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Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia worldwide. The
prevalence of the disease increases with age, strongly implying an age-related
process underlying the pathology. At a time when people are living longer than
ever before, an exponential increase in disease prevalence is predicted
worldwide. Hence unraveling the underlying mechanics of the disease is
paramount for the development of innovative treatment and prevention
strategies. The role of voltage-gated sodium channels is fundamental in cardiac
electrophysiology and may provide novel insights into the arrhythmogenesis of
AF. Nav1.5 is the predominant cardiac isoform, responsible for the action
potential upstroke. Recent studies have demonstrated that Nav1.8 (an isoform
predominantly expressed within the peripheral nervous system) is responsible
for cellular arrhythmogenesis through the enhancement of pro-arrhythmogenic
currents. Animal studies have shown a decline in Nav1.5 leading to a diminished
action potential upstroke during phase 0. Furthermore, the study of human tissue
demonstrates an inverse expression of sodium channel isoforms; reduction of
Nav1.5 and increase of Nav1.8 in both heart failure and ventricular hypertrophy.
This strongly suggests that the expression of voltage-gated sodium channels play
a crucial role in the development of arrhythmias in the diseased heart. Targeting
aberrant sodium currents has led to novel therapeutic approaches in tackling AF
and continues to be an area of emerging research. This review will explore how
voltage-gated sodium channels may predispose the elderly heart to AF through
the examination of laboratory and clinical based evidence.

Key words: Voltage-gated; Sodium channels; Ageing; Atrial fibrillation; Nav1.5; Nav1.8;
Late sodium current; Cardiac electrophysiology
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Core tip: Nav1.8 has been implicated by multiple studies in producing the late sodium
current, predisposing the cardiomyocyte to arrhythmogenic activity. Animal models have
demonstrated an enhancement of this aberrant current in aged hearts. Human studies
have identified a reduction of Nav1.5 and an increase in Nav1.8 in both heart failure and
left ventricular hypertrophy, strongly suggesting that voltage-gated sodium channel
expression plays a central role in the development of arrhythmia. Clinically, sodium
channel blockade through Ranolazine has proved promising in terminating the
arrhythmia. Prevention of atrial fibrillation should focus on lifestyle management, as
well as targeting cardiac risk factors. Irbesartan has been demonstrated to slow atrial
remodelling, prevent atrial fibrillation in animal models, as well as avert the arrhythmia
in human subjects.

Citation: Isaac E, Cooper SM, Jones SA, Loubani M. Do age-associated changes of voltage-
gated sodium channel isoforms expressed in the mammalian heart predispose the elderly to
atrial fibrillation? World J Cardiol 2020; 12(4): 123-135
URL: https://www.wjgnet.com/1949-8462/full/v12/i4/123.htm
DOI: https://dx.doi.org/10.4330/wjc.v12.i4.123

INTRODUCTION
Atrial fibrillation (AF) is the most common cardiac arrhythmia affecting an estimated
33.5 million people worldwide[1]. Prevalence of AF increases with age; 2.8% of the
affected population under the age of 45, 16.6% between 45-65 and 80.5% aged 65 and
over[2]. Altered expression of sodium channel isoforms associated with ageing has
been demonstrated in animal models[3,4] though yet to be identified within the human
heart. Furthermore, mutations in the SCN5a gene coding for the predominant Nav1.5
isoform are strongly associated with a spectrum of cardiac arrhythmias including;
Long QT syndrome, Brugada’s syndrome and AF[5-8].  Unravelling the mechanistic
processes that underlie rhythm disturbances in the pathogenesis of AF is a paramount
strategic  goal  to  enable  the  development  of  innovative  therapies  for  both  the
prevention and treatment of the condition.

EPIDEMIOLOGY AND HEALTHCARE BURDEN OF AF
When age alone is considered as a major risk factor for developing AF[9], an ageing
population will inevitably give rise to an increased prevalence of the arrhythmia. The
European Union predicts the incidence of AF to more than double in it's over 55
populous by 2060[10].  More immediately worrying projections are estimated in the
United States from 5.2 million cases in 2010 to 12.1 million by 2030[11].  AF carries
significant morbidity with sufferers at notably higher risk of stroke[12], heart failure[13],
myocardial infarction[14] and death[15]. Inpatient hospitalization specifically due to AF
continues to rise by roughly 1% a year, placing a significant burden on healthcare
resources[16].

Over five years, the direct cost of AF in the United Kingdom rose dramatically from
£244  million  to  £458  million,  taking  into  account  hospitalisation  and  drug
expenditure. Appreciating the cost of long term nursing home care as a consequence
of the condition tallied an additional £111 million in the year 2000, more than double
that in 1995[17]. Hospital care burden of AF continues to escalate around the globe with
Korea claiming a rise of 420% between 2006-2015. The majority of these cases were
due to major bleeding as a consequence of anticoagulation. The majority of patients
were 70 years and older and the total cost of care for AF related hospital admissions
rose from €68.4 million to €388.4 million over 9 years[18].

Further to the concerning rise in the prevalence of AF, placing a significant burden
on healthcare resources worldwide; the consequences of current therapeutic strategies
addressing the potentially fatal pro-thrombotic risks of AF, have inadvertently led to a
sharp  rise  in  hospital  admissions  due  to  adverse  effects  of  said  treatment.
Appreciating the role of voltage-gated sodium channels (VGSCs) in the development
of AF offers a fresh perspective on therapeutic approaches.
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VOLTAGE-GATED SODIUM CHANNELS
VGSCs are transmembrane protein complexes that produce the depolarising influx of
sodium ions at the initiation and duration of the action potential (AP)[19]. There are
nine subtypes of VGSCs that are expressed within the mammalian class. Each isoform
has specific features; activation/inactivation voltage threshold, amino acid sequence,
and gene. VGSCs are expressed proportionately differently depending on the bodily
tissues. The standardised nomenclature for these channels was first proposed by
Goldin et al[20] in the year 2000. Nav 1.1, 1.2, 1.3 and 1.6 are predominantly expressed in
the central nervous system[21]. Nav1.4 is dominant in skeletal muscle. Nav 1.5 is the
predominant cardiac isoform, making up nearly 90% of all sodium channel isoforms
expressed in the heart; responsible for over two-thirds of the total sodium current[22].
Finally,  Nav  1.7,  1.8  and 1.9  are abundantly expressed in the peripheral  nervous
system[23] (Table 1).

CARDIAC SODIUM CURRENTS AND ARRYTHMOGENISIS

Fast and late sodium currents
The sodium current (INa) can be appreciated as two phases; the peak (fast) sodium
current and the late (slow) sodium current (INaL). The majority of the depolarizing Na+

current  is  generated  by  the  fast  INa  of  which  Nav1.5  the  predominant  channel
responsible. This produces the AP upstroke and “maximum upstroke velocity” (Vmax).
The late sodium current is produced by a slow, steady influx of Na+ which persists
throughout the AP. These two currents determine not only the peak of the AP and
velocity of depolarisation but also in shaping AP morphology through the length of
the plateau phase, repolarisation and therefore the refractory period. As illustrated in
(Figure  1)  an  enhanced  INaL  prolongs  AP  duration.  This  is  directly  linked  to
afterdepolarizations-a symptom of cellular electrical instability[24-26].

Afterdepolarizations
Afterdepolarisations describe the spontaneous, delayed depolarization of the cell due
to abnormal ion flux during the AP. An abnormally enhanced influx of Na+ underlies
improper calcium handling leading to afterdepolarizations[25,27].  The depolarising
sodium currents activate the influx of calcium through Cav1.2 channels. This triggers a
calcium-induced calcium release from the sarcoplasmic reticulum via RyR2 receptors.
A key process in excitation-contraction coupling. Overloaded cytosolic Ca2+ must be
removed by the Ca2+/Na+ exchanger[27], widely accepted although still debated, three
Na+ ions move into the cell for one Ca2+ ion out leading to an overall positive charge
and therefore a further depolarising current[25]. The late sodium current (INaL) plays a
pivotal  role  in this  pathological  development[24-29].  An unusually heightened late
current slows repolarization of the cell due to an uncharacteristically persistent influx
of Na+ ions maintaining a positive membrane potential. Nav1.8 has been specifically
implicated in this process as blocking the channel has been shown to reduce the late
sodium  current,  suppressing  the  development  of  afterdepolarizations  in  the
ventricular myocytes of mice and rabbits[30].

Gene mutation of the cardiac isoform in AF
Mutations in the SCN5a gene encoding for the Nav1.5 isoform aid our understanding
of cardiac sodium currents as they are strongly associated with a spectrum of cardiac
arrhythmias  including;  Long  QT  syndrome,  Brugada’s  syndrome  and  AF[5-8].
Mutations in the SCN5a  gene may penetrate as either gain-of-function or loss-of-
function of the Nav1.5 channel (Figure 2).

Gain-of-function describes a phenomenon where the sodium influx is enhanced
due to aberrant channel gating; incomplete inactivation or late inactivation of the
channel at more depolarized potentials. This enhances the late current, prolonging AP
duration, leading to afterdepolarizations described above[26].

Loss-of-function mutations lead to a lower expression of Nav1.5 or the expression of
faulty channels. Mutated channels exhibit altered functionality of the voltage-sensor
domain,  meaning  poor  availability  of  Na+  ions;  channels  are  activated  at  more
depolarized potentials and inactivated at less depolarised potentials[31,32]. This leads to
a diminished AP upstroke and slowed depolarisation of the cardiomyocyte.

With regards to AF, both loss-of-function and gain of function mutations have been
identified in familial forms of the disease[6,33,34]. Loss-of-function mutations increase the
risk of AF due to decelerated conduction throughout the atria as a consequence of
poor Na+ availability. Gain-of-function variants lead to hyperexcitable cardiomyocytes
due to prolonged INaL.
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Table 1  Properties of voltage-gated sodium channel isoforms

Voltage-gated sodium channel
isoform Tissue Gene Amino acid length Activated Inactivated Associated β-

subunit

Nav1.1 Brain SCN1A 2009aa (human and rat) -33 mV -72 mV β1, β2, β3, β4

Nav1.2 Brain SCN2A 2005aa (human); 2006aa
(rat)

-24 mV -53 mV β1, β2, β3, β4

Nav1.3 Brain SCN3A 1951aa (human and rat) -23 to -26 mV -65 to -69 mV β1 and β3

Nav1.4 Skeletal muscle SCN4A 1836aa (human); 1840aa
(rat)

-26 to -30 mV -56 mV β1

Nav1.5 Heart SCN5A 2016aa (human); 1951aa
(rat)

-47 mV -84 mV β1, β2, β3, β4

Nav1.6 Brain SCN8A 1980aa (human); 1976aa
(rat)

-37.7 mV -98 mV β1 and β2

Nav1.7 PNS SCN9A 1977aa (human); 1984aa
(rat)

-31 mV -61 to -78 mV β1 and β2

Nav1.8 PNS SCN10A 1957aa (human) -16 to -21 mV -30 mV Not established

Nav1.9 PNS SCN11A 1792aa (human); 1765aa
(rat)

-47 to -54 mV -44 to -54 mV Not established

Illustrating the standardised nomenclature, regional tissue where the isoform predominantly located, gene, amino acid length, activation and inactivation
membrane potentials and associated beta subunits. PNS: Peripheral nervous system; aa: Amino acids; mV: millivolts. Adapted from Catterall et al[23], 2005,
with permission.

Role of non-cardiac isoforms in arrhythmogenesis
Nav1.8 has been identified as responsible for producing the late sodium current and
consequent arrhythmia in both mouse and human subjects[26,28,30,35]. Nav1.8 is coded by
the  SCN10a  gene.  Unlike  its  neuronal  counterparts  Nav1.8  is  resistant  to  the
neurotoxin and sodium current blocker TTX- a functional similarity to the cardiac
isoform. In the human chromosome, the gene is located adjacent to SCN5a and shares
65% of its amino acid sequence[36]. Its close genetic and functional kinship to Nav1.5,
coupled with a strong association in underpinning arrhythmogenic APs has made
Nav1.8 a target of close study in recent years[37].

From a clinical perspective, we appreciate that patients with cardiovascular risk
factors and co-morbidities are more likely to develop arrhythmia[38]. The mechanistic
role of VGSCs underlying this clinical observation is of great interest. Dybkova et al[28]

at  the  German  Centre  for  Cardiovascular  Research  demonstrate-in  human  left
ventricular myocytes- a significant upregulation of Nav1.8 coupled with reduced
expression of Nav1.5 in patients with heart failure. Furthermore, they illustrate that
Nav1.8 contributes to AP duration and inhibition decreases the late sodium current
suppressing cellular proarrhythmogenic triggers[28]. This is significant as not only does
this  support  the  literature  in  implicating  Nav1.8  to  the  late  current  and
arrhythmogenesis, but it also begins to identify a deeper pathophysiological process
of the diseased heart and its susceptibility to arrhythmia.

The failing heart will express greater amounts of the CNS isoform which is a less
excitable  channel,  needing  a  much  higher  membrane  potential  for  activation
(activated  at-16mV  to  -21mV  as  opposed  to  -41mV  for  Nav1.5).  Hence  cellular
depolarisation is  slowed.  Its  inactivation is  at  -31mV as opposed to -84mV. This
difference in gating mechanics of Nav1.8 allows Na+ influx during the plateau &
repolarisation phase predisposing the myocyte to afterdepolarizations. The loss of Nav

1.5 means the availability of Na+ through open sodium channels in phase 0 of the AP
is reduced. Reduced expression of Nav1.5 will mimic the effect of a loss-of-function
mutation; Vmax will be diminished with a delayed AP upstroke as illustrated in (Figure
3).

The same research group further published similar results with regards to the role
of Nav1.8 to the late current and the same inverse relationship of isoform expression in
patients was also seen in patients with left  ventricular hypertrophy[39].  The same
observation of inversed VGSC expression in two separate-though closely related-
disease entities offers a deeper appreciation of why patients suffering from cardiac
illness are more susceptible to developing arrhythmia.

WJC https://www.wjgnet.com April 26, 2020 Volume 12 Issue 4

Isaac E et al. Role of sodium channels in atrial fibrillation

126



Figure 1

Figure 1  Peak and Late sodium currents on action potential morphology. A: Top left: An illustration of a normal sodium current within a cardiomyocyte with its
rapid peak current and short late current; Bottom left: An action potential as a result of normal sodium ion influx. Plateau and repolarisation phases are not prolonged
and no afterdepolarizations present; B: Top right: An Illustration of a pathologically enhanced late sodium current; Bottom right: An action potential as a consequence
of enhanced late sodium current with a prolonged plateau and repolarisation period. The late upstroke between phase 2 and phase 3 represents an after
depolarisation brought about due to the aberrant late sodium current. Adapted from Vadnais et al[74], 2010 with permission.

AGEING HEART
At a time where people are living longer than ever before, age-associated pathologies
are  becoming  ever  more  commonplace  in  medical  practice.  A  myriad  of
cardiovascular diseases are recognised to be heavily associated with the ageing heart
including;  AF,  left  ventricular  hypertrophy,  heart  failure  and  ischaemic  heart
disease[40]. Remodelling describes the adaptation of the structure and function of the
heart to allow it to meet physiological demand. During the ageing process, the heart
undergoes four forms of remodelling; electrical, ionic, functional and structural[41].

AF will lead to progressive remodelling of the atria which in turn will promote
abnormalities in each of these categories[42].  Functional remodelling describes the
mechanical deterioration of the heart with age. This impairs the hearts central role in
delivering oxygenated blood to bodily tissues. The aged heart demonstrates a decline
in heart rate, reduced beat to beat variation, and significant myocardial stiffness due
to fibrosis[43]. Fibrosis promotes AF due to interrupting the continuity of fibre bundles
hence leading to  a  disruption of  normal  electrophysiology;  impaired cell-to-cell
signalling and diminished conduction velocity[44,45].

A major characteristic of electrical remodelling of the aged heart, and one central to
the development of AF, is compromised pacemaker function. Sinoatrial node (SAN)
loses automaticity with age due to poor excitability of SAN myocytes[46]. The loss of
pacemaker function of the SAN underpins the development of ectopic focal points
throughout  the  atria.  The uncoordinated electrical  firing of  multiple  foci  means
irregular contraction of the atria. Random impulses pass through the bundle of hiss to
the ventricles meaning irregular ventricular contraction. This process is illustrated in
the characteristic uneven baseline trace and irregularly timed QRS complexes on the
electrocardiogram (ECG) of a patient with AF.

Electrophysiological remodelling leads to deviation of the normal action potential.
This is ultimately underpinned through the changes of ion channel expression and
function. With regards to VGSCs, Multiple sodium ion transcripts are downregulated
with  age  leading  to;  shortened  AP  upstroke,  impaired  Vmax,  and  prolonged  AP
duration[47]. Currently, there no studies comparing the expression of this channel with
age in human subjects.

We  know  that  VGSCs  play  a  role  in  maintaining  the  plateau  phase  and  the
refractory period. The prolonged refractory period is a common feature of the elderly
heart demonstrated in animal models[47,48]. A study by Baba investigating the sodium
current in aged and adult canines produced contradicting results, concluding that
there was no change in INa density in aged atrial cells and no structural remodelling of
the fast Na+ current with age[49]. These results stand fairly solitary contradicting a large
body of evidence suggesting otherwise. Anyukhovsky et al[50] also carried out canine
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Figure 2

Figure 2  Gain of function effects of SCN5a mutations on channel gating. Top left: Curves illustrating the fraction of channels activated (white squares) and the
fraction of channels inactivated (grey squares) vs membrane potential. Green squares demonstrate the effect of a gain of function mutation resulting in incomplete
inactivation of sodium channels at higher membrane potentials. This results in a higher fraction of channels inappropriately activated for a longer period, therefore
developing an enhanced late current (Bottom left); Top right: Curves illustrating the delayed inactivation of sodium channels due to gain of function mutations resulting
in an increased window current where channels may reactivate, again leading to increased late current; Bottom right: A normal action potential (blue) and an action
potential with a prolonged plateau and repolarisation phases (green) as a consequence of faulty sodium channel gating mechanics brought about by gain of function
mutations in SCN5a gene leading to aberrant sodium currents. Adapted from Wilde et al[75], 2018, with permission.

studies investigating the effects of age and noted a significantly longer AP duration in
aged dogs hence predisposing them to AF.

Currently, there is a niche within the literature for the study of the age-associated
expression of cardiac sodium channels in human subjects. We would expect to see a
reduction in Nav1.5 and upregulation of non-cardiac isoforms, particularly Nav18 in
keeping with the literature[28,39]. Even so, the mechanisms of altered expression are
poorly understood, though likely ties closely with the effect of stress age and disease
places on the heart. Figure 4 shows the visual schematic representing the relative
gating kinetics of Nav1.5 and Nav1.8.

SODIUM CHANNEL BLOCKADE AS A NOVEL THERAPUTIC
TARGET FOR AF
A-803467 is a specific blocker of the Nav1.8 channel. It has been successfully utilised in
several  studies  in  diminishing  the  INaL  and  restoring  normal  AP  morphology.
Furthermore, it has been demonstrated to prevent electrical remodelling and reduce
the incidence and duration of paroxysmal AF in canines[51]. Blocking the 1.8 channel
using this agent has also been shown to suppress ventricular arrhythmia induced via
acute ischaemia[52]. Further research into the clinical use of this agent, or one of similar
pharmacodynamics, is needed as results so far have only been achieved in laboratory
settings.

Traditionally, pharmacological treatment for AF has mainly been focused around
the use of Amiodarone (class III arrhythmic), Digoxin (cardiac glycoside), β-blockers
such as Sotalol as well as calcium channel blockers Diltiazem and Verapamil. These
are the drugs currently recommended for the management of AF by the National
Institute for Health Care Excellence (NICE) guidelines. Sodium channel blockade is a
novel therapeutic approach in the management of AF and a rapidly emerging field of
research with promising clinical implications. Table 2 summarises the family of class I
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Figure 3

Figure 3  Loss of function effects of SCN5a mutations on channel gating. Top Left: Curves illustrating the fraction of channels activated (white squares) and the
fraction of channels inactivated (grey squares) vs membrane potential. Orange squares represent the effect of loss of function mutation on channel activation, the
white curve is shifted to the right demonstrating a delay; Top right: Orange squares here represent the effect of loss of function mutation on channel inactivation. The
grey curve is shifted to the left demonstrating early inactivation. Both of these effects mean a reduction in Na+ availability and a decreased peak sodium current
(Bottom left); Bottom right: A normal action potential (blue) juxtaposed alongside an action potential due to a loss of function mutation (orange). Action potential
upstroke is diminished and slowed. Adapted from Wilde et al[75], 2018, with permission.

antiarrhythmic drugs. Sodium channel blockers are more frequently used for the
termination  of  ventricular  arrhythmias  as  opposed to  atrial  tachycardia.  Of  the
clinically available sodium channel blockers,  Ranolazine is  of  particular interest.
Multiple studies have illustrated its efficacy in terminating atrial tachyarrhythmia
through specific blockade of the proarrhythmogenic late sodium current, reducing the
risk of adverse electrophysiological effects.

Ranolazine is presently the only Vaughan-Williams class I antiarrhythmic drug of
its kind. It is currently within the recommended NICE protocol for the treatment of
stable angina[53]. It is a potent blocker of the late sodium current and also shown to
mildly inhibit other ion currents such as Ikr,  and Ica

[54].  It is specific in not only for
targeting  INaL,  but  also  atrial  myocytes  compared  to  ventricular  myocytes[55].  Its
selectivity  for  the  late  sodium  current  is  three  times  that  of  the  peak  current,
demonstrating its superiority over Flecanide[56]. Its efficacy in native cardiomyocytes
was just as potent as it was in experimental conditions[57,58]. A clinical trial in 2007
investigated the efficacy of Ranolazine as an anti-anginal medication.  Total  6560
patients admitted with non-ST elevation myocardial infarction were randomised to
receive either Ranolazine or a placebo. Patients had continuous ECG monitoring
during  their  hospital  stay.  The  Ranolazine  group  had  a  significantly  reduced
incidence of ventricular tachycardia (P ≤ 0.001) and although the incidence of new-
onset AF was low in both groups, the intervention arm also showed a statistically
significant reduction compared to control[59].

Since its initial promising pre-clinical and clinical investigation, Ranolazine has
continued to produce spectacular results including: terminating acutely induced AF
in horses through cardioversion[60],  found to be protective against  AF in chronic
ischaemic heart disease[61] and even effective in the conversion of postoperative AF in
cardiac surgery[62]. The randomised control trial HARMONY tested the efficacy of
Ranolazine in reducing “AF Burden” in patients with paroxysmal AF and those with
implanted pacemakers over 12 wk. This was qualified through clinical laboratory
tests,  ECGs and symptom diaries.  On its  own it  did not  significantly reduce AF
burden,  however when paired with a  moderate  dose of  dronedarone had a 59%
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Figure 4

Figure 4  Visual Schematic representing the relative gating kinetics of Nav1.5 and Nav1.8. Nav1.5 represented
by the double-headed blue arrow activates at -41 mV and deactivates at -83 mV. Nav1.8 represented by the double-
headed orange arrow activates at -16 mV and deactivates at -31 mV.

reduction  in  AF  burden,  including  fewer  AF  outbreaks  and  improved  patient
symptoms[63]. The clinical applications of Ranolazine continue to impress. It has been
superior in and preventing and terminating post-operative AF when combined with
amiodarone, compared to conventional chemical cardioversion-especially in patients
undergoing coronary artery bypass grafting. In the RAFAELLO trial, 241 patients
with AF who underwent electrical cardioversion received either 350 mg, 500 mg or
750 mg twice daily of Ranolazine or a placebo. Patients tolerated the drug well and
the higher dose arms of the trial showed a significant reduction in AF recurrence[64].

The evidence supporting the efficacy of Ranolazine beyond that of an anti-anginal
medication continues to accumulate.  However,  there are key questions yet  to be
answered  regarding  its  clinical  use.  The  long-term  effects  of  the  drug  are  still
unknown due to its novelty. Also, whether it can be used as a stand-alone medication
for the treatment and prevention of patients with AF-outside of a surgical context is
unclear. Furthermore, the potential benefit of the drug in preventing AF in the elderly
population is yet to be studied. None-the-less, Ranolazine has hugely expanded the
potential for sodium channel blockade as an antiarrhythmic strategy both in pre-
clinical and clinical trials.

PREVENTION OF AF

Lifestyle
Research has shed much light on the mechanics of VGSCs in arrhythmia as well as
beginning to offer novel therapeutic approaches. Primary prevention strategies are
much the  same focusing  upon common modifiable  cardiac  risk  factors;  obesity,
smoking, alcohol,  hypertension, hypercholesterolaemia and diabetes[65].  First and
foremost, lifestyle management is the cornerstone of a healthy heart and should be the
first approach to disease prevention by primary care physicians. Adherence to healthy
lifestyle moderates the risk of cardiovascular disease[66] and addressing these issues
early significantly reduces one’s risk of AF and its consequent complications[67].

However, obesity continues to plague the western world. The United Kingdom
parliament published a report in August 2019 claiming 28.7% of adults in England are
obese and a further 35.6% are overweight[68]. The causes of such drastic figures are
manifold and beyond the  scope of  this  review.  However,  what  is  clear  is  that  a
concerning proportion of the population is at risk for the development of cardiac
disease. Prevention should aim at tackling the root of pathology before medication
becomes necessary. This holds especially true of modifiable cardiac risk factors.

In China, a recent study by Cai et al[69] aimed to investigate how community-based
lifestyle  intervention  in  the  obese  over  60  populous  affected  weight  loss  and
cardiometabolic  risk  factors.  The  intervention  arm  of  the  study  demonstrated
significant weight loss as well as; blood pressure, waist circumference, fasting blood
glucose,  triglycerides,  high-density  lipoprotein  and  low-density  lipoprotein
cholesterol This study demonstrates that adherence to a healthy lifestyle through
community-based interventions is effective at reducing cardiovascular risk factors[69].

Medication
Failing lifestyle intervention, early detection and medical management of risk factors
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Table 2  Summary of sodium channel blockers (class I antiarrhythmics)

Drug Subclass Pharmacological
targets

Electrophysiological
effects

Corresponding
therapeutic
mechanisms

Major clinical
applications

Quinidine; ajmaline;
disopyramide

Ia Nav1.5 open state;
intermediate
dissociation kinetics;
often concomitant K+
channel block

Reduction in peak INa,
AP generation,
increased excitation
threshold; slowing of
AP conduction in the
atria, ventricles, and
specialized conduction
pathways; concomitant
IK block increasing AP
duration and refractory
period, increase in QT
interval

(1) Reduction in ectopic
ventricular/atrial
automaticity; (2)
Reduction in accessory
pathway conduction;
and (3) Increase in
refractory period
decreasing re-entrant
tendency

SVTs, recurrent AF, VT,
VF

Lidocaine; mexiletine Ib Nav1.5 open state; rapid
dissociation; window
current

Reduction in peak INa,
AP generation with
increased excitation
threshold; slowed AP
conduction in the atria,
ventricles and
specialised ventricular
conduction pathways;
shortening of AP
duration and refractory
period in normal
ventricular and Purkinje
myocytes; prolongation
of ERP, reduced
window current in
ischaemic, partially
repolarised cells. Little
ECG effect, slight QTc
shortening

(1) Reduction in ectopic
ventricular automaticity;
(2) Reduction in DAD-
induced triggered
activity; and (3)
Reduced re-entrant
tendency by converting
unidirectional to
bidirectional block
particularly In
ischaemic, partially
depolarised
myocardium

VT and VF particularly
after myocardial
infarction

Propafenone; flecainide Ic Nav1.5 inactivated state;
slow dissociation

Reduction in peak INa,
AP generation with
increased excitation
threshold; slowing of
AP conduction in atria,
ventricles, and
specialised ventricular
conduction pathways;
reduced overall
excitability;
prolongation of APD at
higher heart rates;
increase in QRS
duration

(1) Reduction in ectopic
ventricular/atrial
automaticity; (2)
Reduction in DAD-
induced triggered
activity; and (3)
Reduced re-entry
tendency slowed
conduction and reduced
excitability particularly
at rapid heart rates
blocking re-entrant
pathways showing
depressed conduction

SVTs (atrial tachycardia,
atrial flutter, AF,
tachycardias involving
Accessory pathways).
Ventricular
tachyarrhythmias
resistant to other
treatment in the absence
of structural heart
disease, premature
ventricular contraction,
catecholaminergic
polymorphic VT

Ranolazine Id Nav1.5 late current. Reduction in the late
Na+ current, affection
AP recovery,
refractoriness,
repolarisation reserve
and QT interval

(1) Decrease in AP
recovery time; and (2)
Reduction in EAD-
induced triggered
activity

Stable angina, VT. A
new class of drug for the
management of atrial
tachyarrhythmias

Highlighting subclassification, pharmacological targets, electrophysiological effects, therapeutic mechanisms and clinical applications. AP: Action
potential; SVT: Supraventricular tachycardia; DAD: Delayed afterdepolarizations; EAD: Early afterdepolarizations; ERP: Effective refractory period.
Adapted from Lei et al[76], 2018, with permission.

is paramount. Irbesartan is a commonly prescribed angiotensin receptor blocker used
to treat hypertension. Its renal safety profile allows for the drug to be administered to
patients undergoing haemodialysis  under NICE guidelines.  As such,  it  warrants
consideration for elderly patients in whom kidney function may be impaired due to
age or polypharmacy. Interestingly, Irbesartan has been demonstrated to prevent
sodium channel remodelling and improved intra-atrial conduction in canine models
of  AF[70].  Canine  studies  have  also  demonstrated  its  efficacy  in  reducing  the
progression of atrial fibrosis[71].

It’s potential for AF suppression in human studies was investigated by the SILK
study. The drug did not appear to have an advantage over Amlodipine in preventing
AF recurrence in patients who have had ablation or electrical cardioversion for the
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arrhythmia[72]. However, this relatively small-scale clinical trial of 98 patients already
with the condition does not discredit the potential preventative benefits of the drug. A
meta-analysis of randomized controlled trials tallying a total of 13184 patients found
that  recurrence  of  AF  was  significantly  reduced  in  patients  using  angiotensin-
converting-enzyme inhibitors  and angiotensin receptor  blockers.  Irbesartan was
found to be particularly effective[73].  The collective evidence from laboratory and
clinical  studies  suggests  that  Irbesartan  certainly  warrants  consideration  as  a
preventative strategy of AF, particularly in elderly patients where renal function may
be compromised.

CONCLUSION
The role of VGSCs in cardiac arrhythmia is fundamental, proving to be an exciting
and rapidly emerging field of research. In recent years much light has been shed on
the role of Nav1.8 in the arrhythmogenic process.  New approaches targeting this
channel in the treatment of arrhythmia have proved promising. To date, the emphasis
of lifestyle management, and early medical intervention in the prevention of cardiac
disease cannot be overstated. As we explore the mechanics of AF in both laboratory
and clinical settings, our understanding of cardiac electrophysiology continues to
evolve from the world of basic science through to the heart of clinical practice.
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