves and subsequently alter their burrowing capacity. We anticipate that as the 135 

complex feedbacks between bivalves and MPB are altered, ecosystem functions will be modified. 136 

 Few studies have examined the effects of environmentally relevant microfiber concentrations20. 137 

Instead, the majority of studies, to date, have exposed organisms to microplastic fragments or 138 

beads at exceptionally high concentrations to assess chronic effects85. In the present study, 139 

microfibers were added at relatively low concentrations (1-50mg kg-1 WW sediment), with the 140 

potential effects assessed after a relatively long exposure period instead. This allowed the 141 

evaluation of the benthic community changes associated with long-term exposure to increasing 142 

microplastic concentrations. Sediment mesocosms containing red polyester fibers (6 levels of 143 

microplastic additions, 2 light conditions, 3 replicates) were incubated for 35 days in light and dark 144 

conditions to allow the MPB and biofilm to develop. Four adult M. liliana (20-30mm shell length) 145 

were added to the sediment surface of each mesocosm at a density of 90 individual m-2 after 35 146 

days. Any bivalves remaining on the surface after the initial 12 h were replaced with fresh, healthy 147 

bivalves. Only one bivalve emerged from the sediment and died during the incubation experiment, 148 

which was removed within 12 h. The chambers were incubated for a further 40 days before 149 

sampling.  150 
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Materials & organisms used in the experiment.  Sediment (D50 = 220µm) was collected from 151 

Waiwera harbour on 17th November 2017 and sieved to 500µm to exclude large infauna and shell 152 

fragments. Red, polyester (PET) microfibers were collected by washing new polyester fleece 153 

blankets multiple times in a pre-cleaned washing machine. The machine was fitted with an external 154 

25µm filter sock on the outflow pipe to collect shed fibers. Additionally fibers were also collected 155 

from dry blankets using a fabric shaver. Microfibers were sieved through a 5mm sieve to exclude 156 

macrofibers (>5mm) then air dried prior to use. A subset of the fibers were visually inspected 157 

under a Leica MS5 microscope with a 40 x magnification to confirm only microfibers (<5mm) 158 

were used.  The mean length of measured fibers was 1.8 ± 0.9mm (n=40). The chemical 159 

composition of the microfibers was confirmed to be polyester (PET) by Fourier Transform Infrared 160 

Spectroscopy (FTIR) with spectra compared with the database from Primpke and others86. Full 161 

details of the method are available in the supplementary material alongside an example spectra 162 

match (Supp Fig 1).  163 

M. liliana is a common tellenid bivalve found in intertidal soft sediments throughout New 164 

Zealand35.  Their deep position in the sediment bed (5-10cm depth) and deposit feeding behavior 165 

can facilitate coupled N-cycling processes by increasing the interface of oxic-anoxic sediment87. 166 

These functionally important bivalves were selected as they extract and feed on MPB and detritus 167 

on the sediment surface, by extending their inhalant siphon to the sediment-water interface88. As 168 

they move around and feed, M. liliana rework the sediment stimulating nutrient regeneration89 and 169 

excreting inorganic nitrogen, both of which stimulate the MPB35. Often this results in complex 170 

interactions between the MPB and M. liliana, with positive effects of nutrient remineralization 171 

often counteracting grazing pressure90. 172 
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Experimental set up. Sieved and homogenized sediment was added to 36 chambers (300mm 173 

(dia.) x 360mm (h)), to a total depth of 11cm. Red polyester fibers were mixed and evenly 174 

distributed into individual 1kg batches of wet sieved sediment at the selected concentrations (0, 175 

10, 30, 100, 300 and 500mg fibers kg-1 wet weight sediment). These sediments were added as a 176 

surficial layer (1cm) to each mesocosm. Controls were prepared separately, without the addition 177 

of PET fibers to reduce risk of cross contamination. 178 

Each chamber was carefully filled with filtered seawater (25µm) so as not to resuspend fibers 179 

and the chambers allowed to overflow gently at a rate of ~0.05L sec-1 throughout the experiment. 180 

Slow flow velocities limited the loss of microplastics into the overlying water while preventing 181 

nutrient or oxygen depletion. To evaluate the interaction between microplastic contamination and 182 

MPB photosynthesis and biofilm development, and infaunal activity, half the sediments were 183 

incubated under a diurnal (12 h/12 h) light regime and half in 24 h darkness (n=18). Cotton shade 184 

cloth was used to reduce the incident light reaching the sediment surface in dark chambers (>90% 185 

reduction). Chambers were randomly distributed under four double Aqua One Reflector Fluroglow 186 

T8 (40W) units suspended 30cm above the sediment surface. Each unit was fitted with 2 x 1.2m 187 

T8 sunlight fluorescent bulbs. Photosynthetically active radiation (PAR, 400-700nm) was 188 

measured using a Li-Cor LI-190R quantum sensor coupled with a Li-Cor data-logger (Li-Cor, 189 

USA) to ensure all light chambers received adequate light (ambient light of ~200 μmol photons m-190 

2 s-1) at the sediment surface. External sources of light and contamination were excluded from the 191 

experimental area using black-out curtains.  192 

Post exposure sample collection. Duplicate sediment core samples (2.6cm ID, 2cm depth) were 193 

collected from each chamber for porewater nutrient analysis, with four small core samples (1cm 194 

ID, 0-1cm depth) were pooled and frozen immediately for biochemical analysis. Sediment for 195 
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biochemical analysis was freeze-dried and homogenized then sub-sampled for various bio-196 

molecular analysis. To visualize the dominant MPB present across treatments, surface scrapes of 197 

the sediment were collected, and fixed in 2.5% Gluteraldehyde solution.  198 

After sediment core samples were extracted, individual bivalves were carefully removed, intact, 199 

from each chamber by gentle sieving. One bivalve from each chamber was placed on clean control 200 

sediment to measure bivalve reburial rates over a 20 h period following Cummings & Thrush40.  201 

At each time interval (0.5, 2, 4, 12 and 20 h) the number of bivalves that were fully reburied into 202 

the sediment were recorded. Any remaining on the surface after 24 h were assumed to be 203 

‘immobile’. M. liliana from the mesocosms were immediately frozen in liquid nitrogen for 204 

biochemical analyses and to quantify the number of ingested fibers. 205 

Biochemical and sediment property analysis. Sediment porosity, organic matter and sediment 206 

grain size were determined from homogenized and freeze dried sediments (see supplementary 207 

materials). Determination of chlorophyll a followed Lorenzen91 using a 90% acetone extraction. 208 

Porewater was extracted and filtered through GF/F filters and Nitrate (NO3
-) and nitrite (NO2

-) 209 

together as NOx, ammonium (NH4
+) and phosphate (PO4

3-) concentrations determined using a 210 

Lachat QuickChem 8500+ FIA (Zellweger Analytics Inc. Milwaukee, Wisconsin, 53218, USA). 211 

Diatom cells were sonicated, digested in 30% H2O2, and mounted on permanent slides using 212 

naphrax. No quantitative analysis of the community was attempted, but the dominant taxa were 213 

examined by light microscopy across the microplastic treatments. As permanent slides destroy 214 

some MPB taxa (cyanobacteria, green algae), only diatoms were visualized. A phycocyanin assay 215 

was also adopted to quantify any changes in the cyanobacteria community92. 216 

M. liliana were freeze-dried, the tissue extracted from shells and homogenized for microscopic 217 

analysis. One full bivalve from each chamber was digested in 10% KOH93 for 48 h after an initial 218 
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heating of the sample to 40oC for 6 h. Samples were gently vacuum filtered through GF/F filters 219 

before red microfibers were quantified and measured by light microscopy. During all steps, 220 

atmospheric contamination was determined from the presence of microfibers on clean dampened 221 

filter papers and procedural blanks were run with each new batch of samples93. Total lipid contents 222 

were extracted from bivalve tissue using a modified Bligh & Dyer method94 and contents 223 

determined using the sulfo-phospho vanillin (SPV) spectrophotometric method95. The total fatty 224 

acid (TFA) composition was determined for control and high treatments only following a one-step 225 

direct transesterification method96,97. Full details are in available in the supplementary methods. 226 

Due to limited time and resources, and the interest in the role of photosynthesizing MPB, FAs 227 

were only processed for sediments and bivalves incubated under light conditions.  Subsequently, 228 

bivalve total lipid contents were only assessed for those held under light conditions. 229 

Identified FAs were first expressed as a percentage of the total FAs identified in each sample 230 

and designated as X:YωZ, where X in the number of carbons, Y is the number of double bonds 231 

and Z is the position of the ultimate double bond from the terminal methyl. The ratio of 232 

DHA/EPA77 and the ‘diatom index’ of Antonio & Richoux84 were employed as diatom and food 233 

quality indicators for sediment and animals to assess the effects of microplastic contamination in 234 

addition to some other indicator FAs (Supp. table 1). 235 

Data analysis. The effects of microplastic additions and light on biochemical properties and FA 236 

biomarkers of the sediment and bivalves were assessed by separate two-way PERMANOVAs (v.7, 237 

PRIMER-E, Ivybridge, UK) based on Euclidean distances (Table 1). Euclidean distance matrices 238 

of biochemical sediment properties, nitrogen stocks and bivalve reburial rates were used to assess 239 

the effects of microfiber additions and to determine if the effects were modulated by the light 240 

conditions of the experiment (light/dark). Relationships between MPB quality indicators and 241 
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sediment properties (Supp. Table 1 and Table 1) were then explored and visualized using principal 242 

components analysis (PCO,98). All data used in PCO analyses were normalized using a fourth-root 243 

transformation. No FA biomarkers were included in the multivariate analysis, as data were only 244 

available for the control and highest microplastic additions (0g & 0.5g treatments).  245 

Results & discussion 246 

Effects on sediment microbial communities. Sediments are a known sink for microplastic7,10, 247 

and MPB communities will undoubtedly interact with microplastics depositing on soft sediments 248 

due to their position at the sediment-water interface. Nonetheless, few studies that have 249 

investigated the influence of microplastics on soft sediment MPB communities, although a number 250 

of studies have noted infaunal ingestion of microplastics can affect MPB biomass19. While up to 251 

95% of microplastics detected in soft sediments are fibers8,15,16 there are only a few studies on the 252 

influence of microfiber ingestion20,21and none that investigate the effects of microfibers on various 253 

compartments of benthic ecosystems including the MPB.  254 

In the present study, microfibers were added to surface sediments and incubated the sediments 255 

over a relatively long experimental period. Multivariate analysis on the Euclidean matrix of 256 

biochemical traits suggested that the light conditions of the incubation experiment and the 257 

microfiber additions resulted in interacting effects on MPB and sediment properties, infauna 258 

behavior and condition and sediment nutrient stocks (Table 1). The observed results were 259 

reinforced by principal components ordinations (Fig 1). The ordination illustrates a clear 260 

separation between the microfiber treatment groups with differences modulated by the light 261 

regime. Porewater NOx (-84%), sediment organic matter content of the sediment surface (-52%) 262 

and M. liliana burrowing activity (-51%) were highly correlated to the first PCO axis (72% 263 

variance explained).  264 
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Table 1: Results of univariate PERMANOVA tests for differences in sediment and biochemical 265 

properties using light regime and microplastic concentration as predictors.  266 

Compartment Parameter data Factor 
Pseudo-

F 

p (perm) 

or 

p (mc) 

 
Euclidean 

matrix 
all L * M 37.0 <0.001 

Sediment 
MPB biomass 

(chl a) 
all 

L 

M 

3.96 

110.72 

<0.01 + 

<0.001 

 OM% all L x M 4.85 <0.05 

 P (µM) all - - - 

 NH4
+ (µM) all M 3.56 <0.05 

 NOx (µM) all L x M 21.85 <0.001 

 
Cyano biomass 

(phycocyanin) 
all 

L 

M 

4.79 

2.73 

<0.05 

0.05 

 
BaFAs 

(C15:0+C17:0) 
all - - - 

 
Diatom index 

(sed) 

0g & 0.5g 

L only 
M 10.73 

<0.05 

(mc) 

 % EPA 
0g & 0.5g 

L only 
M 63.38 

< 0.01 

(mc) 

 EPA/DHA 
0g & 0.5g 

L only 
M 25.63 

<0.01 

(mc) 

M. liliana Reburial rate all M 47.1 <0.001 

 
Bivalve 

biomass 
all - - - 

 Lipid content L only M 14.65 <0.001 
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ω3:ω6 ratio 

(quality 

indicator) 

0g & 0.5g 

L only 
- - - 

 
Diatom index 

(biv) 

0g & 0.5g 

L only 
- - - 

 
DHA/EPA 

(biv) 

0g & 0.5g 

L only 
- - - 

Significant (P<0.05) main effects or interactions are displayed together with PERMANOVA 267 

Pseudo-F (number) and significance levels (p (perm) and p (mc) when monte carlo permutation 268 

tests were performed. 269 

 270 

The second PCO axis (13%) was correlated to the overall MPB (r=-0.40) and cyanobacteria (r=-271 

0.40) biomass (Fig 1), with the overall MPB biomass decreasing with microfiber additions in the 272 

light (Fig 2A). In control sediments, however, the MPB biomass increased significantly from 2µg 273 

g-1 at the start of the experiment to 14µg g-1 at the end under light conditions (Fig 2A), indicating 274 

MPB growth under these conditions. Fatty acid biomarkers associated with diatoms were only 275 

processed for the extreme ends of the treatment gradient; 0g (control) and 0.5g (highest) microfiber 276 

treatments respectively. However, these indicated a reduction in the proportion of diatoms with 277 

microfibers compared to controls (Fig 2B).  278 
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279 

Figure 1: Principal components ordination (PCO) of biochemical variables. PCO1 explained 280 

71.9% of the variation, PCO2 explained 13.1% while PCO3 (not presented) explained an 281 

additional 7.3% of the variation. Symbols: Black open symbols – light conditions; grey closed 282 

symbols – dark conditions. Shapes represent microfiber additions; triangles – 0g; inverted triangle 283 

– 0.01g; squares – 0.03g; diamonds – 0.1g; circles – 0.3g and stars – 0.5g microfiber additions. 284 

The correlation circle overlays measured variables that were influencing the dissimilatory between 285 

the samples. All data were fourth-root transformed prior to analysis. Chl_a – MPB biomass; C-286 

phyco – Cyanobacteria biomass; NH4
+ – porewater NH4

+ concentration (µM). NOx – porewater 287 

NOx (NO2
- + NO3

-) concentration (µM). Reburial – reburial rate of M. Liliana. OM – organic 288 

matter has been removed for clarity of the plot but lay in the same trajectory as NOx. 289 
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A B    290 

Figure 2: A) Mean (±SE) chlorophyll a content (MPB biomass) of the sediment surface for all 291 

microplastic treatments in light chambers (white bars) and dark chambers (grey bars). B) Mean (± 292 

SE) diatom index of the sediment surface for control (0g) and high (0.5g) microplastic treatments 293 

(n=3). 294 

MPB biomass and the proportion of diatoms were correlated with one another, so the reduction 295 

in overall biomass was related to the reduction in the diatoms (Fig 3A). This coincided with a small 296 

increase in the pigment, phycocyanin, associated with cyanobacteria, with microfiber additions 297 

(Fig 3B). This increase was apparent under both light and dark conditions, with higher microfiber 298 

additions (Fig 3B). These results suggest that increasing microfiber contamination has the potential 299 

to alter the MPB community composition and consequently the functional role of the MPB. For 300 

example, less nutritious diatoms which are a preferred food resource for benthic fauna, and more 301 

cyanobacteria will alter the nutritional quality of the basal food resource54 with implications for 302 

the marine foodweb.  303 
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A B  304 

Figure 3: A) Correlation between the diatom index and chlorophyll a content of the sediment 305 

surface (rs
2 = 0.71, P<0.05, n=3). B) Phycocyanin content (cyanobacteria biomass) of sediment as 306 

a function of microplastic additions. The concentrations are displayed for pre-incubated sediments 307 

(striped bars), and sediments incubated under light (white bars) and dark (dark bars) conditions.  308 

 309 

Changes to sediment nitrogen stocks were detected (Fig 4A-B). Porewater NOx was detectable 310 

in the dark, control sediments and remained close to the detection limits regardless of microfiber 311 

treatment (Fig 4B). Conversely, while porewater NOx in light sediments were within the detection 312 

limits of the auto-analyzer at the end of the experiment in controls, NOx was elevated with 313 

microfiber additions (Fig 4A). Furthermore, porewater NH4
+ increased with microfiber additions 314 

regardless of the light conditions (Fig 4B). Altered nutrient uptake by the MPB can be induced by 315 

other stressors and this can shift a system towards greater heterotrophy99, alter functional roles and 316 

restructure foodwebs100. Shifts in the microbial community (phycocyanin content) were correlated 317 

with porewater DIN concentrations (Fig 1 & Supp. Fig 2). The changes to nitrogen stocks  supports 318 
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the findings of Cluzard et al.50, who observed elevated NH4
+ during clam/microplastic incubations. 319 

Furthermore, shifts in the MPB community will alter their relationship with bacteria in the 320 

sediment101, with subsequent feedbacks to the MPB and nutrient pathways. Cluzard et al49 321 

proposed that the elevated NH4
+ detected in their study was due to a reduction in denitrifying 322 

bacteria or denitrification rates in the presence of microplastics, so this is warrants further 323 

investigation. 324 

A B  325 

Figure 4: A) Mean (±SE) porewater NH4
+ (µM) with increasing microplastic contamination (n=3). 326 

White bars – light conditions; grey bars – dark conditions. B) Mean (±SE) porewater NOx 327 

concentration (NO2
- & NO3

-, µM) with increasing microplastic contamination (n=3). 328 

Both autotrophs and heterotrophs have been shown to exploit microplastics as a carbon 329 

source102,103, therefore it seems plausible that cyanobacteria, and perhaps heterotrophic bacteria, 330 

were benefiting over diatoms, from the addition of microfibers. Blue-green algae can survive and 331 

even maintain growth in darkness under anaerobic, or reduced conditions104,105. In our dark 332 
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were on a 12 h light:dark cycle, resulting in a 12 h dark period. Mimicking natural light cycles 334 

restricts MPB oxygen production periods, while excluding it entirely in 24 h dark conditions. 335 

Cyanobacteria can turn sediments anaerobic within in minutes in the dark106, therefore it is 336 

plausible that cyanobacteria were benefiting both from the light regimes and the microfiber 337 

additions. Our results advocate that microplastics have the potential to influence the net stocks of 338 

NH4
+, and NOx in sediment, with consequences for nutrient cycling in soft sediment habitats. 339 

These effects may not only be isolated to coastal sediments in the photic zone, however, with 340 

microplastics increasingly recorded in deep-sea sediments7,37,107. The presence of microfibers were 341 

influencing benthic communities that are important players for various biogeochemical 342 

processes108–110 and altering sediment nutrient stocks in both light and dark conditions. This could 343 

have profound consequences for biogeochemical processes from coastal waters to shelf sea 344 

sediments. We therefore recommend further investigation of these interactions. 345 

The results of the univariate and multivariate analyses suggest that light conditions influence the 346 

interaction between photosynthesizing MPB, infaunal burrowing, nutrient pools and microfibers 347 

in the sediment. UV weathering is an important mechanism by which plastics degrade in the natural 348 

environment111 and previous studies have observed oxidative stress in cell-based bioassays due to 349 

the leachates from weathered polyethylene terephthalate (PET)112. UV weathering of the plastic 350 

fibers can result in the liberation of chemicals from the plastic into the surrounding environment112. 351 

Microfibers used in the present study were composed of PET, therefore the effects of fibers on 352 

MPB community changes, nutrient stores could potentially be the result of chemicals leaching 353 

from the fibers under UV lights. 354 

While no visual quantification or identification of MPB taxa was attempted, fixed diatom slides 355 

were inspected and indicated a shift towards smaller cells at higher microfiber concentrations 356 
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(Pers. Obs). Smaller diatom cells typically have lower nutrient requirements, turnover quicker and 357 

exhibit lower net productivity than larger cells113. This was likely related to the stress of the 358 

microfiber additions and/or the shift in competition between cyanobacteria, microbes and diatoms 359 

for available porewater nutrients. Due to the digestion of the MPB in H2O2, no visual assessment 360 

of cyanobacteria was possible from the slides but as noted above phycocyanin pigments associated 361 

with cyanobacteria increased. Higher turnover of small MPB cells and higher degradation rates 362 

would help explain the elevated sediment organic matter (OM) content observed at the highest 363 

microfiber additions with OM positively correlated to porewater NH4
+ (rs

2 = 0.56), NOx (rs
2 = 364 

0.54) and cyanobacteria biomass (rs
2 = 0.44). MPB are the primary source of labile organic matter 365 

in soft sediment systems114,115. Changes to the quality and quantity of this OM source has been 366 

previously been demonstrated to shift the balance between nitrogen recycling and nitrogen release 367 

processes116,117. Therefore, the detected changes in the quantity and quality of MPB during the 368 

present study, and the changes to nitrogen pathways that this caused was reflected in our elevated 369 

sediment nitrogen stocks. Both heterotrophic bacteria and cyanobacteria are able to fix nitrogen in 370 

low nitrogen systems in the absence of oxygen106,118 and as nitrogen fixers can utilize a wide range 371 

of carbon sources including those of lower quality 119. These organisms therefore have the potential 372 

to outcompete diatoms if biogeochemical processes were altered by increasing microplastic 373 

contamination. Adjustments to diatom-bacteria interactions can lead to taxonomical shifts in the 374 

MPB community as well as modifying biogeochemical processes101,114. Our results suggest this is 375 

particularly likely if the movement of deep-dwelling infauna was reduced, and the transport of 376 

nutrients to the MPB at the sediment-water interface is limited.  377 

Effects on deep dwelling deposit-feeder. Bioturbation can influence MPB communities and 378 

biogeochemical gradients by altering the transfer of sediment nutrients across the sediment-water 379 
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interface and stimulating biogeochemical processes120,121. In the present study, the burrowing 380 

activity of M. liliana was reduced, after long-term exposure to high microfiber additions regardless 381 

of the light regime (Fig 5A). The number of fibers ingested varied from 0 to 11 fibers per bivalve, 382 

with the length varying between 50 and 1400µm (Supp. Fig 3A-B). Less active bivalves from high 383 

microfiber treatments (0.3-0.5g), also exhibited reduced lipid energy reserves (up to 75% less) (Fig 384 

5B). This supports growing evidence that microplastics can decrease energy reserves in a variety 385 

of marine organisms21,39,44,45. M. liliana with lower energy reserves coincided with treatments 386 

containing lower quality and quantity of primary producers (Supp. Fig 4A, r2=0.81, P<0.05). As 387 

diatoms can dominate sediments that are moderately to highly bioturbated122, changes to the 388 

quantity and quality of MPB and an increase cyanobacteria could also be feedbacks caused by 389 

modified bivalve behavior which would reduce the transfer of porewater nitrogen up to the MPB 390 

on the sediment surface123. 391 

A B  392 

Figure 5: A) Mean (±SE) reburial time of M. liliana at increasing microplastic concentrations 393 

(n=3). No significant differences were observed between light (open circles) and dark (filled 394 
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circles) treatments across each microplastic concentration. Time >20 h represent organisms that 395 

remained on the sediment surface for the duration reburial trials. Polynomial curves were fitted to 396 

the light (dashed line) (y = 123.36x2 + 107.02x + 0.8058, r² = 0.98) and the dark (solid line, y = -397 

84.52x2 + 83.41x + 2.21, r² = 0.99) treatments and illustrate the mean reburial times increased with 398 

increasing microplastic contamination. B) Mean (± SE) of total lipid energy reserves in M. liliana 399 

tissue across increasing microplastic concentrations.  400 

 FA biomarkers from bivalve tissue such as the diatom index and DHA/EPA ratio are often used 401 

to assess the nutritional status of consumers124,125. Despite lower bivalve energy reserves and 402 

changes to the quality of the MPB community, these ratios were preserved in M. liliana tissues 403 

(Supp. Fig 4B). This suggests that although basal food quantity and quality were altered by the 404 

presence of microfibers, the quality of the bivalves was not affected over the timescale of the 405 

experimental exposure (40 days). However, the selective uptake or depletion of particular FAs 406 

over others may not occur over this short period. It is also likely that feeding activity of the bivalves 407 

was reduced as activity levels were lower. Similar Tellenid bivalves in Europe, Macoma balthica, 408 

modulate their dietary intake if food quality is low in order to conserve energy126 and it is likely 409 

that M. Liliana would conserve the essential FAs associated with diatoms over other lipids and 410 

FAs over this experimental period if their feeding was reduced.  411 

Adverse microplastic-effects on feeding activity has been demonstrated previously (Wegner et 412 

al., 2012). Through various feedbacks, we anticipate that these potential effects on the nutritional 413 

quality of the primary food resource may lead to long-term effects on the nutritional quality of the 414 

bivalves for higher trophic levels. We emphasize the need to investigate this area further with 415 

greater knowledge of both trophic and non-trophic interactions required to fully understand the 416 

potential implications. Despite a lack of changes in the FA quality of M. liliana, this study has 417 
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illustrate a reduction in the basal food quality and quality and a depletion in the overall lipid energy 418 

stores of the bivalves. Observed changes to the MPB community were related to lower overall 419 

energy reserves of the bivalves as well as the behavior of this functionally important deposit-420 

feeder. Changes to bivalve behavior feeds back to the quantity and quality of MPB123, which in 421 

turn leads to even less nutritious food resources for the bivalves and further depleting energy 422 

reserves and so forth. In addition to the influence of bioturbation on MPB, changes in grazing 423 

pressure can modify the MPB127. M. liliana are functionally similar to other tellenid bivalves found 424 

in sediments in the northern hemisphere such as Macoma balthica and Macomona arenaria 425 

(Hayward et al., 1996). We therefore stress the need to further explore the influence of 426 

microplastics on functionally important benthic organisms in these complex ecological networks.  427 

While the majority of studies to date have focused on the impact of microplastic ingestion in 428 

marine suspension feeding bivalves29,128, there is increasing evidence that deposit-feeding bivalves 429 

are also susceptible to microplastics pollution38,39. This is sensible given that deposit feeders graze 430 

at the sediment-water interface, and sediments are the ultimate sink for marine microplastics7,10. 431 

Changes in MPB19 and phytoplankton biomass62 have previously been noted but evidence of the 432 

complex feedbacks between functionally important organisms at the base of the benthic foodweb, 433 

caused by microplastics contamination is lacking. The direct and indirect effects of microfiber 434 

pollution and the feedbacks and interactions between functionally important organisms and 435 

processes requires further exploration. This is a relatively new area of research and therefore we 436 

must continue to increase the complexity of the systems we study in the laboratory in order to 437 

detect potential shifts in ecosystem structure and functions that underpin ecosystem service 438 

delivery.  439 
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Our results suggest that microfiber additions may influence the interactions between the MPB, 440 

microbes and infauna with ramifications for ecosystem functions such as nutrient cycling and 441 

productivity if the MPB community is altered. This suggests that over and above issues related to 442 

ingestion such as gut blockage, false satiation and bioaccumulation in higher organisms, the 443 

structure and function of soft sediment ecosystems and the foundation of our marine foodwebs 444 

could potentially be influenced. We know that MPB and infauna play significant roles in elemental 445 

cycling due to their interactions with the microbial community121,129 and our observations stress 446 

that microplastics have the potential to alter the interactions and feedbacks that involve MPB, 447 

infauna and N-cycling microbial communities55,120. We suggest that future investigations quantify 448 

changes to both nutrient and gas fluxes, as well as determining compositional changes to the 449 

microbial community in addition to MPB, as we believe this is an attractive avenue of future 450 

research.  451 

Soft sediment systems around the world are under pressure from not only microplastic 452 

contamination but increasing nutrient and sediment loads 130,131. We must comprehend the 453 

potential influence of microplastic accumulation on soft sediment ecological networks. In 454 

particular, the interactions between microplastics, soft sediment ecological communities and 455 

ecosystem functions such as nutrient cycling in the face of multiple anthropogenic pressures. 456 
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