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Abstract 

Monoclonal antibodies (mAbs) have become one of the fastest growing markets for diagnostic 

and therapeutic treatments over the last 30 years with a global sales revenue around $89 billion 

reported in 2017. A popular framework widely used in pharmaceutical industries for designing 

manufacturing processes for mAbs is Quality by Design (QbD) due to providing a structured 

and systematic approach in investigation and screening process parameters that might influence 

the product quality. However, due to the large number of product quality attributes (CQAs) and 

process parameters that exist in an mAb process platform, extensive investigation is needed to 

characterise their impact on the product quality which makes the process development costly 

and time consuming. There is thus an urgent need for methods and tools that can be used for 

early risk-based selection of critical product properties and process factors to reduce the number 

of potential factors that have to be investigated, thereby aiding in speeding up the process 

development and reduce costs. 

In this study, a framework for predictive model development based on Quantitative Structure-

Activity Relationship (QSAR) modelling was developed to link structural features and 

properties of mAbs to Hydrophobic Interaction Chromatography (HIC) retention times and 

expressed mAb yield from HEK cells. Model development was based on a structured approach 

for incremental model refinement and evaluation that aided in increasing model performance 

until becoming acceptable in accordance to the OECD guidelines for QSAR models. 

The resulting models showed that it was possible to predict HIC retention times of mAbs based 

on their inherent structure. Further improvements of the models are suggested due to 

performance being adequate but not sufficient for implementation as a risk assessment tool in 

QbD. However, the described methodology and workflow has been proven to work for retention 

time prediction in a HIC column and is therefore likely to be applicable to other purification 

columns. 
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Introduction  

Monoclonal antibodies (mAbs) are therapeutic proteins that have gained increasing popularity 

and importance over the last three decades mainly due to their clinical specificity and safety as 

treatments, but also because they can be applied to a wide spectrum of different ailments. The 

Process Analytical Technology (PAT) initiative and the Quality by Design (QbD) paradigm 

have become an integral part of process development of mAbs in today’s pharmaceutical 

industries with the goal of increasing process understanding and control in order to deliver a 

consistent product quality (Rathore, 2014, Zurdo et al., 2015). Continuous improvements are 

constantly being made to increase the effectiveness and applicability of these frameworks for 

the production of biopharmaceuticals (Glassey et al., 2011). However, many challenges still 

impede the successful implementation of QbD due to limited process and product 

understanding in early process development. This has led to an increased need of tools to aid in 

risk assessment of mAb candidates in order to speed up process development but also to 

evaluate their manufacturing feasibility.  

In the last decade, much focus has been directed to the development of in silico methods that 

can aid in risk assessment and speed up the process development. The Quantitative structure-

activity relationships (QSAR) framework, which can use knowledge from previous mAb 

production processes, appears to be one of the most promising frameworks for the development 

of predictive tools. The main strength of the QSAR framework is its ability to effectively link 

structural properties and features of the protein structure, which are commonly known as 

descriptors, to those of the biological response or mAb behaviour in unit operations. This 

therefore has the potential of increasing the product understanding of new mAb candidates in 

early process development by aiding in the risk assessment and process route selection and 

allowing for a more efficient process development. 

The aim of this project was therefore to explore the available methods in the QSAR framework 

that could be used to address the lack of process and product knowledge in early process 

development. A list of project objectives has been presented below:  
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1. Generation and exploration of suitable structural descriptors that can be used for 

predictive QSAR models. 

2. Development of a robust and structured framework with critical evaluation of 

classification and regression methods to determine their applicability in relevant process 

development settings. 

3. Testing the proposed modelling framework and descriptors generation workflow on 

relevant process development data. In this research HIC retention times and mAb yields 

of 137 mAbs was used and acquired from a data set published by Jain et al. (2017).  

Thesis structure 

The thesis starts with an extensive review of the QbD and QSAR frameworks in Chapter 1. 

Methodology and implementation of predictive modelling methods and techniques are 

overviewed in Chapter 2. The remaining chapters of the thesis can logically be divided into two 

parts based on the methodology used to acquire structural descriptors that were used in the 

predictive modelling. The first part investigates structural descriptors derived directly from the 

primary sequence (amino acid sequences) of the mAbs and is described in Chapter 3, Chapter 

4 and Chapter 5. The second part investigates structural descriptors derived from the 3D 

structure of the mAbs and is described in Chapter 6 and Chapter 7. 

Chapter 1: Literature Review 

The literature review provides a background of the current state-of-the-art in process 

development of mAbs according to the QbD paradigm. Attrition and current challenges in the 

paradigm are addressed which mainly originates in the limited knowledge of both the process 

and product available in early process development. The QSAR methodology was proposed for 

predictive model development of mAb behaviour in unit operations. 

Chapter 2: Modelling Development and Assessment 

This chapter provides an overview of the multivariate techniques used in this research to 

develop and test predictive QSAR models. Examples of successful implementation of these 

methods and their applicability to specific problems are highlighted and reviewed.  

Chapter 3: Primary Sequence-based Descriptors 

In this chapter the structure and sources of sequence variation in a mAb are assessed and 

reviewed. The methodology for generating descriptors based on the primary sequence is 

presented with the corresponding software used in this research.  
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Chapter 4: Impact of mAb isotypes and species origins on primary sequence-based 

descriptors 

The generated descriptors from Chapter 3 are investigated with exploratory methods with 

regards to structural variations related to the heavy and light chain isotype as well as the species 

origins. This provided insight into sources of variations that were present in the primary 

sequence-based descriptors sets and was used for identifying systematic structural variation that 

negatively impacted model performance in Chapter 5. 

Chapter 5: QSAR model development: Primary sequence-based descriptors 

In this chapter the applicability of the primary sequence-based descriptors in predictive 

modelling of HIC retention times and mAb yields was assessed. A statistical analysis 

investigating the impact of the heavy and light chain isotypes as well as species origins on the 

two responses was performed. The statistical analysis coupled with the exploratory analysis in 

Chapter 4 was used as a foundation for sample selection in order to reduce systematic variation 

in the descriptors that was detrimental to the performance of the developed models. 

Chapter 6: 3D Structure Descriptors 

In this chapter a methodology for generating descriptors from the 3D structure of mAbs is 

presented. To this end, methods for generating 3D structures from the primary sequence is 

assessed as well as options for protein dynamics simulations for structure relaxation and 

modifications are reviewed and covered in detail.  

Chapter 7: QSAR model development: 3D Structure Descriptors 

The applicability of the 3D structure descriptors from Chapter 7 is assessed in predictive 

modelling of HIC retention times and mAb yields. Exploration of structural variations related 

to the light chain isotypes as well as the species origins are performed to investigate potential 

systematic variation that may be detrimental to the performance of the developed models. A 

comparison between models developed using the primary sequence-based descriptors and the 

3D structure descriptors was carried out to evaluate their applicability in an industrial setting. 

Chapter 8: Conclusion and Future Perspectives 

This chapter concludes the work presented in this thesis as well as providing suggestions for 

improvement with regards to both predictive modelling and descriptor generation for future 

applications.  
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Chapter 1  

 

Literature review 

1.1 Antibody Market 

The increasing popularity of mAbs can be seen in Figure 1.1a where the number of approved 

mAbs by the European Medicine Agency (EMA) in EU (blue line) and the Food and Drug 

Administration (FDA) in US (green line) has drastically increased over the last 30 years 

(ACTIP, 2017, May 15, Reichert, 2012). In the last five years a new trend has emerged where 

manufacturing of generic mAbs, known as biosimilars, has gained more attention due to the 

expiration of patents on mAbs introduced to the market earlier. The first biosimilar of 

infliximab (better known as Remicade) was first approved and then marketed in 2013 by the 

EMA and later approved by FDA in 2016, thus opening the door for manufacturing of generic 

mAbs. As of 2017, a total number of 11 biosimilars has been approved by either EMA, FDA or 

both. These are biosimilars of infliximab, adalimumab, trastuzumab and rituximab (Grilo and 

Mantalaris, 2019). A list of currently approved mAbs is presented in Table A.1 in Appendix A. 

The market sales have enjoyed an increasing growth ever since the first mAb was launched in 

1986. Recent reports on the mAb market show an increase in revenue from around $39 billion 

in 2008 to around $89 billion in 2017 illustrated in Figure 1.1b, making mAbs one of the fastest 

growing bioproduct groups (Ecker et al., 2015, Grilo and Mantalaris, 2019). The market is 

expected to grow further with a predicted worldwide revenue of between $130-200 billion by 

2022 (EvaluatePharma®, 2018, Grilo and Mantalaris, 2019). 
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Figure 1.1. Approval and market trends of mAbs. (a) History of approved mAbs by EMA (blue) and FDA (green) 

annually (bars) and cumulative (lines) as well as approved biosimilars by either EMA, FDA or both shown in red. 

(b) History of market revenue from 2008 to 2018 (green bars) and prognosis of the expected market revenue 

between 2019 and 2022 (red bars) where an optimistic revenue prognosis has been included (grey bars). Based on 

market data from EvaluatePharma® (2018) and Grilo and Mantalaris (2019). 

Due to their popularity and market revenue, many advances in improving the mAb 

manufacturing processes have been made including process optimisation (Fischer et al., 2015, 

Kunert and Reinhart, 2016) and process control (Karst et al., 2017). Frameworks, such as QbD, 

have gained popularity during recent years due to their ability to expedite the process 

development of mAbs through increased process understanding (Rathore et al., 2018). 

However, the manufacturing of mAbs is cost-intensive due to the high product quality and 

regulatory requirements that must be met to make the product clinically safe. This is especially 

pronounced in the downstream processes due to the need of high product purity of the end 

product (Hammerschmidt et al., 2014, Hou et al., 2011). Industries still struggle with the 

development of the manufacturing processes due to high complexity of both the underlying 
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biological system and the behaviour of the mAb molecules, which hampers the implementation 

of PAT and QbD (Krummen, 2013, Mercier et al., 2014). In particular, the sensitivity of the 

product quality in mAbs to changes in the processing conditions requires a high level of 

understanding of the product and process in order to implement effective control. There is thus 

an increased need for better tools to aid process development. Due to its popularity in 

pharmaceutical industries, the QbD framework is reviewed in detail in this chapter and some 

of its limitations and challenges are highlighted.  

1.2 State of the Art in mAb manufacturing 

In 2004, FDA introduced a new regulatory initiative called Process Analytical Technology 

(PAT) with the aim to design and develop well understood processes that consistently ensure a 

predefined quality of a drug at the end of the manufacturing process (U.S. Department of of 

Health and Human Services, 2004). The PAT principles are used to gain information relating 

to physical, chemical and biological attributes of the product to increase process understanding 

to create a foundation for the implementation of monitoring, optimisation and control of the 

process (Glassey et al., 2011). The QbD paradigm was introduced in 2004 and is a systematic 

approach that aligns with the PAT principles and aims to build quality into the product through 

product and process understanding. The framework is especially useful for process 

development of mAbs, which consists of many different steps (unit operations). A typical mAb 

process can be divided into two parts: The upstream (USP) or the cell culture where the mAbs 

are expressed and the downstream (DSP) or purification where the mAbs are isolated and 

contaminants removed. Typically, a mAb process will consist of between 15-20 different unit 

operations which must be characterised in order to deliver consistent quality and safety of use 

(Rathore et al., 2018). The guideline for implementation of QbD is outlined in the International 

Conference on Harmonisation Guidelines: ICH Q8 (ICH Harmonised Tripartite Guideline, 

2009), ICH Q9 (ICH Harmonised Tripartite Guideline, 2005) and ICH Q10(ICH Harmonised 

Tripartite Guideline, 2008). The general outline and the nomenclature of the QbD methodology 

are illustrated in Figure 1.2 and is discussed further in this chapter. 
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Figure 1.2. General outline of the QbD methodology. The process design space is shown as the dashed box where 

the effects of process parameters and raw material input (blue box) on the product quality is characterised. Steps 

highlighted in red indicate risk assessment of either product quality attributes, process parameters or raw materials. 

The green box indicates availability of clinical data which can be used to better define the QTPP (adapted from 

Chatterjee (2012)).  

1.2.1 Implementation of QbD 

The implementation of QbD starts by defining the Quality Target Product Profile (QTPP) which 

forms the basis of the design for the development and contains information about the drug 

quality criteria such as delivery mechanisms, intended use, route of administration for the 

intended product to ensure clinical safety and efficacy. The QTPP is generated from knowledge 

based on literature research, clinical trials and existing experience from industry or academia 

(Herwig et al., 2015, Rathore, 2014). For mAbs, the QTPP relates to the product’s intended use 

and properties that can affect patients and need to be clearly stated in order to avoid adverse 

effects in patients. These should include antigen binding, pharmacokinetics, effector function, 

stability and half-life of the mAb (Rathore, 2009, Alt et al., 2016). However, much of this 

information does not become available until later when clinical data has been obtained. Thus, 

instead many aspects of the QTPP are based on prior knowledge in early process development 

of an mAb. Recently, computational prediction and simulation of the mAb structure have been 

shown to be a valuable tool for mAb design due to their ability to provide estimates of behaviour 

and protein stability which can aid in more accurate QTPP specification (Yamashita, 2018, 

Tiller and Tessier, 2015). 

Based on the QTPP, the Critical Quality Attributes (CQAs) are identified from a list of Quality 

Attributes (QAs) using risk-based analysis in accordance with the ICH Q9 guideline to 
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investigate properties that might affect product quality. The CQAs are physical, chemical or 

biological properties of the drug product that need to be within appropriate ranges to ensure the 

desired product quality. These ranges, similarly to the generation of QTPP, are obtained through 

literature research, clinical data and previous experience but they are also updated during the 

process development as new information from characterisation studies becomes available. The 

most frequently used method for risk assessment in industries is Failure Mode and Effect 

Analysis (FMEA) where the impact of different unit operations in the process on the QAs are 

listed. Each effect is ranked according to a Severity rating (S), an Occurrence rating (O) and a 

Detectability rating (D). A final Risk Priority Number (RPN) is calculated by multiplying the 

ratings which are then ranked to identify the effects that potentially affect the product quality 

and efficacy (Zimmermann and Hentschel, 2011, Harms et al., 2008). Tailored risk assessment 

methods have also been proposed for biopharmaceuticals by Zalai et al (2013) where the authors 

argued that traditional methods do not take into account the “complexity” of how a process 

might affect the product or the “uncertainty” which includes the quality of the input material as 

a possible source of risk and which need to be added as additional factors to the risk assessment 

(Zalai et al., 2013). A list of potential CQAs adapted from the work of Alt et al (2016) is 

presented in Table 1.1 which gives a non-exhaustive overview of the different structural 

variants that can occur in mAbs and can affect their structure, stability and activity. It is 

therefore important that the CQAs are controlled in order to achieve the desired product quality 

(Alt et al., 2016).  

All categories of variants in Table 1.1, except the “structure” category, are caused by so-called 

post-translational modifications (PTMs). This means that modifications of the protein structure 

occurs after the mAb has been expressed in the cells and which are therefore highly dependent 

on the environment (Yang et al., 2013). For clarification, a few of the PTMs are described in 

more detail. The low molecular weight species (LMW) is an incomplete mAb structure where 

a part or parts of the structure are missing. This is most commonly caused by missing disulphide 

bonds between chains (see Section 3.1 for description of mAb structure) or enzymatic/non-

enzymatic cleavage of the amino acid sequence (Wang et al., 2018). Additionally, if cleavage 

occurs at the C-terminal residue, which is most often a lysine in mAbs, a basic charge variant 

will be produced as well, due to loss of a basic residue. However, other charge variants can still 

occur without the sequence cleavage. For example, deamidation of sterically free asparagine 

into aspartate is one such PTM which is promoted if the asparagine is followed by a glycine 

(Khawli et al., 2010). It is important to remember that the majority of the PTMs require the site 

or the residue that is modified to be accessible on the surface of the mAb structure and therefore 

in contact with the solvent (Sydow et al., 2014). It should be noted that Table 1.1 does not take 
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into consideration the quality of the input material and its effect on the product quality as well 

as various process related QAs, such as contaminants e.g. host cell proteins (HCPs) and DNA, 

which also need to be characterised. 

Table 1.1. List of potential CQAs related to common structural variants in mAbs (adapted from Alt et al. (2016)). 

Category Quality Attribute 

Size related High Molecular Weight Species (HMWs) 

 Low Molecular Weight Species (LMWs) 

Acidic Charge Variants Deamidation in CDRs regions 

 Deamidation in non-CDR regions 

 Glycation in CDR regions 

 Glycation in non-CDR regions 

Basic Charge Variants Aspartic Acid isomerisation in CDR regions 

 Aspartic Acid isomerisation in non-CDR regions 

 C-terminal Lysine cleavage 

 N-terminal leader sequence 

 N-terminal pyroglutamic acid 

Oxidation Oxidation of Methionine and Tryptophan in CDR regions 

 Oxidation of Methionine in non-CDR regions 

Fc Glycosylation Afucosylation 

 Galactosylation 

 High-Mannose 

 Sialylation 

 Non-glycosylated Heavy chain 

Structure Cysteine variants 

 Sequences variants 

 Protein structure 

 

Once the CQAs have been selected, a process design space is defined by screening process 

parameters (PPs) for each of the unit operations in the process that have a significant effect on 

the CQAs. PPs that have a significant impact on the CQAs are called Critical Process 

Parameters (CPPs) and are identified and controlled through the use of the following steps:  

1. Similar to identification of CQAs, risk analysis methods, such as FMEA, are used to 

reduce the large number of PPs to those that may affect CQAs. 

2. Systematic experimental studies using Design of Experiments (DoE) over a range of PP 

settings are carried out in small scale to obtain experimental data for process 

characterisation to identify CPPs and their optimal ranges which. This is referred to as 

the control space.  
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3. Multivariate data analysis (MVDA) is used for implementation of appropriate real-time 

monitoring and control strategies needed for the defined CQAs and CPPs to ensure 

product quality. Movement outside of the defined control space would cause the product 

quality to drop below that of the desired quality stated in the QTPP.  

The use of statistical DoE is preferred in process development of pharmaceuticals over 

univariate analysis as it can generate qualitative and quantitative information about important 

process parameters and their impact on the product quality (Leardi, 2009). Response Surface 

Modelling (RSM) and leverage plots are often used on generated DoE data to investigate the 

significance of PPs on the explored CQAs as well as define allowed ranges for the identified 

CPPs (Rathore, 2016). Several different experimental designs exists and selecting an 

appropriate design is critical in order to maximise the information gained from the experiments. 

Kumar et al. (2014) compared different experimental designs for the DoE of downstream unit 

operations to demonstrate how these affect the response surface of each unit operation (Kumar 

et al., 2014).  Tai et al. (2015) showed that a well-chosen experimental design can lead to diverse 

and informative data about the system and when combined with high-throughput 

experimentation techniques, can be a powerful tool when defining the process design space.  

Process validation is performed when the design space has been characterised to demonstrate 

that the desired product quality is delivered when operated within the design space and is 

usually performed on larger scale. In order to ensure consistent quality, the CQAs need to be 

within the defined control space of the process. This is done through monitoring and control of 

identified CPPs that have a dynamic behaviour and effect on the CQAs e.g. pH, temperature, 

flow rates etc. (Read et al., 2010, Golabgir et al., 2015). MVDA methods such as Principal 

Component Analysis (PCA) and Partial Least Square (PLS) are commonly employed in order 

to monitor and control CQAs (Ferreira and Tobyn, 2015). For examples of MVDA 

implementations for monitoring and control, refer to “modelling based approaches” under 

Section 1.2.3. However, implementation of monitoring and control strategies is usually not 

necessary for all CPPs e.g. trace elements in the basal media might need to be characterised, 

depending on the product, to achieve the desired product quality, but they do not necessarily 

need to be monitored in real time.  The control of the CPPs should always be in the form of a 

dynamic control scheme to ensure that product quality is kept constant, even if there is 

variability introduced by the input raw materials used in the process. The QbD framework is an 

iterative process where the QTTP, CQAs and CPPs need to be constantly revaluated in order to 

characterise all sources of variability that can impact the final product quality. 
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As mentioned previously, many aspects of the QTPP might not be known in early process 

development and only become available once clinical trials have been performed. This means 

that the process development is closely linked to the clinical phases, as illustrated in Figure 1.3. 

Once clinical data becomes available, better decisions regarding the potential redesign of the 

product and re-evaluation of the QTPP, CQAs and CPPs can be made (Cooney et al., 2016). A 

short summary of investigation goals and scope of each trial phase is presented in Table 1.2 

which was based on the ICH E8 guidelines for clinical trials (ICH Harmonised Tripartite 

Guideline, 1997a). 

 

 

Figure 1.3. Overview of the parallelisation between the clinical trials and the process development (adapted from 

Li and Easton (2018) as well as Mercier et al. (2013)) 

Generally, early process development always starts in small scale and is subsequently scaled 

up as the mAb advances through the different clinical phases which provides two benefits: 1) it 

provides an economic safety if the mAb product fails in the clinical trial and termination of the 

drug candidate is likely, 2) it is more cost-effective due to the early clinical trials (pre-clinical 

and phase I) not requiring large quantities of the mAb for clinical testing. Process knowledge 

gained from earlier trials is used to build a foundation of process understanding and is applied 

when scaling up the process which aids in reducing uncertainty in subsequent process 

characterisation steps. Control and monitoring strategies for characterised CQAs and CPPs also 

starts to be implemented in Phase II and III (Li and Easton, 2018). If a mAb passes Phase III in 
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the clinical trials, enough evidence is usually available to start a Biologics Licensing 

Application (BLA) in the US or a Market Authorisation Application (MAA) in the EU. The 

process is then transferred to full production, which is also known as Phase VI or manufacturing 

phase and is implemented according to Good Manufacturing Practice (GMP). Additional 

clinical data is gathered after the mAbs have been marketed in order to investigate additional 

adverse effects that were not apparent during the Phase I to Phase III.  

Table 1.2. Overview of the clinical phases for an mAb candidate with their corresponding research goals and scope 

(adapted from the ICH E8 guidelines). 

Phase Goals Scope 

Pre-clinical Animal Testing 

Assessment of safety  

Estimation of biological activity 

Laboratory and animal studies 

I human Pharmacology 

Assessment of tolerance and safety 

Estimation of biological activity 

Estimation of pharmacodynamics and 

pharmacokinetics. 

20-100 (healthy or with 

disease/condition) 

II Therapeutic Exploratory 

Estimate dosage for subsequent studies 

Further assessment of safety and efficacy 

Side effects 

Hundreds (with condition/disease) 

III Therapeutic Confirmatory 

Confirmation of efficacy 

Establish safety profile 

Establish dose-response relationship 

Provide basis for benefits and risks to support 

licensing 

300-3000 (with condition/disease) 

VI (M) Therapeutic Use 

Refine understanding of benefits and risks 

Identify less common side effects 

Refinement of dosage 

Thousands (with condition/disease) 

 

Throughout the process development it is important to note that scale-up can have an impact 

on the product quality. More generally, CPPs that have been identified to have an effect on 

product quality in small scale might not necessarily have that same effect in larger scale and 

may therefore impact the product quality differently. This was thoroughly investigated in the 

works of Le et al. (2012) and Mercier et al. (2013), where scale dependent effects on CPPs were 

characterised and had a significant effect on the product quality. This shows that the importance 

and the ranges of CPPs determined in smaller scales cannot necessarily be transferred to larger 

scales directly. Consequently, this implies that characterisation of these CPPs needs to be 

performed every time the scale is increased.  
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A case study of QbD implementation was published in 2009 by CASSS and ISPE on A-mAb 

bioprocess development (CASSS and ISPE, 2009). The study gave a broad overview from 

identification and risk assessment of CQAs to the construction of the design space for both 

upstream and downstream unit operations. It presented a systematic approach to designing a 

well-controlled process which assures high product quality and has been used as a foundation 

for applying the QbD framework to other biopharmaceutical products. Further details on the 

implementation of QbD in biopharmaceutical manufacture can be found in literature (Rathore 

and Winkle, 2009, Rathore, 2009, Rathore, 2014, Sadowski et al., 2016).  

1.2.2 Challenges in QbD implementation 

Effective implementation of QbD and PAT is still a significant challenge in biopharmaceutical 

industries due to the complex relationships between PPs and product quality. This becomes 

more apparent when considering the potential structural variants presented in Table 1.1 that 

commonly occur during the process development. It is therefore important that sources causing 

structural variability are investigated in order to minimise the risk of harmful effects on patients. 

However, this requires extensive experimental studies to characterise the CPPs and ranges 

(Eon-Duval et al., 2012, Mercier et al., 2014).  

The glycan in the mAb structure is a good example of this due to being very important for the 

efficacy and stability of the protein. It is therefore important to determine the impacting factors 

which need to be monitored and controlled, but this proved to be challenging (Boyd et al., 1995, 

Raju and Jordan, 2012, Costa et al., 2014). It has been shown that the glycan structure can be 

controlled through changing the composition of the basal and feed media (Kildegaard et al., 

2016, Rathore et al., 2015) or optimisation of the mammalian cell line used for expression (del 

Val et al., 2010) in order to drive the glycosylation towards the desired structure. 

As previously described, heuristic approaches are often used by industries for process 

development based on experience gained from previous process implementations. However, 

these rarely succeed in delivering good correlation between PPs and QAs (Zalai et al., 2015). 

An example of this was the QbD application filing of the mAb Perjeta (pertuzumab) at the end 

of 2012 by Genentech & Roche (Krummen, 2013). This application was rejected due to the 

design space not being properly characterised as demonstrated by the following: 

1. Not all CQAs, such as the effect of different glycosylation patterns on the Antibody-

Dependent Cell-mediated Cytotoxicity (ADCC) which introduced residual clinical risks 

from different glycosylation variants, were identified. This was mainly due to the 
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previous ranges from an existing mAb process being used and other CQAs not being 

considered. 

2. Not all CPPs were identified and the effects on the glycosylation profile could not be 

determined.  

3. The proposed control strategy for the CQAs was not appropriate. 

Another challenge for pharmaceutical industries is the high failure rates of mAb candidates in 

the clinical trials coupled together with the high development costs. DiMasi et al. (2016) state 

that the failure rates of all mAb candidates in the clinical phases I, II and III were around 46%, 

43% and 10%, respectively, as illustrated in Figure 1.3. An estimation of total investment 

needed for a mAb to reach the market was calculated to be around $2.558 billion which includes 

purchase of necessary equipment and facilities. Of this, $1.098 billion was expected to be 

invested in the pre-clinical phase and includes discovery and testing of several candidates. The 

remaining $1.460 billion is invested in the process development and clinical trials (Figure 1.3). 

This means that the revenue of successful mAb candidates is used to drive the development of 

other potential candidates making the approved mAbs usually very expensive for the consumer. 

There is therefore a growing need for additional tools to aid in both clinical assessment and 

process development of mAbs in order to bring development costs and times down.  

1.2.3 Current Focus and Improvements in Process Development  

To address the challenges presented in Section 1.2.2, many different approaches and advances 

have been developed as briefly discussed in the following sections. 

Cell-line and media considerations: 

Grainger and James (2013) argued that a cell line selection should include product quality such 

as the glycosylation and not focus only on cell growth and product yield. They illustrated the 

possibility of choosing cell line and customising the media to achieve high product quality. 

However, as the glycosylation is cell line specific, no one media composition fits all, but needs 

to be characterised for each cell line which requires a significant number of experiments. 

Bruhlmann et al. (2015), who investigated the effects of media supplements on QAs of mAbs 

(i.e: post-translational modifications such as glycosylation, glycation, deamidation, 

isomerisation, oxidation, aggregation, LMW species, C- and N-terminal modifications) argued, 

that media development could greatly increase the quality of the product without the need for 

extensive cell line engineering. However, the number of media components that need to be 

characterised requires extensive experimentation to understand the impact of the components 

on the CQAs. In the case of Genentech & Roche, not carrying out exhaustive studies or risk 
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assessment analysis to identify CQAs and CPPs had a negative impact on the process 

understanding of how the CPPs affected the CQAs, e.g. the effect of the glycosylation profile. 

Due to these reasons the highest level of PAT and QbD in the form of product and process 

understanding for complex pharmaceuticals has not been reached yet (Mercier et al., 2014). 

High-throughput approaches: 

Sustained effort has gone into the development of more efficient high-throughput screening 

methods for both upstream and downstream processing to reduce use of resources, costs and to 

speed up process development (Bhambure et al., 2011). This includes high-throughput 

screening of cell lines across different fed-batch scales (Rouiller et al., 2016), high-throughput 

media development for increased cell growth, viability and product yield for both basal and 

feed media (Rouiller et al., 2013), high-throughput screening of basal media and feed 

component effects on post-translational modifications (Rouiller et al., 2014), high-throughput 

process development in upstream by using parallel small scale reactor systems (Tai et al., 2015), 

model-based high-throughput screening to find optimal ion exchange chromatography columns 

by using both mechanistic models and experimental designs to bring down the amount of 

experiments (Khalaf et al., 2016) or high-throughput screening of an ion chromatography step 

for process characterisation (Bhambure and Rathore, 2013). 

DSP platform orientation and streamlining: 

Over the last decade, the mAb DSP have become more platform oriented and also shifted 

towards continuous processing in order to reduces bottlenecks in production. Several 

purification strategies used by large pharmaceutical companies, such as Amgen (Shukla et al., 

2007), Genentech (Trexler-Schmidt et al., 2009), Biogen (Ghose et al., 2013) and KBI 

Biopharma (Shukla et al., 2017), indicate a general layout of the DSP platforms for mAbs that 

are very similar, as illustrated in Figure 1.4. 

 

 

Figure 1.4. General overview of platform-oriented purification of mAbs. The black boxes represent 

chromatographic columns and steps that are always included, whereas the red boxes represent chromatographic 

polishing steps that change depending on the behaviour and quality requirements of the mAb. The order of the 

second polishing step and the viral filtration can be switched (adapted from Shukla et al. (2017)) . 
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As illustrated in Figure 1.4, Protein A chromatography is used almost exclusively as the first 

step in the DSP due to its high specific binding to IgG1, IgG2 and IgG4 mAbs where the protein 

A ligand binds primarily to the region between the CH2 and CH3 domains in the Fc part of the 

antibody (see section 3.1 for more information on the antibody structure). Due to its high 

binding specificity towards mAbs, protein A chromatography is able to remove the majority of 

impurities such as HCPs, DNA and viruses from the cell culture supernatant. A monomeric 

mAb purity between 90-95% can thus be expected in many cases where protein A 

chromatography has been used (Shukla et al., 2007). Elution of the mAbs from the protein A 

column is performed by lowering the pH (to 2.5 - 4.0), thereby disrupting the binding between 

the protein A ligands and the mAbs.  

A natural step after the protein A chromatography is the viral inactivation step, as illustrated in 

Figure 1.4, due to the low pH which effectively inactivates enveloped virus particles. An 

important factor in this step is the hold time which is usually around two hours in order to 

inactivate the majority of the retained virus particles (Mattila et al., 2016). However, it has been 

shown that low pH can promote aggregation of mAbs and it is therefore important to thoroughly 

characterise both the protein A chromatography step and the viral inactivation step in order to 

minimise the loss of mAb product (Mazzer et al., 2015).  

Additional chromatographic steps, also known as polishing steps, are used after the viral 

inactivation for further removal of contaminants and undesired mAb variants. However, 

selection of chromatographic columns for polishing is very dependent on the characteristics of 

the desired mAb product and remaining contaminants in order to maximise retention of the final 

drug product. Commonly used columns are cation exchange chromatography (CIEX) and anion 

exchange chromatography (AIEX) which can separate mAb variants  according to charge and 

weight as well as facilitate the additional removal of HCPs, DNA and viruses (Liu et al., 2010). 

More specifically, the CIEX column contains ligands that are negatively charged and bind more 

efficiently to positively charged proteins, whereas the AIEX column contains positively 

charged ligands which bind more efficiently to negatively charged proteins. Therefore, 

depending on the charge of the mAb, the column can be selected to promote binding. Another 

commonly used polishing step is a hydrophobic interaction chromatography (HIC) which can 

be used to reduce high molecular weight species and host cell proteins. The HIC column 

contains hydrophobic ligands that bind to hydrophobic patches on the surface of the protein. 

The binding is promoted further by adding salts, such as ammonium sulphate, that lower the 

protein stability and allow for hydrophobic residues to surface (Gagnon, 1996a).  
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The viral filtration step illustrated in Figure 1.4 is performed to remove the majority of the 

remaining viral particles from the product in order to reduce the risk of viral infection in patients 

(ICH Harmonised Tripartite Guideline, 1997b). This step is placed towards the end of 

purification in order to avoid fouling of the filtration membrane as the majority of larger 

particles, such as aggregates and DNA, have been removed in earlier steps. This allows for the 

desired mAb product to pass through the membrane while larger virus particles are retained in 

the membrane pores or on the retention side of the membrane (Kern and Krishnan, 2006). In 

the final step, ultrafiltration/diafiltration (UF/DF), as illustrated in Figure 1.4 is applied in order 

to concentrate the final mAb as well as to exchange the buffer for increased stability and shelf 

life time (Liu et al., 2010). 

Modelling based approaches: 

The use of MVDA methods for process development and monitoring of QAs increased 

significantly during the last years. This gives increased insight into correlation between PPs and 

QAs that might otherwise go undetected.  Mercier et al. (2013) showed with PCA and PLS that 

the scalability had a significant effect on performance which was not considered before. 

Ivarsson et al. (2015) showed how the metabolic flux inside of the cells shifted with different 

pH and how it affected growth and production rate by using Flux Metabolic Analysis (FMA) 

which is especially important in scale-up where compartmentalisation of the reactor is likely to 

happen. Sokolov et al. (2016) illustrated how process characterisation could be performed for 

biosimilars with the use of PCA and Decision Trees (DT) on characterisation data to find 

optimal set points in order to get as close as possible to quality specifics of the originator. 

Rathore et al. (2015) used PCA and PLS to link PPs and amino acids concentrations in the 

media to their impact on the glycosylation in batch, fed-batch and fed-batch with microaeration. 

In a similar study by Green and Glassey (2015), the authors illustrated how the amino acid 

concentrations in the growth media as well as process parameters could be used to predict the 

glycosylation forms of mAbs with PLS. Another approach is to use knowledge-based 

modelling, such as presented by Khalaf et al. (2016) where the authors used mechanistic model 

whose parameters were estimated from experimental data to create a high-throughput screening 

of ion exchange columns. This is similar to hybrid modelling in process monitoring and control 

that is based on mechanistic models but whose parameters are estimated from a DoE data set 

(Glassey and Von Stosch, 2018). The advantage is that compared to other mechanistic models 

with static parameters, the hybrid models can dynamically adjust the parameters from the DoE 

data set (von Stosch et al., 2014). The cause for the slow integration of other MVDA methods 
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into industries can be speculated, but one of the main reasons is the broadly formulated 

framework of QbD and the lack of a clear implementation path to follow. 

Product understanding: 

The fundamental principle of the QbD framework is to increase process understanding in terms 

of the effect that PPs have on product quality. Zurdo (2013) suggested that the QbD framework 

needed to be extended to incorporate product understanding in terms of the developability of 

the pharmaceutical which would include manufacturability, safety, pharmacology and 

biological activity. The author argued that by using in silico risk assessment tools based on 

structural features of the mAbs and historic development data, predictions concerning 

manufacturability of an mAb could be made. In a later publication two case studies were 

presented where structural properties of mAbs were successfully linked to CQAs related to 

aggregation and half-life (Zurdo et al., 2015). Such tools can add great value to early process 

development of mAbs when implementing the QbD framework where very little is known about 

both the process and product. Thus, a more in-depth investigation of Quantitative Structure-

Activity Relationship (QSAR) framework and its potential benefits for QbD integration is 

explored here. 

1.3 Quantitative Structure-Activity Relationship  

The QSAR framework relates structural properties and features (also known as descriptors) of 

a compound to biological or physicochemical activity (Dehmer et al., 2012, Dudek et al., 2006). 

This methodology was first introduced by Hammet in the 1930s and was later refined by Hansch 

and Fujita and has become a standard tool for small drug discovery (Du et al., 2008). A method 

derived from QSAR, referred to as Quantitative Sequence-Activity Modelling (QSAM), has 

been introduced in recent years and focuses on relating structural descriptors of proteins, 

peptides and nucleic acids to activity (Zhou et al., 2010). The only difference between QSAR 

and QSAM is the development of descriptors whereas the guidelines for the predictive model 

development remain the same. Given the proteinaceous character of the mAbs, the QSAM 

methodology for descriptor generation will be of more relevance and the workflow described 

below will therefore focus more on protein based rather than small molecule based QSAR.  

1.3.1 Descriptor generation 

One of the most important steps in QSAR is how the structures of the pharmaceuticals in 

question can be described numerically in order to use them in correlation studies with prediction 

outputs of interest. For proteins, such as mAbs, two approaches to generate descriptors are 

discussed here: 1) descriptors generated from the amino acid primary sequence and 2) 
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descriptors generated from three-dimensional models of the mAbs. It has been shown that a 

combination of both physicochemical and 3D structure descriptors works best and also ensures 

that the model is not overly reliant on a single type of a descriptor (Hechinger et al., 2012). 

Amino acid composition-based descriptor generation: 

Extensive research has been carried out to develop new informative descriptors for peptides 

and proteins generated from their primary sequence (Zhou et al., 2008). This was first 

introduced by Sneath (1966) who derived amino acid descriptors for the 20 naturally occurring 

amino acids from qualitative data. Later on, Kidera et al. (1985) used 188 properties of the 20 

naturally occurring amino acids, which were converted into ten orthogonal new descriptors to 

describe the amino acids. Later the Z-scale, which consists of 3 new amino acid descriptors 

derived by applying PCA to 29 physiochemical properties (Hellberg et al., 1986, Hellberg et 

al., 1987a), was introduced. Other amino acid scales, which were also derived through PCA, 

include the extended Z-scale and T-scale (Sandberg et al., 1998, Tian et al., 2007). Other 

descriptors include the so called isotropic surface area (ISA) and the electronic charge index 

(ECI), which are derived from the 3D structures of the amino acids (Collantes and Dunn, 1995). 

All these descriptors were tested and performed well in respective studies on small peptides.  In 

a two-part review by van Westen et al (2013a, 2013b) many of the existing amino acid scales 

were benchmarked and compared. The authors demonstrated that the different scales described 

different physiochemical and topological properties which is useful when deciding on which 

scales to use (van Westen et al., 2013a, van Westen et al., 2013b). Doytchinova et al. (2005) 

applied the Z-scales descriptors to successfully predict ligand binding of peptides and 

Obrezanova et al. (2015) used several such amino acid scale to predict mAb aggregation 

propensity based on the primary sequence. However, even though amino acid descriptors 

explain the differences in the primary sequence, they do not take into consideration potential 

interaction between the amino acids in or between primary chains. It has been argued that this 

simplification can lead to a loss of information concerning properties of secondary and tertiary 

structure in larger proteins (Zhou et al., 2008).  

Descriptors can also be generated by using empirical equations on the entire primary sequence 

to infer protein properties such as the isoelectric point, hydrophobicity, molecular weight, 

physico-chemical properties and secondary structure content, to name a few. Many such tools 

and applications are available on bioinformatics sites, such as ExPASy (Gasteiger et al., 2005) 

and EMBL-EBI (Li et al., 2015). 
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Homology modelling and molecular dynamics for descriptor generation: 

Descriptors capturing structural and surfaces properties can be generated by using existing 

crystal or NMR structures or by building models using homology modelling. The latter is 

performed by finding proteins with existing 3D structures that have a high level of similarity to 

the primary sequence of the protein of interest. These proteins are then used as templates to 

predict the likely structure of the queried protein (Liao et al., 2011). This has been successfully 

used in many publications where information such as surface areas, angles and surface 

properties were extracted (Sharma et al., 2014, Sydow et al., 2014, Buyel et al., 2013). The 

method is especially useful when no crystal structure exists. Caution needs to be exercised, 

however, as the homology models are only predicted structures. Breneman et al. (1995) 

introduced a methodology for generating 2D surface descriptors, also called transferable atom 

equivalent (TAE) descriptors, by reconstructing the electronic surface properties of the 

molecular structures from a library of atomic charge density components. This has the 

advantage of representing surface variations such as hydrophobicity and charge distributions 

numerically, which is of great importance when studying for example protein binding to an 

anion exchange chromatographic column packing using different salts (Tugcu et al., 2003). 

Breneman et al. (2003) later introduced the Property-Encoded Surface Translator (PEST) 

algorithm which is a further development to better describe the surfaces of the proteins when 

applying the TAE molecular surface descriptors. However, it is important to note that the PEST 

algorithm need 3D models in order to generate the descriptors of interest. PEST, together with 

TAE descriptor, has been successfully applied in a QSAR study where the generated model was 

able to accurately predict protein separation from HCPs (Buyel et al., 2013). Robinson et al. 

(2017) used the TAE descriptors to relate the structural differences between several Fab 

fragments to predict column performance between different chromatographic systems. It has 

been argued, however, that caution needs to be exercised when using library-based descriptors 

as these are usually directly related to a specific state of a compound that was measured in a 

unique environment. This means that these descriptors should only be applied if experiments 

were carried out in an identical or similar environment. Otherwise, this might cause the 

descriptors to be biased  (Hechinger et al., 2012). Other structural properties, such as molecular 

angles and solvent accessible surface areas extracted from homology models, were used by 

Sydow et al. (2014) to determine the risk of degradation of asparagine and aspartate in mAbs 

as PTMs. Similarly, Sharma et al. (2014) investigated the risk of oxidation of surface accessible 

tryptophans.  
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Due to the flexibility and size of the mAbs it is very difficult to produce good 3D structures 

based on X-ray crystallography and NMR. Instead, homology modelling has proven to be a 

good alternative to circumvent this problem. However, due to the size and the many flexible 

parts, such as loops, in the mAbs, pure homology models might not give a sufficiently accurate 

representation of the reality. Molecular dynamics (MD) is a useful tool that can be used to 

minimise the energy of the entire protein and to simulate the dynamics of the protein of interest 

in different environments (Brandt et al., 2010). MD simulations have also shown very high 

similarities in the internal dynamics of mAbs when comparing the simulated results to those 

observed in reality (Kortkhonjia et al., 2013). It can therefore be argued that MD simulation 

should be applied to all homology models before descriptors are generated to mimic the 

environment of the samples that are used in QSAR studies. 

1.3.2 QSAR for protein behaviour prediction 

The QSAR framework has been applied to a diverse range of challenges where structural 

properties of pharmaceuticals have been used directly for the prediction of different process 

related aspects such as the prediction of isotherm parameters in ion-exchange chromatography 

(Ladiwala et al., 2005), ligand-binding in ion-exchange chromatography under high salt 

concentrations (Yang et al., 2007a), binding of proteins in ion-exchange chromatography under 

different pH conditions (Yang et al., 2007b), protein surface patch analysis for the choice of 

purification methods (Insaidoo et al., 2015), chromatographic separation of target proteins from 

HCPs (Buyel et al., 2013), viscosity, clearance and stability prediction for mAbs (Sharma et al., 

2014) and degradation prediction of asparagine and aspartate in mAbs (Sydow et al., 2014) to 

mention a few. This also showcases one of the main strengths of the QSAR/QSAM framework 

with its ability to link structural features to many different forms of prediction outputs. It is 

important to note, however, that identical experiments must have been performed on different 

pharmaceuticals in order to compare the differences in structure and their effect on the output. 

Equally important is that sufficient excitation is present in the output data in order for the effects 

to be linked to the corresponding structural feature (Bishop, 2006). 

1.4 Towards mAb process development by bridging QbD and QSAR 

There have been significant advances in computational prediction methods and they are starting 

to become more common in process development (Jiang et al., 2011). As mentioned by Zurdo 

et al (2015), the ability to predict product related characteristics that strongly relate to the QTPP 

and/or CQAs can greatly simplify process development, especially in the early stages when the 

product or process knowledge is limited. The implementation of QSAR in process related areas, 

such as protein purification, has been researched extensively (Chen et al., 2008, Yang et al., 
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2007a, Yang et al., 2007b, Ladiwala et al., 2005, Woo et al., 2015a, Hou et al., 2011, Robinson 

et al., 2017). Though not all the mentioned examples concern mAbs specifically, the outlined 

methodology used in the different research articles is still applicable. Given the significant 

proportion of mAb development cost that is incurred during downstream processing, 

considerable advantages can be gained by being able to predict the performance of 

chromatographic columns and their effect on product quality early in the process development. 

In the case of mAbs much of the cost is incurred during the purification due to the strict 

regulations surrounding clinical safety of the end product (Hammerschmidt et al., 2014, Farid, 

2007). Examples of regulations for mAbs include removal of harmful structural variants, such 

as those presented in Table 1.1, while retaining the desired structure based on evidence from 

clinical trials. The removal of contaminants, such as HCPs, DNA and viruses, is also necessary 

in order to avoid undesired immune responses in patients. Thus, for therapeutic use, a mAb 

purity of >99% is required in the final formulation (European Medicines Agency, 2016). 

Therefore, the integration of QSAR into QbD  is proposed based on the valuable insight that 

QSAR can provide in early process development and is illustrated in Figure 1.5 which also 

shows how the QbD framework can add to and improve the QSAR modelling with addition of 

new data.  

Two main approaches of integrating the QSAR framework into the QbD paradigm can be 

considered. The first approach is by only using generated structural descriptors for development 

of models able to predict protein behaviours. An example of this was published by Obrezanova 

et al. (2015) where the authors developed a model with the adaBoost algorithm based on 

decision trees that was able to predict the probability of mAb aggregation based on the structure 

of the primary sequence. The method is however more constrained as it requires data generated 

from identical experimental setups, and therefore identical PP settings in order to assume that 

the observed effect is caused only by the differences in structure between the proteins. 

Therefore, models developed this way are better for assessing the manufacturing feasibility 

and/or potential CQAs before starting the process development. The second approach is to use 

the PPs of interest, taken from previous mAb processes to use directly in the model development 

by either 1) adding the PPs together with the generated structural descriptors as inputs 

(Rodrigues de Azevedo et al., 2017) or 2) structural descriptors are calculated to be dependent 

on the PPs, meaning that the values of the descriptors will change with changing values of the 

PPs (Yang et al., 2007b). The latter is easiest done by generating descriptor from MD 

simulations where changes in the soluble environment can be implemented. This however 

requires that data is gathered from similar experimental setups where only the PPs of interest 

have been varied. This would usually not be a problem when gathering historic data generated 



24 

from the QbD paradigm as it will often conform to experimental designs based on DoEs where 

the experimental environment is strictly controlled. The added benefit of this approach is that 

the developed model will be able to account for both the structural differences as well as the 

impact from the studied PPs when predicting protein behaviour. This can potentially have great 

value in process development of new mAbs as PP ranges can be assessed in silico and therefore 

greatly aid in reducing the number of needed experiments, seen as grey arrows in Figure 1.5. 

The methods described above provide a reference for further risk assessment and 

characterisation to be performed in the QbD framework, as they provide information, such as 

the behaviour of the product in different scenarios and increase the product understanding. As 

additional information from new mAb processes becomes available, models can be improved 

by expanding the data sets used in the model development. This in turn will aid in providing 

more accurate predictions due to lowering the sparsity by incorporating more protein structures. 

Available characterisation research studies can also be used as additional sources of data in 

order to improve the models by expanding the data set for model development. 

 

Figure 1.5. Proposed integration of QSAR into QbD where the upper half illustrates the simplified framework of 

QbD (blue) and the lower half illustrates a simplified version of the QSAR framework (black). Transfer of 

characterisation data from previous mAb processes can be used directly for model development using QSAR. 

Depending on the purpose of the developed QSAR model, it can be used to directly aid in assessing CQAs or 

provide insight into PPs and ranges. 

1.5 Scope of this study 

This study focused on developing a QSAR framework that could aid in early stage process 

development of monoclonal antibody therapeutics to facilitate rapid developability. The 
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application of QSAR for proteins other than mAbs is not new and has been reported extensively 

in the past. An example of this is prediction of chromatographic performance of CIEX columns 

(Ladiwala et al., 2003, Malmquist et al., 2006), AIEX columns (Song et al., 2002, Tugcu et al., 

2003), HIC columns (Ladiwala et al., 2006, Chen et al., 2007, Chen et al., 2008) and multimodal 

columns (Chung et al., 2010, Woo et al., 2015a, Woo et al., 2015b). In the listed examples, the 

proteins used in the studies were all of unique sizes, structures and functions. However, the 

implementation of QSAR for the prediction of mAb behaviour in process related settings is still 

relatively new where areas such as aggregation propensity (Lauer et al., 2012, Obrezanova et 

al., 2015), chromatography performance of HIC (Robinson et al., 2017), chromatography 

performance of CIEX (Kittelmann et al., 2017) and degradation of solvent accessible asparagine 

and aspartate in the variable regions of the mAb structure (Sydow et al., 2014) have been 

explored recently.  

It is important to note that descriptor generation of mAb focused research have adhered to 

workflows used for QSAR models developed for the prediction of general protein behaviour 

where proteins were of different sizes, properties and functions such as those examples 

mentioned in the beginning of this section. However, due to the high sequence and structure 

similarities between mAbs, such descriptors might not necessarily capture the more subtle 

differences between mAbs that might be needed for accurate prediction with QSAR. For this 

reason, descriptors in this research were developed based on structural features and properties 

inherent to all mAbs as presented in Chapter 3 and Chapter 6 for primary sequence-based 

descriptors and 3D structure descriptors, respectively. Also, to date, no exploration of structural 

variations originating from different mAb isotypes and species origins has been performed. 

These structural variations were therefore explored in order to characterise their effect on 

generated descriptors (Chapter 4) and their potential impact on model performance in terms of 

a response of interest (Chapter 5 and Chapter 7). 

Another concern with previously published research is the lack of mAb samples used for model 

development, which was in many cases below 40 samples (Robinson et al., 2017, Kittelmann 

et al., 2017). Due to the large structural variability of mAbs, a smaller dataset will be limiting 

and might not necessarily contain the structural variability needed for accurate model 

prediction. In this study, a larger dataset published by Jain et al. (2017) was used, consisting of 

137 unique mAbs with 12 experimental assays performed for each mAb. This allowed for 

greater structural variation between mAbs to be included in the model development compared 

to previously published research. Out of the 12 experimental assays provided by Jain et al. 

(2017), HIC retention time and mAb yield were selected as responses to be used in model 
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development due to representing important factors of the DSP and USP, respectively, in 

industrial process development of mAbs. As mentioned previously in Section 1.2.3, HIC is a 

common polishing step in mAb purification but also allows for the investigation of their 

stability based on retention times as more hydrophobic mAb would elute later (Haverick et al., 

2014). As for the mAb yield, this parameter is important in order to ensure that enough product 

can be extracted cost effectively, given of course that the majority of the expressed mAb 

structures fulfils the QTPP and CQA requirements for the intended drug. 

The potential impact of successful prediction of mAb behaviour based on their structure is 

invaluable in biopharmaceutical industry as it can provide critical information pertaining to 

their stability (Obrezanova et al., 2015), behaviour in operational units (Robinson et al., 2017) 

and potential structural variants (Sydow et al., 2014), to mention a few. This can aid in early 

process development of new mAb candidates and in turn in a more informed risk assessment 

and process route selection, thereby reducing the number of required experiments to 

characterise the process, resulting in lower development costs and lead times.  

1.6 Summary 

Due to the high efficacy and safety of the mAbs, their market has grown considerably during 

the last three decades. This has led to an increased focus on improvement and optimisation of 

the process development in order to manufacture mAbs cheaper and faster.  

The QbD framework was reviewed as a means to increases the process understanding through 

characterisation of PPs and their effect on the product quality. However, due to the numerous 

PPs that need to be characterised, the QbD framework still faces challenges in implementation. 

Much research has been performed in areas such as high-throughput platforms and process 

optimisation to reduce attrition in the process development. More importantly, one of the 

biggest problems with QbD is the lack of knowledge about both the process and product in 

early process development where the manufacturability of an mAb might not be possible. 

The use of in silico methods for prediction of protein and mAb behaviour in different unit 

oprations has proven to be efficient to increase product knowledge. Based on the QSAR 

framework, historic process data from established and failed mAb processes can be used and 

linked with structural properties of the mAbs in order to investigate potential behaviour during 

processing. Different strategies for generating structural properties or descriptors of an mAb 

have been suggested and reviewed based on the amino acid composition, homology modelling 

and MD simulation.  
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The integration of QSAR and QbD frameworks is therefore proposed here to increase product 

and process understanding which is especially important in early process development. 
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Chapter 2  

 

Modelling Development and Assessment 

In this Chapter, an overview of some of the current and more traditional techniques used for 

data exploration, classification and regression is presented. The theory of each method is 

explained with references to further detailed literature and some examples of applicability are 

highlighted. Model training and validation with cross-validation in particular are reviewed and 

their importance in model training and validation is critically discussed. The material in this 

chapter acts as a foundation for all model development performed in this thesis and it also 

provides a useful overview of the tools for tackling a wide variety of different modelling 

problems in other disciplines and industrial sectors. 

2.1 Matrix, vector and index notations 

For consistency and to avoid confusion, specific naming conventions is used throughout for the 

independent and dependent variables in this chapter to describe the structure of vectors and 

matrices used in the different multivariate techniques explained below. Additional matrix, 

vector or index notations specific to individual methods are specified and explained in 

connection with the method in question. 

2.1.1 Independent data 

The independent data will be referred to as 𝑿 shown in eq.(2.1) where the rows correspond to 

individual samples and the columns to individual independent variables. The term structural 

descriptors defined in QSAR modelling is equivalent to that of the independent variables 

  

 𝑿 = [

𝑥11 𝑥12

𝑥21 𝑥22
⋯

𝑥1𝑀

𝑥1𝑀

⋮ ⋱ ⋮
𝑥𝑁1 𝑥𝑁2 ⋯ 𝑥𝑁𝑀

] (2.1) 
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Index notation for samples in this thesis will use 𝑖, 𝑗 = 1, … , 𝑁 where 𝑖 and 𝑗 are individual 

arbitrary samples and 𝑁 is the total number of samples in the data set. Index notation for 

variables/descriptors will use 𝑘, 𝑙 = 1,… ,𝑀 where 𝑘 and 𝑙 are individual arbitrary 

variables/descriptors and 𝑀 is the total number of variables/descriptors in 𝑿. Small letter 𝒙 in 

bold in this chapter indicates either a column vector for a single variable eq.(2.2) or a row vector 

for a single sample eq.(2.3) and can be identified based on the index notation belonging to either 

the variables or the samples.  

  

 𝒙𝑘 = [

𝑥1𝑘

𝑥2𝑘

⋮
𝑥𝑁𝑘

] (2.2) 

 𝒙𝑖 = [𝑥𝑖1 𝑥𝑖2 ⋯ 𝑥𝑖𝑀] (2.3) 

 

2.1.2 Dependent data 

The dependent variables or response variables will be referred to as 𝒀 shown in eq.(2.4) where 

the rows correspond to individual samples and the columns to the individual response variables.  

 

 𝒀 = [

𝑦11 𝑦12

𝑦21 𝑦22
⋯

𝑦1𝐷

𝑦1𝐷

⋮ ⋱ ⋮
𝑦𝑁1 𝑦𝑁2 ⋯ 𝑦𝑁𝐷

] (2.4) 

 

Index notation for response variables will use 𝑓, 𝑔, ℎ = 1,… , 𝐷 where 𝑓, 𝑔 and ℎ are individual 

arbitrary responses and 𝐷 is the total number of response variables in 𝒀. Small letter 𝒚 in bold 

in this chapter indicates either a column vector for a single response eq.(2.5) or a row vector 

for a single sample eq.(2.6) and can be identified based on the index notation belonging to either 

the variables or the samples. 

 

 𝒚𝑓 = [

𝑥1𝑓

𝑥2𝑓

⋮
𝑥𝑁𝑓

] (2.5) 

 𝒚𝑖 = [𝑦𝑖1 𝑦𝑖2 ⋯ 𝑦𝑖𝐷] (2.6) 
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2.2 Exploratory Data Analysis 

Exploratory data analysis (EDA) is applied to better understand the main characteristics of a 

data set and can therefore provide an overview of the variables and samples in a study used to 

identify similarities/dissimilarities, systematic trends and outlies (Biancolillo and Marini, 

2018). EDA is therefore a crucial step prior to any predictive modelling in order to identify 

sources of variation that can potential impact on model performance. In this research, Principal 

Component Analysis (PCA) has been reviewed due to being one of the most commonly used 

techniques EDA. 

2.2.1 Principal Component Analysis 

PCA is one of the oldest and most widely used data exploration tools in fields of statistics, 

biology and chemometrics. The idea behind PCA was first introduced by Pearson in 1901 who 

proposed the that lines could be placed in a high dimensional variable space that had a best fit 

to a set of sample points. The direction of the lines in the original variable space were placed in 

such a way that the correlations between the lines and the original variables were maximised, 

thus ensuring that most of the variation in the data was captured (Pearson, 1901). The method 

was later improved upon by Hotelling in 1933 who instead of using lines, used linear 

transformations to transform the data to a new coordinate system where the new axes were 

linear combinations on the original variables (Hotelling, 1933).  

2.2.1.1 Theory 

Given a data matrix, e.g. 𝑿, a new set of variables called Principal Components (PCs) are 

calculated which describe the variation of the original variables according to: 

 

 
𝑿 = 𝑻𝑷𝑇 + 𝑬 = 𝒕1𝒑1

𝑇 + 𝒕2𝒑2
𝑇 + ⋯+ 𝒕𝑅𝒑𝑅

𝑇 + 𝑬,

𝑟 = 1, … , 𝑅 
(2.7) 

 

where 𝑻 = [𝒕1 … 𝒕𝑅] (N x R) is the sample score matrix and R is the number of components, 

𝒕𝑟 (N x 1) is the score vector of component 𝑟, 𝑷 = [𝒑1 … 𝒑𝑅] (M x R) is the loadings matrix, 

𝒑𝑟 (M x 1) is the loading vector of component 𝑟 and 𝑬 (N x M) is the residual error matrix not 

explained by the PCs. 

The loading vectors are linear combinations of the original variables are pair-wise orthogonal. 

When stronger correlations between the original variables are present, fewer PCs are required 

to explain the majority of the variation in 𝑿. Also, due to the orthogonality, each PC has an 
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individual contribution to the explained variation according to eq.(2.8). Thus, increasing the 

number of PCs will in turn increase the total variation explained. 

 

 
‖𝑻𝑷𝑻‖𝟐 = ‖𝒕1𝒑1

𝑻‖
𝟐
+ ‖𝒕2𝒑2

𝑻‖
𝟐
+ ⋯+ ‖𝒕𝑅𝒑𝑅

𝑻‖
𝟐

= 

= ‖𝑿‖𝟐 − ‖𝑬‖𝟐 
(2.8) 

 

PCA relies on the calculation of the covariance matrix, 𝚺, as it describes the covariance between 

pairs of variables in 𝑿. The covariance between two variables is calculated according to: 

 

 
cov(𝒙𝑘, 𝒙𝑙) =

1

𝑁 − 1
∑(𝑥𝑖𝑘 − �̅�𝑘)(𝑥𝑖𝑙 − �̅�𝑙)

𝑁

𝑖=1

,

𝑘, 𝑙 = 1,… ,𝑀 

(2.9) 

 

The full covariance matrix, 𝚺, is defined in eq.(2.10) where the diagonal elements become the 

variances for the individual variables, cov(𝒙𝑘, 𝒙𝑘) = 𝜎𝑘
2. Eq.(2.10) can be simplified as 

according to eq.(2.11) by first mean-centring the 𝑿 block (see Section 2.7). 

 

 𝚺 =

[
 
 
 

𝜎1
2 cov(𝒙1, 𝒙2)

cov(𝒙2, 𝒙1) 𝜎2
2 ⋯

cov(𝒙1, 𝒙𝑀)

cov(𝒙2, 𝒙𝑀)

⋮ ⋱ ⋮
cov(𝒙𝑀, 𝒙1) cov(𝒙𝑀, 𝒙2) ⋯ 𝜎𝑀

2 ]
 
 
 
 (2.10) 

 

 𝚺 =
1

𝑁 − 1
𝑿𝐶𝑒𝑛𝑡

𝑇 𝑿𝐶𝑒𝑛𝑡 (2.11) 

 

In order to find the directions and importance of the PCs, the eigenvalues, 𝜆𝑘, and eigenvectors, 

𝒗𝑘 (M x 1), are calculated from 𝚺. For details on calculation and properties of eigenvalues and 

eigenvectors, refer to Appendix D.1. The eigenvectors calculated from covariance matrix play 

a central role in the calculation of the PCs as they are pair-wise orthogonal and represent the 

directions in the original variable space in which the data variations are the highest.  

The eigenvalues on the other hand determines the importance of their corresponding 

eigenvector where a higher eigenvalue indicates a larger data variation in the direction of the 

eigenvector. The covariance matrix, 𝚺, can then be decomposed using the eigenvectors and 

eigenvalues which is known as eigen-decomposition according to: 
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 𝚺 = 𝑽𝚲𝑽𝑇 (2.12) 

 

where 𝑽 = [𝒗1 𝒗2 … 𝒗𝑀] is the eigenvector matrix and 𝚲 = diag(𝜆1, 𝜆2, … , 𝜆𝑀) is a 

diagonal matrix consisting of the eigenvalues where 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑀. Based on the 

definition of PCA stated in eq.(2.7), the PC loadings are equal to the eigenvector matrix due to 

their orthogonality according to  eq.(2.13). An example of the placement of two eigenvectors 

is illustrated in Figure 2.1c. The PC scores are then calculated as the product of the mean centred 

𝑿 matrix and the loadings, 𝑷, according to eq.(2.14). Figure 2.1d illustrates the new placement 

of samples on two PCs where the red and blue dashed lines represents the scores on the first PC 

and second PC for sample 𝑖. The representation is also known as a score plot. 

 

 𝑷 = 𝑽 (2.13) 

 𝑻 = 𝑿𝐶𝑒𝑛𝑡𝑽 = 𝑿𝐶𝑒𝑛𝑡𝑷 (2.14) 

 

Alternatively, the principal components can be calculated using Singular Value Decomposition 

(SVD) which is present in Appendix D.2. 
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Figure 2.1. Overview and critical steps of data decomposition with PCA in two dimensions. (a) The raw data is 

first (b) pre-treated by mean centring the samples around the origin. (c) Linear combinations of the original 

variables, 𝑥1 and 𝑥2, known as eigenvectors are then calculated where the first eigenvector, 𝒗1 (red), lies in the 

direction of the greatest data variation and the second eigenvector, 𝒗2 (blue), in the direction of the second greatest 

data variation. (d) Final transformation of samples to the PC1 (red line) and PC2 (blue line) axes where each sample 

is represented by its individual scores (adapted from O'Malley (2008)) 

2.2.1.2 Applicability of PCA in this research 

PCA is a very useful tool for visualisation and exploration of high dimensional data set due to 

its ability to reduce the variable dimensionality and to capture strong correlations between 

variables which might otherwise be difficult to explore. PCA also has powerful diagnostic 

capabilities for detection of outliers based on residual values and the calculation of Hotelling 

T2 (Hotelling, 1933). This provides evidence for characterisation of not only ill-fitted samples 

with high residual values, but can be used to identify extreme samples that are forcing the 

direction of the PCs. Thus, PCA aids in the identification of samples which require further 

investigation due to different behaviour compared to the other samples in the data set (Bro and 

Smilde, 2014). 

PCA has been extensively used over the years within bio-related research for applications 

ranging from the effects of raw material variations in media composition (O’Kennedy, 2016), 

characterisation of fermentation process (Sokolov et al., 2016, Rathore et al., 2015), fault 

detection in fermentation (Gunther et al., 2006) and effects of scalability on bioprocesses 
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(Mercier et al., 2013) to mention a few. In all applications, PCA was shown to be an effective 

method used to identify sources of variation that impacted upon the individual problem 

statements. The authors also highlighted the importance of selecting the right number of 

components in order to filter out noise and keep application related variation. 

The selection of the number of PCs to use when decomposing 𝑿 depends mainly on the problem 

statement as well as the data. In the visualisation of the scores, class information can be 

incorporated by colouring samples according to the available classes which might aid in 

determining the number of PCs needed to find a good separation class separation (Biancolillo 

and Marini, 2018, Bro and Smilde, 2014). However, due to being unsupervised and depending 

only on the data variation in 𝑿, PCA will not necessarily lead to a good separation of classes if 

the data variation is not directly correlated to the class information. Alternatively, a scree test 

can be performed where the eigenvalues or the captured variation are plotted against their 

corresponding PCs. The number of PCs are chosen based on when the decrease in eigenvalues 

becomes linear, indicating that the model is starting to capture noise (D'Agostino Sr and 

Russell, 2005). Another method is the Broken stick method where a line based on the broken 

stick distribution is added to the scree plot (MacArthur, 1957). The line mimics the behaviour 

of eigenvalues calculated from a completely randomised data set, thus effectively representing 

noise. If eigenvalues in the PCA model lies above the line this is an indication that the PC 

capture structured variation. The last reviewed approach is to define a limit for the minimum 

total explained variance which must be captured by the PCA model (Bro and Smilde, 2014).  

In this research, a limit for the minimum total explained variance was used due to two reasons: 

1) The components in PCA are additive, meaning that even if extra components are added to 

the model, the structure of the initial components will remain unchanged. 2) PCA was only used 

for exploration and therefore a strict number of components does not need to be defined. Bro 

and Smilde (2014) argued that this allows for greater exploration of the behaviour in the 

individual components. However, it is mportant to remember that it also inadvertently increases 

the chances of including components that only capture noise.  

It is important to note that PCA will only perform well if the relationship between correlated 

variables is linear, meaning for non-linear correlations PCA will not be able to capture the 

correlation between variables. 

2.3 Classification 

When distinct classes exist in the data set and clear discrimination is needed, dedicated 

classification methods may be more appropriate for the task and can be used to investigate 
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potential correlation between variables in 𝑿 and the sample classes. The theory of the popular 

classification methods PLS-DA and SVC has been covered in this research and their 

applicability assessed.   

2.3.1 Partial Least Square – Discriminant Analysis 

PLS-DA like the name implies, is a combination of Partial Least Squares (PLS) and Linear 

Discriminant Analysis (LDA). However, only LDA will be covered in this section due to being 

the classifier whereas PLS is strictly a regression method (see section Section 2.4.1). As for the 

LDA algorithm, Bayes decision rule was used in this research due to being better suited to the 

problem statement (see Section 2.3.1.2). The method theory has been covered below 

2.3.1.1 Theory 

Before describing the theory of the Bayes´ method, it is important to understand the structure 

of the input data into the DA algorithm. Prior to the classification, a PLS regression model will 

be trained with 𝑿 and 𝒀. The matrix 𝒀 (N x C) contains the class memberships of the samples 

and is represented in the form of dummy variables. An example of 𝒀 in a binary classification 

problem (𝐷 = 2) with classes 𝐶1 and 𝐶2 is presented in Figure 2.2a. Two dummy variables have 

been generated as column vectors representing each class where the class membership of each 

sample, 𝒙𝑖, is assigned with values of either one and zero. A value of one indicates membership 

to the class represented in the dummy variable while a value of zero indicates membership to 

another class, e.g. if 𝑦𝑖1 = 1 then the sample 𝒙𝑖 ∈ 𝐶1. 

However, the predictions from the PLS model, �̂�, will not be predicted perfectly as ones and 

zeros but will instead have predictions close to the original values of 𝒀. An example of PLS 

predictions is presented in Figure 2.2b. 
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Figure 2.2. The structure of the response vector 𝒀 in a binary classification problem used in PLS-DA. (a) Dummy 

variables are used to construct 𝒀 and assign class memberships of samples to either 𝐶1 (blue) and 𝐶2 (red). (b) 

Example predictions from the PLS regression. 

A binary classification problem however will not need two dummy variables in order to 

represent the classes due to all samples being listed as either ones or zeros in each column. The 

PLS-DA algorithm will build two classifiers based on each dummy variable. The solutions of 

these classifiers however will be identical due to the class membership of the samples being 

retained regardless of which column in �̂� is used as well as the individual class means and 

variances of 𝐶1 and 𝐶2 being identical in both columns (Brereton and Lloyd, 2014). Therefore, 

in order to avoid confusion, Bayes method will be explained in relation to the second column 

in �̂� which, for convenience, will be referred to as �̂� = (�̂�1, �̂�2, … , �̂�𝑁).  

Bayes´ theorem for discrimination of two classes can be formulated according to: 

 

 𝑃(𝐶𝑐|�̂�𝑖) =
𝑃(�̂�𝑖|𝐶𝑐)𝑃(𝐶𝑐)

𝑃(�̂�𝑖)
 ∝ 𝑃(�̂�𝑖|𝐶𝑐)𝑃(𝐶𝑐) (2.15) 

 

𝑃(∁𝑐|�̂�𝑖) is the posterior probability of a sample 𝑖 belonging to class 𝐶𝑐 given a particular value 

of �̂�𝑖 where 𝑐 = 1,2. The 𝑃(�̂�𝑖|∁𝑐) term is the likelihood or the probability of observing �̂�𝑖 

given 𝐶𝑐. The 𝑃(𝐶𝑐) term is the prior probability of class 𝐶𝑐, or more specifically, the 

probability of observing class 𝐶𝑐. 𝑃(�̂�𝑖) is the probability of observing �̂�𝑖. The posterior 

probability is directly proportional to the numerator in eq.(2.15) due to that 𝑃(�̂�𝑖) will not 

change regardless of the class defined in the posterior. 

The likelihood, 𝑃(�̂�𝑖|∁𝑐), can be defined as a gaussian function according to: 
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 𝑃(�̂�𝑖|∁𝑐) =
1

√2𝜋𝜎𝑐
2
exp (−

(�̂�𝑖 − �̅�𝑐)
2

𝜎𝑐
2

) (2.16) 

 

where 𝜎𝑐 is the standard deviations of samples belonging to class 𝐶𝑐 and �̅�𝑐 is the sample mean 

of class 𝐶𝑐. An example of the likelihood functions is illustrated in Figure 2.3a for class 𝐶1 (blue 

line) and 𝐶2 (red line) where the predicted values are centred around zero and one, respectively. 

The prior class probabilities are calculated as the ratio of samples belonging to a specific class 

and all samples in the data set according to: 

 

 ∑𝑃(∁𝑐)

2

𝑐=1

= 1, 𝑃(∁𝑐) =
𝑁𝑐

𝑁
  (2.17) 

 

where 𝑁𝑐 is the number of samples belonging to class 𝐶𝑐. The sum of all priors needs to be 

equal to one. The probability of observing �̂�𝑖 is the sum of the likelihoods weighted by their 

corresponding class priors according to: 

 

 𝑃(�̂�𝑖) =  ∑𝑃(�̂�𝑖|𝐶𝑐)𝑃(𝐶𝑐)

2

𝑐=1

 (2.18) 

 

An example of the distribution of 𝑃(�̂�𝑖) is illustrated in Figure 2.3a as the grey dashed line and 

it can be observed that the peaks of the likelihoods are preserved in the distribution which was 

weighted with 𝑃(𝐶1) = 𝑃(𝐶2) = 0.5 in order for the distribution area to become equal to one. 

The posterior probabilities for class 𝐶1 and 𝐶2  are illustrated in Figure 2.3b as the blue and red 

line, respectively. It can be observed that samples around zero on the �̂� axis will be classified 

as 𝐶1 while samples around one be classified as 𝐶2. A point of interest is where 𝑃(𝐶1|�̂�) =

𝑃(𝐶2|�̂�), which is known as the decision boundary, 𝑑. 
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Figure 2.3. Probability distributions used in Bayes theorem. (a) Examples of the likelihood distributions of ŷ 

belonging to class C1 (blue line) and C2 (red line) centred around zero and one, respectively. The distribution of ŷ 

(dashed grey line) with equal samples sizes, P(C1) = P(C2) = 0.5. (b) The posterior probabilities of a sample 

belonging to either to class C1 (blue line) or C2 (red line) based on ŷ with the decision boundary, d (dashed black 

line) (adapted from Pérez et al. (2009)). 

Two options exist for classification of samples once the posterior probability functions have 

been calculated: 1) the decision boundary can used directly to determine the class of a sample 

𝑖 based on �̂�𝑖 from the PLS model, or 2) the probabilities of a sample 𝑖 is calculated using the 

posterior probability function according to eq.(2.15) and the class with the highest probability 

is assigned to the sample. In this research, the latter option has been used. 

2.3.1.2 Applicability of PLS-DA in this research 

If the goal is to investigate discrimination between sample classes, PLS-DA will be much more 

useful compared to PCA due to the maximisation of covariance between 𝑿 and 𝒀 (Ballabio and 

Consonni, 2013).Numerous PLS-DA algorithms with different decision boundary rules and 

their application in the PLS algorithm have been developed in the past (Povey et al., 2014, Chen 

et al., 2018). It is therefore important to consider the different aspects and choices available for 

PLS-DA with regards to the problem statement in order to develop meaningful models. Several 

decision rules exist which can be used in PLS-DA to generate the decision boundary where the 

two most common ones are: 1) Fisher’s LDA which minimises the variance in the individual 

classes while maximising the distance between the class means and assumes Gaussian 

distribution and equal variance between classes (Barker and Rayens, 2003). 2) Bayes decision 

rule which allows for prior class probabilities to be used. Bayes rule applies Gaussian 

distribution fit to the individual classes, but does not assume the class variances to be equal 

(Indahl et al., 2007, Pérez et al., 2009). For LDA, class imbalances have a negative impact on 

the model due to that the decision boundary will be moved closer to the class containing the 

most samples which consequently can cause a higher misclassification rate if the class variance 

is large (Brereton and Lloyd, 2014). This is however not a problem with Bayes rule due to 
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assignment of class weights based on the prior probabilities of the class occurrence within the 

data set as seen in eq. (2.15). As a result, Bayes decision rule will modify and place the decision 

boundary in the centre between the two classes (Indahl et al., 2007).  For this reason, Bayes 

decision rule was therefore chosen in this research as the data set available from Jain et al. 

(2017) demonstrated uneven class representation. 

Kjeldahl and Bro (2010) as well as Gromski et al. (2015) reported on a common misconception 

about PLS-DA where many publications report model performance based on 𝑅2 and 𝑄2 (see 

Section 2.6.1). This is often misleading as these describes the model fit with regards to 

regression and give no information pertaining to correct classification and misclassification of 

a sample. In this research, performance metrics conforming to classification problem statements 

are strictly used (see Section 2.6.2). 

Another important aspect to consider is the contribution of random chance-correlation between 

𝑿 and 𝒀 in PLS-DA. Perez and Narasimhan (2018) showed that the accuracy of PLS-DA fitted 

on randomly generated variables increased when the number of variables became much greater 

than the number of samples in the data set (𝑀 ≫ 𝑁). This is caused by random chance-

correlation between 𝑿 and 𝒀, thus making it appear as if PLS-DA resulted in a clear 

discrimination of classes but where in reality, none should exist. Perez and Narasimhan (2018) 

as well as Westerhuis et al. (2008) highlighted the importance of rigorous cross-validation (see 

Section 2.5) in order to ensure that PLS-DA captures the true underlying pattern in the data. 

In reviews by Gromski et al. (2015) and Brereton and Lloyd (2014), the authors stated that PLS-

DA is often outperformed by other classification methods such as Support Vector Machines for 

classification (SVC). PLS-DA might therefore not be the optimal choice of classifier to apply 

in many problem statements. However, PLS-DA has unparalleled diagnostic capabilities 

compared to other methods due to the PLS component in the algorithm which can assess sample 

and variable contributions to the predictions (see Section 2.4.1 for more information). 

Therefore, PLS-DA should be seen as an intermediate step in classification model development 

to be used for outlier detection and investigation of highly contributing variables prior to model 

development with an alternative classifier (Brereton and Lloyd, 2014, Gromski et al., 2015). 

2.3.2 Support Vector Machines for Classification 

Support Vector Machines (SVM) for classification (SVC) were first introduced by Boser et al. 

(1992) as a linear or non-linear classification method that maximises the separation of classes 

through calculation of optimal placement of the decision boundary. The method is based on the 
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original work of Vapnik who first introduced the method in 1963 as the “generalised portrait 

algorithm” (Vapnik and Lerner, 1963). 

The aspect that the SVC algorithm addresses, that many classification techniques do not, is that 

of over-fitting. As previously discussed, when training a classifier to maximise correct 

classification it is possible to fit the classifier over-fit to the training set. This has the effect of 

degrading the performance of the classifier when presented with unseen data. In a binary 

classification problem, the SVC algorithm trains a decision function that maximises the 

generalisation between the classes. In doing so, this makes the algorithm more robust.  

In literature, the abbreviations of SVM and SVC are used interchangeably so in order to avoid 

confusion, this research uses SVC to distinguish SVM for classification from that of SVM for 

regression (SVR) which has also been applied in this research (see Section 2.4.2). 

2.3.2.1 Theory 

In a binary classification problem that is linearly separable, for any given data set, e.g. 𝑿, where 

each sample is assigned a class according to 𝑦𝑖 ∈ {−1,1}, the SVC algorithm will always find 

the largest margin or the “widest street” that separates the two classes. The separation is 

illustrated in Figure 2.4a of positive samples (red dots) and negative samples (blue dots) 

according to a defined hyperplane shown as the black line.  

 

 

Figure 2.4. SVC placement of the decision boundary (black line) generated from selected samples that act as 

support vectors (black circles) which maximises class discrimination in a problem that is (a) linearly separable and 

(b) not linearly separable. The SVC constraints for separating positive and negative class samples are shown as 

the red dashed line and blue dashed line, respectively (adapted from Boser et al. (1992)) 

The SVC algorithm defines the boundaries for each class according to: 
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 𝝎 ∙ 𝒙𝑖
+ + 𝑏 ≥ 1 (2.19) 

 𝝎 ∙ 𝒙𝑖
− + 𝑏 ≤ −1 (2.20) 

 

where 𝝎 = (𝜔1, 𝜔2, … , 𝜔𝑀) (M x 1) is the normal vector of the desired hyperplane, 𝑏 is the 

distance from the origin to the hyperplane and is parallel to 𝝎, 𝒙𝑖
+ are samples for which 𝑦𝑖 = 1 

and 𝒙𝑖
− are samples for which 𝑦𝑖 = −1. For simplicity, eq.(2.19) and eq.(2.20) can be rewritten 

as a single expression through multiplication of 𝑦𝑖 according to: 

 

 𝑦𝑖(𝝎 ∙ 𝒙𝑖 + 𝑏) − 1 ≥ 0 (2.21) 

 

The orientation and placement of the hyper plane in the variable space is defined by a subset of 

samples, positive and negative, called support vectors (SVs) that defines the boundaries 

according to: 

 

 𝑦𝑆𝑉(𝝎 ∙ 𝒙𝑆𝑉 + 𝑏) − 1 = 0 (2.22) 

 

The maximal width of the margin is defined by the SVs and will always be equal to 2 ‖𝝎‖2⁄  

where ‖𝝎‖2 is the magnitude of 𝝎. Therefore, in order to maximise the separation of samples, 

‖𝝎‖2 needs to be minimised. Based on the defined width of the margin and the decision 

boundary in eq.(2.21), the primal optimisation problem can be formulated according to: 

 

 
minimise

𝝎,𝑏
=

1

2
‖𝝎‖2

2 

subject to = 𝑦𝑖(𝝎 ∙ 𝒙𝑖 + 𝑏) − 1 ≥ 0 

(2.23) 

 

where 
1

2
‖𝝎‖2

2 is the objective function for which 𝝎 and 𝑏 are the variables that needs to be 

optimised and eq.(2.21) has been added as linear constraints. As can be observed, the original 

minimisation of ‖𝝎‖2 has been slightly modified to ‖𝝎‖2
2 instead which transforms the 

optimization into a quadratic programming (QP) problem, meaning that the solution space 

becomes convex and a global solution can always be produced. The primal can be solved 

directly using QP designed solvers to find the minimum value in the objective function. 

However, solving the primal can be computationally cumbersome if 𝑀 is large which is usually 
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the case where data sets today can consist of thousands of variables. The QP problem in 

eq.(2.23) can instead be reformulated by using Lagrange Multipliers to define the dual problem 

according to: 

 

 

maximise
𝜶

= 𝑊(𝜶) = ∑𝛼𝑖

𝑁

𝑖=1

−
1

2
∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝒙𝑖 ⋅ 𝒙𝑗

𝑁

𝑖,𝑗=1

 

subject to = 𝛼𝑖 ≥ 0, 𝑖 = 1,… ,𝑁 

= ∑𝛼𝑖𝑦𝑖

𝑁

𝑖=1

= 0 

(2.24) 

 

where 𝑊(𝜶) is the new optimisation function called Wolf’s dual and 𝜶 = (𝛼1, 𝛼2, … , 𝛼𝑁) (N 

x 1) are multipliers for the constraints in expression eq.(2.23). For detailed formulation of the 

dual with Lagrange Multipliers (see Appendix D.3). It can be observed in expression eq.(2.24) 

that the dual is only dependent on the samples in the data set to form of the inner product 

between pairs of samples. This is an especially beneficial quality of the dual formulation due 

to 𝑁 ≪ 𝑀 in many data sets today. For support vectors, the values of 𝛼𝑖 will be non-zero and 

𝒙𝑖 ∈ 𝒙𝑆𝑉 while samples laying further away from the boundaries will have 𝛼𝑖 equal to zero. 

The optimal solution for 𝜶 is obtained by using the Sequential Minimal Optimisation (SMO) 

algorithm which is specially designed to handle QP problems in SVC for both classification 

and regression (Platt, 1998, Shevade et al., 2000). The variables 𝝎 and 𝑏 can then be solved 

using the identified support vectors.  

Class prediction of an unknown sample, 𝒙𝑢, can then be performed according to: 

 

 

𝐷(𝒙) = sign(𝝎 ∙ 𝒙 + 𝑏) = sign (∑𝛼𝑖𝑦𝑖𝒙𝑖

𝑁

𝑖=1

⋅ 𝒙𝑢 + 𝑏) (2.25) 

 

where 𝐷(𝒙) is the decision function for a sample 𝒙. Substitution of 𝝎 has been performed with 

eq.(D.13) in the last equality of eq.(2.25). This also shows that the solution of the hyper plane 

is dependent only on the samples.  

2.3.2.2 Soft Margin 

So far only cases that are linearly separable have been discussed. For non-separable 

classification problems such as the example illustrated in Figure 2.4b where a positive sample 

(red) is mixed in with the negative samples (blue) the QP problem in eq.(2.23) will fail. Cortes 
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and Vapnik adjusted for this by introducing slack variables, 𝜉𝑖, to allow for some 

misclassification and is known as soft margin classifier (Cortes and Vapnik, 1995). The QP 

problem in eq.(2.23) then becomes: 

 

 

minimise
𝝎,𝑏,𝝃

=
1

2
‖𝝎‖2

2 + 𝐶 ∑𝜉𝑖

𝑁

𝑖=1

 

subject to = 𝑦𝑖(𝝎 ∙ 𝒙𝑖 + 𝑏) ≥ 1 − 𝜉𝑖  

= 𝜉𝑖 ≥ 0 

(2.26) 

 

where 𝐶 is the cost parameter which is a regularisation term used to penalise the QP problem 

and must be greater than zero. The second term in the objective function of eq.(2.26) is known 

as the loss function and controls the misclassification of samples. It can be observed from the 

constraints in eq.(2.26) that samples now are allowed to fall inside of the margin, 𝜉𝑖 < 1, as 

well as to be misclassified, 𝜉𝑖 > 1. The cost parameter, 𝐶, controls the flexibility where a small 

value introduces more slack, meaning more samples will have 𝜉𝑖 > 0 and therefore allows for 

more misclassification. A large value of 𝐶 on the other hand forces the slack variables to 

become closer to zero and classification becomes stricter. If 𝐶 is set to infinity the QP problem 

in eq.(2.26) becomes equivalent to eq.(2.23) which appropriately is known as a hard margin 

classifier. 

Formulation of the Lagrange dual in eq.(2.26) then becomes: 

 

 

maximise
𝜶

= ℒ(𝜶) = ∑𝛼𝑖

𝑁

𝑖=1

−
1

2
∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝒙𝑖 ⋅ 𝒙𝑗

𝑁

𝑖,𝑗=1

 

subject to = 0 ≤ 𝛼𝑖 ≤ 𝐶, 𝑖 = 1,… ,𝑁 

= ∑𝛼𝑖𝑦𝑖

𝑁

𝑖=1

= 0 

(2.27) 

 

where can be observed that only the constraints for 𝛼𝑖 has changed and now has an upper limit 

of 𝐶 when compared to the dual of the hard margin QP problem in eq.(2.23). The solution of 𝜶 

is obtained using the SMO algorithm.  
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2.3.2.3 Kernel Trick for non-linearity 

For non-linear application of SVC, the so-called Kernel trick can be used to transform the 

samples from the original variable space to a higher dimensional feature space with the use of 

a Kernel function, Κ, according to:  

 

 Κ(𝒙𝑖, 𝒙𝑗) = 𝜑(𝒙𝑖) ∙ 𝜑(𝒙𝑗) (2.28) 

 

where 𝜑(𝒙𝑖) = (𝜑1(𝒙𝑖), 𝜑2(𝒙𝑖),… , 𝜑𝐿(𝒙𝑖)) is called the feature map of 𝒙𝑖 and 𝐿 is the number 

of features for which 𝐿 > 𝑀. An example of a non-linear mapping from a two-dimensional to 

a three-dimensional feature space is illustrated in Figure 2.5 where the classification problem 

becomes linearly separable. 

 

 

Figure 2.5. Transformation with a non-linear mapping function, 𝜑(𝒙), from a two-dimensional variable space to 

a three-dimensional feature space where the positive samples (red) become linearly separable from the negative 

samples (blue). 

A requirement of the Kernel function is that the corresponding gram matrix, 𝚪, shown in  

eq.(2.29) must be symmetric, e.g. Κ(𝒙1, 𝒙2) = Κ(𝒙2, 𝒙1), and positive semi-definite (Shawe-

Taylor and Cristianini, 2004). 

 

 𝚪 = [

Κ(𝒙1, 𝒙1) Κ(𝒙1, 𝒙2)

Κ(𝒙2, 𝒙1) Κ(𝒙2, 𝒙2)
⋯

Κ(𝒙1, 𝒙𝑁)

Κ(𝒙2, 𝒙𝑁)
⋮ ⋱ ⋮

Κ(𝒙𝑁, 𝒙1) Κ(𝒙𝑁, 𝒙2) ⋯ Κ(𝒙𝑁 , 𝒙𝑁)

] (2.29) 

 

Two popular kernels often used in research are the polynomial kernel in eq.(2.30) where 𝑑 is 

the polynomial degree and the radial basis function (RBF) kernel in eq.(2.31) where 𝜎 is the 

peak spread. For convenience, the kernel parameter will be referred to as 𝛾 throughout this 

thesis. 
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 Κ(𝒙𝑖, 𝒙𝑗) = (𝒙𝑖 ⋅ 𝒙𝑗 + 1)
𝑑

= (∑𝑥𝑖𝑘𝑥𝑗𝑘

𝑀

𝑙=1

+ 1)

𝑑

 (2.30) 

 Κ(𝒙𝑖, 𝒙𝑗) = exp(−
‖𝒙𝑖 − 𝒙𝑗‖2

2

2𝜎2
) = exp(−

1

2𝜎2
∑(𝑥𝑖𝑘−𝑥𝑗𝑘)

2
𝑀

𝑙=1

) (2.31) 

 

Cortes and Vapnik showed in 1995 that the dot products in the dual formulations of the hard 

margin in eq.(2.24) and the soft margin in eq.(2.27) classifiers could effectively be replaced 

with a kernel function, Κ, in order to train the SVC algorithm (Cortes and Vapnik, 1995). The 

decision boundary function in eq.(2.25) can then be reformulated to include the non-linear 

hyper plane for classification of the samples according to: 

 

 𝐷(𝒙) = sign(∑𝛼𝑖𝑦𝑖

𝑁

𝑖=1

Κ(𝒙𝑖, 𝒙) + 𝑏) (2.32) 

 

2.3.2.4 Applicability of SVC in this research 

The main strength of SVC is that the method is robust in high-dimensional problems where the 

placement of the decision boundary is decided by a small subset of samples (support vectors). 

This results in better generalisation performance compared to that of PLS-DA (Gromski et al., 

2015). However, a disadvantage of SVC is that the interpretation of important variables is 

difficult due to lack of supporting statistics of variable contribution to the response and can only 

be assessed based on the magnitude of the weights, 𝝎. This becomes even more difficult if a 

non-linear kernel is applied due to the generation of extra variables and the non-linear nature 

of the decision boundary (Maldonado and Weber, 2009). 

Multiple toolboxes exist for implementation of SVM. In a study by Steinwart and Thomann 

(2017), the authors compared to execution times and performances of several popular SVM 

toolboxes that are available for free. In this research, the LibSVM toolbox was applied, though 

not being the fastest, is has been extensively documented and continuously updated in order to 

provide more robust solutions (Chang and Lin, 2011). 

Similar to that of PLS-DA, class imbalances present in the data set of interest need to be 

considered when using soft-margin SVC. Several strategies exist to approach this where 

separate cost values, 𝐶, for each class can be applied, similar to that of prior probabilities in 

PLS-DA discussed in Section 2.3.1.2 (Akbani et al., 2004). Alternatively, a higher loss penalties 
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can be assigned to the minority class samples, thus effectively changing the optimal solution to 

the QP problem to accept less misclassification of the minority class (Hsu et al., 2003). In this 

research, the former approach was used due to being similar to that of Bayes rule used in PLS-

DA, thus allowing for a fairer comparison between the classification methods. 

Another important consideration is the selection of the cost parameter 𝐶 and potential kernel 

parameters which greatly affects the performance of the model. Several alternatives for 

optimisation of are available but where the grid search method (Hsu et al., 2003) and Bayesian 

optimisation (Cawley and Talbot, 2007, Czarnecki et al., 2015) are most commonly used. In 

the grid search approach, ranges containing several values for each of the parameters are 

defined to form a grid of different parameter permutations which are validated via cross-

validation in order to identify the best parameters (see Section 2.5). The Bayesian optimisation 

on the other hand uses the information available from previous parameter evaluations as well 

as local gradient approximations which allows the algorithm to find a parameter solution with 

relatively few evaluations and thus resulting in being faster than the grid search approach 

(Snoek et al., 2012). However, due to the fact that the solution space of the parameters is often 

non-convex, the Bayesian optimisation approach is at risk of selecting a local solution. The grid 

search approach was therefore used in this research due to being more robust and extensive in 

evaluation of parameter permutations (Hsu et al., 2003). 

2.3.3 Multiclass Classification Problems 

Many classification problems usually consist of more than two classes which need to be 

separated. However, many classification techniques, including SVC, will only work for binary 

classification problems. To circumvent this problem, two approaches referred to as “One versus 

Rest” (OvR) and “One versus One” (OvO) are often applied in research (Statnikov et al., 2004, 

Galar et al., 2011).  

In the OvO strategy, illustrated in Figure 2.6a, an individual classification model is developed 

for each unique class-pair. This results in a total of 
1

2
𝑐(𝑐 − 1) models where 𝑐 is the number of 

classes in the data set. Class assignment of samples is decided by the number of times a class 

has been chosen in the developed models. This method tends to work best with an odd number 

of classes due to a lower risk of a sample being unassigned if the sample proves difficult to 

classify. 

In the OvR strategy, illustrated in Figure 2.6b, an individual model is developed for each class 

with the remaining classes pooled together which results in a total of 𝑐 models being developed. 

Class assignment can be performed using the intrinsic properties of the used classification 
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method. For PLS-DA, class assignment can be performed using the generated posterior 

probabilities which will be closer to one in the model representing the class of interest while 

being closer to zero in the remaining models. In SVC, class assignment can be performed using 

the generated decision values which will be positive in the model representing the class of 

interest while having negative values in the remaining models. 

In a study performed by Hsu and Lin (2002), both OvR and OvO were extensively tested on 

several different data set with SVC. It was observed that both strategies had comparable 

performance thus making it difficult to identify the superior strategy. In this research, the OvR 

strategy was selected due to two reasons: 1) Each class is represented by an individual model, 

thus making the evaluation of the individual classes simpler due to that none of the samples 

will be unassigned a class. 2) There is less risk of over-fitting of the model due to lack of 

samples (see Section 2.5). 

 

Figure 2.6. Classification strategies for multiclass problems with (a) One versus One and (b) One versus Rest. 

Decision boundaries are shown as dashed black lines (adapted from Statnikov et al. (2004)). 

2.4 Regression 

QSAR model development linking the measurements of the selected response data to the 

structural descriptors of mAbs was performed with dedicated regression methods. In this 

research, the theory of PLS and SVR have been covered and their applicability to QSAR 

modelling have been reviewed. 

2.4.1 Partial Least Square Regression 

PLS is one of the most widely used regression tools in the field of chemometrics due to its 

simplicity and strong diagnostic capabilities. PLS was first introduced by Wold as a method to 

model the relationship between 𝑿 and 𝒀 through matrix decomposition similar to that of PCA 

(Wold et al., 1984). Unlike Multiple Linear Regression (MLR), PLS will still work even if the 
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variables are more numerous than the samples (N > M), the variables are correlated and noisy. 

The PLS algorithm is also able to model several response (dependent) variables in 𝒀 (D > 1) 

simultaneously (Wold et al., 2001). Two common algorithms used to perform PLS modelling 

are NIPALS (Geladi and Kowalski, 1986) and SIMPLS (De Jong, 1993). In this section, PLS 

implementation will be explained according to the NIPALS algorithm. 

2.4.1.1 Theory 

Like PCA, PLS will find a set of new variables which are linear combinations of the original 

variables in 𝑿 and the response variables in 𝒀 according to eq.(2.33) and eq.(2.34), respectively. 

These new variables are called Latent Variables (LVs) but will be referred to as components 

throughout this section.  

 

 𝑿 = 𝑻𝑷𝑇 + 𝑬 = ∑𝒕𝑟𝒑𝑟
𝑇

𝑅

𝑟=1

+ 𝑬 (2.33) 

 𝒀 = 𝑼𝑸𝑇 + 𝑯 = ∑𝒖𝑟𝒒𝑟
𝑇

𝑅

𝑟=1

+ 𝑯 (2.34) 

 

where 𝑻 (N x R) and 𝑼 (N x R) are the score matrices of 𝑿 and 𝒀, respectively, and where 𝒕𝑟 

(N x 1) and 𝒖𝑟 (N x 1) are the individual scores for component 𝑟, 𝑷 (M x R) and 𝑸 (D x R) are 

the loading matrices of 𝑿 and 𝒀, respectively, where 𝒑𝑟 (M x 1) and 𝒒𝑟 (D x 1) are the individual 

loadings for component 𝑟. 𝑬 (N x M) and 𝑯 (N x D) are the residual matrices of 𝑿 and 𝒀, 

respectively. In order to have good prediction of 𝒀, the corresponding components in the score 

matrices, 𝑻 and 𝑼, needs to be calculated in such a way so that the relationship between them 

becomes linear and is illustrated in Figure 2.7 for the first component.  
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Figure 2.7. Correlation of scores of the first component from the decomposed 𝑿 and 𝒀 blocks with PLS. 

Eq.(2.34) can then be reformulated according to: 

 

 𝒀 = 𝑻𝑸𝑇 + 𝑭 = ∑𝒕𝑟𝒒𝑟
𝑇

𝑅

𝑟=1

+ 𝑭 (2.35) 

 𝑻 ≠ 𝑿𝑷  (2.36) 

 

where 𝑭 (N x D) is the new residual matrix of 𝒀. This means that the X-loadings, 𝒑𝑟 and the 

Y-loadings, 𝒒𝑟, of a component 𝑟 needs to be calculated so that the captured variation in 𝑿 is 

correlated to the captured variation in 𝒀. Thus,  𝑻 cannot be calculated in the same was as in 

PCA eq.(2.36). Instead, PLS introduces a new variable, 𝑾 (M x R), which are known as weights 

that describes the relationship between 𝑿 and 𝒀. The weights of the first component, 𝒘1, are 

calculated as the first eigenvector, 𝒗1, from 𝑿𝑇𝒀𝒀𝑇𝑿 which is proportional to the product of 

the combined covariance matrix, 𝚺𝑋𝑌 (M x D) according to: 

 

 𝚺𝑋𝑌𝚺𝑋𝑌
𝑇 =

1

(𝑁 − 1)2
𝑿𝑇𝒀𝒀𝑇𝑿 ∝ 𝑿𝑇𝒀𝒀𝑇𝑿 (2.37) 

 

Eq.(2.37) is only valid if both 𝑿 and 𝒀 have been centred prior to the calculation (see Section 

2.7). For more information on eigenvectors, refer to Appendix D.1. It can be shown that the 

calculation of 𝒘1 can be simplified by using 𝚺𝑋𝑌 directly according to: 

 

 𝒘1 =
𝑿𝑇𝒀𝑓

‖𝑿𝑇𝒀𝑓‖2

 (2.38) 
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where 𝒀𝑓 is the response variable with the largest magnitude when D > 1. If only one response 

variable is available (D = 1), then 𝒀𝑓 = 𝒀. The X-scores, 𝒕1, can be calculated once 𝒘1 

according to eq.(2.39). The X-loadings can then be acquired by projecting 𝑿 onto 𝒕1 according 

to (2.40). 

 

 𝒕1 = 𝑿𝒘1 (2.39) 

 𝒑1 =
𝑿𝑇𝒕1

𝒕1
𝑇𝒕1

 (2.40) 

 

Trough substitution of eq.(2.39) into eq.(2.35), the Y-loadings and Y-scores can be calculated 

by projection of 𝒀 onto 𝒕1 and 𝒒1 according to expression (2.41) and (2.42), respectively. 

 

 𝒒1 =
𝒀𝑇𝒕1

𝒕1
𝑇𝒕1

 (2.41) 

 𝒖1 =
𝒀𝑇𝒒1

𝒒1
𝑇𝒒1

 (2.42) 

 

𝑿 and 𝒀 are then deflated in order to calculate following components according to eq.(2.43) 

and eq.(2.44), respectively. 

 

 𝑬1 = 𝑿 − 𝒕1𝒑1
𝑇 (2.43) 

 𝑭1 = 𝒀 − 𝒖1𝒒1
𝑇 (2.44) 

 

Where 𝑬1 and 𝑭1 are the residual matrices of 𝑿 and 𝒀, respectively after deflation with the first 

component. The weights for the second component are then calculated according to eq.(2.45) 

where 𝒕2, 𝒑2, 𝒒2 and 𝒄2 are calculated as previously shown with regards to 𝑬1 and 𝑭1 instead 

of 𝑿 and 𝒀. 

 

 𝒘2 =
𝑬1

𝑇𝑭1

‖𝑬1
𝑇𝑭1‖2

 (2.45) 
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However, due to the deflation of 𝑿, the individual component weights, 𝒘𝑟, will not be directly 

related to 𝑿 but instead related to the corresponding residual matrix from the previous 

component, 𝑬𝑟−1. The weights can however be transformed to directly relate to 𝑿 according 

to: 

 

 𝑾∗ = 𝑾(𝑷𝑇𝑾)−1 (2.46) 

 

where 𝑾∗ (M x R) is directly related to 𝑿. The X-scores in expression (2.39) can then be 

reformulated to: 

 

 𝑻 = 𝑿𝑾∗ = 𝑿𝑾(𝑷𝑇𝑾)−1 (2.47) 

 

The prediction of 𝒀 in eq.(2.35) can then be rewritten to the more formal expression: 

 

 𝒀 = 𝑿𝑩 + 𝑭 (2.48) 

 

where the regression coefficients, 𝑩, are estimated according to: 

 

 𝑩 = 𝑾(𝑷𝑇𝑾)−1𝑸𝑇 (2.49) 

 

2.4.1.2 Applicability of PLS in this research 

The main strength of PLS is its simplicity and diagnostic capabilities. Due to being a 

decomposition method, the diagnostic capabilities that are inherent in the PCA are also a feature 

of PLS (Bro and Smilde, 2014). This greatly aids in identification of outliers and samples that 

need to be further investigated. Contribution of variables to the prediction can be directly 

assessed in the PLS model with Variable Importance in Projection (VIP) and Selective Ratio 

(SR) (Farres et al., 2015). It is, however important to remember that both VIP and SR are linked 

to the performance of the model and therefore if low, the resulting VIP and SR values will be 

meaningless (Andersen and Bro, 2010). Alternatively, the contributions from individual 

components can be explored based on the corrected weights, 𝑾∗, as they represent the linear 

combinations of variables related to the scores, 𝑻. 

A common problem when PLS is used in QSAR applications is the sheer number of 

independent variables that are used as input. This can be potentially detrimental and PLS 
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models can become over-fitted due to chance-correlation between redundant or noisy 

descriptors in 𝑿 and the response, 𝒀 (Faber and Rajko, 2007). Therefore, in many QSAR 

instances, variable selection strategies become necessary in order to reduce the number of 

redundant or noisy variables (see Section 2.9). Bauer et al. (2017)applied PLS for prediction of 

protein diffusion coefficients used to understand protein-protein interactions based on 

independent variables generated from protein crystal structures. The authors used the VIP 

Scores to select highly contributing descriptors in order to increase model performance to a 𝑅2 

value of 0.9, thus indicating high correlation between 𝑿 and 𝒀 (refer to Section 2.6.1 for more 

information on 𝑅2). In another study, Mazza et al. (2001) applied PLS for prediction of retention 

times in ion-exchange chromatography based on independent variables generated from protein 

crystal structures (Mazza et al., 2001). The authors applied Genetic Algorithm to reduce the 

number of noisy independent variables which resulted in a model performance of 𝑅2 value 

around 0.94. Application of PLS in this research was therefore performed with variable 

reduction (see Section 2.8) and variable selection (see Section 2.9) in order to reduce noise and 

redundancy able to affect model performance. 

2.4.2 Support Vector Machines for Regression 

SVM for regression (SVR) is an extension of SVC which was first introduced by Drucker et al. 

(1997). This method applies the same fundamental principles that were used in SVC and does 

not depend on the variable dimensionality but only on the samples that are presented to the 

algorithm. 

2.4.2.1 Theory 

The theory for SVR is very similar to that of SVC (see Section 2.3.2.1). The main difference is 

that instead of defining the largest margin used to separate the samples, SVR will define a tube 

in which the majority of the samples will be located. The tube is defined by the two constraints 

shown in eq.(2.50) and eq.(2.51) and illustrated in Figure 2.8 as the dashed blue line and the 

dashed red line, respectively. 

 

 𝑦𝑖 − 𝝎𝑇𝒙𝑖 − 𝑏 ≤ 𝜖 (2.50) 

 𝝎𝑇𝒙𝑖 + 𝑏 − 𝑦𝑖 ≤ 𝜖 (2.51) 

 

𝜖 is called the insensitive loss where 𝜖 > 0 and is set be the user. As can be observed in Figure 

2.8, the width of the tube is defined by the insensitive loss and will be equal to 2𝜖. In SVR, 
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slack variables (𝜉𝑖
∗ and 𝜉𝑖) are commonly introduced due to noise normally being present in 

both 𝑿 and 𝒀 which can be difficult for a hard margin regressor to fit.  

 

 

Figure 2.8. Placement of regression tube in SVR defined by two constraints (red and blue dashed lines) that 

encompasses the majority of the samples and where samples falling outside of the tube are penalised by the slack 

variables 𝜉𝑖
∗ and 𝜉𝑖. Support vectors are indicated as the filled black circles and the green vector perpendicular to 

the black regression line represents the support vector weights, 𝝎 (adapted from Drucker et al. (1997)). 

A QP problem can then be formulated according to eq.(2.52) which is very similar to the QP 

problem stated in eq.(2.26) for SVC. The only difference is the addition of an extra constraint 

in order to penalise samples on either side of the tube. 

 

 

minimise
𝝎,𝑏,𝝃

=
1

2
‖𝝎‖2

2 + 𝐶 ∑(𝜉𝑖 + 𝜉𝑖
∗)

𝑁

𝑖=1

 

subject to = 𝝎𝑇𝒙𝑖 + 𝑏 − 𝑦𝑖 ≤ 𝜖 + 𝜉𝑖  

= 𝑦𝑖 − 𝝎𝑇𝒙𝑖 − 𝑏 ≤ 𝜖 + 𝜉𝑖
∗ 

= 𝜉𝑖 , 𝜉𝑖
∗ ≥ 0 

(2.52) 

 

For samples that are placed above or below the tube the slack variables 𝜉𝑖 and 𝜉𝑖
∗ respectively, 

will become non-zero. For samples placed inside of the tube, 𝜉𝑖 and 𝜉𝑖
∗ will equal zero and thus 

not affect the loss and is known as hinge or 𝑙1-loss (Rosasco et al., 2004). The Lagrange dual 

to eq.(2.52) then becomes: 
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maximise
𝜶,𝜶∗

=𝑊(𝜶, 𝜶∗) = −𝜖 ∑(𝛼𝑖
∗ + 𝛼𝑖)

𝑁

𝑖=1

+ ∑𝑦𝑖(𝛼𝑖
∗ + 𝛼𝑖)

𝑁

𝑖=1

 

= 𝑊(𝜶, 𝜶∗) = −
1

2
∑ (𝛼𝑖

∗ + 𝛼𝑖)(𝛼𝑖
∗ + 𝛼𝑖)𝒙𝑖 ⋅ 𝒙𝑗

𝑁

𝑖,𝑗=1

 

subject to = 0 ≤ 𝛼𝑖 , 𝛼𝑖
∗ ≤ 𝐶, 𝑖 = 1,… ,𝑁 

= ∑𝛼𝑖

𝑁

𝑖=1

= ∑ 𝛼𝑖
∗

𝑁

𝑖=1

 

(2.53) 

 

where 𝛼𝑖 and 𝛼𝑖
∗ are the Lagrange multipliers to the constraints in eq.(2.50) and eq.(2.51), 

respectively, and will both consist of N elements. For more information on Lagrange 

Multipliers, refer to Appendix D.3. The SMO algorithm is commonly used to solve for 𝜶 and 

𝜶∗ due to being a QP problem (Platt, 1998). Similar to SVC, samples with non-zero values in 

𝛼𝑖 or 𝛼𝑖
∗ in the solution will be support vectors and used to define 𝝎 and 𝑏. Prediction of an 

unknown sample, 𝒙𝑢, can then be performed according to eq.(2.54) for linear regression. 

 

 𝑓(𝒙𝑢) = 𝝎𝑇𝒙𝑢 + 𝑏 = ∑(𝛼𝑖
∗ + 𝛼𝑖)𝒙𝑖

𝑁

𝑖=1

⋅ 𝒙𝑢 + 𝑏 (2.54) 

 

Or according to (2.55) for non-linear regression with a Kernel (see Section 2.3.2.3).  

 

 𝑓(𝒙𝑢) = 𝝎𝑇𝜑(𝒙𝑢) + 𝑏 = ∑(𝛼𝑖
∗ + 𝛼𝑖)

𝑁

𝑖=1

Κ(𝒙𝑖, 𝒙𝑢) + 𝑏 (2.55) 

 

2.4.2.2 Applicability of SVR in this research 

Many of the listed strengths and caveats presented for SVC will apply to SVR. This means that 

SVR has a high generalisation performance due to the selection of a small subset of samples 

that act as support vectors which also makes the method robust in high-dimensional problems. 

This makes SVR a popular choice in QSAR applications and it has been used extensively for 

prediction of chromatographic column performance (Robinson et al., 2017, Ladiwala et al., 

2006, Chen et al., 2008, Woo et al., 2015a, Woo et al., 2015b, Chung et al., 2010). However, 

the authors highlighted that an initial variable selection step is necessary in order to reduce the 

number of non-correlated descriptors in order to increase performance. 
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Like the PLS method, the performance of SVR will suffer if too many redundant variables are 

present in data set, thus masking the independent variables that are correlated to the response. 

It has therefore been suggested to use variable selection techniques in order to reduce the 

number of redundant variables in high-dimensional data when using Support Vector Machine 

based methods (Zhang et al., 2016).  

Determination of model parameters (𝐶, 𝛾 and 𝜖) in SVR can be performed through grid search 

with predefined ranges just as described in Section 2.3.2.4 for SVC. However, defining the 

range for 𝜖 is more complex due to being related to the intrinsic variation in the data. This is 

easier understood when observing the width of the tube in Figure 2.8 where the majority of 

samples are placed within the tube. More intuitively, this requires knowledge about the 

distribution of the residual values, 𝜀𝑖, pertaining to any given prediction according to eq.(2.56) 

and should conform to 𝜀𝑖~𝑁(0, 𝜎𝜀).   

 

 𝑦𝑖 = �̂�𝑖 + 𝜀𝑖 (2.56) 

 

Cherkassky and Ma (2004) proposed that a linear model could be fitted to the data prior to 

applying SVR in order to investigate the distribution of the residuals (Cherkassky and Ma, 

2004). 

2.5 Cross Validation 

Larson (1931) discovered that when training a model through “resubstitution” where all 

samples in a data set are used for both training and performance validation, the resulting model 

became heavily biased due to memorising the noise present in the data which led to extremely 

poor predictions of future samples. In order to circumvent this issue, cross-validation was 

introduced which provided a framework to train and validate models more robustly. Cross-

validation has two main goals to achieve (Raschka, 2018): 

1. Estimation of the generalisation error, i.e. the predictive performance of the model on 

future (unseen) data. 

2. Model selection or tuning of the model complexity to increase model performance. This 

refers to the number of components to use in PCA, PLS and PLS-DA as well as selection 

of 𝐶, 𝜖 and kernel parameters in SVC and SVR to achieve optimal model performance. 

In literature, model complexity is also commonly referred to as the model 

hyperparameters. However, throughout this thesis the term model complexity will be 

used.  
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The core philosophy of cross validation (CV) lies in the practise of splitting the available data 

in order to train and validate a model. The core concepts will therefore first be explained with 

regards to the generalisation error and then how CV can be used to select model complexity.  

2.5.1 Generalisation Error 

One of the simplest and most commonly used technique to estimate the generalisation error of 

a model is the hold-out method. The method effectively splits the available data set into two 

parts where one is used to train the model and the other is used for validation. These will be 

referred to as the calibration set and test set illustrated in Figure 2.9 and will contain 𝑁𝐶𝑎𝑙 and 

𝑁𝑇𝑒𝑠𝑡 samples, respectively.  

 

 

Figure 2.9. Splitting of all available samples in a data set into a calibration set for training (dark box) and a test set 

for model validation (red box) (adapted from Raschka (2018)). 

Generally, the generalisation error can be estimated as the mean squared error (MSE) for 

regression problems which is presented in expression eq.(2.57) and illustrated as the red line in 

Figure 2.10a. 

 

 𝑀𝑆𝐸𝑇𝑒𝑠𝑡 =
1

𝑁𝑇𝑒𝑠𝑡
∑ (𝑦𝑖 − �̂�𝑖)

2

𝑁𝑇𝑒𝑠𝑡

𝑖=1

 (2.57) 

 

In eq.(2.57), �̂�𝑖 = 𝑓(𝒙𝑖), and is the predicted value of 𝑦𝑖 based on a defined function such as 

one generated from PLS or SVR. For a classification problem, the generalisation error can be 

estimated based on the error rate presented in eq.(2.62) in Section 2.6.2 for methods such as 

PLS-DA and SVC. Similarly, the calibration error can be estimated by using the calibration 

samples instead and is shown as the black line in Figure 2.10a. As can be observed, the error of 

the test set will be large if the model complexity is to low which in turn also results in high 

calibration error. This usually occurs when the model fails to capture the correlation between 

𝑿 and 𝒀. Alternatively, the error of the test set will be high when the model is fitted to noise or 

redundant variables in the calibration samples, thus generating a small calibration error. 
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Figure 2.10.  (a) Behaviour of the test or generalisation error (red line) compared to the fitted model error (black 

line) with regards to increasing model complexity. (b) Decomposition of the generalisation error (red line) into the 

two components model variance (green line) and model bias (blue line) (adapted from Hastie et al. (2009a)). 

Eq.(2.57) can be further decomposed into the irreducible error (𝜎𝑖𝑟𝑟
2 ), the variance of the error 

(Var𝜀) and the bias of the error (Bias𝜀) according to:   

 

 ErrorTest = 𝜎𝑖𝑟𝑟
2 + Var𝜀 + Bias𝜀

2 (2.58) 

 

The irreducible error is inherent to the available data and cannot be removed from the model 

whereas the variance and bias are dependent on the model complexity as is illustrated in Figure 

2.10b. More specifically, the bias is directly related to the fit of the model where a high bias 

means that the model fails to capture the relation between 𝑿 and 𝒀 and the model becomes 

under-fitted. The variance, on the other hand, gives an estimation of the error related to 

fluctuations in samples where a high variance means that the model has been fitted to random 

noise and is therefore over-fitted. When selecting the model complexity, both the variance and 

bias should be as low as possible which is usually indicated as the minimum value of the error 

versus the model complexity illustrated as the red line in Figure 2.10b. This is more specifically 

referred to as the variance-bias trade-off and implies that a model cannot be trained perfectly 

and will always include some bias and variance (Hastie et al., 2009a).  

It should be noted that the generalisation error is heavily dependent on the samples in the test 

as well as the sample sizes of the calibration and test sets. This is better understood when 

considering the resubstitution method investigated by Larson in 1931 where the model became 
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heavily biased due to being trained and validated with the same samples. If most of the samples 

are kept for model training, the test set might no longer be representative of the full sample 

population which might cause the model to become over-fitted. This is more commonly referred 

to as optimistic bias. Alternatively, if the majority of samples is placed in the test set for 

validation, then the model training might be negatively impacted due to lack of variability as 

the calibration set no longer represents the full sample population. This is more commonly 

referred to as pessimistic bias. The number of samples to use in the test and calibration set is 

widely discussed but a usual rule of thumb is to keep the majority of samples in the calibration 

set, thereby including most of the data variability for training. Usual calibration/test splits are 

70/30 and 80/20 (Raschka, 2018). 

In classification problems, it is important to consider the class distributions in the test and 

calibration sets which preferably should be conserved in the test and calibration sets when 

compared to the full sample set. This is known as sample stratification which ensures that class 

distributions are conserved in the test and calibration set. Not using sample stratification can 

have a negative impact on the model performance due to misrepresentation of available classes 

which becomes especially critical in unbalanced data sets where big difference in sample sizes 

can be present between specific classes. In the worst case, this might mean that a class is left 

out entirely from the test set and model validation based on the generalisation error becomes 

biased (Shahrokh and Dougherty, 2013).   

Several strategies exist for splitting the available samples into calibration and test sets (Martin 

et al., 2012). One of the most common methods is random splitting where samples for the 

calibration and test sets are selected at random and only the number of samples belonging to 

each set needs to be specified. For the purposes of this research, the structured splitting 

approach of the Kennard-Stone algorithm (CADEX) has been applied due to being better suited 

to QSAR modelling problems compared to random splitting (Kennard and Stone, 1969, Martin 

et al., 2012). The CADEX algorithm selects samples based on the Euclidean distance between 

pairs of samples over the variable space of 𝑿. Pair-wise samples with high distances are placed 

in the calibration set while pair-wise samples that have a short distance will have one sample 

placed in the test set and the other in calibration set. Thus, the CADEX algorithm ensures that 

most of the variability in the variable space is presented to the model during training as well as 

that selected test samples are represented by similar samples in the calibration set (Kennard and 

Stone, 1969).  
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2.5.2 Selection of Model Complexity 

As mentioned previously, the calibration set is used to train the model. This means that selected 

calibration samples are explicitly used to tune the model complexity. This has an added benefit 

of model tuning being separate from the estimation of the generalization error and thus having 

lower risk of generating a biased model. Similar to the splitting of the full data set into a 

calibration and test set, the calibration set is further divided into smaller subsets or splits which 

are used to train the model and is known as re-sampling. An example of re-sampling for model 

training based on the K-fold method is presented in Figure 2.11. As can be observed the 

available samples in the calibration set is split into K smaller subsets. A sub-model is generated 

on all subsets except one (shown in red in Figure 2.11) which instead is used to validate the 

sub-model in the same way as the test set is used to estimate the generalization error described 

previously. This is repeated until all subsets have been used for validation once, thus resulting 

in K sub-models and K error estimations. The described repletion of sub-model development 

and validation is usually referred to as the inner cross validation loop. An average is usually 

calculated from the sub-model errors and represents the model performance for a specific 

selection of model complexity. The estimated error will behave similarly to the generalisation 

error illustrated in Figure 2.10a and Figure 2.10b and can be decomposed in the same way as 

shown in eq.(2.58). This means that both the bias and variance can be controlled explicitly 

through choice of the model complexity where the optimal model parameter set will have the 

lowest error illustrated in Figure 2.10b as the red line. It is important to note, however, that the 

minimum of the test error and the minimum of the cross-validation error is not guaranteed to 

overlap with each other with regards to the model complexity. This is a complex problem which 

is very dependent on the splitting of samples into calibration and test sets as well as the re-

sampling method used for training the model. 
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Figure 2.11. K-fold cross-validation resampling of the calibration samples for model training (adapted from 

Raschka (2018)). 

Several strategies for the inner cross validation loop exist where some of the most commonly 

used are Leave-One-Out (LOO), K-fold and repeated K-fold (Wong, 2015). 

2.6 Model Validation Metrics 

In order to accurately evaluate trained models, several metrics for both regression and 

classification have been presented below. 

2.6.1 Regression Metrics 

The root mean squared error (RMSE) represents the variation of the error observed between the 

measured and predicted responses and is shown in eq.(2.59). The RMSE is commonly used to 

assess the model complexity due to direct evaluation of the differences between measured and 

predicted values.  

 

 𝑅𝑀𝑆𝐸 = (𝑀𝑆𝐸)
1
2 = (

1

𝑁
∑(𝑦𝑖 − �̂�𝑖)

2

𝑖

)

1
2

 (2.59) 

 

The squared Pearson Correlation coefficient (𝑅2) provides a measure of the correlation between 

the measured and predicted responses and is presented in eq.(2.60). The 𝑅2 metric can take on 

values between zero and one where a value closer to zero represents low correlation and poor 

model fit while a zero closer to one indicates strong correlation and a good model fit. 
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 𝑅2 =

(

 
∑ (𝑦𝑖 − 𝐸(𝑦))(�̂�𝑖 − 𝐸(�̂�))𝑖

√(∑ 𝑦𝑖
2

𝑖 − 𝐸(𝑦)2)√(∑ �̂�𝑖
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𝑖 − 𝐸(�̂�)2)
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2

 (2.60) 

 

where = 𝐸(𝑦) =
1

𝑁
∑𝑦𝑖

𝑁

𝑖=1

 

and = 𝐸(�̂�) =
1

𝑁
∑�̂�𝑖

𝑁

𝑖=1

 

  

 

The coefficient of determination (𝑄2) provides a measure of well the model is able to explain 

the variation in the response vector and has been presented in eq.(2.61). 𝑄2 can attain negative 

values which is an indication that the model performs worse than if all responses would have 

been predicted as the mean of the measured responses, in which case the 𝑄2 would attain a 

value of zero. A value closer to one indicates good model fit and that high correlation between 

𝑿 and 𝒀. 

 

 𝑄2 = 1 −
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
= 1 −

∑ (𝑦𝑖 − �̂�𝑖)
2𝑁

𝑖=1

∑ (𝑦𝑖 − 𝐸(𝑦))
2𝑁

𝑖=1

 (2.61) 

 

2.6.2 Classification Metrics 

Validation of classification models are fundamentally different from regression models where 

instead the performance is evaluated based on the number of correctly classified and 

misclassified samples. In a binary classification problem, the classes are usually referred to as 

positive and negative. The predictions can therefore be categorised according to four definition 

depending on the true class of the samples: True positives (TP) are the number of positive 

samples that were correctly classified, False positives (FP) are the number of negative samples 

incorrectly classified as positive, True negatives (TN) are the number of negative samples 

correctly classified as positive and False negatives (FN) are the number of positive samples 

incorrectly classified as negative. These four values lie at the core of all model evaluation for 

classification problem and is usually presented in the form of a confusion matrix. For evaluation 

of a multiple classification problems, the OvR strategy can be implemented in order to generate 

a confusion matrix for each class. An example of this is presented in Figure 2.12a in which the 

predictions of three classes have been presented in a confusion matrix. By defining Class 1 as 
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the positive class and the negative class as Class 2 and Class 3, a binary representation for the 

predictions of class 1 can be evaluated which is illustrated in Figure 2.12b. 

 

 

Figure 2.12. Representation of a confusion matrix as an overview of model performance for (a) multiple classes 

of (b) two classes (adapted from Fawcett (2006)). 

A common classification metric used in research is the Error rate (ER) which represents the 

proportion of samples which were incorrectly classified and can take a value between 0 (all 

samples misclassified) and 1 (all samples correctly classified). Calculation of ER was 

performed according to eq.(2.62). 

 

 ER =  
𝐹𝑃 + 𝐹𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (2.62) 

 

The Sensitivity (Sen) represents the proportion of positive cases that were correctly identified 

and can take a value between 0 (all samples misclassified) and 1 (all samples correctly 

classified). Calculation of Sen was performed according to eq.(2.63). 

 

 Sen =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2.63) 

 

The Specificity (Spec) represents the proportion of negatives cases that were classified correctly 

and can take a value between one (all samples correctly classified) and zero (all samples 

misclassified). Calculation of Spec was performed according to eq.(2.64). 

 

 Spec =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (2.64) 
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The Matthews Correlation coefficient (MCC) considers all aspects of the confusion matrix (TP, 

TN, FP and FN) and is regarded as a balanced measure that can be used even if the sample sizes 

of the different classes are very different (Jurman et al., 2012, Gorodkin, 2004). MCC can take 

a value between -1 and 1 where a value of 1 means that all samples have been correctly 

classified and a value between -1 to 0 means that all samples have been misclassified. For a 

binary confusion matrix, the MCC was calculated according to eq.(2.65). 

 

 MCC =
𝑇𝑃 ∗ 𝑇𝑁 − 𝐹𝑃 ∗ 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)√(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 (2.65) 

 

The MCC metric can be extended for use on multiple classes according to eq.(2.66). 

 

𝑀𝐶𝐶 =
∑ 𝐶𝑘𝑘𝐶𝑚𝑙 − 𝐶𝑙𝑘𝐶𝑘𝑚

𝑐
𝑘,𝑙,𝑚

√∑ [(∑ 𝐶𝑙𝑘
𝑐
𝑙=1 )(∑ 𝐶𝑔𝑓

𝑐
𝑓,𝑔=1|𝑓≠𝑘 )]𝑐

𝑘=1 √∑ [(∑ 𝐶𝑘𝑙
𝑐
𝑙=1 )(∑ 𝐶𝑓𝑔

𝑐
𝑓,𝑔=1|𝑓≠𝑘 )]𝑐

𝑘=1

 
(2.66) 

 

Individual class performances were also evaluated with receiver operating characteristics 

(ROC) curves which explores the separation of the classes according to the predicted class 

distributions. More specifically, the “area under the curve” (AUC) can be used as a performs 

metric of the class separation where a value of one indicates perfect classification and a value 

of 0.5 which indicates that no separation of the classes have been observed (Fawcett, 2006). In 

PLS-DA, the class distributions can be defined based on the calculated posterior probabilities 

in eq.(2.18) while in SVC, the distributions can be defined according to the calculated decision 

values in eq.(2.25). The ROC curve is calculated by sliding a threshold boundary over the class 

distributions thus allowing for the TP, TN, FP and FP which results in differing values of the 

sensitivity and specificity depending on the threshold value. For classes that are well separated 

as illustrated in Figure 2.13a, the resulting ROC curve will take on a shape as illustrated Figure 

2.13b where the AUC value is close to one. In cases where class distributions are harder to 

separate as illustrated in Figure 2.13c, the resulting ROC curve will be closer the dashed black 

line indicating a AUC value closer to 0.5 which is illustrated in Figure 2.13d. 

 



65 

 

Figure 2.13. ROC curve development for two classes. The number of TP, TN, FP and FN changes depending on 

to the placement of the threshold which is less drastic in a problem with (a) well-separated class distributions 

compared to a problem with (b) overlapping class distributions. ROC curves from (b) well separated class 

distributions and (d) overlapping class distributions where the black dashed line represents the AUC value of 0.5 

(adapted from Marini (2017)). 

2.6.3 Y-Randomisation  

Due to the large number of descriptors often used in QSAR modelling, it is important to 

evaluate if the correlation between 𝑿 and 𝒀 captured by the model is related to the true 

underlying pattern or if it was caused by chance correlation of noisy descriptors. Y-

Randomisation is a tool used in validation of QSAR models which compares the performance 

of models trained with randomised response vectors to that of a model trained with an unaltered 

response vector (Rücker et al., 2007). A number of randomised models are usually developed 

and the performance metric of interest is then averaged. If the averaged performance metric 

shows good performance, the trained model was likely fitted to noisy and redundant descriptors 

and can therefore not be used. For regression the metrics 𝑄2 and 𝑅2 are often used while in 

classification the metrics ER of MCC can be used. In this research 50 models were developed 

on individually randomised response vectors where the metric of interest was then averaged.  
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2.7 Data Pre-treatment 

As previously mentioned in the theory of PCA and PLS, it is important to mean-centre 𝑿 and 

𝒀 prior to developing the model in order for these methods to work. More generally, an action 

that modifies the data prior to model development is called pre-treatment or pre-processing and 

is used to increase the interpretation of the data sets (van den Berg et al., 2006). This is more 

simply understood when considering the influence of the variables in model development. As 

an example, when evaluating untreated data set each individual variable will conform to some 

specific distribution (normal distribution was used in this example) where 𝒙𝑘~𝑁(𝜇𝑘, 𝜎𝑘
2) where 

𝜇1 ≠ 𝜇2 ≠ ⋯ ≠ 𝜇𝑀 and 𝜎1
2 ≠ 𝜎2

2 ≠ ⋯ ≠ 𝜎𝑀
2  which is illustrated in Figure 2.14a. For PCA and 

PLS, mean centring is a required step due to that the methods being dependent on the calculation 

of the covariance, which assumes that the data is centred around the origin. If models are 

developed on an uncentred data set with PCA or PLS, the first component will always be placed 

so it points from the origin to the centre of the data in the variable space in order to correct for 

the offset (Bro and Smilde, 2014). The effect will not be as pronounced for SVC or SVR which 

can adjust for uncentred data by correcting with the offset variable, 𝑏, of the hyperplane or the 

tube, respectively. An example of a set of the mean centred variables is illustrated in and Figure 

2.14b where the distribution of each variable now conforms to 𝒙𝑘~𝑁(0, 𝜎𝑘
2). 

 

 

Figure 2.14. The effect of pre-treatment on variables on a data set. (a) Raw or untreated data set. (b) Mean centred 

data set. (c) Mean centred and scaled data set (adapted from van den Berg et al. (2006)). 

Another important factor is the scaling of the descriptors. Commonly in many data sets, the 

ranges in the variables will be very different when compared to each other. This gives variables 

with a larger variation a bigger chance to influence the model compared to variables with a 

much smaller variation (Bro and Smilde, 2014). Thus, all variables are commonly scaled to 
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have equal variation or range in order for them to equally impact the model structure. In this 

research, the autoscaling method was used for pre-treatment of all data except class labels. The 

method both mean centres all variables as well as scales them according to the standard 

deviation of each variable according to eq.(2.67). This means that all variables in the data set 

will conform to 𝒙𝑘~𝑁(0,1). 

 

 
𝑥𝑖𝑘

(𝑎𝑢𝑡𝑜)
=

𝑥𝑖𝑘 − �̅�𝑘

𝜎𝑘
=

𝑥𝑖𝑘 − �̅�𝑘

√ 1
𝑁 − 1

∑ (𝑥𝑖𝑘 − �̅�𝑘)2𝑁
𝑖=1

 
(2.67) 

 

In eq.(2.67), 𝑥𝑖𝑘
(𝑎𝑢𝑡𝑜)

 is an auto-scaled element in 𝑿, �̅�𝑘 and 𝜎𝑘 are the mean and the standard 

deviation of variable 𝑘. An example of autoscaled variables is presented in Figure 2.14c. 

2.8 Variable Reduction 

Due to the large number of variables (descriptors) that are generated in QSAR modelling, it is 

often beneficial to use unsupervised methods to remove collinear variables prior to further 

variable selection or model development. The V-WSP algorithm was applied to the 𝑿 block in 

order to select a representative set of variables. This V-WSP algorithm works by replacing a 

group of variables with high multi-collinearity with a single variable from the group if the 

correlation between the variables is larger than a predefined threshold (Ballabio et al., 2014). 

The Procrustes index was used to evaluate the loss of information between the non-reduced and 

the reduced 𝑿 block. The Procrustes index takes on values between zero and one where a value 

of zero indicates that no information loss has occurred while a value closer to one indicates that 

the majority of information in 𝑿 has been lost (Peres-Neto and Jackson, 2001). 

2.9 Variable Selection 

Supervised variable selection methods were applied in this research to further reduce the 

number of variables in order to increase correlation between 𝑿 and 𝒀. Three different methods 

were applied for which short descriptions have been given below. 

2.9.1 Recursive Partial Least Squares 

The Recursive Partial Least Squares (rPLS) is a variable selection method which iteratively 

reweights the variables in 𝑿 through multiplication with a matrix 𝑨 in which the diagonal 

elements  𝑎𝑘𝑘 = |𝑏𝑘| from the regression coefficients vector 𝑩 generated from the PLS model. 

A new PLS model is developed on reweighted 𝑿 and this is repeated until a minimum in the 

cross-validation error has been reached. By iteratively updating 𝑩 and 𝑿 as described, the 
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regression coefficients of variables with small contributions to the predictions will be forced to 

zero whereas those for variables with high contribution become larger. The stopping criterion 

in rPLS is based on the calculated cross-validation error at each iteration which will be forced 

to stop once the error start rising (Rinnan et al., 2014).  

The method is however reliant on the model performance prior to variable selection. This means 

that if the model performance is poor prior to selection, the rPLS algorithm will not be able to 

select the correct variables. This is similar to that of variable evaluation with VIP and SR in 

PLS (Andersen and Bro, 2010). 

2.9.2 Genetic Algorithm 

The genetic algorithm (GA) is based on the evolutionary principle of “survival of the fittest” 

(Leardi, 2007). GA works by generating subsets of variables where each subset usually contains 

between 30-50% of all available variables in the data set. Such a subset can be seen as a logical 

vector consisting of 𝑀 elements, identical to that of the number of variables, where an element 

value of one or zero indicates inclusion or exclusion, respectively, of the variable in the subset. 

Each subset is often referred to as chromosome or individual and all the generated subsets is 

referred to as a population. An individual model is trained on each chromosome and evaluated 

according to the cross-validation error as an estimation of the fitness. A new population 

(generation) is then produced through crossover illustrated in Figure 2.15 where two 

chromosomes (parents) are used to generate two new chromosomes (children). Many methods 

for selecting the parent chromosomes exist but where the Roulette Wheel is one of the most 

commonly used. The parent chromosomes are selected at random but where chromosomes with 

a better fit have a higher chance of being selected (Pandey et al., 2014). The parent selection 

and crossover are repeated until the number of children equals that of the original population 

size. New models are trained on the children chromosomes and the full process is iterated. 

 

 

Figure 2.15. Crossover of variables between two parent chromosomes A and B resulting in two new variable 

permutations in the form of child C and D. The red line indicates the crossover site which is selected at random by 

the GA method (adapted from Pandey et al. (2014)). 

One of the main strengths of GA is the ability to test many different variable permutations and 

select variables highly correlated to the response. However, one of the biggest drawbacks with 
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the method is the low reproducibility of generated results due to many aspects of the algorithm 

is based on random selection. A common method to increase reproducibility is to repeat the GA 

for several iterations in order to find variables that are most commonly selected. It has also been 

suggested that no more than 200 variables should be used in GA due to potential over-fitting 

(Leardi, 2000). Another drawback with the method is defining the many parameters such as: 

population size, single or double crossover, mutation rate and number of variables to include in 

the initial chromosome to mention a few. 

The modelling method used in GA is commonly referred to as the fitness function which is not 

restricted to any particular method and can be either a classification or regression method. 

However, the fitness function should be sufficiently fast to train due to the numerous models 

that needs to be developed in order for GA to not become to computationally intensive (Niazi 

and Leardi, 2012). 

2.9.3 Sparse L1-SVR 

L1-SVR or more commonly referred to as LASSO-SVR is based on similar theory to that of 

SVR discussed in Section 2.4.2. The main difference is that the minimisation problem in 

eq.(2.52) uses the L1-norm, ‖𝝎‖1, instead of the squared L2-norm, ‖𝝎‖2
2. This, however, has 

a significant effect on the normal vector, 𝝎, which will become sparse. Meaning that many 

elements in 𝝎 will attain a value of zero. This is easier understood using Figure 2.16 for a 

regression problem with two variables. The red ellipses illustrated in the figure indicate the loss 

function or the error between the predicted and measured responses. First, considering the L2-

norm illustrated in Figure 2.16a, the possible solutions for 𝝎 will take the shape of a circle seen 

in green, the radius of which is determined by the constraints and the value of 𝐶. It can be 

observed that the optimal solution consists of non-zero values in 𝝎, meaning that both variables 

will contribute to the prediction. In the case of the L1-norm, the solutions for will take the shape 

of a diamond illustrated as the green area in Figure 2.16b. Because of this shape, the optimal 

solution with the smallest error will be where 𝜔2 is non-zero and 𝜔1 is equal to zero (Zhu et 

al., 2004). 
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Figure 2.16. Comparison of solutions for (a) L2-norm and (b) L1-norm. The red ellipses represent the error 

between the predicted and measured responses in the samples set while the green areas represent the allowed 

solutions for 𝝎 (adapted from Zhu et al. (2004)). 

It is important to remember when using LASSO that the so-called “irrepresentable condition” 

must hold true which indicates that correlation between redundant and important variables must 

be low (Zhao and Yu, 2006).  

2.10 Summary 

This chapter laid the foundation of the multivariate methods and techniques used in this thesis. 

From the literature review of the methods in this chapter, it is apparent that each method has 

associated advantages and limitations. However, considerations regarding their application, 

training and validation have been made in order to increase the chance for successful 

implementation.   

As discussed, the classification methods were selected to better handle uneven class balances 

that were present in the data set from Jain et al (2017). For this purpose, PLS-DA with Bayes 

decision rule and SVC with defined cost function values for each class were selected. The two 

methods are also complementary to each other, where PLS-DA can provide insight to potential 

outliers and have higher transparency in regards to variable contribution to the response 

whereas SVC usually have higher generalisation performance due to only using a subset of 

samples as support vectors. 

Similarly, all regression methods in this chapter were reviewed and evaluated in order to 

conform to QSAR modelling. The two methods, PLS and SVR were selected due to having 

been applied successfully in similar QSAR implementations as have been demonstrated in 

literature. The methods are also complementary to each other where PLS have higher 

transparency in regards to sample and variable contribution and SVR a higher generalisation 

performance.  
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Due to the large number of descriptors needed to capture the structural information of the mAb 

structures, it became clear that variable reduction and selection techniques had to be applied. 

The unsupervised reduction method V-WSP was reviewed and included model development 

process in order to reduce the number of highly correlated descriptors. In addition, three 

variable selection methods: rPLS, GA and LASSO were reviewed, and their strengths and 

weaknesses listed. These methods were selected due to being slightly different in how they 

select variables. The rPLS and LASSO algorithms are highly dependent on the number of 

redundant variables in the descriptor set which can greatly decrease their performance if to 

many redundant variables are present. The GA algorithm instead selects variables based on a 

brute-force approach were multiple variable subsets are tested and evaluated.  
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Chapter 3  

 

Primary sequence-based descriptors 

In order to develop predictive models that can aid in mAb process development, structural 

descriptors need to be generated in order to compare the different mAbs. In this chapter the 

general structure of mAbs and common sources of structural variations that might impact the 

descriptors are highlighted and discussed. Four novel strategies have been developed for 

primary sequence preparation and descriptor calculation which are discussed in detail. 

3.1 The Antibody Structure 

There are five main heavy chain classes of antibodies: IgA, IgD, IgE, IgG and IgM where IgG 

have the highest occurrence in the human body with around ~75% of all antibodies found in 

the human serum (Schroeder and Cavacini, 2010). In this research, an extensive search was 

performed using the IMGT database to investigate the diversity of different antibody classes in 

clinical phases as well as manufacturing. The search criteria were specified to find all full-

length IgA, IgD, IgE, IgG and IgM antibodies while excluding fusion proteins and fragments. 

Of the total 555 antibodies that met the search requirements, 543 were of the IgG class (~98%). 

Due to these findings, IgG antibodies are the focus of this dissertation. The IgG class can be 

further divided into four subclasses or so-called isotypes: IgG1, IgG2, IgG3 and IgG4. Of these, 

the IgG1, IgG2 and IgG4 isotypes are further investigated in this chapter due to being the most 

common according to the IMGT search with 74% being IgG1, 12% being IgG2 and 13% being 

IgG4 out of all IgG antibodies. 

Figure 3.1 represents the structure of an IgG1 antibody. In general, the IgG antibody consists 

of four amino acid chains, of which two are heavy chains (50kDa and ~450 residues long each) 

and two are light chains (25 kDa and ~230 residues long each). The heavy chain can be divided 

into the four domains: the variable region (VH), first constant domain (CH1), second constant 

domain (CH2) and third constant domain (CH3) where a Hinge region connects the CH1 and CH2 
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domains of the heavy chain. The light chain can be divided in a similar manner into two 

domains: the light chain variable domain (VL) and a constant domain (CL). Like the heavy chain, 

the light chain has two naturally occurring isotypes: kappa and lambda. Each of the mentioned 

domains in the antibody contains ~110 residues whereas the hinge has 15 residues in the IgG1 

isotype compared to 12 residues in the IgG2 and IgG4 isotypes (Janeway Jr et al., 2001).  

3.1.1 The Fab region structure and function 

The VH and CH1 domains of the heavy chain together with the VL and CL domains of the light 

chain make up the Fab region of the antibody. This is also known as the binding region of the 

antibody that binds to a specific target protein (antigen) e.g. a membrane protein on a pathogen. 

The binding occurs specifically in the variable domains VH and VL which contain six sequence 

loops (three for each variable domain) called Complementarity-determining regions (CDRs) 

that bind to a specific antigen. Antibodies can be grouped into so called idiotypes based on a 

group of antibodies that bind to a specific antigen and share similar structural characteristics in 

the variable domains and CDRs.  

 

 

Figure 3.1. General structure of an IgG1 antibody. (a) Front view of the antibody showing the separate domains 

of the heavy chain (VH, CH1, Hinge, CH2 and CH3) depicted in blue as well as the separate domains of the light 

chain (VL and CL) depicted in orange. (b) Side view of the antibody structure with the two glycan structures 

highlighted with a red circle. Each glycan connects to Asn297 of each heavy chain (adapted from Vidarsson et al. 

(2014)). 

3.1.2 The Fc region structure and function 

The CH2 and CH3 domains of both heavy chains are called the Fc region of the antibody. The 

Fc region determines the type of response that is triggered in the immune system, the so-called 

Fc effector function, and has been covered elsewhere (Rajpal et al., 2014, Kizhedath et al., 
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2017). An important part of this region is asparagine 297, which is strictly conserved in all IgG 

isotypes. It serves as an attachment point for glycans in the CH2 domain of each heavy chain 

(see Figure 3.1b). The glycan structures have been shown to increase the overall stability of the 

IgG (Zheng et al., 2011) as well as playing an integral part in the activity of the antibody 

(Ferrara et al., 2011).  

3.1.3 Sequence variability in constant domains 

Most of the sequence variability between antibodies is found in the variable domains VH and 

VL. The variability is caused mainly by the unique structure of the CDR loops which gives them 

their high specificity to different antigens. Variability in sequences is also encountered in the 

constant domains when comparing the different isotypes in the heavy and light chain separately 

(see Figure 3.2). However, the extent of the variability is not as pronounced as when comparing 

sequences of the variable domains between antibodies. The amino acid differences between the 

isotypes in the heavy chain are illustrated in Figure 3.2a. EU numbering has been used to 

illustrate each of the residue positions in the sequence alignment (Edelman et al., 1969). The 

positions highlighted with red boxes are positions that play a vital role in the Fc effector 

function (Kizhedath et al., 2017). Positions coloured in red and underlined mark the positions 

of amino acids that vary between different allotypes and are slightly different in the sequence 

that can be found between different populations (Vidarsson et al., 2014). A more extensive view 

of allotypes occurring in the heavy chain isotypes is illustrated in Figure 3.2b. In total, including 

the allotypes, only 44 residues of a total of ~340 residues from the constant domains and hinge 

are different in the heavy chain between isotypes.  

In addition to the variations caused by the allotypes in the heavy chain, a common modification 

in design of IgG4 antibodies is the mutation of the wildtype hinge residue Serine 228 to a 

Proline. The mutation stabilises the hinge region which becomes more rigid and more similar 

to that of the IgG1 hinge (Aalberse and Schuurman, 2002). This also has the effect of increasing 

the efficacy of the IgG4 antibodies by preventing Fab arm exchange with other IgG4 antibodies 

(Silva et al., 2015).  

The sequence variability between  kappa and lambda is however more pronounced with 74 

residues being different out of the total ~110 residues in the CL domain, with reported allotypes 

positions marked as red an underlined (see Figure 3.2c). No allotypes have been reported for 

kappa and lambda but residue variability is present between different light chain isotypes which 

is illustrated in Figure 3.2d. All  information related to the allotypes in the heavy and light chain 

were acquired from the IMGT database (Lefranc and Lefranc, 2012). 
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3.1.4 Disulphide bonds 

The heavy and light chains are linked with a single disulphide bond between the CL and CH1 

domains that prevents the two chains from separating. In addition, the two heavy chains are 

also connected by disulphide bonds in the region surrounding the hinge. In IgG1 and IgG4 the 

heavy chains are linked with two disulphide bonds whereas IgG2 antibodies have a total of four 

disulphide bonds linking the two heavy chains (Liu and May, 2012). The structural differences 

and the sequence variability of the constant domains in the heavy and light chain are 

summarised in Table 3.1.  

Table 3.1. Summary of structural differences of the constant domains in the heavy and light chains (adapted from 

Lefranc et al. (2005) and Liu and May (2012)) 

Heavy Chain IgG1 IgG2 IgG4 

CH1 residues 98 98 98 

Hinge residues 15 12 12 

CH2 residues 110 109 110 

CH3 residues ~110 ~110 ~110 

Allotypes 7 4 3 

Disulphide bonds in hinge 2 4 2 

Light chain kappa lambda  

CL residues ~107 ~106  

Allotypes 3 5  
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Figure 3.2. Heavy and light chain isotypes and allotypes. (a) Sequence alignment of the constant domains CH1, 

Hinge, CH2 and CH3 in the heavy chain showing all structural differences between the isotypes IgG1, IgG2 and 

IgG4. Sequence numbering follows the EU numbering scheme and positions marked as bold, underlined and 

coloured red are positions with varying residues originating from different allotypes. Positions marked with red 

boxes highlight residues that are important in the Fc effector function (b) Comparison of the common allotypes 

with the positions in the primary sequence isolated to illustrate the varying residues based on given alleles. Allele 

names containing IGHG1 refer to IgG1, IGHG2 to IgG2 and IGHG4 to IgG4 (c) Sequence alignment of the 

constant domain CL in the light chain illustrating the structural differences between the isotypes kappa and lambda. 

Positions with varying residues in the sequences of known allotypes are marked as bold, underlined and coloured 

red. (d) Comparison of most common isotypes of the CL domain where only positions with varying residues are 

illustrated.  Allele names containing IGKC refer to the kappa isotypes while allele names containing IGLC refer 

to the lambda isotypes (adapted from Lefranc and Lefranc (2012)). 
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3.1.5 Sequence variation from humanisation 

Many antibodies are produced by using animal models such as house mouse. In this process 

antibodies are developed as part of the animal’s immune system when presented with an antigen 

of interest. B cells expressing antibodies specific to the antigen are harvested and antibodies 

with high specificity are retained for further evaluation (see Figure 3.3a) (Laffleur et al., 2012). 

However, these antibodies cannot be used due to slight differences in the structure of the Fc 

region which will cause undesired binding when presented in a human environment and thereby 

causing adverse effects (Hansel et al., 2010). Often in order to be able to use the antibodies 

clinically they first need to be modified to become more human-like. Boulianne et al (1984) 

circumvented this problem by replacing the constant domains (CH1, hinge, CH2, CH3 and CL) 

of a mouse antibody with those of human counterparts and thereby producing a chimeric 

antibody (see Figure 3.3b) with high specificity and lowered immunogenicity (Boulianne et al., 

1984). An improvement of this was made by Jones et al (1986) where instead of retaining the 

full variable domains of the animal antibody, a humanised antibody (see Figure 3.3c) could be 

produced by retaining only the CDRs which were grafted onto the framework regions of human 

variable domains (Jones et al., 1986). This has the effect of lowering the immunogenicity 

further by reducing the animal components that can cause adverse effects, but can also lower 

the specificity towards the antigen (Hwang and Foote, 2005). Fully human antibodies (see 

Figure 3.3d) can be expressed through the use of transgenic animals which have been modified 

to express human antibodies upon immunisation (Green et al., 1994, Mompo and Gonzalez-

Fernandez, 2014). 

 

 

Figure 3.3. Representation of antibody modification where orange domains are expressed domains from the animal 

model and blue domains are expressed from human genome. Level of modification is presented in increasing order 

from fully animal (a), to chimeric (b), to humanised (c) and finally to fully human (d) (adapted from Absolute 

Antibody (2018)). 

The humanisation of antibodies introduces an interesting artefact in the sequence variability of 

the variable domains which originates from the modification used to design the antibody 
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(animal, chimeric, humanised and human). In this dissertation, only antibodies with human 

constant domains will be used in order to decrease sources of variability. However, for chimeric 

antibodies there will be an effect originating from the species used to express the variable 

domains compared to that of humanised and human antibodies. As mentioned above, just as the 

chimeric antibodies can cause adverse effects through unwanted binding, it might also impact 

on the performance in operational units in a bioprocess e.g. binding in chromatographic 

columns.  

3.2 Descriptor generation 

All antibody sequences that were used in modelling in the subsequent chapters were obtained 

from the IMGT database unless another means of acquisition is specified. Figure 3.4 illustrates 

an overview of the applied workflow for the generation of descriptors. An initial isotype 

classification of the sequences was performed by using recognition sequences for each isotype 

based on the human hinge region and the beginning of the human constant CL domain to identify 

the isotype of the heavy and light chain, respectively. For IgG4, an additional recognition 

sequence was added to incorporate the Ser228Pro mutation. 

Descriptors were generated by either using 1) software to estimate protein properties with 

FASTA as input format or 2) conversion of each selected residue into numerical values with so 

called amino acid scales illustrated in Figure 3.4b. Prior to the descriptor generation, a sequence 

preparation step was performed in order to generate four different data sets illustrated in Figure 

3.4a which is explained further in Section 3.3. Explanation of the descriptor generation is given 

first in order to facilitate the comparison of the different sequence preparation strategies. 

3.2.1 Software based descriptors 

In order to generate meaningful descriptors from the sequences to be used in modelling, 

dedicated software was used. In this dissertation, ProtDCal 3.5 (Ruiz-Blanco et al., 2015) and 

a standalone version of EMBOSS Pepstats 6.5 (McWilliam et al., 2013) were considered and 

used to generate the descriptors presented in Table 3.2.  
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Table 3.2. List of generated descriptors from ProtDCal and EMBOSS Pepstats. The stars in the second and third 

columns represent which software was used for generation of each descriptor. 

Descriptor ProtDCal Pepstats Type Description 

𝑮𝑾(𝑼) ●  Folding energy Index of the contribution to the free energy 

from the entropy of the first shell of water 

molecules in an unfolded state 

𝑮𝒔(𝑼) ●  Folding energy Index of the interfacial free energy of an 

unfolded state 

𝑾(𝑼) ●  Folding energy Number of water molecules close to a residue 

in an unfolded state 

𝑴𝑾  ● Physiochemical Molecular weight of the protein 

𝑯𝑷 ●  Physiochemical Hydrophobicity by the Kyte-Doolittle scale 

𝑰𝑷  ● Physiochemical Isoelectric point of the protein 

𝚫𝑯𝒇 ●  Physiochemical Heat of Formation 

𝑬𝑪𝑰 ●  Physiochemical Electronic Charge Index 

𝑰𝑺𝑨 ●  Physiochemical Isotropic Surface Area 

𝑨𝒑𝒐𝒍𝒂𝒓 ●  Physiochemical Polar area of each amino acid in unfolded 

state 

𝑪𝒉𝒂𝒓𝒈𝒆  ● Physiochemical The sum of all charges in sequence 

𝑨𝑹𝑾  ● Physiochemical Average residue weight 

𝑹𝒆𝒔𝒊𝒅𝒖𝒆𝒔  ● Physiochemical Number of residues in sequence 

 

ProtDCal is a freely available tool specifically designed to generate descriptors for multivariate 

modelling of proteins by using either the primary sequences in FASTA format or 3D structures 

in PDB format. It has been applied successfully in machine learning environments for the 

identification of functional protein residues (Corral-Corral et al., 2017) and prediction of N-

glycosylation sites on proteins (Ruiz-Blanco et al., 2017) to mention a few. ProtDCal allows 

for generation of a variety of descriptors ranging from thermodynamic, topological (only for 

3D structures) to physiochemical properties. For the purposes of this research however, 

descriptors were selected focusing on properties present on the surface such as charge and 

polarity as well as descriptors for protein stability such as folding energies and hydrophobicity 

due to the interest in developing models can accurately predict external behaviour of mAbs 

such as chromatographic column performance (Gagnon, 1996b) or self-association (Li et al., 

2016).  
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It is important to note that ProtDCal will calculate physiochemical descriptors based on indexed 

values for each residue when using the primary sequences as input. This means that no 

assumptions are made in ProtDCal regarding environmental factors in the solution surrounding 

the protein. For calculation of full protein descriptors, ProtDCal provides different calculation 

modes or so-called aggregation techniques which determines how the descriptors are put 

together based the indexed residue values (Ruiz-Blanco et al., 2015). In this research 

considerations were given to two such methods: the sum and the Euclidean distance of the 

generated indices. The Manhattan distance was selected due to the descriptors being additive in 

nature, meaning that an approximation of a descriptor for the full protein is that of the 

summation of the individual amino acids. The Euclidean distance was used in addition to give 

more information of the magnitude of the descriptors when multiple residues are used for 

descriptor generation. Specifics on when the different aggregation methods were applied can 

be found in Section 3.3 below. The calculation of the folding energy descriptors in ProtDCal, 

on the other hand, is based on empirical equations which are dependent on adjacent residues as 

well as the temperature (Ruiz-Blanco et al., 2013). In this research, the default value of 25 ºC 

(298.15 ºK) was used. 

In addition, ProtDCal is also able to generate descriptors for specified groups of amino acids 

seen in Table 3.3. These groups are based on amino acid composition of secondary structure 

(Otaki et al., 2010) and classical amino acid classification according to the side chain polarity, 

charge, aromatic structure and so on (Taylor, 1986). By generating the ProtDCal descriptors in 

Table 3.2 based on selected amino acids specified in a group, greater utilisation of the input 

sequence is achieved as specific properties can be quantified more easily e.g. calculation of 

descriptor based only on polar residues (PLR).  All 12 presented groups in Table 3.3 were used 

to generate descriptors from ProtDCal thus resulting in 120 unique descriptors (10 descriptors 

per group) for each sequence input. 
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Table 3.3. Amino acid groups available in ProtDCal. RTR, BSR and AHR are based on common residues found 

in secondary structure. ALR, ARM, NPR, PLR, PCR, NCR and UCR are groups that conform to the classical 

amino acid classification. PRT represents the full sequence (adapted from Ruiz-Blanco et al. (2015)) 

Amino acid 

group 

Description  Residues 

RTR Common residues in reverse 

turn structure 

Secondary structure Asn, Asp, Gly, Pro and Ser 

BSR Common residues in Beta 

Sheet structure 

Secondary structure Ile, Phe, Thr, Trp, Tyr and 

Val 

AHR Common residues in Alfa 

Helix structures 

Secondary structure Ala, Cys, Gln, Glu, His, 

Leu, Lys and Met 

ALR Aliphatic residues Residue classes Ala, Gly, Ile, Leu and Val 

ARM Aromatic residues Residue classes His, Phe, Trp and Tyr 

NPR Non-polar residues Residue classes Ala, Gly, Ile, Leu, Met, Phe, 

Pro, Trp and Val 

PLR Polar residues Residue classes Arg, Asn, Asp, Cys, Gln, 

Glu, His, Lys, Ser, Thr and 

Tyr. 

PCR Positively charged residues Residue classes Arg, His and Lys 

NCR Negatively charged residues Residue classes Asp and Glu 

UCR Uncharged polar residues  Residue classes Asn, Cys, Gln, Ser,Thr,Tyr 

UFR Unfolding residues Residue classes Gly and Pro 

PRT Whole protein Whole protein All residues 

 

EMBOSS Pepstats was used to provide additional descriptors to the data set. Though not as 

extensive as ProtDCal, the total charge, the average residue weight and the number of residues 

in the sequence was calculated by Pepstats. In Pepstats, the molecular weight of the sequence 

was calculated with the assumption of no N- or C-terminal modifications being present in the 

sequence whereas the isoelectric point (pI) and charge were calculated based on the 

physiological pH of 7.4. 

3.2.2 Amino acid scale descriptors 

Many advancements have been made in developing new informative descriptors to be used in 

the QSAR modelling framework. For modelling of proteins and peptides, so called amino acid 

scales were first developed and introduced by Sneath in order to numerically convert the 

residues into meaningful values (Sneath, 1966). A large number of physiochemical descriptors 

were generated for the 20 naturally occurring amino acids. These were then reduced into four 

vectors (components) using PCA (see Section 2.2.1) for dimensionality reduction and thus 

allowing the components to capture the overall differences and similarities between the amino 

acids based on the used descriptors. This led to a reduction in the number of descriptors that 

were used in QSAR modelling due to a large number of descriptors being replaced by unique 
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values for each amino acid in the sequences. Many new and specialised amino acid scales have 

since been developed to capture different properties of the amino acids. A comparison of 13 

different scales was performed by van Westen et al (2013) in order to find complementary 

scales to be used in modelling (van Westen et al., 2013b, van Westen et al., 2013a). Based on 

these findings and for the purposes of this dissertation, the Z-scale (Hellberg et al., 1986, 

Hellberg et al., 1987b), the T-scale (Tian et al., 2007) and the MSWHIM scale (Zaliani and 

Gancia, 1999) were chosen to be used for numerical conversion of sequence residues as they 

capture physiochemical, topological and electrostatic properties, respectively (see Table 3.4). 

In total, 11 descriptors based on the three chosen amino acid scales were used for numerical 

conversion of each residue. 

Table 3.4. Amino acid scales used for descriptor generation and details on captured information of the individual 

components  

Scale Description Method Number of 

Components 

Component Component descriptions 

Z-Scale Physiochemical PCA 3 Z1 Contains information related 

to the hydrophobicity 

Z2 Contains information related 

to size, hydrophobicity and 

hydrophilicity 

Z3 Contains information related 

to pH and NMR values 

T-scale Topological PCA 5 T1 No information given 

T2 No information given 

T3 No information given 

T4 No information given 

T5 No information given 

MSWHIM Electrostatic 

potential 

PCA 3 MS1 Contains information related 

to the charge and size 

MS2 Contains information for 

further separation of 

positively charged residues 

MS3 Contains information for 

further separation of 

negatively charged residues 

3.3 Sequence preparation and conversion 

Normally, in any given problem statement where protein descriptors are used to develop a 

model with the goal of being able to predict some process related performance metric e.g. 

aggregation, retention time etc, a subset of specific structural features in the protein will be 

directly related to that output. Using the full antibody sequence to generate descriptors in such 

cases would confound the information due to the majority of the residues being redundant and 

more likely to introduce noise in the descriptors. Therefore, prior to the generation of the 
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descriptors, five novel preparation strategies were considered in order to address this issue of 

resolution: Domain based, Window based, Single Amino Acid based and Running Sum based 

strategies which are illustrated in Figure 3.4a. These five strategies were developed and 

considered in order to reduce the noise from the redundant residues and enhance the information 

from the residues related to an output of interest. 

3.3.1 Domain based 

In the Domain based approach, all sequences were split into smaller fragments corresponding 

to the antibody domains (VH, CH1, Hinge, CH2, CH3, VL and CL). The start and the end positions 

for each domain were generated based on the initial isotype classification, thus finding the 

positions of the hinge and the start of the constant domain CL and then using the specific domain 

lengths specified in Table 3.1. 

Descriptors were generated using both software and amino acid scales, see Figure 3.4b. In 

ProtDcal, descriptors were generated based on the 12 amino acid groups presented in Table 3.3 

resulting in 120 unique descriptors. This to further extract more information from the domains 

but also capture the slight differences in the amino acid compositions in the domains. Global 

versions of the amino acid scale descriptor were generated by summing the individual 

component values of all residues. This was as all components are orthogonal to each other in 

each of the amino acid scales due to have been generated from PCA (Bro and Smilde, 2014). 

This therefore allows each component to be additive without influencing the other components. 

In total 136 descriptor for each domain was generated for the Domain based approach (5 from 

EMBOSS Pepstats, 120 from ProtDCal and 11 from the amino acid scales). 

3.3.2 Window based 

In the Window based approach, a multiple sequence alignment (MSA) was first performed with 

all sequences used in a study of interest in order to overlap regions with high similarity between 

antibodies. BLOSUM80 was used as the amino acid substitution matrix due to the antibodies 

sharing high sequence similarity (Henikoff and Henikoff, 1992). When aligning antibodies, 

longer consecutive gaps are expected in the variable regions due to the unique structure and 

differences in length of the CDR loops. However, in order to avoid misalignment of more 

conserved regions in the variables domains, control checks were implemented to ensure that 

that conserved cysteine and tryptophan residues were aligned in the variable regions which are 

illustrated in Figure 3.5 (Lefranc et al., 2003). From the resulting alignment, a window was 

defined based the longest consecutive gap region plus two additional residues, one on either 

side of the gap region. The full sequence was then divided based on the specified window, thus 
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generating smaller fragments of sequences equal in size to the specified window. As an 

example, if the window was specified to 25 residues, the first fragment would contain residues 

1 to 25, the second fragment residues 26 to 50 and so on. The addition of the two extra residues 

to the window ensures that no single fragment would contain only gaps. 

Similar to the Domain based approach, descriptors were generated using both the software and 

amino acid scales. However, due to the sequence fragments being much smaller than the domain 

sequences only the PRT options from the amino acid groups was used to generating descriptors. 

Instead, both Manhattan distance and Euclidean distance were used as aggregation methods to 

generate descriptor in ProtDCal resulting in 16 unique descriptors. In total 32 descriptors were 

generated for each sequence fragment that was created in the Window based approach (5 from 

EMBOSS Pepstats, 16 from ProtDCal and 11 from the amino acid scales). 

3.3.3 Substructure Based 

In the Substructure based approach the identified domains were further broken down into 

smaller substructures which are consistent across all full chain IgG antibodies. For the variable 

domains, the CDR loops and frameworks (FRs) were identified by utilising highly conserved 

residues present in these domains as well as applying specified rules for CDR loop identification 

presented in (Lefranc et al., 2003). A breakdown of the substructures in the variable domains is 

illustrated in Figure 3.5 showing the IMGT numbering and usual residue length for each 

substructure as well as conserved cysteines and aromatic residues.  

In a similar manner, the identification of the substructural components in the constant domains 

were identified by using the IMGT numbering scheme presented in (Lefranc et al., 2005). The 

sequence splitting of the constant domains is more straight forward to implement due to amino 

acid composition and domain lengths being highly conserved in these domains. This resulted 

in 43 unique primary sequence fragments from a full-length mAb where 14 originated from the 

variables domains (VH and VL), 28 from the constant domains (CH1, CH2, CH3 and CL) and one 

from the hinge region.  

 

 

Figure 3.5. Breakdown of the variable domains into the smaller framework (FR) and CDR substructures. 

Conserved cysteines are represented as a yellow line while conserved aromatic residues are represented as blue 

lines (adapted from Lefranc et al. (2003)). 
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The descriptor generation in the Substructure based approach was identical to that of the 

Window based approach where a total of 36 descriptor were generated for each substructure 

sequence (5 from EMBOSS Pepstats, 20 from ProtDCal and 11 from the amino acid scales). 

3.3.4 Running Sum based 

In the Running Sum based approach, an alignment was first carried out by using the IMGT 

numbering scheme. To properly align the CDR loops, gaps was introduced in order to convert 

all corresponding CDRs to be of equal length. This was performed by assigning a constant 

maximum length to each CDR substructure and introducing gaps in sequences if the CDR 

sequence was shorter than the specified maximum length for the specific CDR loop. The lengths 

assigned were 15 residues for CDR1, 15 residues for CDR2 and 25 residues for CDR3. These 

lengths were based on the maximum observed CDR lengths of 297 mAb sequences taken from 

the IMGT mAb database where a maximum of 12, 12 and 23 residues were observed in CDR1, 

CDR2 and CDR3 loops, respectively. The lengths were rounded upwards to the closest whole 

five in order to account for future samples that might have longer CDR gaps. 

In comparison, the difference in the lengths of the framework substructures is caused by 

systematic addition/elimination of residues whose locations in the sequence are known (Lefranc 

et al., 2003). For sequences that were shorter than the maximum length of a framework 

substructure, gaps were systematically introduced in these positions thus conforming all 

sequences for a specified framework substructure to the same length. 

A window was defined similar to that of the Window based approach. The width of the window 

was set to 13 residues to be about half of the longest defined CDR loop of 25 residues. The 

window was then used to generate smaller fragments by sliding it upstream in the sequence one 

residue at a time from the beginning to the end of the alignments. As an example, the first 

fragment will contain residues 1 to 13, the second fragment will contain residues 2 to 14 and so 

on.  

In this approach, only the amino acid scales were used to generate descriptors for the antibodies. 

Each component from the individual amino acid scales was summed based on the amino acid 

composition of the input fragment as described in Section 3.3.1.  

3.3.5 Single Amino Acid based 

Similar to the Running Sum based approach all sequences were aligned by using the IMGT 

numbering scheme prior to extracting any information. In the Single Amino Acid based 

approach however, positions of individual residues that varied between mAb samples were 

identified in the resulting alignment and used for descriptor generation. To include positions 
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with gaps, smaller sequence fragments were generated in order to avoid information loss. For 

positions with systematic gaps such as in the variable domain frameworks and in the constant 

domains, fragments were generated by adding one residue before and after the start and end of 

the gap, respectively. The CDR loops was used directly without modification due to their high 

sequence variability and length.  

Similar to the Running Sum based approach, only the amino acid scales were used to generate 

descriptors. All identified positions with varying residues in the IMGT alignment were directly 

converted into numerical values using the amino acid scales. Generated fragments containing 

gaps and the CDR loops were converted using Manhattan distance to sum the up the individual 

components. 

3.3.6 Differences between strategies 

In the Domain based, Window based and Substructure based approaches descriptors were 

generated by using both software and amino acid scales Figure 3.4b due to the treatment of 

longer sequence fragments. Because of the long sequence fragments used in the Domain based 

approached there was a high probability that information from critical residues, important to 

the model output, would be confounded by redundant residues. The Window based approach 

was considered to improve the Domain based approach in order to reduce the amount of noise 

introduced by calculating the descriptors with fewer residues in each fragment e.g. 25 compared 

to that of the Domain based where the full domain, e.g. ~110 residues, was used to calculate 

descriptors. In this way, a data set with higher resolution of the impact from each residue could 

generated. However, a big disadvantage with the Window based approach is that the descriptors 

generated become unique to the samples in the data set which is caused by the multiple sequence 

alignment (MSA). More specifically, the MSA algorithm (BLOSUM80) will try to align 

provided sequences and maximise the alignment score by increasing residue matches and 

decreasing residue mismatches between sequences. This alignment becomes unique to the 

samples that were provided and will not necessarily be identical when new samples are added. 

This means the generated fragments from the Window based approach and the descriptors 

generated from these will be highly dependent on the form the alignment takes. This creates 

problems if descriptors for future samples need to be generated as these might not fit in in the 

previous alignment due to longer or shorter sequence regions and a manual alignment of these 

samples would be required. Due to this disadvantage, the Window based approach was 

discarded. Instead, the Substructure based approach was considered as an alternative to address 

this issue. By identifying and using the smaller substructures that make up the domains to 

generate descriptors, the resolution could be improved due to fewer residues being used 
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compared to the Domain based approach. This also ensures that comparable descriptors for 

future samples can be generated due the same substructures existing in all antibodies that are 

of the same conformation.  

The two remaining approaches Running Sum and Single AA were developed to investigate the 

impact of individual residues in the sequence. The use of the IMGT numbering scheme instead 

of MSA ensured that corresponding residues in different sequences would be aligned correctly 

and be reproducible. The Running Sum based approach can be considered as an alternative to 

the Substructure based approach due to larger fragments still being handled. The biggest 

difference however is that each residue was represented multiple times in slightly different 

sequence variations thus allowing important residues to have an increased impact in the model 

development. The Single AA based approach is fundamentally different from the previously 

mentioned strategies as only residues that varied between antibodies in the alignment were used 

for descriptor generation. This was to investigate if only the varying regions in the primary 

sequence were the only information necessary in order to produce models with high fit and 

accuracy. 

The impact of the sequence splitting on the number of descriptors per mAb can be observed in 

Table 3.5 for the different approaches. Table 3.5 also provides estimates of the potential number 

of descriptors per mAb based on which domains of the mAb are used for descriptor generation 

(VH/VL, Fab and Full length). It is important to note that, though higher resolution can be 

attained by reducing the length of the sequence fragments, the total number of descriptors 

increases in turn as a result of increased number of fragments which occurs in the higher 

resolution descriptor sets. The largest increase in descriptors can be seen in the Running sum 

due to more sequence fragments being generated in both the heavy and the light chains. This is 

more easily understood if considering descriptor generation for a full structure mAb with ~450 

residues in the heavy chains and ~230 residues in the light chains. This would generate closer 

to 700 unique fragments when including gaps introduced by the IMGT sequence alignment. 

Therefore, in this approach, only the amino acid scales were used to generate descriptors in 

order to avoid generating an excessive number of descriptors. 
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Table 3.5. Representation of the expected number of descriptors generated for each mAb when using the Domain 

based, Window based, Substructure based, Single AA based and Running Sum based approaches to generate 

descriptors. A full-length mAb with 450 residues in the heavy chain and 230 residues in the light chain was 

considered in this case. The number of sequence fragments (Domain, Window, Substructure and Running Sum) 

or sequence positions (Single AA) are listed in the parenthesis  

Method VH/VL Fab Full length Input type Descriptors per 

input 

Domain 272 (2) 544 (4) 952 (7) (4) Domain 136 

Window (1) 320 (10) 640 (20) 896 (28) Fragment 32 

Substructure 448 (14) 896 (28) 1376 (43) Substructure 32 

Running Sum (2) 2486 (226) 4686 (426) 7216 (656) Fragment 11 

Single AA (3) 1452 (132) 1540 (140) 1628 (148) Position 11 

(1) Calculated with a window width of 25 residues 
(2) Calculated with a window width of 13 residues and without gaps in the sequence 
(3) Calculated based on 80% similarity between mAbs with the majority of the variability in the variable domains 
(4) 136 descriptors are generated for the Hinge which was treated as a domain 

 

3.4 Summary 

From the proposed methods able to generate descriptors described in this chapter it is clear that 

each strategy has its advantages and disadvantages. However, specific sequence preparation 

strategies might be better suited for different purposes as “no one size fits all”. This makes the 

proposed descriptor generation highly customisable and can be adapted to specific needs in the 

model development. The described workflow for descriptor generation using the primary 

sequence of mAbs has been applied as described in Chapter 4 where the intrinsic variation 

originating from the mAb isotypes and species origins has been explored. The suitability if 

these descriptors for prediction of HIC retention times and mAb yields is addressed in Chapter 

5. 
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Chapter 4  

 

Impact of mAb isotypes and species origins on 

primary sequence-based descriptors 

In this chapter, the potential structural variations in the generated primary sequence-based 

descriptors presented in the previous chapter was investigated with regards to the mAb isotypes 

and species origins. Due to many residues being conserved in individual isotypes based on the 

sequence alignment in the previous chapter, it was expected that descriptors generated from the 

constant domains of the heavy or light chain would impact on the generated descriptors. This 

was more uncertain in the case of the species origins due to the variable domains containing the 

majority of the sequence variability in the mAb primary sequence and therefore critical residues 

were likely to be confounded. Exploration was performed with PCA to characterise the impact 

of the heavy and light chain isotypes while more dedicated classification methods such as PLS-

DA and SVC were used to establish potential correlation between the sequence structure and 

the species origins.  

4.1 Material and Methods 

4.1.1 Sequence gathering 

Primary sequences of therapeutic based mAbs were collected from the IMGT database accessed 

in March 2017. Only sequences of full chain mAbs were collected where mixed heavy chain 

isotypes, such as IgG2/4, and mixed species origins, such as chimeric-humanised samples, were 

excluded. In total, 273 mAb sequences were collected and stored in a database along with key 

information pertaining to the heavy and light chain isotypes as well as the species origin (see 

Table A.2 in Appendix A). Table 4.1 lists the number of mAbs out of the collected 273 

belonging to a specific isotype or species origin. 
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Table 4.1. Summary of isotype and species origin diversity of the 273 gathered mAb sequences from the IMGT 

database. 

Chain/Species Isotype/Origin Number of Samples 

HC 

IgG1 197 

IgG2 35 

IgG4 41 

LC 
kappa 242 

lambda 31 

Species 

chimeric 35 

human 122 

humanised 116 

 

4.1.2 Descriptor Generation 

Structural descriptors for the 𝑿 block were generated using the methodology presented in 

Section 3.2 with four unique primary sequence-based descriptor (PSD) sets prepared: Domain 

based (PSD1), Substructure based (PSD2), Single AA based (PSD3) and Running Sum based 

(PSD4). 

4.1.3 Modelling Methods 

4.1.3.1 Principal Component Analysis 

Principal Component Analysis (PCA) was used as an exploratory analysis tool to investigate 

the four descriptor sets and the relationship between descriptors and different chain isotypes 

and species origins. Each model was selected to contain 90% of the total variation contained in 

the descriptor set of interest. PCA implementation was performed using the PLS Toolbox 

version 8.6.1 (Eigenvector Research, Inc). For more details on PCA, see Section 2.2.1.  

4.1.3.2 Partial Least Square Discriminant Analysis 

The NIPALS algorithm was used to develop a PLS regression model for predicting the dummy 

variables generated from the class information pertaining to the species origin of the mAbs. 

Discriminant Analysis (DA) was then applied to create decision thresholds in order to classify 

the predictions of the developed PLS model. For more information on PLS-DA, refer to Section 

2.3.1. 

4.1.3.3 Support Vector Machines for Classification 

The LibSVM toolbox was used and implemented in MATLAB 2016a for SVC model 

development (Chang and Lin, 2011). The C-SVM function in LibSVM uses by default the One-

vs-One (OvO) strategy for multiclass classification problems. A shell script was developed to 



95 

implement the One-vs-Rest (OvR) classification strategy instead in order to reliably compare 

SVC to PLS-DA and this is presented in Appendix B.1. Optimisation of the model parameter 

𝐶 was performed using a grid search approach on defined points over specified ranges for each 

parameter (for details on parameters see Section 2.3.2). The grid points used for 𝐶 was  

[10-5, 10-4, 10-3, 10-2, 10-1, 100, 101, 102, 103, 104]. 

4.1.4 Data Curation and Pre-treatment 

All descriptor sets were first curated by removing columns containing null values, coded as -

999. Furthermore, descriptors with a standard deviation below 0.0001 were also removed as 

they did not contain sufficient variation for the model development. The standard deviation for 

a descriptor, 𝑘, was calculated according to equation 4.1 where 𝑁 is the number of samples in 

the dataset and �̅�𝑘 is the average value of the descriptor 𝑘. All data blocks were auto-scaled 

before being used in model development in order to centre the data around zero as well as to 

scale all descriptors to unit variance (see Section 2.7). 

 𝜎𝑘 = √
1

𝑁 − 1
∑(𝑥𝑖𝑘 − �̅�𝑘)2

𝑁

𝑖=1

 (4.1) 

 

4.1.5 Model Training and Validation 

4.1.5.1 Structured data splitting 

Prior to model development with PLS-DA and SVC the data set was split into a calibration set 

and an external test set to represent future samples. The Kennard-Stone (CADEX) algorithm 

was used for this purpose which divides the samples according to structural similarity, in the 

form of Euclidean distance, between samples in the descriptor space (see Section 2.5.1 for more 

details). 80% of the samples were retained for model calibration and the remaining 20% were 

kept for external testing and model validation. 

4.1.5.2 Cross Validation 

A repeated k-fold cross validation scheme was applied for model development for PLS-DA and 

SVC where k was chosen to be five in order to get an 80/20 sample split ratio between training 

and validation samples, respectively. 20 iterations were performed to better utilise the data set 

and decrease the potential impact of outliers in the data on the cross validation. 
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4.1.5.3 Model Validation 

Validation PLS-DA and SVC models were performed using the overall error rate (ER) in 

eq.(2.62) and the Matthews Correlation Coefficient (MCC) in eq.(2.66) based on the confusion 

matrices of the developed models. Model parameters in PLS-DA and SVC were selected based 

on the minimum ER value observed in the cross validation.  

4.2 Results and Discussion 

4.2.1 Domain based selection of descriptors 

Exploratory analyses of the HC and LC isotypes as well as the species origin were performed 

by first selecting descriptors that were known to be closely related to the investigated response 

in question based on sequence difference between isotypes described in Section 3.1.3. Figure 

4.1 illustrates the selection of descriptors based on their domain of origin. For the HC isotypes, 

only the heavy chain domains: VH, CH1, CH2 and CH3 were used and are marked in red 

illustrated in Figure 4.1a. Similarly, investigation of the LC isotypes was performed with 

descriptors from the light chain domains: VL and CL (see Figure 4.1b). For the Species origins, 

only the VH and VL were used, (see Figure 4.1c), due to these structural differences being 

present only in the variable domain due to the humanisation of the mAbs (Kim et al., 2005). 

 

 

 

Figure 4.1. Descriptor selection based on the structural origin of investigated response for (a) heavy chain isotypes, 

(b) light chain isotypes and (c) species origin. Descriptors from the mAb domains used in structural exploration 

are coloured red while excluded domains are coloured grey in the three presented cases. 

PCA was used as an exploratory tool to capture and visualise the information contained in the 

generated descriptor sets presented in Section 3.2. As PCA is scale dependent, the descriptors 

were auto-scaled before analysis (Bro and Smilde, 2014). The PCA models were built to capture 

approximately 90% of all variations contained in the individual descriptor sets. A summary of 

the PCA models is presented in Table 4.2 and list exploration of both heavy and light chain 

descriptors separately. 
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Table 4.2. PCA model summary of heavy chain (HC) descriptors and light chain descriptors (LC) according to the 

four descriptor resolutions PSD1, PSD2, PSD3 and PSD4. Models were developed to capture approximately 90% 

of the total variation present in the individual descriptor sets. 

Chain 
Descriptor 

Set 

Number of 

Descriptors 

Principal 

Components 

Explained 

Variation (%) 

HC 

PSD1 543 19 89.96 

PSD2 817 27 90.14 

PSD3 1625 68 90.02 

PSD4 4367 41 90.02 

LC 

PSD1 272 12 90.20 

PSD2 490 20 90.19 

PSD3 1601 43 90.06 

PSD4 2387 26 89.92 

 

4.2.2 Exploration of HC Isotypes 

In the case of the heavy chain, all samples formed three clearly defined groups when analysing 

the scores from the PCA models. The PCA results of PSD1 is illustrated in Figure 4.2 where 

the scores and loadings of the two first components were enough to characterise the structural 

difference between the heavy chain isotypes. It can be observed that IgG1 samples are separated 

from IgG2 and IgG4 samples in the first PC which explains 34.34% of the total data variation 

in the descriptor set illustrated in Figure 4.2a. The second component further separates IgG2 

from IgG4 samples and explained an additional 17.03% of the total data variation in the PSD1 

descriptor set. The subsequent components showed no further separation of the heavy chain 

isotypes but instead captured varying degrees of variation linked to the sequence variability of 

the variable domain, VH (data not shown). From the loadings of the first and second PCs 

illustrated in Figure 4.2b and Figure 4.2c it can be observed that the constant domains: CH1, 

CH2 and CH3 contribute more significantly to the separation observed in the score plot while 

the loadings of the descriptors in the variable domain VH remain close to zero. This 

phenomenon is explained by investigating the VDJ gene recombination responsible for 

expressing the heavy and light chain of the mAbs. All genes encoding for the full heavy chain 

are located on chromosome 14 in the human genome where the VDJ region codes for the 

diversity of the VH domain. Genes encoding for constant domains are located further 

downstream and contain information for encoding all heavy chain isotypes (Jung and Alt, 2004, 

Schroeder and Cavacini, 2010). This means the primary sequence of the VH domain cannot be 

used to infer the isotype of the heavy chain due to being shared between IgG1, IgG2 and IgG4 
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and it is therefore the reason for the low contribution of the VH domain in the loadings plots 

illustrated in Figure 4.2b and Figure 4.2c. 

Identical observations were made for the other descriptor sets: PSD2 (see Figure C.1a and 

Figure C.1b), PSD3 (see Figure C.1c and Figure C.1d) and PSD4 (see Figure C.1e and Figure 

C.1f) presented in Appendix C, where the structural differences between the HC isotypes 

formed distinct groups in the score plots. Some differences in explained data variation was 

however observed. When using PSD1, PSD2 and PSD4, the first two PCs explained between 

35-50% of the total data variation. In the PSD3 descriptor set however, PC1 and PC4 contained 

the information for heavy chain isotype separation which also had a lower cumulative explained 

variation of 17.08% of the total data variation. PC2 and PC3 described variation pertaining to 

the sequence variability in the variable domain, VH (data not shown). The primary reason for 

the lower explained variation in PSD3 compared to the other descriptor sets was due to the high 

resolution where each amino acid is represented individually. This led to a higher exclusion of 

descriptors from the constant domains during the data curation with more static descriptors 

being removed in PSD3 compared to the descriptor sets PSD1, PSD2 and PSD4. In the latter 

descriptor sets all descriptors are a sum of multiple residues and therefore contain more 

variation. A summary of the PCA analysis of the four descriptor sets exploring the components 

involved in the separation of the HC isotypes is presented in Table 4.3. 
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Figure 4.2. PCA exploration of VH, CH1, CH2 and CH3 descriptors from PSD1. (a) Score plot of the first two 

principal components (PCs). The isotypes IgG1 are coloured red, IgG2 coloured green and IgG4 coloured blue. 

(b) Loadings of the first PC. (c) Loadings of the second PC. 

Table 4.3. Summary of PCA analysis listing the principal components used to observe separation of HC and LC 

isotypes together with the corresponding explained data variation for each descriptor set. The last column shows 

the percentage of descriptors generated from the constant domains.  

Chain 
Descriptor 

Set 

Principal 

Components 

Explained 

Variation (%) 

Number of 

Descriptors 

Constant Domain 

Descriptors (%) 

HC 

PSD1 1, 2 51.37 543 74.95 

PSD2 1, 2 42.93 817 70.13 

PSD3 1, 4 17.08 1625 45.17 

PSD4 1, 2 35.57 4367 68.26 

LC 

PSD1 1 52.23 272 50.00 

PSD2 1 54.29 490 50.20 

PSD3 1 49.81 1601 47.09 

PSD4 1 52.61 2387 47.47 
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4.2.3 Exploration of LC Isotypes 

Similarly to the heavy chain, a very clear separation of the light chain isotypes, kappa and 

lambda, was observed in the first PC for the PSD1 descriptor set seen in Figure 4.3a which 

explained 52.23% of the data variation. However, contributions to the separation were not only 

caused by the constant domain CL but the variable domain VL also contributed to the separation 

of kappa and lambda seen in Figure 4.3b. Identical trends of PCA scores and loadings were also 

observed in the other three descriptor sets: PSD2 (see Figure C.2a and Figure C.2b), PSD3 (see 

Figure C.2c and Figure C.2d) and PSD4 (see Figure C.2e and Figure C.2f) presented in 

Appendix C where the first principal component explained 54.29%, 49.81% and 52.61% of the 

data variation, respectively. The contribution of the VH domain to the separation is due to the 

fact that the VJ gene recombination of the light chain occurs at two separate chromosomes 

where lambda is encoded on chromosome 2 and kappa on chromosome 22. Both chromosomes 

have an individual VJ region for encoding the VL domain whose primary sequence thus 

becomes dependent on the isotype that is expressed (Jung and Alt, 2004, Schroeder and 

Cavacini, 2010). It therefore becomes possible to infer the light chain isotype based on the 

primary sequence of the VL domain alone. This is further supported by the fact that the 

explained variation of the first PC in all descriptor sets is larger than the percentage of 

descriptors originating from the constant domain CL as presented in Table 4.3.  

 

 

Figure 4.3. PCA analysis of VL and CL descriptors from the PSD1 descriptor set. (a) Score plot of the first two 

principal components (PCs). The isotype kappa is coloured red and lambda is coloured green. (b) Loadings of the 

first PC. 

4.2.4 Exploration of species origin 

Compared to previous observations on HC and LC isotype analysis, the PCA analysis of the 

VH and VL domain descriptors did not yield a clear separation between chimeric, human and 

humanised samples as can be observed for the PSD1 descriptor set in Figure 4.4a. Instead, 



101 

structural features related to the LC isotypes had a big influence on the captured data variation 

and this was a driving force in the separation of samples as can be observed in Figure 4.4b for 

descriptor set PSD1. Similar observations were made for the three other descriptors sets and are 

presented in Appendix C for PSD2 (see Figure C.3a and Figure C.3b), PSD3 (see Figure C.3c 

and Figure C.3d) and PSD4 (see Figure C.3e and Figure C.3f). This was not unexpected 

however due to the contribution of the VL domain descriptors observed in Figure 4.3b and that 

the expression of kappa and lambda light chain occurs at different Chromosomes. Another 

impacting factor is the high diversity of the CDR regions in the variable domains which are the 

main source of data variation in the four descriptor sets and therefore makes it difficult to 

observe any species origin related separation with PCA. Even when exploring principal 

components of higher order, no defined separation of the species origins can be observed in the 

descriptor sets. Therefore, PLS-DA was used for classification in order to explore the extent of 

data variation related to the species origins. SVC was also applied as an additional classification 

method to evaluate the effect of the descriptor sets on model performance and accuracy between 

methods. 

 

 

Figure 4.4. PCA scores of the first and second principal components (PCs) from VH and VL domain descriptors of 

PSD1. (a) chimeric (red), human (green) and humanised (blue) samples. (b) I LC isotypes kappa (red) and lambda 

(green)   

4.2.5 Species origin classification 

To evaluate developed supervised models, the sample set was split into a calibration and test 

sets with an 80/20 ratio using the CADEX algorithm in order to retain the majority of samples 

and data variation for training. Using the CADEX algorithm also assured that samples in the 

test set would be structurally similar to the samples in in the calibration set with regards to the 

descriptor space. Table 4.4 lists the splits of the four descriptor sets with regards to the species 

origins. It can be observed that the ratio of test set samples was retained at around 0.2 for the 
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three individual species origins in the four descriptor sets thus retaining representation in the 

test set. 

Table 4.4. Sample split with CADEX of the descriptor sets: PSD1, PSD2, PSD3 and PSD4. The number of samples 

belonging to each individual species origin is listed for both the calibration and test sets. 

Descriptor Set 
Number of  

Descriptors 
Species Origin Calibration Test Set 

Sample 

Ratio (Test) 

PSD1 272 

chimeric 28 7 0.20 

human 95 27 0.22 

humanised 95 21 0.18 

PSD2 488 

chimeric 26 9 0.26 

human 98 24 0.21 

humanised 94 22 0.19 

PSD3 1738 

chimeric 28 7 0.20 

human 92 30 0.25 

humanised 98 18 0.16 

PSD4 2640 

chimeric 29 6 0.17 

human 93 29 0.24 

humanised 96 20 0.17 

 

A summary of the performance of the developed PLS-DA and SVC models is shown in Table 

4.5 for each of the four descriptor sets. In general, models developed with SVC showed a little 

higher performance compared to PLS-DA in both the cross-validation and test set, thus 

indicating slightly better generalisation which was most pronounced in the PSD1 and PSD2 

descriptor sets. A potential reason for this may be due to the fact that all samples impact on the 

on the regression prediction in PLS-DA model and therefore it is more likely to be influenced 

by noisy samples. On the other hand, SVC models are developed only on an optimal subset of 

the samples (support vectors) used for defining the decision boundary which thereby reduces 

the influence of noisy samples on the model performance. Notwithstanding this, all models had 

excellent performance in the external test set with MCC values well above 0.7 except for the 

PLS-DA model developed using PSD1. Due to the differences in sample sizes between 

chimeric, human and humanised samples, the MCC metric is preferred as it gives fair 

representation of all classes regardless of samples size  (Jurman et al., 2012). The high MCC 

values are therefore an indication of strong correlation between the structural descriptors of the 

VH and VL domains and the species origin. As no descriptor reduction or selection has been 

performed on the descriptor sets prior to model development, a strong correlation between the 

primary sequence and the species origin can be assumed.  
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In addition, the developed PLS-DA models also give an indication of the extent of the data 

variation in the VH and VL domain descriptors that are correlated to the species origin. From 

Table 4.5 it can be observed that roughly a quarter of the total data variation in PSD2, PSD3 

and PSD4 is used for class prediction by the models whereas the variation used inPSD1 is 

slightly higher with 35.93%. Thus, an estimation of the structural variation from the VH and VL 

domains correlated to species origin can be inferred based on the used data variation by the 

developed PLS-DA models.  

Table 4.5. Summary of model performance of PLS-DA and SVC developed on the descriptor sets: PSD1, PSD2, 

PSD3 and PSD4. Performance metrics for calibration (Cal), cross-validation (CV) and the external test (Test) set 

are provided. 

Method 
Descriptor 

Set 

Explained 𝑿  
Variation (%) 

Cal  CV  Test 

MCC ER  MCC ER  MCC ER 

PLS-DA 

PSD1 35.93 0.82 0.11  0.68 0.19  0.68 0.20 

PSD2 22.21 0.77 0.14  0.62 0.23  0.79 0.13 

PSD3 28.70 0.95 0.03  0.75 0.15  0.96 0.04 

PSD4 24.41 0.88 0.07  0.71 0.18  0.91 0.05 

SVC 

PSD1 - 0.92 0.05  0.72 0.17  0.85 0.09 

PSD2 - 0.93 0.04  0.72 0.17  0.94 0.04 

PSD3 - 0.99 0.01  0.74 0.15  0.94 0.04 

PSD4 - 0.95 0.03  0.79 0.13  0.94 0.04 

 

In addition, individual classification performance in relation to the chimeric, human and 

humanised samples was assessed with receiver operating characteristics (ROC) curves on the 

cross-validation results in order to understand the slightly lower MCC values compared to those 

in the calibration and test set. More specifically, the area under the curve (AUC) was used as a 

performance metric with a value of 0.5 indicating poor classification accuracy and a value of 

one indicating perfect classification (Fawcett, 2006). The AUC values obtained from the cross-

validation on PLS-DA model developed using PSD3 data set are illustrated in Figure 4.5a and 

the equivalent SVC model in Figure 4.5b. The black dashed line represents the AUC value of 

0.5 thus indicating a reference border where no discrimination between classes are possible (see 

Section 2.6.2). Clearly these were all above 0.9 thus indicating high accuracy. It can be observed 

that most of the misclassification occurs in the humanised samples (blue line) whose AUC 

values are lower compared to those of the chimeric and human samples. This is the cause for 

the lower MCC values in the cross-validation compared to the calibration and external test set, 

where the misclassification of humanised samples was lower (data not shown). This trend was 

also observed in the cross-validation results of PLS-DA and SVC ROC curves for the remaining 

three descriptor sets of PSD1, PSD2 and PSD4, illustrated in Figure C.4 in Appendix C.  A 



104 

closer inspection of the resulting confusion matrices from the cross-validation of the four 

descriptor sets showed that the misclassified humanized samples were classified as a mix of 

chimeric and human (data not shown). Therefore, no particular preference was observed of the 

misclassified samples that leaned more towards the chimeric class or the human class. A 

potential reason for this could be due to the mix of chimeric CDRs and the human framework 

regions which in unique instances, have a higher resemblance to that of fully chimeric or fully 

human sequences. 

 

 

Figure 4.5. ROC curves and AUC for chimeric (red line), human (green line) and humanised (blue line) samples 

developed on prediction data from the cross-validation of PSD3 in (a) PLS-DA and (b) SVC. The black dashed 

line represents the AUC value of 0.5 where no discrimination between classes can be made. 

4.3 Summary 

Based on the results presented in this chapter, the developed primary sequence-based 

descriptors from Chapter 3 work well for identifying more apparent structural differences such 

as the HC and LC isotypes through exploration techniques such as PCA. More advanced 

supervised methods had to be used, however, to successfully separate and classify the species 

origin of the used samples in order to reach higher accuracy. These exploration and 

classification results were not unexpected based on the evident differences in the primary 

sequence of the constant domains and the structural variation originating from humanisation of 

mAbs presented in Section 3.1.5 (see Figure 3.2). Instead, the descriptor sets applicability to 

these problems indicates that the developed descriptors reflect the underlying biological 

features and thus the development of more advanced predictive models can be attempted. The 

next logical step would be to try to develop models for prediction of mAb behaviour in more 

complex experimental environments where the structural correlation to the response might be 

more elusive.  



105 

The second important finding in this chapter is the characterisation of sources of structural 

variation correlated to mAb isotypes and species origins that greatly impact the descriptors. The 

described workflow in this chapter can therefore be used to determine sources of systematic 

variation that is present in the mAb structure. Characterisation of such variation becomes vital 

in model development as it can negatively impact model performance if the variation is 

unrelated to the response which is explored in the next chapter.  
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Chapter 5  

 

QSAR Model development: Primary sequence-based 

descriptors 

In Chapter 3, a novel workflow was presented for the generation of descriptor sets, capturing 

varying sequence resolutions, were developed from the primary sequences of mAbs. In this 

chapter the four primary sequence-based descriptor sets were investigated and applied in the 

prediction of HIC retention times and mAb yields. These were chosen as response vectors for 

model development due to being important parameters in pharmaceutical industries for the 

assessment of productivity and product stability, respectively. The structural variation related 

to the heavy and light chain isotypes as well as species origins present in the primary sequence-

based descriptor sets observed in Chapter 4 were further explored with regards to the chosen 

responses. A benchmarking scheme for sequential improvement and comparison of the models 

with regards to descriptor reduction and selection is also developed and presented in this 

chapter.  

5.1 Material and Methods 

5.1.1 Response Data 

In this research, the quantitative process data published by Jain et al. (2017) was used to develop 

predictive models (Jain et al., 2017). It is important to note that all constant domains in the 

heavy chain were expressed as IgG1 for the heavy chain with allele IGHG1*01. The original 

isotype of the light chain was retained in the explored samples where two alleles were used for 

expressing either kappa (IGKC*01) or lambda (IGLC1*01) conformation.  

The diversity of the of Jain dataset is illustrated in Figure 5.1 which shows the distribution of 

Kappa and Lambda mAbs (Figure 5.1a), the distribution of human, humanized and chimeric 
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mAbs (Figure 5.1a) as well as the distribution of mAbs in the different clinical phases: phase 

II, phase III and phase IV (approved) (Figure 5.1c). 

 

Figure 5.1. General summary of mAbs in the dataset from Jain et al. (2017) according to (a) the light chain 

isotypes, (b) species origins and (c) clinical phase distribution. 

Out of the 12 characterised biophysical properties available in the publication of Jain et al. 

(2017), the mAb yields from the HEK cell line cultivations and the HIC retention times were 

selected as model responses as discussed in Section 1.5. A brief description of the experimental 

setup for both responses is explained below according to the description provided by the 

authors. No triplicates were given for either for mAb yield or HIC retention times for the 137 

mAb. 

5.1.1.1 mAb expression and extraction 

The 137 mAbs were expressed in HEK293 cells under identical cultivation conditions. After 6 

d of growth, the cell culture supernatant was harvested by centrifugation and passed over 

Protein A agarose (MabSelect SuRe from GE Healthcare Life Sciences). The bound mAbs were 

then washed with PBS and eluted with buffer (200 mM acetic acid/50 mM NaCl, pH 3.5) into 

1/8 volume 2 M Hepes, pH 8.0. The final products were buffer-exchanged into 25 mM Hepes 

and 150 mM sodium chloride at pH 7.3.  

5.1.1.2 HIC 

5 μg of IgG samples (1 mg/mL) were mixed with a mobile phase A solution (1.8 M ammonium 

sulphate and 0.1 M sodium phosphate at pH 6.5) to achieve a final ammonium sulphate 

concentration of about 1 M before analysis. A Sepax Proteomix HIC butyl-NP5 column was 

used with a linear gradient of mobile phase A and mobile phase B solution (0.1 M sodium 

phosphate, pH 6.5) over 20 min at a flow rate of 1 mL/min with UV absorbance monitoring at 

280 nm. 
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5.1.1.3 Exclusion of samples 

Out of the 137 available mAbs in the data set, 6 mAbs were excluded based on one of the 

following reasons:  

1) Original mAb was not of IgG class e.g. IgM 

2) Original mAb was of a hybrid conformation e.g. IgG2/4 

3) Experimental data for mAb was not available 

This resulted in 131 mAbs being selected for further evaluation and are listed in Appendix A, 

Table A.3 with corresponding experimental measurements for HIC retention times and mAb 

yields. 

5.1.2 Descriptor Data Generation 

Structural descriptors for the 𝑿 block were generated based on the methodology presented in 

Chapter 3 where four unique descriptor sets were attained: Domain based (PSD1), Substructure 

based (PSD2), Single AA based (PSD3) and Running Sum based (PSD4) where PSD is short 

for “Primary sequence-based descriptors”. All sequences for the variable domains VH and VL 

were provided as supplementary information in the study from Jain et al (2017). Final heavy 

chain sequences for descriptor generation were prepared by attaching the allele sequence 

IGHG1*01 representing IgG1 isotype to the VH domains. The allele sequences IGLK1*01 and 

IGLC1*01 were used and attached to VL domains of kappa and lambda isotype, respectively. 

5.1.3 Modelling Methods 

5.1.3.1 PLS 

Partial Least Squares regression was performed using the NIPALS algorithm. The first 20 latent 

variables were calculated to allow for a majority of the data variation in 𝑿 and 𝒀 to be captured. 

A higher number of latent variables is usually not recommended as they commonly only 

improve fitting of individual samples, thus causing over-fitting (Wold et al., 2001). For more 

information on PLS, refer to Section 2.4.1. 

5.1.3.2 SVR 

Optimisation of the model parameters 𝐶 and 𝜖 was performed by using a grid search approach 

on defined points over specified ranges for each parameter (for details on parameters see 

Section 2.4.2). The grid points used for 𝐶 were [10-5, 10-4, 10-3, 10-2, 10-1, 100, 101, 102, 103, 

104] whereas the grid points used for 𝜖 were [10-3, 10-2.5, 10-2, 10-1.5, 10-1, 10-0.5, 100, 100.5, 101]. 

This resulted in 90 different parameter permutations that were evaluated in the cross validation. 
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5.1.4 Model Training and Validation 

5.1.4.1 Structured data splitting 

Prior to model development the data set was split into a calibration set and an external test set 

to represent future samples. The Kennard-Stone (CADEX) algorithm was used to divide the 

samples according to structural similarity in the form of Euclidean distance between samples 

in the descriptor space (see Section 2.5.1 for more details). 80% of the samples were retained 

for model calibration where the remaining 20% was kept for external testing and model 

validation. 

5.1.4.2 Cross-Validation scheme 

A repeated k-fold cross validation scheme was applied for model development where k was 

chosen to be five in order to get an 80/20 sample split ratio between training and validation 

samples, respectively. 20 iterations were performed to better utilise the data set and decrease 

potential impacts of outliers in the data on the cross validation. For more information, see 

Section 2.5.2. 

5.1.4.3 Model Validation 

All models were validated adhering to the OECD guidelines for 𝑅2 and 𝑄2 in QSAR/QSPR 

models (Veerasamy et al., 2011, Alexander et al., 2015). The guidelines state that 𝑅2 and 𝑄2  

should be greater than 0.5 and 0.6 in the cross-validation and external prediction, respectively. 

The thresholds for 𝑅2 and 𝑄2 in the OECD guidelines are intended to be used for early model 

development to explore potential correlation of factors and descriptors related to the modelled 

responses. Once characterised, additional descriptor development and adjustments can be 

performed to further improve model performance. For more information on 𝑅2 and 𝑄2, refer to 

Section 2.6.1. 

5.1.4.4 Y-Randomisation 

Y-randomisation was used to evaluate the presence of random correlation between a descriptor 

set and a randomised response vector. The response vector was randomised 50 times and an 

individual model was developed on each permutation. Calculated 𝑅2 and 𝑄2 values from the 

50 models were then averaged. If no chance correlation is present in the descriptor set both the 

averaged 𝑅2 and 𝑄2 values will be low. For more details on Y-randomisation, refer to Section 

2.6.3. 
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5.1.5 Descriptor reduction and selection 

The placement of the unsupervised V-WSP reduction algorithm in the model development 

pipeline needed to be considered in order to generate an unbiased test set, as discussed in 

Section 2.5.1. Two approaches were considered where the first scenario places the V-WSP 

reduction prior to the structured data splitting using CADEX illustrated in Figure 5.2a. This 

sequence however, introduces a bias due to collinearity reduction of descriptors with all 

available samples in the data set. This means, that even after splitting the data set into a 

calibration set (black box) and a test set (red box), the selection of the test set samples might 

have been affected by the descriptor reduction of all samples. The descriptor reduction is thus 

influenced by all samples and therefore becomes biased. Instead, the second scenario illustrated 

in Figure 5.2b has the V-WSP reduction placed after the data splitting which ensures that only 

selected calibration samples influence the descriptor reduction. This approach is thus unbiased 

as it keeps the external test set samples separate throughout the model development pipeline 

where descriptor reduction and selection were performed only on the calibration set. For these 

reasons, development of all models in this chapter was performed adhering to the workflow 

illustrated in Figure 5.2b. 
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Figure 5.2. Overview and placement consideration of the V-WSP algorithm in regards to the data splitting and the 

variable selection (VS). (a) Placement of V-WSP reduction prior to structured sample splitting results in a biased 

selection of descriptors due to influence from all samples. (b) Structured splitting performed before V-WSP 

reduction results in an unbiased selection of descriptors due to being independent from the test set samples. Vertical 

arrows represent selection of descriptors in the test set to match the calibration set.  

5.1.5.1 V-WSP 

The V-WSP algorithm was applied as an unsupervised reduction method to reduce the number 

of descriptors in the 𝑿 block by only keeping descriptors with low correlation between them 

(Ballabio et al., 2014). Procrustes goodness of fit was used as a metric to investigate how much 

of the information between the original and reduced data was retained after the variable 

reduction with the V-WSP algorithm (Peres-Neto and Jackson, 2001, Kendall, 1989). A 

Procrustes value of zero means that the information in the data sets is identical and a value of 

one means that the data sets a completely dissimilar. In the absence of any published acceptable 

correlation thresholds, the thresholds for each domain were selected by empirically testing all 

values from 0.5 to 0.99 with increments of 0.01. The correlation threshold was chosen based 

on guidelines from Ballabio et al. (2014) where the goal of the reduction is the elimination of 

redundant information and not the preservation of the data structure.  

To this end, the correlation thresholds were chosen on a case by case basis for each individual 

group of descriptors defined by the domains in PSD1 or the substructures in PSD2, PSD3 and 
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PSD4 therefore corresponding to inherent structural blocks in the mAbs. This was done in order 

to preserve vital information present in each individual structural block of the mAb structure 

and at the same time reduce the number of redundant descriptors. Reduction with V-WSP was 

performed prior to any supervised variable selection method used in this research according to 

Figure 5.2b. 

5.1.5.2 rPLS 

Supervised variable selection with rPLS was performed with PLS Toolbox 8.6.1 (Eigenvector 

Research Inc) together with MATLAB 2016a (Mathworks®). An initial PLS model was 

developed with selected descriptors from V-WSP reduction and the latent variable with the 

smallest RMSECV was selected as a starting point for the rPLS selection. For more information 

on rPLS, refer to Section 2.9.1. 

5.1.5.3 GA 

Supervised variable selection with Genetic Algorithm (GA) was performed using PLS Toolbox 

8.6.1 (Eigenvector Research Inc) together with MATLAB 2016a (Mathworks®) and PLS as 

the fitness function. A population size of 100 was used and the maximum number of generations 

was set to 100. The convergence for the GA algorithm was set to 50%. Default values for the 

mutation rate and the ratio of kept variables in the initial models was kept as 0.5% and 30%, 

respectively. For more information on the GA algorithm, refer to Section 2.9.2. 

5.1.5.4 LASSO 

Supervised variable selection with L1-norm regularisation (LASSO) with SVR was applied 

using the function fitrlinear in MATLAB 2016a (Mathworks®) where SVR was set as the 

learner and lasso set as the regularisation method. A grid search was performed similar to that 

of SVR method in Section 5.1.3.2 above in order to optimise the parameter selection. The 

fitrlinear function uses 𝜆 according to eq.(5.1) instead of 𝐶 as a regularisation term as 

previously described in Section 2.4.2.1. 

 

 min
𝒘,𝑏,𝝃,𝝃∗

𝜆‖𝒘‖1 +
1

𝑛
∑(ξ𝑖 + ξ𝑖

∗)2

𝑛

𝑖=1

 (5.1) 

 

The relationship between 𝐶 and 𝜆 is described in eq.(5.2) where 𝑛 is the number of samples 

(Rifkin, 2002). The relationship was used to convert the previously used 𝐶 values to that of 𝜆 

instead. 
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 𝐶 =
1

2𝜆𝑛
 (5.2) 

 

For more details on the LASSO method, refer to Section 2.9.3. 

5.1.6 Model Benchmarking 

In this research, descriptor reduction and selection were performed and evaluated in subsequent 

steps (Figure 5.3) in order to better investigate their impact on the model performance. For each 

descriptor set, the CADEX algorithm was applied to split the available samples into a 

calibration set for training (80%) and a test set for model validation (20%). Following the 

outline in Figure 5.3, an initial model was developed with all descriptors in the descriptor set 

of interest. A second model was then developed after V-WSP reduction had been performed on 

the descriptor set. A final model was then developed after variable selection with either rPLS, 

LASSO or GA had been performed on the V-WSP reduced descriptor set. The performance 

metrics of 𝑅2 and 𝑄2 of the cross-validation and the test set from each of the three model were 

then compared to evaluate the effect of the descriptor reduction and selection methods. This 

process was repeated for each of the four descriptor sets: PSD1, PSD2, PSD3 and PSD4 when 

using either PLS or SVR as modelling method. 

In total, 32 models were developed in order to compare the performance of different 

permutations of the presented methods. It is important to note that LASSO was only applied 

when SVR was used as modelling method whereas rPLS was only applied when PLS was used 

as modelling method. 
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Figure 5.3. Sequential model development and evaluation for investigation of changes in performance with 

descriptor reduction and selection methods. Three models are developed on 1) all available descriptors, 2) the V-

WSP reduced descriptor set and 3) the descriptor set after supervised variable selection (VS).  

5.1.7 Statistical testing 

In Chapter 4, strong correlations were observed between the individual chains and their 

corresponding isotypes based on exploratory analysis with PCA (see Section 4.2.2 for the heavy 

chain and Section 4.2.3 for the light chain). A strong correlation was also observed between the 

variable domains and the species origin when explored with PLS-DA and SVC (see Section 

4.2.5). Statistical models were therefore used to establish if any significant differences were 

present between groups (statistical factors) of responses. In this research the factors were 

defined as the heavy chain, the light chain and the species origin of the mAbs. The heavy chain 

factor consisted of three levels being: IgG1, IgG2 or IgG4. The light chain factor consisted of 

two levels being: kappa or lambda. Finally, the species factor consisted of three levels being: 

chimeric, human or humanised. Figure 5.4 illustrates a decision tree for choosing an appropriate 

test depending on the normality and the available number of levels in the investigated factor.  

Normality was tested using the Anderson-Darling test with a significance level of 0.05 

(Anderson and Darling, 1952). H0 is the hypothesis that the data is normally distributed whereas 

H1 is the alternative hypothesis that the data follows another distribution. 
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Figure 5.4. Decision tree for statistical testing of response data based on normality and number of available levels 

for the investigated factor. 

5.1.7.1 Parametric methods 

Two different parametric tests were used for data that conformed to a normal distribution where 

the number of available levels in the factor of interest determined which test to use. If two levels 

were available, a 2-sample t-test was used to test for any significant differences between the 

group means whereas if three levels were available, a 1-way Analysis of Variance (ANOVA) 

was used (Krzywinski and Altman, 2014a). 

5.1.7.2 Non-parametric methods 

Non-parametric tests were used if the data did not conform to a normal distribution. Similar to 

the parametric methods, the number of available levels in the factor of interest determined 

which statistical test would be performed. A Mann-Whitney rank test was performed for factors 

with two levels and a Kruskal-Wallis test was performed for factors with three levels 

(Krzywinski and Altman, 2014b).  

5.1.7.3 Multiple comparison 

Two statistical tests were performed for each individual response, one for testing the significant 

difference between the heavy chain isotypes and the other to test the significant differences 

between the light chain isotypes. However, performing multiple inferences on the same data set 

can cause Type I error (incorrectly rejecting H0). This is due to that fact that when the number 

of statistical tests increases, the probability of any one of them being significant increases. To 

adjust for this, the Bonferroni correction was used to modify the significance level according 

to eq.(5.3) which gives the effective significance level for which each test needs to be tested 

against (Sedgwick, 2014). 

 

 𝛼(𝑝𝑒𝑟 𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛) =
𝛼

𝑚
 (5.3) 
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where 𝛼 is the desired significance level, 𝑚 is the number of performed tests and  

𝛼(𝑝𝑒𝑟 𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛) is the effective significance level. 

5.2 Results and discussion 

5.2.1 Selection of samples for model development 

From Chapter 4 it was observed that much of the data variation in the descriptors had a strong 

relationship to the heavy chain and light chain isotypes according to the PCA score plots 

illustrated in Figure 4.2 and Figure 4.3, respectively. This variation is systematic and originates 

from the unique structure and amino acid composition found in the individual mAb isotypes 

illustrated in Figure 3.2 in Chapter 3. This is of importance as systematic variation in the 𝑿 

block that is unrelated to the responses can have a negative impact on the developed models 

and cause large prediction errors (Wold et al., 1998, Trygg and Wold, 2002). Therefore, prior 

to model development a statistical analysis was performed to test if a significant difference was 

present between response measurements related to different isotypes of the heavy and light 

chain. Due to the lack of samples in the IgG2-lambda and IgG4-lambda permutations (two 

samples in each group), two-factor hypothesis testing methods such as the parametric two-way 

ANOVA (Fisher, 1992) or its non-parametric equivalent, the Schreier-Ray-Hare test (Sokal and 

Rohlf, 1969) could not be reliably used. The unequal samples sizes can lead to a decrease in 

statistical power, meaning that it becomes increasingly difficult to correctly reject H0 and thus 

causing a Type II error (Rusticus and Lovato, 2014). Instead, multiple comparisons of single 

factors (heavy or light chain) were performed in order to increase the sample sizes in each factor 

level. Appropriate statistical tests were chosen according to the decision tree illustrated in 

Figure 5.4. 

Normality testing was performed for all mAb isotypes groups (kappa, lambda, IgG1, IgG2 and 

IgG4) for both the HIC retention times and the mAb yields with the results presented in Table 

5.1. For the HIC retention times data, normality could not be assumed for the IgG1 and IgG2 

isotypes in the heavy chain as well as the kappa isotype in the light chain due to 𝑝 <  0.05. 

Due to the lack of normality, non-parametric statistical methods were applied were a Kruskal-

Wallis test and a Mann-Whitney test were used for significance testing of the heavy chain 

isotypes and the light chain isotypes, respectively. For the mAb yield data, normality could be 

assumed in all isotypes and thus parametric statistical methods were applied in these instances. 

A one-way ANOVA and a two-Sample t-test were used for significance testing of the heavy 

chain isotypes and the light chain isotypes, respectively. 
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Table 5.1. Hypothesis testing of heavy and light chain isotypes using Anderson-Darling Normality Test with a 

significance level of 0.05. H0 is the hypothesis that the data follows a normal distribution. 

Factor 

(Chain) 

Level 

(Isotype) 
Samples 

HIC   Yield 

p Decision   p Decision 

LC 
kappa 119 0.0005 Reject H0  

0.4310 Keep H0 

lambda 12 0.1498 Keep H0  
0.0648 Keep H0 

HC 

IgG1 89 0.0005 Reject H0  
0.1709 Keep H0 

IgG2 20 0.0097 Reject H0  
0.8839 Keep H0 

IgG4 22 0.1990 Keep H0  
0.9414 Keep H0 

 

Results of the statistical tests are presented in Table 5.2. The effective significance level for 

each test was set to 0.025 according to the Bonferroni correction due to two multiple 

comparison being performed for each response. The analysis showed that the isotype had no 

significant impact on the measured responses for either the HIC retention times or the mAb 

yields. Due to these findings only IgG1-kappa samples were kept for model development due 

to being the most numerous in the present data set. In addition, this is also the predominantly 

preferred conformation of new mAbs in clinical trials according to the IMGT database search 

in Chapter 3. This resulted in 81 samples being selected from the 131 samples in the original 

data set.  

Table 5.2. Hypothesis testing of with a significance level of 0.025 according to the Bonferroni correction for 

multiple comparisons. H0 is the hypothesis that there is no significant difference between means of different 

isotypes. Non-parametric tests are referred to as NP and parametric test as P. 

Response 
Factor 

(Chain) 

Levels 

(Isotypes) 
Type Test 

Equal 

Variance 
p Decision 

HIC 
HC 3 NP Kruskal-Wallis - 0.1201 Keep H0 

LC 2 NP Mann-Whitney - 0.0721 Keep H0 

Yield 
HC 3 P 1-Way ANOVA Yes (p=0.2270) 0.8532 Keep H0 

LC 2 P 2-Sample T-test Yes (p=0.8052) 0.6326 Keep H0 

 

It is important to remember that the heavy chain constant domains in all mAbs in the study of 

Jain et al (2017) were expressed as IgG1, which introduces a bias in the statistical testing of the 

heavy chain isotypes. As for the light chain, as the original isotypes were kept mostly intact 

through expression with one allele for kappa and another for lambda, the impact of the light 

chain isotypes on the measurements becomes more representative. As the statistical testing 

above was performed through the partitioning of mAbs according to their original isotype, the 

lack of significance might not hold true if identical experiments were to be performed with 

unaltered mAbs. The selection of IgG1-kappa mAb samples in this case therefore ensures that 
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the measurements are more representative in terms of the original mAb structures due to less 

sequence alteration. 

In retrospect, even though the alteration of the original mAbs introduced a bias in the statistical 

testing of the heavy chain, it gives an alternative approach for investigation of potential 

variation when combined with exploratory analysis methods such as PCA, PLS-DA or SVC. 

This to better control the introduction of potential systematic variation in the 𝑿 block prior to 

use in model development in order to improve the prediction accuracy of the resulting models. 

This becomes more relevant in environments such as industrial or clinical settings where the 

original mAb structures are kept intact in order to infer information.  

5.2.2 Impact of species origin 

Multiple models were developed on the retained 81 IgG1-kappa samples according to the 

benchmarking scheme presented in Section 5.1.6 which resulted in unique 32 models. The 

model performance of each individual model is presented in Table C.4a and Table C.5a in 

Appendix C for the HIC retention times and mAb yields, respectively. As can be observed, 

models developed from the full descriptor set or the V-WSP reduced descriptor sets resulted in 

a poor fit in terms of the cross validation 𝑅2 (0.04 – 0.22) and 𝑄2 (-0.06 – 0.15) suggesting that 

the models were unable to capture the underlying correlation within the data. Adequate 

improvements were first seen after a variable selection step had been performed with the GA 

selection proving to be superior compared to that of rPLS and L1-SVR variable selection in 

both PLS and SVR generated models. A concern, however, is the poor 𝑅2 and 𝑄2 values of the 

external test set, which never reached satisfactory levels for models with adequate cross 

validation metrics. All developed models therefore failed the OECD criteria of having a 𝑅2 and 

𝑄2 >  0.5 in the cross validation as well as a 𝑅2 and 𝑄2 >  0.6 in the external test set. 

5.2.2.1 Behaviour of species origins in PLS models 

PLS was used as a diagnostic tool to further investigate the cause of the poor validation in the 

test set. It was observed that initial of models for HIC retention time prediction developed on 

the V-WSP reduced descriptor sets only had one component. From the error plots generated by 

PLS, it was observed that the lowest RMSE value was attained with one component which 

otherwise increased with higher model complexity for PSD1 (Figure 5.5a), PSD2 (Figure 5.5b), 

PSD3 (Figure 5.5c) and PSD4 (Figure 5.5d). The same trends in the error was also observed 

for PLS models developed for prediction of mAb yields and is presented in Figure C.5 in 

Appendix C.  
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Figure 5.5. PLS error for prediction of HIC retention times in the calibration (blue line) and the cross-validation 

(red line) with regards to the number of latent variables developed from the V-WSP reduced descriptor sets of (a) 

PSD1, (b) PSD2, (c) PSD3 and (d) PSD4.  

Further investigation was performed where a PLS models with two components were developed 

for each descriptor set in order to closer investigate the samples residuals and scores. This 

showed that the residuals and PLS scores were greatly affected by the species origin of the 

mAbs which is illustrated in Figure 5.6 for the HIC retention times. Models used in the Figure 

5.6 were developed after V-WSP reduction had been performed and they show the impact of 

the species origin for the individual descriptor sets. From the influence plots for PSD1 (Figure 

5.6a), PSD2 (Figure 5.6c), PSD3 (Figure 5.6e) and PSD4 (Figure 5.6g) it can be observed that 

the chimeric samples tend to have higher residual values compared to humanised and human 

samples. This becomes increasingly apparent with higher primary sequence resolution 

illustrated in PSD2 (Figure 5.6c), PSD3 (Figure 5.6e) and PSD4 (Figure 5.6g) where the 

chimeric samples are further removed from the humanised and human samples compared to 

PSD1 (Figure 5.6a). As discussed in Section 3.1.5, this variation originates from the species 

origin that was used to design the mAbs where mAbs originating from mouse will differ slightly 

in amino acid composition compared to human mAbs in the framework regions of the variable 

domains. The retained data variation from the descriptor sets used in the trained PLS models is 

also affected by the systematic variation caused by the different species origins. This is 
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illustrated as score plots for PSD1 (Figure 5.6b), PSD2 (Figure 5.6d), PSD3 (Figure 5.6f) and 

PSD4 (Figure 5.6h). The same trends in the residuals and PLS scores were also observed for 

PLS models developed for the prediction of the mAb yield measurements where the chimeric 

samples separated from the human and humanised samples which is presented in Figure C.6 in 

Appendix C. 

The PLS scores (𝑻) were used in this analysis as they provide better insight into the rotation of 

the Latent variables e.g. what is captured by the model with respect to the PLS loadings (𝑾∗) 

in the descriptor space according to the relationship 𝑻 =  𝑿𝑾∗ (Wold et al., 2001).The PLS 

algorithm tries to maximise the co-variance between 𝑿 and 𝒀 but can become confused if there 

is a systematic variation in 𝑿 unrelated to 𝒀 (Trygg and Wold, 2002). A separation of chimeric 

samples can be observed through groupings in the lower right quadrant which is most evident 

in PSD3 and PSD4 with the highest sequence resolution. This illustrates that the PLS model 

becomes influenced by the different species origins and tries to separate the samples 

accordingly. 
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Figure 5.6. Impact of species on PLS models developed using the HIC retention times as the modelled response 

where chimeric samples are coloured red, human samples in green and humanised in blue. PLS Influence plots for 

PSD1 (a), PSD2 (c), PSD3 (e) and PSD4 (g). PLS scores (T) for the individual samples for PSD1 (b), PSD2 (d), 

PSD3 (f) and PSD4 (h). 
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5.2.2.2 Significance of species origins 

As the variable domains were kept unaltered in the study of Jain et al (2017), additional 

significance testing according to the species origins was performed to investigate potential 

differences in the responses between chimeric, human and humanised samples. The study was 

performed in the same way as described previously in Section 5.2.1 and is therefore only 

covered briefly here. From the study, it was shown that no significant difference between the 

HIC retention time means of mAbs from various species origins was observed (Table C.2 in 

Appendix C) whereas a significant difference (𝑝 =  0.0093 <  0.0133) was observed between 

chimeric and humanised samples for the mAb yield measurements (Table C.3 in Appendix C). 

In Section 4.2.5 it was shown that classification of the chimeric, human and humanised samples 

was possible with PLS-DA and SVC due to systematic structural differences in the primary 

sequences of the VH and VL domains. Therefore, combined with the supporting evidence from 

the diagnostic PLS models in Section 5.2.2.1 and the statistical significance testing of the 

species origins, an additional sample selection was performed. For the development of models 

with the HIC retentions time measurements only the humanised samples were retained (𝑁 =

 45). For model development the mAb yield measurements, only chimeric and humanised 

samples were retained (𝑁 =  55). 

5.2.3 HIC model development on humanised samples 

The cross validation and test set validation for all developed models for the HIC retention time 

prediction is presented in Table C.4b in Appendix C. Models developed with PLS and SVR 

using the full and V-WSP reduced descriptor sets still show a poor fit in the Cross-validation 

with values around or below 0.3 and 0.2 for 𝑅2 and 𝑄2, respectively, for all descriptor sets. 

Adequate Cross-validation performance was first observed after variable selection where GA 

especially performed well with both PLS and SVR according to the OECD guidelines 

(Veerasamy et al., 2011, Alexander et al., 2015). The SVR models developed after variable 

selection with LASSO never attained good cross-validation performance in any of the data sets. 

A potential cause to this might be due to that the descriptor sets contains redundant descriptors 

with differing levels of collinearity toward response correlated descriptors. For the LASSO 

algorithm to work properly, only a small degree of collinearity can exist between redundant and 

response correlated descriptors in order for appropiate selection to be performed which is 

known as the “Irrepresentable Condition” (Meinshausen and Yu, 2009).  

Out of the four benchmarked descriptor sets, only the PLS and SVR models developed using 

PSD1 (Domain based) and PSD4 (Running sum) passed the OECD criteria for both cross 
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validation (𝑅2 and 𝑄2  >  0.5) and external testing (𝑅2 and 𝑄2  >  0.6). Due to similar model 

performance between the PLS and SVR, model selection was based on diagnostic capabilities 

where the PLS models are preferred due to easier evaluation of residuals and descriptor 

contribution towards 𝒀. PSD1 was selected as the preferred descriptor set due to two reasons:  

1. The interpretability of descriptors in PSD1 is higher due to most of them being 

physiochemical in nature. The PSD4 descriptor set in comparison consists entirely of 

descriptors generated from three amino acid scales (Z-scale, T-scale and MS-WHIM). 

Each descriptor represents a score generated from PCA on a set of physiochemical (Z-

scale), topological (T-scale) or electrostatic (MS-WHIM) properties and is thus a linear 

combination of larger descriptor sets (see Section 3.2.2 for more details).  

2. The PLS model developed on PSD1 had a lower model complexity compared to the 

PLS model developed on PSD4 based on the selection of Latent variables (LVs) from 

the cross validation. Three LVs were selected for the PLS model developed on PSD1 

compared to 12 LVs for the PLS model developed on PSD4. This makes interpretability 

of the contribution from the individual LVs more difficult in the case of PSD4 due to 

the fact that deflation of 𝑿 and 𝒀 occurs each time a LV is extracted in the PLS algorithm 

and models with lower complexity are preferred (Wold et al., 2001).  

From the original 272 descriptors present in the full PSD1 descriptor set, 51 were retained from 

the V-WSP reduction thus effectively reducing the number of descriptors by ~80%. Procrustes 

index was used to evaluate the loss of information when comparing the full and V-WSP reduced 

PSD1 descriptor sets. A value of 0.1434 was obtained, thus indicating that only a small portion 

of the information was lost in the reduction step (Ballabio et al., 2014). This can also be 

observed in Table C.4b in Appendix C for PSD1 where the of 𝑅2 and 𝑄2 values in the cross 

validation and the test set remained mostly unchanged after the reduction. Out of the 51 

remaining descriptors, GA selected a subset of 17 descriptors used to develop the final PLS 

model. Model predictions of the calibration and test set samples are shown in Figure 5.7a as a 

measured vs predicted plot. The test samples are further illustrated in Figure 5.7b as a bar plot 

for easier comparison of the measured and predicted values. The model performance is 

summarised in Table 5.3. The PLS regression coefficients for the selected descriptors are 

illustrated in Figure 5.8. 
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Figure 5.7. HIC retention time predictions of 45 IgG1-kappa humanised mAbs with PLS model (3 LVs) developed 

on the PSD1 descriptor set after reduction with V-WSP and selection with GA. (a) Measured versus predicted plot 

with calibration (grey) and test (red) samples. (b) Predicted and measured HIC retention times of test set samples.   

 

Figure 5.8. Regression coefficients of the PLS model (3 LVs) developed on the PSD1 descriptor set after reduction 

with V-WSP and selection with GA. 

Table 5.3. PLS model summary developed for HIC retention time prediction using the PSD1 descriptor set. Root 

Mean Square Error (RMSE), R2, Q2 and model bias are listed for Calibration, Cross validation, Test set and Y-

randomisation 

  PLS 

 
RMSE R2 Q2 Bias 

Calibration 0.47 0.84 0.84 0.00 

Cross Validation 0.67 0.63 0.62 0.01 

Test 0.51 0.78 0.69 -0.27 

Y-scrambled 

(Average) 
1.42 0.05 -0.63 0.01 

 

Many of the test set samples were slightly over predicted which resulted in a negative bias (-

0.27). The reason for this is not known but could be a slight indication of over-fitting of the 

calibration samples due to the difference in bias between the cross-validation and test set (Hastie 

et al., 2009a). 
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A general trend observed in the descriptors showed that residue groups consisting mainly of 

polar and charged residues such as AHR (common residues in alfa helix), NCR (negatively 

charged residues) UCR (uncharged residues), PLR (polar residues), and RTR (common 

residues in reverse turn/loops) had a negative contribution on the prediction, thus indicating 

that mAbs with a high number of polar residues tend to have lower retention times. This is 

illustrated by the negative coefficients values of the isoelectric point (Ip), charge (ECI), and 

hydrophobicity (HP) where lower values in these descriptors increases the predicted retention 

time. This is supported by literature where higher concentrations of salts are required to 

neutralise the protein polarity in order to expose hydrophobic patches that can bind to the HIC 

column (Gagnon, 1996a).  

The summed molecular weight of the residues in the UCR group in the VH chain had a positive 

contribution to the HIC retention time. The UCR group contains tyrosine which has the highest 

weight among all the group constituents and is also the only residue with a benzene ring, thus 

making it slightly hydrophobic. This indicates that with increasing number of tyrosine residues, 

the HIC retention time will increase. This is supported by the descriptor describing the 

theoretical number of water molecules surrounding a residue, W(U), for the UCR residues in 

the VH chain where more polar residues tended to have more surrounding water molecules 

compared to tyrosine. W(U) was also shown to have a strong negative correlation to the 

retention time in both the VH and VL chain for polar residues further indicating a correlation 

between hydrophobic residues and longer retention times, which is supported by literature 

(Kennedy, 1990). 

The polar area of residues (Ap) was also shown to be an important factor where larger areas 

contributed to lower retention times for RTR and PLR residues due to these groups containing 

mostly polar residues (see Table 3.3 in Section 3.2.1). The opposite was observed in the VL 

chain where the polar area of aliphatic residues (ALR) contributed to higher retention times. 

Glycine has the highest indexed polar area value in ProtDCal of all residues in the ALR group 

(see Table 3.3 in Section 3.2.1) which indicates that a higher number of glycine residues in the 

VL chain contributes to a higher retention time. Glycine and proline are known as unfolding 

residues which indicates that a higher number of glycine residues aids in decreasing the protein 

stability and thus increase binding in HIC due to exposure of the hydrophobic patches. This is 

supported by literature where glycine was shown to have a negative impact on alfa helix 

stability when introduced (Scott et al., 2007). This is further supported by the model where the 

molecular weight (Mw) of ALR residues in the VL chain has a negative correlation to the 

retention time indicating that other residues besides glycine contribute to lower retention times. 
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Also, a potential reason for the higher performance achieved with PSD1 compared to higher 

resolution datasets, such as PSD2 (substructure based) and PSD3 (single amino acid based), 

could be due to the introduction of more redundant descriptors in PSD2 and PSD3 which has 

been shown to negatively impact model performance and descriptor selection algorithms 

(Donoho, 2000, Fan and Lv, 2010). This is especially true for descriptors generated based on 

the amino acid composition of the sequence where each residue in the mAb structure equally 

impacts the resulting descriptors. Therefore, through generation of descriptors based on the 

individual domains, a reduction of the number of redundant descriptors present in the datasets 

can be achieved compared to descriptor generation for each substructure (PSD2) or each amino 

acid in the sequence (PSD3). 

Y-Randomisation (or Y-Scrambling) was used as a final validation step to evaluate the selection 

of the descriptors (Rücker et al., 2007). A PLS model was trained on a randomised (scrambled) 

HIC response vector while the sample order in the PSD1 descriptor set was kept unchanged. 

This was repeated 50 times and the average of 𝑅2 and 𝑄2 for the cross validation was calculated. 

A 𝑅2 value of 0.05 and a 𝑄2 value of -0.63 was obtained. This indicates that no chance 

correlation is present and that the selected descriptors are important to describe the relationship 

between the structure of the mAbs and HIC responses. Results are summarised in Table 5.3. 

In order to appropriately evaluate if a mAb can cause potential problems in processing, a 

threshold needs to be defined based on the mAb HIC retention times. In the research of Jain et 

al (2017) the authors defined an upper threshold for the HIC retention time as a confidence 

interval of 11.7 ± 0.6 minutes which was based on the retention times of 48 approved mAbs in 

their full data set of 137 mAbs. The remaining 89 mAbs in the data set are all pending in clinical 

phase II or phase III.  Thus, any mAbs with a predicted HIC retention time falling above the 

lower confidence limit (11.1 minutes) could be flagged due to potential risk of being 

problematic in process development while mAbs falling below can be considered well-behaved. 

When applying the threshold on the predictions from the PLS-GA model developed on the 

PSD1 descriptor set, eight mAbs were flagged due to above the lower confidence limit: 

atezolizumab, bevacizumab, certolizumab, enokizumab, obinutuzumab, otlertuzumab, 

ranibizumab and tildrakizumab. Five of these mAbs have been approved while three are still in 

clinical trials. However, this does not necessarily indicate that predictions falling inside or 

above the threshold confidence interval will definitely fail in process development as there are 

a number of factors involved that are not accounted for in this evaluation. However, historical 

data in this context from approved products can be used to develop predictive models that would 
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allow for risk evaluation in early process development and thereby reduce the load on the 

bioprocess pipeline.   

5.2.4 mAb yield model development on humanised samples 

The cross validation and test set validation for all developed models for the prediction of the 

mAb yields are presented in Figure C.5b in Appendix C. The developed models behaved 

similarly to the models for the prediction of the HIC retention times, where adequate 

performance in the cross validation was only achieved after variable selection had been 

performed. GA selection and rPLS achieved good performance for all descriptor sets while 

LASSO selection suffered due to collinearity between redundant and response-correlated 

descriptors explained in Section 2.9.3.   

Unfortunately, no model performed well on the external test set. PLS-GA model developed 

using PSD3 had a high 𝑅2 value of 0.69 but a 𝑄2 value of 0.35 in the test set thus indicating a 

high offset of the predictions compared to the measured values. The difference between 𝑅2 and 

𝑄2 is also greater than 0.3 thus failing the OECD criteria of |𝑅2 − 𝑄2| < 0.3 (Veerasamy et al., 

2011). PLS-GA model developed using PSD4 had similar 𝑅2 and 𝑄2 values of around 0.5 in 

the test set, but this is below the desired value of 0.6 according to the OECD guidelines. 

Predictions of PLS-GA model developed using PSD4 are illustrated in Figure 5.9a. It can be 

observed that all calibration samples fall directly on the parity line whereas the predictions of 

the test set samples have large differences between predicted and measured values as illustrated 

in Figure 5.9b. This is usually an indication of the model being overfitted where the model fits 

the random pattern in the noisy variables of the calibration data set (Lever et al., 2016). The 

model performance is summarised in Table 5.4. 
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Figure 5.9. mAb yield predictions of 55 IgG1-kappa humanised and chimeric mAbs with PLS model (3 LVs) 

developed on the PSD4 descriptor set after reduction with V-WSP and selection with GA. (a) Measured versus 

predicted plot with calibration (grey) and test (red) samples. (b) Prediction and measured HIC retention times of 

test set samples. 

Table 5.4. PLS-GA model summary developed for mAb yield prediction using the PSD4 descriptor set. Root Mean 

Square Error (RMSE), R2, Q2 and model bias are listed for Calibration, Cross validation and Test set. 

  PLS 

 
RMSE R2 Q2 Bias 

Calibration 1.51 1.00 1.00 0.00 

Cross Validation 15.58 0.95 0.94 -0.68 

Test 47.56 0.51 0.50 1.90 

 

Several factors might impact the model development. All mAbs were expressed recombinantly 

using mammalian expression vectors where the heavy and light chain were expressed from 

individual cassettes (Jain et al, 2017). It has been shown that excess expression of the LC chain 

compared to the expression of the HC chain facilitates higher cell productivity and mAb yield 

(Bayat et al., 2018, Bhoskar et al., 2013). However, due to the unique structure of the variable 

domains in the mAbs, differences in folding efficiency in the endoplasmic reticulum might 

prevent an excess expression of the LC chain (Braakman and Bulleid, 2011). This is especially 

important in the model development which assumes that all measured yields had identical 

experimental setup which probably does not hold true as the HC:LC expression ratios will be 

different between mAbs. The HC:LC ratio might therefore be an important measurement 

needed for the improved model performance and can be used either as an extra input in the 𝑿 

block along with the structural descriptors or, used as an additional dependent variable along 

with the mAb yields.  

Another potential cause for the poor performance in the test set might be the lack of necessary 

variation in the data. In the case of the 𝑿 block, by using the primary sequence to generate 

structural descriptors, no information can be gained regarding higher order structural 
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information such as secondary or tertiary structure and potential intra-protein interactions. More 

samples might also be needed to better represent the range of 𝒀 responses, but also to introduce 

more structural variation in the 𝑿 block. Noise and descriptor collinearity are also influencing 

factors in the model development where the descriptor selection methods can suffer and the 

wrong descriptors are thus selected (Fan and Lv, 2010). 

5.3 Summary 

The regulatory and quality assurance requirements for the process development of therapeutic 

mAbs are becoming more stringent to ensure high product specificity and clinical safety. This 

has in turn led to an increase in the number of experiments needed to characterise the design 

space of a process in order to investigate the impact of process parameters on the product 

quality. Today, platform approaches are becoming increasingly popular for process 

development of therapeutic mAbs which limits the number of operational units that needs to be 

characterised (Shukla et al., 2017). However, even with platform approaches the number of 

experiments needed for process characterisation is still cumbersome and costly. This is 

especially true in early process development where uncertainty is high with regards to the 

manufacturability of the mAb and where the effective processing routes might not be clear. 

Over recent years, the QSAR framework for in silico model development has become 

increasingly popular for end point predictions of aggregation (Obrezanova et al., 2015) as well 

as downstream applications (Robinson et al., 2017, Woo et al., 2015a). This makes the QSAR 

framework a potentially valuable tool that can aid risk assessment in early process development 

to better direct experimental designs and thus reduce costs (Karlberg et al., 2018). The use of 

in silico approaches allows for more informed estimates of the potential behaviour of an mAb 

in different unit operations of the process. This becomes possible by efficiently making use of 

historic process data from previously established mAb manufacturing processes and therefore 

constructing an expert system. 

In this Chapter the importance of exploring systematic variations as a source of noise in QSAR 

model development has been shown and should be considered as a critical step in the model 

development. A combination of PLS and statistical testing of the responses was performed to 

decrease the impact of systematic variation originating from the chain isotypes and species 

origin. This had a beneficial effect on the model performance in both the cross validation and 

external test set prediction after sample reduction with regards to the species origin. However, 

due to the alteration of the constant domains in the original mAb structures, no conclusive 

results could be drawn regarding the impact of systematic variation related to the heavy chain 

isotypes IgG2 and IgG4 and the light chain isotype lambda. The workflow presented in this 
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Chapter, however, provides a structured approach for selecting samples and reducing 

systematic variation that could negatively impact the model performance. In the work of 

Andersen and Bro (2010), the authors stated that removal of outliers is a vital step prior to 

variable selection due to the high sensitivity these methods have towards outliers. Thus, the 

removal of samples with systematic variation uncorrelated to the response greatly aids variable 

selection and reduces the risk of potential selection of uncorrelated variables. 

Further, an efficient benchmarking scheme is presented here to validate several modelling 

methods, descriptor sets and incremental descriptor reduction and selection. A model was 

successfully developed for predicting HIC retention times and conformed to the model 

validation scheme presented in the OECD guidelines for cross-validation (𝑅2 and 𝑄2  >  0.5) 

and the test set (𝑅2 and 𝑄2  >  0.5). Though not all variation has been explained by the model, 

the presented workflow is intended as an early model development step to evaluate useful 

descriptors and factors affecting model performance. Additional descriptor generation and 

modification might therefore help in improving model accuracy further. Based on the defined 

confidence interval of 11.7 ± 0.6 from Jain et al (2017), sample predictions can easier be 

assessed as potentially problematic if the prediction falls above the lower confidence limit (11.1 

minutes). This however does not indicate that they are certain to fail but that caution should be 

exercised and further studies are needed to characterise potential problems.   

Unfortunately, no satisfactory model could be developed for the prediction of mAb yields as 

indicated by the signs of overfitting evidenced by the poor test set results. A potential cause 

could be the simplicity of the descriptor generation based on the primary sequence which does 

not take into account higher ordered structure and stability. This is investigated further in 

Chapter 7, where 3D structure descriptors will be evaluated in model development. 
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Chapter 6  

 

3D Structure Descriptors 

In this chapter descriptor generation with regards to the protein structure and dynamics is 

assessed as an alternative to the primary sequence descriptors generated in Chapter 3. An 

overview of protein structure model development is presented and key aspects such as the 

linkage of cysteines to form disulphide bridges and structure evaluation are assessed. The 

generated protein structures were used as inputs to molecular dynamics simulations in order to 

relax the protein structure as well as to capture conformational dynamics of the mAbs. The 

theory and implementation of molecular dynamics has been assessed in detail in order to create 

a wide knowledge base to produce more realistic simulations of the mAb structures that were 

used in this research but as well for future applications. In addition, strategies for modification 

of protein charges with regards to the pH as well as addition of co-solvents to the simulation 

system has been proposed. 

The methodology for generating 3D structure descriptors follows the same approach as in 

Section 3.3 in order to generate descriptor set of different resolutions. Three resolutions were 

generated for the 3D structure descriptors based on the full chains, the individual domains and 

the substructures. ProtDCal was implemented to generate the 3D structure descriptors but were 

modified with the solvent accessible surface area of the superficial residues in order to represent 

the surface properties of the mAbs. 

6.1 Structure Generation 

In order to generate meaningful descriptors for model development, structures need to be 

available. Usually structure determination of proteins is performed by using either X-ray 

crystallography or Nuclear Magnetic Resonance (NMR) which both can give a very high 

atomistic resolution of the structure. Another method called Cryogenic-Electron Microscopy 

(Cryo-EM) has been making its impact within this area as well due to the many improvements 
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that has been made over the years to the method and the analytical software to refine the 

atomistic resolution (Carroni and Saibil, 2016, Merk et al., 2016). These methods are however 

very time consuming and expensive due to the specific requirements of the methods and are not 

always guaranteed to succeed (Krishnan and Rupp, 2012). Instead, the use of in silico methods 

provides an alternative to estimate the protein structure and has therefore become popular in 

structure determination.  

6.1.1 Background on in silico methods 

In silico structure prediction can roughly be divided into two schools:  

1. Ab initio methods where the secondary and tertiary structure is predicted directly from 

the primary sequence 

2. Comparative or homology modelling where templates of existing structures are used to 

predict the structure of proteins of interest.  

Due to the high complexity in protein folding, pure ab initio methods do exist today but have 

low accuracy and are limited to smaller proteins (< 120 residues). Extremely high 

computational resources are also required in order to predict the protein folding with ab initio 

methods (Lee et al., 2017). More recently, a new method based on deep learning called 

AlphaFold has shown promising results and predicts likely distances between residues as well 

as potential angles between chemical bonds (Evans et al., 2018).  

Instead, homology modelling has been shown to offer good prediction accuracy when protein 

templates exist and can be used. The high structural accuracy in homology modelling is based 

on the principle that high primary sequences similarity results in high tertiary structure 

similarity  (Venclovas, 2011). 

6.2 Homology Modelling 

The approach for predicting structures in homology modelling can be broken down into five 

individual steps (Marti-Renom et al., 2000):  

1. Identification of evolutionary related proteins to a target protein that can be used as 

templates (also known as homologs). 

2. Alignment of the target protein sequence to the template. 

3. Model building of target protein structure based on available structural information in 

the template. 

4. Error estimation of target model structure. 

5. Scoring of models for comparison 
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Step one and two can usually be done in parallel where many different techniques exist to find 

templates. Depending on the sequence identity that can be achieved between the target protein 

and template however, alternative approaches need to be considered. When the sequence 

identity is greater than 40% which is also known as the daylight zone (Rost, 1999), the search 

and selection of templates can be performed using pairwise sequence alignment tools  such as 

Basic Local Alignment Search Tool (BLAST) (Johnson et al., 2008) or FASTA (Pearson, 1998) 

from the National Centre for Biotechnology Information (NCBI). At lower sequence identity 

(25-40%, also known as the twilight zone), methods such as position-specific iterated BLAST 

(PSI-BLAST) (Altschul et al., 1997) or Hidden Markov Models (HMMs) (Eddy, 1998) can be 

used instead for more sensitive searches to find homologs.  

Different approaches exist to build the target model from the templates in step three. Commonly 

used approaches are modelling by assembly of rigid bodies (Sutcliffe et al., 1987), modelling 

by segment matching or coordinate reconstruction (Levitt, 1992) and modelling by satisfaction 

of spatial restraints (Sali, 1995).  

An initial error estimation of the produced model can usually be carried out by inspecting the 

differences between the target protein sequence and that of the template. It is commonly known 

that when the similarities in the alignment between the template and the target protein decrease, 

the errors in the model will increase in turn. These errors originate from five sources (Fiser, 

2010) related to: 

1. Side-chain packing 

2. Structural prediction of regions in the target protein that has shifted but otherwise 

correctly aligned with the template structure 

3. Structural prediction of regions in the target protein that does not have an alignment 

4. Structural prediction of regions in the target protein that are misaligned in the template 

structure 

5. Structural prediction of target protein with wrong templates 

As mentioned, the error is highly dependent on the sequence identity of the target protein and 

the template. If the sequence similarity is greater than 40%, approximately 75-90% of the 

predicted model structure will overlap, with an offset error of the peptide chain atoms of roughly 

1 Å from their true positions. If sequence similarity goes lies in between 30-40%, the structure 

overlap decreases in turn and drops to 50-75% with an offset of 3 Å in the peptide chain atoms 

(Sanchez and Sali, 1998). This therefore shows the importance of appropriate selection of good 

templates to be used in homology modelling. It has also been shown that the model accuracy 
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increases by using multiple templates to estimate the target protein structure (Fernandez-

Fuentes et al., 2007). 

Table 6.1 lists some of the most commonly used software for model generation for mAbs. This 

list is by no means exhaustive of all the different web services and stand-alone software used 

for homology modelling.  

Table 6.1. Commonly used homology modelling software for structure prediction of mAbs.  

Software Description Reference 

Web Antibody Modelling 

(WAM) 

Canonical modelling of CDR loops L1-3 and H1-

2 and template search for H3. CDRs are grafted 

onto template frameworks 

(Whitelegg and Rees, 

2000) 

Prediction of ImmunoGlobulin 

Structure (PIGS) 

Canonical modelling of all CDR loops and 

grafted onto template frameworks. 

(Marcatili et al., 

2014) 

Rosetta Antibody Grafts selected CDR templates onto template 

framework regions and energy optimises all 

residues in model. Further refinement of resulting 

model is performed using Monte Carlo 

minimisation. 

(Sircar et al., 2009) 

Molecular Operating 

Environment (MOE)  

Antibody Modeller 

Grafts selected CDR templates onto framework 

templates. Energy minimisation with AMBER99 

forcefields is performed to relax structure and 

resolve steric clashes in grafted regions. 

(Almagro et al., 

2011) 

Modeller One or more templates used to represent the full 

structure. Imposes conformational and sterically 

restraints in the target model according to the 

templates.  

(Webb and Sali, 

2014) 

 

All software packages in Table 6.1, except Modeller, are specialised model generation for mAbs 

and perform a separate template search for the individual framework regions and CDRs. Both 

WAM and PIGS are very similar in execution when generating a target model as both methods 

use canonical structure prediction of the CDR loops. This means that the CDR loops can only 

assume a limited number of conformations based on the length of the loop and on the identity 

of specific residues at key positions (Chothia and Lesk, 1987). The PIGS web service is, 

however, more preferable as its reference database and canonical structure definitions are 

frequently updated (Marcatili et al., 2014). Compared to the canonical approaches, Rosetta 

Antibody focuses on resolving steric clashes in the target model that arises from the grafting of 

the CDR loops onto the framework regions as well as residue overlap caused by the use  

different templates (Sivasubramanian et al., 2009). The MOE Antibody Modeller is similar to 

that of Rosetta Antibody, but does not perform such an extensive refinement and focuses mostly 

on the regions where the CDRs were grafted onto the framework regions.  
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Research published in Almagro et al. (2011) benchmarked four antibody structure prediction 

tools where PIGS, Rosetta Antibody and MOE Antibody Modeller were included and tested on 

nine Fv antibody structures (VH and VL). The authors showed that accurate predictions could be 

generated for most of the structure except for the H3 loop, which was distinctly different 

compared to the experimental structures. It was also shown that Rosetta Antibody produced 

models with fewer steric clashes compared to PIGS and MOE Antibody Modeller. 

In this research, Modeller (version 9.20) was selected to generate structures for the mAbs due 

to the in-house expertise available in the School of Natural and Environmental Sciences at 

Newcastle University. Modeller can also be locally installed and prediction of structures can be 

performed without connecting to the web server. This is usually desirable for Contract 

Manufacturing Organisations (CMOs) that deal with third party sequences and therefore face 

restrictions in the use of web services. Though the use of PIGS and Rosetta Antibody may have 

been preferred for better accuracy in the structures of the CDR loops, these methods were 

excluded due to being web services. However, further molecular dynamics simulations were 

performed of the generated structures to minimise the structure energy and resolved steric and 

conformational clashes (see Section 6.4). 

6.2.1 Antibody Template Selection 

To simplify the structure generation, it was decided to only model the Fab regions (VH, CH1, 

VL and CL domains) of the mAbs due to two reasons: 

1. The mAb data sets used in this research were modified and expressed with selected 

allotypes (see Section 5.1.1). The heavy chain was expressed as IgG1 with allotype 

IGHG1*01 whereas in the light chain the allotypes IGKC*01 and IGLC2*01 were used, 

respectively, for kappa and lambda chains (Jain et al., 2017). Thus, except for the 

sequence variability originating from the CL, the main source of variability originated 

from the variable domains VH and VL. 

2. Structure preparation of full-length mAbs is much more complex due to consisting of 

four individual chains and two glycans attached in the Fc region. Information about the 

glycan profiles is also extremely limited. 

The template search was performed using BLAST where homologs with high sequence identity 

and existing structures in the Protein Data Bank (PDB) (Berman et al., 2000) were identified. 

Individual searches of the heavy and light chain of the Fab fragments always yielded template 

candidates with more than 80% sequence identity. Based on this, it was decided to select a 

single template for each isotype permutation of the Fab fragments for simplicity and due to 
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further simulations to be performed. Quality assessment of the templates was based on their R-

factor value which is a measurement of similarity between the crystal structure and 

experimental X-ray diffraction data. A value of zero indicates a perfect fit while a value of 0.6 

or higher is obtained if a random structure is used. For larger proteins such as mAbs, values 

around 0.2 or below are a good indication of well-defined structures (International Union of 

Crystallography, 2017). The resulting templates are displayed in Table 6.2 where 2FGW and 

7FAB were the only structures used in this research due to the mAbs being expressed as IgG1. 

The sequence identity listed as SeqID remained high with greater than 70% identity when 

aligned with the mAbs in the data sets. 5SX4 and 5DK3 are listed as potential candidates, 

respectively, for IgG2 and IgG4. 

Table 6.2. List of templates PDB structures to be used as templates for different isotype permutations.  

PDB HC LC Resolution R-factor Modifications SeqID 

2FGW IgG1 kappa 3 Å 0.176 Loop refinement 

(H3: 101-108) 

>70% 

7FAB IgG1 lambda 2 Å 0.169 None >70% 

5SX4 IgG2 kappa 2.8 Å 0.223 Ligand and 

solutes removed 

- 

5DK3 IgG4 kappa 2.28  0.184 Solutes, Fc and one of Fab 

region removed 

- 

 

6.2.2 Pairwise Cysteine Distance Restraints 

Five naturally occurring disulphide bonds will always be present in the Fab region of the mAb 

with two in the light chain, two in the heavy chain and one interchain bridge between the heavy 

and light chains. MODELLER by default will not restrain the distances between cysteines 

involved in disulphide bridges and can be observed in Figure 6.1a where distance between the 

sulphur atoms are more than 15 Å. By adding individual restraint for pairwise cysteines in the 

homology model the positions of the sulphur atoms can be adjusted to form the disulphide 

bonds as sown in Figure 6.1b. Figures were generated in UCSF Chimera (version 1.13) 

(Pettersen et al., 2004). 
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Figure 6.1. Distance restraint of cysteines in adalimumab generated. Structure coloured as orange depicts the light 

chain and structure coloured as blue depicts the heavy chain (a) Homology model without added distance restraints 

to the interchain cysteines. (b) Homology model with restraint between the interchain cysteines.  

6.2.3 Model Assessment 

Due to the difference in the amino acid composition and the length between the template and 

the mAb sequences used in this research, direct comparison with root mean square deviation 

(RMSD) of atom positions is not possible. Instead initial model assessment was performed with 

the inherent metric Discrete Optimised Protein Energy (DOPE) in Modeller (Shen and Sali, 

2006) which is used to assess the energy of a structure or the residues in a structure. It is often 

used to select a model or structure from several predictions where a lower DOPE value relates 

to a more stable structure. 

Figure 6.2 illustrates the normalised DOPE profiles for the template 2FGW (green line) and 

adalimumab (orange line) for the heavy and light chain. As can be observed, the DOPE profiles 

of the template and predicted structure overlap in most regions. The largest differences between 

the template and predicted model can be observed in the regions containing the CDR loops (H1, 

H2, H3 and L3) which have the highest deviation from template and thus are structurally 

different. This is, however, expected due to differing amino acid compositions in the CDR 

regions between adalimumab and the template. To date, accurate prediction of the CDR loops 

with homology modelling is still very difficult, especially in the case of the H3 loop which has 

the highest degree of varying amino acid composition and length when compared between 

mAbs (Almagro et al., 2011). In comparison, the structure of the constant domains CL and CH1 

overlaps in Figure 6.2a and Figure 6.2b, respectively, due to a higher sequence identity between 

the template and protein target. The trends observed between the generated structure of 

adalimumab and the templates were also broadly observed in all generated mAb structures in 

this research. 
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Figure 6.2. DOPE score for generated model (orange line) and template (green line) for the light chain (a) and 

heavy chain (b) for the aligned residues. Positions of CDR loops regions are marked by name and arrows in both 

the heavy and light chain. 

6.2.4 Structure considerations 

It is possible to use the generated homology structures of the mAbs to generate structural 

descriptors. However, four key considerations of the generated structured needed to be 

addressed before doing so: 

1. Origin of the templates 

2. The structure is biased towards the template 

3. The structure is not completely relaxed 

4. Residue states in the structure might not be accurately represented 

The first point involves faults or assumptions that are present in the acquired experimental 

structures which might not necessarily represent reality. In the case of X-ray crystallography, 

the mAbs are never naturally packed in close proximity to each other in a physiological 

environment. The close proximity as a result of the crystallisation might introduce structural 

artefacts in the generated 3D structures and therefore may not be completely accurate. In the 

case of NMR, the structures are determined in a dynamic system where the proteins have less 

self-interaction. However, the acquired 3D structures will be heavily biased towards the 

environment in which the structure determination was performed e.g. pH, temperature, molality 

etc.  

Point two and three originate from structure generation in Modeller which estimates the target 

protein structure based on the used template. Compared to specialised software, such as Rosetta 

Antibody and PIGS which use unique templates for individual framework regions and CDR 
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loops in the mAbs, Modeller was used to predict the mAb structure with a single template. This 

constrains the structure towards the used template and might not necessarily represent the true 

structure, especially of the CDR loops. It can also cause the structure to not be in a non-relaxed 

state, especially in regions where a difference in length exists between the target protein and 

template. Caution thus needs to be exercised as these differences might have an impact on the 

generated descriptors if the homology model if used directly for descriptor generation. 

The fourth point relates to the impact of the environmental factors that can change structural 

conformation and dynamics of the mAbs. In mAb manufacturing, drastic changes in the 

environment are common in many operational units in the downstream process. The pH and 

molality are common process factors that are changed to enhance binding and elution of mAbs 

in different chromatographic columns that can drastically impact the conformation of the 

protein structure. 

6.3 Protein dynamics 

Proteins have since long ago been described as being static structures with a specific function. 

The reality however is that proteins are dynamic in nature with small structural fluctuations 

over time. This is highly related to the folding energy landscape of a protein, where at a stable 

conformation, many structurally similar states exist separated by small thermodynamic free 

energy barriers (Bryngelson et al., 1995). Figure 6.3a illustrates a simplified example of the 

energy landscape of a protein. As can be observed, fluctuations between the different states 

depends heavily on the magnitude of the free energy barrier where transitions to similar state 

are more frequent due to a smaller energy barrier (𝛥𝐺𝐿𝑜𝑐𝑎𝑙) whereas larger conformational 

changes require more energy (𝛥𝐺𝐺𝑙𝑜𝑏𝑎𝑙). The magnitude of time is also an important factor that 

needs to be considered where transition between larger conformational states takes longer due 

to the cumulative kinetic energy required to overcome the large energy barriers. Figure 6.3b 

illustrates changes in structural states related to the different timescale and was adapted from 

the work of Henzler-Wildman and Kern (2007) as well as the work of Adcock and McCammon 

(2006). It can be observed that smaller changes, such as bond vibrations and methyl rotations, 

occurs at shorter timescales whereas rotation of larger solvent accessible side-chains and loop 

motions lies on a timescale of nanoseconds due to larger energy differences in the barriers. 

Changes in environmental factors, such as temperature, pH and molality to name a few, are also 

important to consider, as they will inevitably result in a change of the energy landscape of the 

protein which is illustrated as a shift from its original conformation (green line) to that new 

conformation (orange line) in Figure 6.3a. This can also have an effect on the protein function 
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that is active in the original environment and inactive in the changed environment due to 

conformational change. 

 

 

Figure 6.3. Potential dynamics of a protein. (a) A simplified energy landscape for an arbitrary protein. 

Environmental changes can drastically change the landscape as shown in the shift from the green line to the orange 

line with a different conformation occupying the energy minima. (b) The time scale needed to observe local as 

well as global conformational changes in a protein (adapted from Henzler-Wildman and Kern (2007) and Adcock 

and McCammon (2006)). 

6.3.1 Describing the system dynamics 

Accurate insight into the protein dynamics can today be gained through the use of 

computational simulations. The complexity of the simulations can usually be divided into four 

levels of resolutions to observe a system where a short description on each has been given 

below. 

Quantum mechanics  

The atom nuclei and electrons of a system can be described by solving the time-dependent 

Schrödinger equation (TDSE) for a single particle.  

 

 
Ĥ𝜓(𝒓, 𝑡) = {−

ħ2

2𝑚
∇2 + 𝑉}𝜓(𝒓, 𝑡) = 𝑖ħ

𝜕𝜓(𝒓, 𝑡)

𝑑𝑡
 (6.1) 

   

 
𝑤ℎ𝑒𝑟𝑒 ∇2 = (

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
)  
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where Ĥ is the Hamiltonian operator which corresponds to the total energy of the system, ψ the 

wave function, 𝒓 the position vector of the particle (𝒓 = 𝑥𝒊 + 𝑦𝒋 + 𝑧𝒌), 𝑡 the time, ħ the reduced 

Planck constant, m the mass of the particle, 𝑉 the potential energy and 𝑖 the imaginary number. 

However, the TDSE is not practical for describing structure dynamics due to being 

computationally intensive and it is more commonly applied for studies of faster phenomena 

such a light emission absorption and emission. Instead, the time-independent form is more 

commonly used to describe structure dynamics according to: 

 

 
{−

ħ2

2𝑚
∇2 + 𝑉}𝜓(𝒓) = 𝐸𝜓(𝒓) (6.2) 

 

The quantum mechanics (QM) simulations provide highly detailed information about the 

dynamics of the system but are also able to incorporate chemical reactions due to the 

approximations of the electron orbitals. However, only smaller systems with a few atoms can 

be simulated with QM due to the high complexity and computationally cumbersome 

calculations (Leach, 2001d). 

Classical/Molecular mechanics 

Simulate the atomistic positions and movement in space by solving Newtons equations of 

motion for individual particles in the system: 

 

 
𝑭𝑖 = 𝑚𝑖𝒂𝑖 = 𝑚𝑖

𝑑2𝒓𝑖

𝑑𝑡2
 (6.3) 

 

where 𝑭 is the force, 𝑚 the mass of the atom, and 𝒂 the acceleration of the particle. The 

atomistic interactions are approximated by using empirical force fields that describe the 

potential energies of the system (see Section 6.4.1). This allows for longer simulation times up 

to the scale of microseconds and even milliseconds when coarse-grained force fields are used. 

A drawback with molecular mechanics (MM) is its inability to break or create covalent bonds 

(Adcock and McCammon, 2006). Molecular mechanics simulations are also referred to as 

Molecular Dynamics (MD). 

Hybrid QM/MM 

Can be used to simulate systems that are too computational expensive for standard QM but 

where chemical reactions are important such as enzymatic reactions. The protein structure or 

system is divided into two parts where a smaller part is simulated with QM which encloses the 
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structure responsible for the chemical reaction whereas the larger part is simulated with MM 

(Liu et al., 2001). 

Monte Carlo 

Instead of using a deterministic system such as MD which is reliant on a time component, 

Markov Chain Monte Carlo (MCMC) is a statistical approach that samples the conformation 

space by randomly moving the system atoms. This means that the atom movement in a MCMC 

simulation is only dependent on its immediate predecessor and therefore no temporal 

relationship exists between the trials (Leach, 2001e). A drawback with MCMC is that the 

simulation can become computationally expensive with increased number of atoms in the 

systems due to the exponential increase in degrees of freedoms in the system if not properly 

restrained.  

Selection of simulation resolution 

Information gained through computational molecular simulations can answer many questions 

regarding the protein dynamics due to the high level of detail captured. Most commonly used 

are the MD simulations which allows for longer simulation times and the ability to follow 

conformational events due to being deterministic. In this research, the focus has been placed on 

MD simulations due to being faster and that chemical reactions are not required for the 

descriptor generation. 

6.4 Molecular Dynamics 

Many advancements have been made over the years to MD simulations such as theoretical 

improvements with new empirical force fields as well as practical improvements of simulation 

speed and increase the system size (Rauscher et al., 2015). One such advancement is the 

incorporation of Graphical Processing Units (GPUs). State-of-the art graphics cards contains 

thousands of cores which can be used to divide the molecular system into smaller parts which 

can be run in parallel. This shifts the workload from the Central Processing Unit (CPU) to the 

GPU which calculates the forces on the atoms whereas the CPU is free to allocate data and 

combine the results of the smaller parts (Loukatou et al., 2014).  

Improvements in simulation time can also be gained through simplification of the system with 

a so-called coarse-grained approach. Instead of representing all atoms in the system (referred 

to as all-atom or atomistic), a coarse-grained simulation may represent each amino acid side-

chain as a single cluster with their corresponding force fields. This drastically reduces the 

degrees of freedom in the system (see Section 7.2.2.1) which in turn decreases the necessary 
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number of calculations that needs to be performed (Kmiecik et al., 2016). One of the most 

commonly used coarse-grained force fields is MARTINI which has been shown to achieve 

simulation results close to that of atomistic simulations (May et al., 2013). Figure 6.4 illustrates 

the applicability domains of atomistic and coarse-grained models with regards to the system 

size and simulation time (adapted from Kmiecik et al (2016)).  

 

 

Figure 6.4. The relationship between the system size and possible simulation times for QM, atomistic and coarse-

grained simulations. Loss of information is inevitable when moving to simplified estimation of the system such as 

atomistic and coarse-grained representation which are illustrated by the green and orange graphs, respectively 

(adapted from Kmiecik et al. (2016)). 

As shown, larger systems and longer simulation times become possible when moving from 

more computationally intensive QM calculations towards system approximations with MM 

calculations. With further decrease in degree of freedoms in a system resulting from the move 

from an atomistic to a coarse-grained setup, the system size and simulation times can be 

increased even further. However, caution needs to be exercised as a system simplification step 

inevitably leads to a loss of information of protein dynamics which will no longer be captured 

in the simulations. This can easily be visualised when comparing the energy landscapes of an 

atomistic model to those of a coarse-grained model represented as the green and orange energy 

graphs in Figure 6.4, respectively. In the atomistic model, the rotations of the side chains and 

bond vibrations will more or less be intact resulting in many local conformational minima in 

the energy landscape. In a coarse-grained model however, side-chains are treated as a single 

cluster and therefore lack many of the local motions. The energy landscape of a coarse-grained 

will therefore be smoother but will follow the general trend of an atomistic model. Therefore, 

it is advised to choose the simulation resolution based on the area of investigation where an 

atomistic model is recommended to capture local motions and a coarse-grained model 

recommended to capture global motions. 
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A popular approach to increase the resolution is to use multiscale modelling where major events 

are first captured with a coarse-grained model. Events of interest can be further modelled by 

reconstructing the coarse-grained model to atomistic resolution at specified time points (Heath 

et al., 2007). This allows for more detailed information about the system to be captured and 

avoids the need of performing longer atomistic simulations in the beginning. 

A list of commonly used MD software packages is presented in Table 6.3. For the purpose of 

this research, GROMACS (version 5.1.4) was selected due to the in-house expertise available 

at Newcastle University. In addition, GROMACS is able to incorporate the MARTINI force 

field used for coarse-grained modelling. This is of added benefit due to the increasing popularity 

of MARTINI and the many advancements made to the force field which have increased the 

model accuracy to almost rival that of atomistic (Marrink and Tieleman, 2013). 

Table 6.3. Non-exhaustive list of popular MD simulation software. 

Software Atomistic Coarse-

Grained 

GPU 

support 

OS Availability Reference 

AMBER YES NO YES Window, 

Linux 

Commercial (Salomon‐Ferrer 

et al., 2013) 

CHARMM YES NO YES Linux Commercial (1) (Brooks et al., 

2009) 

GROMACS YES YES (2) YES Linux Free (Van Der Spoel 

et al., 2005) 

MOE YES NO YES Windows, 

Linux 

Commercial (MOE, 2018) 

NAMD YES YES (2) YES Windows, 

Linux 

Free (Phillips et al., 

2005) 

(1) A reduced version of CHARMM can be acquired for free. 
(2) Uses the MARTINI force fields 

 

6.4.1 Force Fields 

In order to calculate the forces acting in a system, the potential energy, 𝑈(𝒓𝑁), for each atom 

needs to be defined where 𝒓𝑁 = (𝒓1, 𝒓2, … , 𝒓𝑁) are the Cartesian coordinates for the N atoms 

in the system. The molecular interactions can be approximated with mathematical expressions 

to represent different interactions of the system. An equation for approximation of the total 

potential energy in a system can be written as (Leach, 2001b): 

 

 𝑈(𝒓𝑁) = 𝑈𝑏𝑜𝑛𝑑𝑠 + 𝑈𝑎𝑛𝑔𝑙𝑒𝑠 + 𝑈𝑡𝑜𝑟𝑠𝑖𝑜𝑛𝑠 + 𝑈𝑐𝑜𝑙𝑢𝑚𝑏 + 𝑈𝑣𝑑𝑤 (6.4) 
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As shown, the interactions can be divided into two categories of bonded (green solid lines) and 

non-bonded (red and black dashed lines) interactions shown in Figure 6.5a and Figure 6.5b, 

respectively.  

 

 

Figure 6.5. (a) The bonded interactions originating from bond stretching, angle bending and bond torsion 

(rotation). (b) The non-bonded interactions originating from electrostatic and van der Waals potentials (adapted 

from Allen (2004) and Leach (2001b)). 

The bonded interactions represent the potential energies originating from the covalent bonds 

and steric conformation of the structure in the form of bond stretching, angle bending and 

torsion from bond rotations. Resulting potential energies from the bonded interactions are 

shown in Figure 6.6 and were adapted from the GROMACS manual 5.1.4 (Abraham et al., 

2016). 

The potential from the bond stretching between two atoms is approximated using Hooke’s law 

for harmonic potentials (see Figure 6.6a) to define the potential well: 

 

 
𝑈𝑏𝑜𝑛𝑑𝑠(𝑟𝑖𝑗) =

1

2
𝑘𝑖𝑗

𝑏 (𝑟𝑖𝑗 − 𝑟𝑒𝑞)
2 (6.5) 

   

 where 𝑟𝑖𝑗 = |𝒓𝑖𝑗| and 𝒓𝑖𝑗 = 𝒓𝑖 − 𝒓𝑗  

 

which in turn takes on the following expression for the force: 

 

 𝑭𝑏𝑜𝑛𝑑𝑠
𝑖 (𝒓𝑖𝑗) = −𝑘𝑖𝑗

𝑏 (𝑟𝑖𝑗 − 𝑟𝑒𝑞)
𝒓𝑖𝑗

𝑟𝑖𝑗
 (6.6) 
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The constant 𝑘𝑖𝑗
𝑏  is the spring constant where a higher value prevents greater bond stretching. 

The variable 𝒓𝑖𝑗 is the bond vector between two atom positions with the magnitude or bond 

length 𝑟𝑖𝑗. The constant 𝑟𝑒𝑞 is usually referred to the natural bond length where the potential 

energy is at its lowest.  

The potential energy from angle bending (see Figure 6.6b) is also frequently described using 

Hooke’s law but uses the angle between two bonds instead of the bond length: 

 

 
𝑈𝑎𝑛𝑔𝑙𝑒𝑠(𝜃𝑖𝑗𝑘) =

1

2
𝑘𝑖𝑗𝑘

𝜃 (𝜃𝑖𝑗𝑘 − 𝜃𝑒𝑞)
2 (6.7) 

 

The potential energy of the angle bending takes on the following expression for the force: 

 

 
𝑭𝑎𝑛𝑔𝑙𝑒𝑠

𝑖 (𝜃𝑖𝑗𝑘) = −
𝑑𝑈𝑎𝑛𝑔𝑙𝑒𝑠(𝜃𝑖𝑗𝑘)

𝑑𝒓𝑖
 

𝑭𝑎𝑛𝑔𝑙𝑒𝑠
𝑘 (𝜃𝑖𝑗𝑘) = −

𝑑𝑈𝑎𝑛𝑔𝑙𝑒𝑠(𝜃𝑖𝑗𝑘)

𝑑𝒓𝑘
 

𝑭𝑎𝑛𝑔𝑙𝑒𝑠
𝑗

(𝜃𝑖𝑗𝑘) = −𝑭𝑎𝑛𝑔𝑙𝑒
𝑖 − 𝑭𝑎𝑛𝑔𝑙𝑒

𝑘  

 

(6.8) 

 
where   𝜃𝑖𝑗𝑘 = arccos (

𝒓𝑖𝑗 ∙ 𝒓𝑘𝑗

𝑟𝑖𝑗𝑟𝑘𝑗
) 

 

 

The constant 𝑘𝑖𝑗𝑘
𝜃  is the spring constant where higher values prevent bending making the 

structure more rigid. The variable 𝜃𝑖𝑗𝑘 is the angle between two connecting bonds from three 

atomic positions. The constant 𝜃𝑒𝑞 represents the natural angle based on the atom types of the 

three atoms.  

The torsion potential is almost always expressed as a cosine Fourier series expansion with m =

1,2,… ,M (Leach, 2001b). The torsion is defined by three connecting bonds and therefore 

involves four atomic coordinates (see Figure 6.5a) according to: 

 

 
𝑈𝑡𝑜𝑟𝑠𝑖𝑜𝑛𝑠(𝜑𝑖𝑗𝑘𝑙) =

1

2
∑𝑘𝑖𝑗𝑘𝑙

𝜑,𝑚
(1 − cos(𝑚𝜑𝑖𝑗𝑘𝑙 − 𝛾𝑚))

𝑚

 (6.9) 

 

The expression for the resulting torsion force is not shown due to being much more extensive 

than previous forces. The constant 𝑘𝑖𝑗𝑘𝑙
𝛷,𝑚

 is the magnitude of the torsion potential, m represents 
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the which series in the series expansion, the variable 𝜑𝑖𝑗𝑘𝑙 is the torsion angle and 𝛾𝑚 is the 

phase factor which describes at which angle the potential energy is at its lowest. Figure 6.6c 

shows the potential energy from the torsion of an arbitrary molecule bond where the energy is 

at its lowest when with less steric clashes occurs (staggered conformation) and at its highest 

when more steric clashes occurs (eclipsed conformation). 

 

 

Figure 6.6. Potential energy of bonded interactions. (a) An approximation of the potential energy in the bond 

stretching using Hooke’s law as a function of the distance between two bonded atoms. (b) The potential energy 

from angle bending as a function of the angle between two connecting bonds and approximated with Hooke’s law. 

(c) Approximation of the potential energy from bond torsion as a function of the bond angle. Highest potential is 

observed in eclipsed conformation and lowest in staggered conformation (adapted from the GROMACS manual 

5.1.4). 

The non-bonded interactions represent the potential energies originating from electrostatic and 

van der Waals interactions. These include both internal interactions in the protein as well as 

external interactions from the solvate. Resulting potential energies from the non-bonded 
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interactions are shown in Figure 6.7 and were adapted from the GROMACS manual (Abraham 

et al., 2016). 

Potential energies originating from van der Waals interactions are commonly described by 

using the Lennard-Jones (Jones, 1924) equation: 

 

 
𝑈𝑣𝑑𝑤(𝑟𝑖𝑗) = 4𝜀 [(

𝜎

𝑟𝑖𝑗
)

12

− (
𝜎

𝑟𝑖𝑗
)

6

] (6.10) 

 

The potential energy takes on the following form for the resulting force: 

 

 
𝑭𝑣𝑑𝑤

𝑖 (𝑟𝑖𝑗) = 4𝜀 [12
𝜎12

𝑟𝑖𝑗
13 − 6

𝜎6

𝑟𝑖𝑗
7]

𝒓𝑖𝑗

𝑟𝑖𝑗
 (6.11) 

 

The constant 𝜀 defines the depth of the potential well whereas the constant 𝜎 defines the 

distance between two atoms when the potential is at a minimum. It can be observed in Figure 

6.7b that an arbitrary attraction occurs when the distance is 3 Å between two atoms, this is 

similar to that of the Morse potential seen in Figure 6.6a but lacks a physical bond. The 

magnitude of the Lennard-Jones potential is also much lower compared to that of the Morse 

potential. 

The electrostatic potential energy between two charged atoms in the system can be described 

by using the following expression: 

 

 
𝑈𝑐𝑜𝑙𝑢𝑚𝑏(𝑟𝑖𝑗) =

1

4𝜋𝜀0

𝑞𝑖𝑞𝑗

𝑟𝑖𝑗
 (6.12) 

 

The electrical potential takes on the familiar expression of coulombs law when converted into 

the resulting force: 

 

 
𝑭𝑐𝑜𝑙𝑢𝑚𝑏

𝑖 (𝒓𝑖𝑗) =
1

4𝜋𝜀0

𝑞𝑖𝑞𝑗

𝑟𝑖𝑗
2

𝒓𝑖𝑗

𝑟𝑖𝑗
 (6.13) 

 

The variable 𝑞 is the charge of the atom and 𝜀0 is known as the permittivity constant. It can be 

observed through Figure 6.7b that the potential energy increases with shorter distance between 

charges. When of same charge the atoms will repel each other while different charges will 

attract each other. 
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Figure 6.7. Potential energy of non-bonded interactions. (a) The electric potential as a function of distance between 

two charged points. (b) The van der Waals potential approximated with Lennard-Jones potential (green line) as a 

function of the distance between two non-bonded atoms. Consists of one repulsion (orange dashed line) and one 

attraction (orange full line) component (adapted from the GROMACS manual 5.1.4). 

It should be mentioned that the hydrogen bond, which is a common non-bonded interaction in 

proteins, is not treated as a separate bond type in the force fields but rather as a combination of 

Lennard-Jones and electrostatic potential instead. 

In comparison to the bonded interactions, the number of non-bonded interactions that needs to 

be evaluated in a system increases with the order of 𝑁2 due to the fact, that any pair of atoms 

in the system can interact. To avoid time-consuming simulations or, in worst cases, system 

crashes, cut-off schemes are used to reduce the number of potential long-range calculations that 

needs to be performed. Commonly applied is Particle Mesh Ewald (PME) summations which 

consists of short-range contributions and long-range contributions. Short-range interactions are 

determined by a predefined cut-off radius (commonly 1 nm) to identify neighbouring atoms to 

the atom of interest. If the distance is less than the defined cut-off radius, the atom is included 

in the force calculation and a so-called neighbours list is created that specifies the neighbouring 

atoms to the atom of interest which was first proposed by Verlet (1968). Long-range 

interactions are atoms with distances exceeding the defined cut-off radius from the atom of 

interest and are instead calculated with Fourier transform from the real space to the reciprocal 

space which allows for faster computation.  

As can be observed, equations (7.5), (7.7), (7.9), (7.10) and (7.12) contain parameters for 

optimal bond lengths, angles, potential wells, force constants etc that needs to be specified. Put 

in simple terms, a force field is a list of parameter values for different atom types with 

corresponding equations that are used to calculate the potential energy of the system (Allen, 
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2004). Ii is important to note that an atom type should not be confused with an element from 

the periodic table. The definition of an atom type here involves the hybridisation state and/or 

the charge of the atom as well as the type of connected atoms. For example, carbon will have 

several atom types which describe different hybridisation states and surroundings. This in turn 

means that they will behave slightly different from each other and therefore need to be described 

with a unique set of parameters for each atom type. This also makes the number of atom types 

listed in the force fields much more numerous than the number of elements in the periodic 

system.  

Table 6.4 gives a non-exhaustive list of popular force fields that are used in MD simulations 

currently where several different versions of the AMBER, CHARMM and GROMOS force 

fields exists. Only slight variations exist between the different force fields which include 

differences in parameter values or slight differences in the potential energy equations, usually 

in the non-bonded interactions (Allen, 2004). The estimation of the parameters for different 

atom types are almost always carried out with QM calculations or taken from experimental 

measurements (Kmiecik et al., 2016).  

Table 6.4. Non-exhaustive list of popular force fields. 

Force Field Parameter determination Reference 

AMBER Multi-purpose force field widely used for proteins and DNA 

simulations 

(Cornell et al., 1995) 

CHARMM Multi-purpose force field widely used for both small and 

macromolecule simulations 

(Brooks et al., 1983) 

GROMOS First developed for simulations of protein or DNA in 

hydrophobic solvent. Now the force field is multi-purpose. 

(Oostenbrink et al., 

2004) 

OPLS-AA Multi-purpose force field  (Jorgensen et al., 1996) 

 

In this research, the atomistic amber99sb-ILDN force field was used to simulate the dynamics 

of the antibody Fab fragments. The authors Lindorff‐Larsen et al. (2010) modified the original 

amber99sb force field to more accurately describe side chain torsions in a protein. 

6.4.2 The MD Algorithm and Time Integration 

The global MD algorithm is shown in Figure 6.8 and consists of four steps (adapted from the 

GROMACS User Manual 5.1.4 (Abraham et al., 2016)).  

In the initial step of any MD simulation, the positions and velocities for each atom in the system 

need to be specified. Atom positions can be acquired through PDB files from either 

experimental data or a predicted structure (see Section 6.2). Usually no velocities are available 

when starting a new simulation project unless it is a continuation of a previous simulation. In 
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these cases, the Maxwell-Boltzmann distribution can be used to randomly assign initial 

velocities to all atoms in the system at a given temperature T. 

 

 
𝑝(𝑣𝑖) = √

𝑚𝑖

2𝜋𝑘𝑇
exp (−

𝑚𝑖𝑣𝑖
2

2𝑘𝑇
) (6.14) 

 

Lastly, a force field needs to be selected to describe the potential energy function and 

interactions in the system and will not be changed throughout the simulation. 

The forces in the system are then calculated from the potential energy of the system in step two. 

The resulting force on each atom is calculated as a vector sum based on all interactions from 

surrounding atoms (see Section 6.4.1). This step also involves all corrections applied to the 

system in order to maintain or change the thermodynamic macrostate by controlling the system 

volume, temperature and pressure. This is further explained in Section 6.4.4. 

 

 

Figure 6.8. Four steps of the global MD algorithm. Step 1) Positions and initial velocities are assigned and a force 

field chosen. Step 2) Calculation of resulting forces on all atoms in the system. Step 3) Updates the positions and 
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velocities of all atoms in the system. Step 4) Saves specified information to a log file (adapted from the 

GROMACS User Manual 5.1.4).  

The third step in the MD algorithm updates the positions of all atoms in the system based on 

the calculated forces in step two. This is done by numerical integration in order to approximate 

the resulting velocities and positions of the atoms in the system. Two popular approaches that 

commonly used to perform the integration are the Verlet velocity algorithm (Swope et al., 1982) 

and the Verlet leapfrog algorithm (Hockney and Eastwood, 1988) where the later will be 

investigated more thoroughly. The leapfrog algorithm updates the atom position and velocity 

according to: 

 

 
𝒗𝑖 (𝑡 +

1

2
∆𝑡) = 𝒗𝑖 (𝑡 −

1

2
∆𝑡) +

𝑭𝑖(𝑡)

𝑚𝑖
∆𝑡 (6.15) 

   

 
𝒓𝑖(𝑡 + ∆𝑡) = 𝒓𝑖(𝑡) + 𝒗𝑖 (𝑡 +

1

2
∆𝑡) ∆𝑡 (6.16) 

 

where 𝒗𝑖 and 𝒓𝑖 are the velocity and the position of atom 𝑖 and ∆𝑡 is the timestep used in the 

numerical integration. In the leapfrog algorithm, positions are updated at each full time-step 

(𝑡 + ∆𝑡) (6.15) while the velocities are updated at each half time-step (𝑡 + ∆𝑡/2) (6.16) thus 

making the atomic position and velocity jumping over each other like two leaping frogs. This 

allows for more accurate calculations of the velocities as compared to if the positions and 

velocities would have been synchronised. 

In MD simulations, the time step ∆𝑡 needs to be sufficiently large in order to efficiently simulate 

the protein dynamics without unnecessary resampling of the conformational space. However, 

if a too big a time step is selected it can cause instability and inaccuracies when the subsequent 

atom positions are calculated resulting in unfavourable conformations and high potential 

energies. A rule of thumb is to adapt the time step to the smallest local motion in the system in 

order to avoid this problem. Usually, a default time step of 2 fs is used in MD simulations today. 

It is important to note that the vibration period of the hydrogen bonds is shorter than the timestep 

of 2 fs and therefore cannot be accurately sampled. In order to avoid instability, the hydrogen 

bonds are constrained with the LINCS algorithm which keeps the length of the hydrogen bond 

constant throughout the simulation. 

6.4.3 Periodic Boundary Conditions 

Even with advancement of computational power the actual size of the system to be simulated 

is extremely small compared to a real-world setting. This also means that the surface to volume 



155 

ratio in the simulation is much higher compared to a real experimental setup which can 

introduce artefact caused by surface effects. Unless this is the aim with the simulation, a way 

to avoid this problem is to use so called Periodic Boundary Conditions (PBCs). In the event 

where a molecule exits the simulation box it will automatically re-enter the system on the 

opposite side with its trajectory preserved as can be seen in Figure 6.9a. This effectively means 

that the system has been enlarged by infinity. Caution needs to be exercised in order to avoid 

self-interaction of example a protein. This is commonly avoided by making sure that the 

distance between the protein to the edge of the simulation box is at least three solvation layers 

wide which roughly translates to 0.9 – 1.0 nm (González, 2011). This concept is shown in 

Figure 6.9b where the cut-off radius is illustrated as the dashed red circles surrounding a particle 

of interest. The system size is adequately chosen in this case where the particle of interest will 

not self-interact as well as overlap between the circles have been avoided thus making sure that 

potential water molecules in the systems are not affected by the particle from adjacent boundary 

cells (adapted from (González, 2011)). 

 

 

Figure 6.9. The application of the periodic boundary condition in a simulation. (a) Movement of particles out of 

the simulation box will enter the opposite. (b) Depicts the cut-off radius for long-range interactions as the dashed 

red circle and the importance of choosing a proper box size in order to avoid overlap and self-interaction (adapted 

from González (2011)). 

The shape of the PBC can also be changed in order to optimise the simulation if a rectangular 

box introduces too many water molecules into the system when solvated. Preferably, the shape 

of the PBC should be chosen so it reflects the underlaying geometry of the macromolecule e.g. 

a Truncated Octahedron or a Rhombic Dodecahedron can be used for simulation of globular 
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proteins whereas a hexagonal prism can be used for simulation of a rod like protein or DNA 

(Leach, 2001a). 

6.4.4 Thermodynamic macro and microstates 

In order to properly simulate a system, it is important to make sure that the simulation accurately 

captures its thermodynamic properties. So far, the main discussion has been about atom 

interactions and motions in a system of interest. The positions and velocities of the atoms are 

commonly referred to as thermodynamic microstate variables, which in turn define the 

thermodynamic macrostate properties of volume, pressure and temperature in a system. It is 

important to remember that a macrostate with a set volume, temperature and pressure can be 

described by several different microstates whereas the opposite is not possible where instead 

one microstate will have single corresponding macrostate. This is easier understood when 

considering a smaller system containing a few atoms with defined positions and velocities. If 

two of the atoms were to swap velocity directions and magnitudes, the microstate of the system 

would change due to the change in the microstates variables whereas the macrostate will still 

be conserved. 

This is an important aspect that needs to be considered in order to correctly simulate a real-

world experiment where a specific temperature, volume and pressure are used. The absolute 

temperature of a system can be calculated by using the total kinetic energy shown in (6.17) 

below. 

  

 

𝐸𝐾𝑖𝑛 =
1

2
∑𝑚𝑖𝑣𝑖

2

𝑁

𝑖=1

=
𝑘𝐵𝑇

2
(3𝑁 − 𝑁𝐶) (6.17) 

 

𝑘𝐵is Boltzmann’s constant, 𝑁𝐶 is the number of constraints applied on the system and 3𝑁 − 𝑁𝐶 

is the total number of degrees of freedom in the system. The pressure, 𝑝, can be calculated by 

using the total kinetic energy and the virial of the system shown in (6.18) below. 

 

 
𝑝 =  

2

3𝑉
(𝐸𝐾𝑖𝑛 − 〈𝑇〉) (6.18) 

   

 
〈𝑇〉 = −

1

2
∑∑〈𝐹𝑖𝑗𝑟𝑖𝑗〉

𝑁

𝑗>𝑖

𝑁

𝑖

 (6.19) 
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𝑉 is the system volume and 〈𝑇〉 is the virial or the expected value of the sum of products between 

atom coordinates and the forces acting on them (Berendsen et al., 1984). The brackets represent 

the average value over time. 

When performing a MD simulation, several different simulation ensembles are available that 

that restrains the system by keeping some of the thermodynamic properties constant while 

allowing other to fluctuate. The choice of which ensemble to use depends heavily on how the 

system should behave and the aim of investigation.  Three commonly used ensembles are NVE, 

NVT and NPT where all ensembles have a constrained number of atoms (N). The NVE 

ensemble is a so-called micro-canonical ensemble with constrained volume (V) and energy (E) 

and is most often used to study the conformational energy landscape. The NVE ensemble 

should never be used to equilibrate a system as the desired temperature can never be reached 

when the energy is conserved. The NVT ensemble is a canonical ensemble and thus in thermal 

equilibrium with constrained volume and temperature (T). This type of ensemble is often used 

to simulate biological reactions. The NPT ensemble is an isothermal–isobaric ensemble with 

constrained pressure (p) and temperature and is commonly used to simulate chemical reactions 

in environments where the pressure is maintained such as open atmosphere reactions. Both the 

NVT and NPT ensembles are commonly used for system equilibration to reach specified 

temperature and pressure in order to replicate experimental environments. More detailed 

descriptions on the different ensembles are reviewed elsewhere (Brown and Clarke, 1984). 

In order to maintain the desired thermodynamic parameters of a system in a simulation, the use 

of so-called coupling schemes becomes necessary in order to control parameters of interest such 

as the temperature and pressure of the system.  

The temperature can be controlled by using thermostats. The Berendsen (Berendsen et al., 1984) 

and Velocity-rescaling thermostats (Bussi et al., 2007) controls the temperature by directly 

scaling the velocities of the atoms in the system through first-order decay. The Berendsen and 

Velocity-rescaling thermostats are known as coupling methods. Alternatively, the Nosé-Hoover 

thermostat (Nosé, 1984, Hoover, 1985) can be used and works by adding an extra correction 

term to the Newton’s equation of motion seen in Figure 6.8 which subtracts or adds to the atom 

velocities in the system if the temperature is too warm or too cold, respectively. The Nosé-

Hoover thermostat is a so-called extended system dynamics method. The three listed 

thermostats are virtually linked to a heat bath with constant temperature through which heat is 

exchanged as illustrated in Figure 6.10. This also means that the energy will no longer be 

conserved in the system and will change depending on the temperature difference between the 

heat bath and the system of interest.  
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Figure 6.10. A system coupled to a virtual heating bath illustrating the heat exchange between the heat bath and 

the system of interest (adapted from Ghiringhelli (2014)). 

The pressure, similarly to the temperature, is controlled by using barostats. A commonly used 

weak coupling method is the Berendsen barostat (Berendsen et al., 1984) which is similar to 

the Berendsen thermostat but instead scales the dimensions of the system in order to achieve 

the desired reference pressure. Alternatively, the Parrinello-Rahman barostat is an extended 

system dynamics method similar to that of the Nosé-Hoover thermostat where the volume 

becomes and extra variable (Parrinello and Rahman, 1981). This allows the system size to vary, 

thus contracting or expanding the system if the pressure is too low or too high, respectively, 

compared to the desired reference pressure. 

6.4.5 GROMACS System Equilibration 

In this research, the GROMACS guidelines for system equilibration were used prior to any 

production runs in order to emulate real-world experimental conditions (Abraham, 2014). Four 

equilibration steps were performed with a final production run at the end according to the steps 

below: 

1. Solvation of the system 

2. Energy minimisation (EM) 

3. Temperature increase to target value through NVT ensemble 

4. Adjustment of pressure to target value through NPT ensemble 

5. MD production run 

The first step involves specifying the periodic boundary conditions to define the simulation box 

and then filling the empty space with water molecules and counter ions to buffer the system. A 

common practice is to add chloride and sodium ions to counter the charges of the protein to get 

a system with a net charge of zero. 

The EM is a crucial step that prevents the system from “blowing up” when equilibrated due to 

potential close proximities and steric clashes between atoms which can result in large forces. 

These clashes originate partly from the protein structure that, if predicted, might not be 
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completely relaxed and therefore structurally unfavourable (see Section 6.2.4). Another source 

is clashes originating from the addition of the solvate to the system where potentially some 

water molecules might have been placed too close to the protein. The energy minimisation 

conformationally resolves these clashes by relaxing the system through rotational and 

directional motions of the clashing atoms, thus lowering the energy of the system (Leach, 

2001c). Several methods exist to perform the EM where derivative minimisation methods are 

most commonly used. First-order methods such as steepest descent and conjugate gradient are 

fast methods that use the first derivative or gradient to find the energy minima but with the 

drawback that they can get stuck in local minima. Second-order derivative methods, such as 

quasi-Newton and L-BFGS, include information about the energy curvature and are less likely 

to get stuck at local minima but are more computationally intensive due to the need to calculate 

the Hessian matrix (second derivative matrix). For more detailed information on the listed 

minimisation methods, refer to the following work (Schlick, 1992). The steepest descent 

minimisation was used in all simulations due to its speed compared to quasi-Newton and L-

BFGS.  

In the third equilibration step, an NVT ensemble was used to raise the temperature of the system 

to a desired target value. Initial velocities in the system were assigned with the Maxwell-

Boltzmann distribution presented in eq.(6.14) according to a target temperature of 300 ºK. 

Position restraints were added to the backbone of the proteins in order to avoid structural 

collapse due to the rapid heating of the system. The restraints added followed Hooke’s law 

where a virtual spring was attached between the backbone atoms and their original position in 

space as described by eq.(6.6). A high value was used for the spring constant to keep the 

backbone rigid. This allowed for further relaxation of the protein side-chains and solvent 

molecules while the system is heated as well as avoids large conformational changes of the 

protein structure caused by rapid heating. The ensemble was allowed to run until the 

temperature of the system had reached the desired target value with little fluctuation. This step 

was performed using the Velocity-rescaling thermostats in all simulations.  

Due to the volume being kept constant in the NVT ensemble, the resulting pressure will be 

offset compared to the desired target value at the end the NVT run. Therefore, in the fourth 

equilibration step, a NPT ensemble was used to adjust the pressure in the system to 1 bar with 

the Parrinello-Rahman barostat. The system temperature was kept constant through continued 

use with the Velocity-rescaling thermostat. By correcting the pressure, the volume of the system 

will inevitably change and will no longer conform to the initially defined dimensions. This 

however is of little consequence as the goal is to emulate the temperature and pressure in a real-
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world experiment. Additionally, similar to the previous step the backbone was kept restrained 

in order to avoid structural collapse while equilibrating the pressure. 

In the fifth and final step, a production run was performed as a continued NPT ensemble with 

a temperature of 300 ºK and a pressure of 1 bar. The backbone constraints on the proteins were 

removed to allow the protein to adjust to the environment. In order to capture the dynamics of 

the system a simulation time of 50 ns was used. 

6.5 Modifications of protein structure and solvent  

In addition to steps described in Section 6.4.5, two more considerations were made to increase 

the fidelity of the performed simulations.  

6.5.1 Co-solvent preparation 

The standard simulations in GROMACS are performed in water together with the counter ions 

sodium and chloride. Real experiments however will usually have additional ions and 

molecules that are added to either influence the stability of the protein or due to being necessary 

in particular experiments/process steps. A workflow depicting the preparation of small 

molecule co-solvents is illustrated in Figure 6.11a. In this research the ChemSpider database 

was used to find structural information of co-solvents of interest (Pence and Williams, 2010). 

ChemSpider provides the SMILE format for all listed small molecules which describes the 

connectivity properties between the atoms in the compound. The Build Structure feature in 

USCF Chimera (version 1.13) was then used to convert the SMILE format into a MOL2 format 

which in addition to describing the connectivity have generated space coordinates for the atoms 

in the compound (Pettersen et al., 2004). Alternatively, OpenBabel can be used instead of 

Chimera which is more specialised and allows for conversion of nearly all the chemical formats 

for small molecules (O'Boyle et al., 2011).  

In GROMACS when reading in a protein structure, the software will generate a corresponding 

structure file (e.g. protein.gro) as well as a topology file (topol.top). The structure file will 

contain the coordinates for all atoms in the system, including all atoms in the protein, solvate 

and co-solvents. If a previous simulation of the system has been performed such as EM, NVT 

or NPT, the structure file will also contain the initial velocities for each atom in the system that 

will be used for the next chronological simulation. The topology file on the other hand is a list 

that describes the properties of all the atoms in the system such as the atom types, masses and 

charges. The topology file also lists the connectivity of the atoms in the system to describe all 

pair-wise bonds (two atoms), angles (three atoms) and torsions (four atoms) with corresponding 

force field parameters. These are used to perform the calculations of the potential energies 
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described in Section 6.4.1. Any additions to the simulation system in the form of solvents or 

other particles will also be included in the topology file and their properties described. For 

proteins that consist of multiple chains that are connected with disulphide bonds such as mAbs, 

all chains can be merged into a single structure. This allows for cysteines between chains to be 

connected and is necessary in order to properly represent the mAb structure. This in turn will 

generate a single topology file for the merged structure. Alternatively, multiple chains can be 

represented by using multiple topology files that describe the individual chains. However, 

interchain disulphide bonds cannot be defined if used, thus increasing the risk of system 

instability. 

In the last step when adding a custom co-solvent, the AnteChamber PYthon Parser interface 

(ACPYPE) was used in order to generate additional structure and topology files for the co-

solvent that could be used in the simulation (Sousa da Silva and Vranken, 2012). For the 

purposes of this research the topologies were generated using the General Amber Force Field 

(GAFF) for small molecules with AM1-BCC calculations for estimation of charges (Wang et 

al., 2004). The co-solvent topology file was then referenced in the protein topology file in order 

for GROMACS to be able to use the new co-solvent. 

To acquire the correct concentration of co-solvent in the simulation there was a need to calculate 

the number of molecules to be added to the simulation box. This was based on the total number 

of water molecules present in the simulation box and calculated according to stoichiometric 

formula in (6.20) below. 

 

 
𝑁𝑐𝑠 =

𝑁𝑤𝑎𝑡𝑒𝑟𝑀𝑤𝑎𝑡𝑒𝑟

𝜌𝑤𝑎𝑡𝑒𝑟
𝐶𝑐𝑠 (6.20) 

 

𝑁𝑐𝑠 is the total number of co-solvent molecules, 𝑁𝑤𝑎𝑡𝑒𝑟 is the total number of water molecules, 

𝑀𝑤𝑎𝑡𝑒𝑟 is molar mass of water (18.0153 g/mol), 𝜌𝑤𝑎𝑡𝑒𝑟 is the water density at 300 ºK (997 g/l) 

and 𝐶𝑐𝑠 is the target concentration of the co-solvent (mol/l). The calculated number of molecules 

were then added to the simulation box by using the insert-molecule function in GROMACS 

with the generated co-solvent structure file from ACPYPE as input. 
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6.5.2 Modification of residue protonation states 

Another parameter that is often likely to change is different experimental setups and operational 

units in industrial processes is the pH which affects the protonation states of ionisable residues. 

Most often when running a MD simulation, the default protonation states in the acquired 

structure are used. This might not, however, represent the true protein structure due to 

differences between the protonation states in an experiment and that of the simulation. This can 

have a negative impact on the dynamics due to wrong assumptions are made in the electrostatic 

interactions.  

The workflow illustrated in Figure 6.11b was used to modify the protein structure to better 

conform to a specific pH. In this research, a local installation of the ProteinPrepare suite which 

is part of the High-Throughput Molecular Dynamics (HTMD) environment (Acellera Ltd) was 

used to modify the protonation states of acidic and basic residues in the protein structures prior 

to simulations (Martinez-Rosell et al., 2017). More specifically, ProteinPrepare makes use of 

PROPKA (version 3.1) to predict the pKa values of any acidic and basic residues that are present 

in the protein  (Olsson et al., 2011, Sondergaard et al., 2011). The PROPKA tool takes into 

consideration the locations of the acid/base residues as well as surrounding residues that can 

impact on the pKa. For buried residues the pKa value is adjusted in order to drive charged 

residue to become more neutral. Buried negatively charged residues (acids) have increased pKa 

values while buried positively charged residues (bases) have their pKa value lowered. This is 

also impacted by proximity of other ionisable residues which further modifies the pKa values 

of the residues. ProteinPrepare then compares the predicted pKa values towards that of a target 

pH value in order to assign the protonation states of the residues. Table 6.5 lists all ionisable 

residues together with the three-letter code for the different protonation states. 

Table 6.5. List of residue protonation states  

Amino acid Type 
Protonation states 

Positive Neutral Negative 

Aspartic acid Acid - ASH ASP 

Cysteine (1) Acid - CYS/CYX CYM 

Glutamic acid Acid - GLH GLU 

Tyrosine (2) Acid - TYR TYM 

Arginine (3) Base ARG AR0 - 

Histidine Base HIP HID/HIE - 

Lysine (3) Base LYS LYN - 

(1) Cysteines involved in disulphide bridges are coded as CYX while free cysteine is coded as CYS. 
(2) Does not naturally occur as negatively charged which requires very high pH values 
(3) Does not naturally occur as neutral which requires very high pH values 
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If two cysteines are in close proximity then ProteinPrepare will assign them as CYX, meaning 

that they are involved in a disulphide bridge. The software will assign a pKa value of 99 to all 

CYX residues in order to avoid deprotonation in the event when a high target pH is used. 

Caution should be exercised as well when a high target pH value is used that drives tyrosine to 

become charged as well as arginine and lysine to become neutral. The resulting structure will 

not be useable in any MD simulation due to that the topologies for these protonation states will 

not exist in any force field. 

Protonation of residues according to the predictions from PROKPKA were performed with 

PDB2PQR (version 2.1) inside of ProteinPrepare (Dolinsky et al., 2004, Dolinsky et al., 2007). 

As a final step, PDB2PQR performed an energy minimisation of the structure by rotating and 

flipping the side-chains to allow the structure to become more relaxed where the AMBER99 

force field was used. The final structure was then exported as a PDB file. 

The effect of assigning different environmental pH values is illustrated in Figure 6.12 where 

the electrostatic surface of adalimumab Fab fragment is shown with positive charges depicted 

in blue, neutral in white and negative charges in red. When the pH is low (=2) the negatively 

charged residues (acids) become neutral due to becoming protonated resulting in a highly 

positively charged surface. Through incremental increase of the pH it can be observed the 

negatively charged residues and positively charged residues (bases) become deprotonated 

resulting in a more negatively charged surface. 

 

 

Figure 6.12. Impact of pH on the electrostatic surface of adalimumab Fab fragment. At a pH of 2 the surface is 

predominately positively charged (blue) and shift to become more negatively charged (red) with increasing pH. 

The figure was generated from surface renderings using USCF Chimera (version 1.13). 

The structure optimisation step with PDB2PQR is not necessarily needed due to the energy 

minimisation that is performed when equilibrating the system in GROMACS. An alternative 

approach would be to use PROPKA3.1 to predict the pKa values for the residues and manually 
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assign the protonation states of the residues according to a target pH by using the optional inputs 

in the pdb2gmx function in GROMACS. 

6.6 Descriptor Generation 

A summary of the software packages that have been used in this research for the preparation 

and the simulation of proteins structures and dynamics is listed in Table 6.6. A general overview 

of the protein preparation and simulation is also illustrated in Figure 6.13 which shows the 

protein structure prediction with MODELLER, the protein dynamic simulation with 

GROMACS as well as the descriptor generation from the resulting output from GROMACS.  

In order to generate meaningful descriptors, it was necessary to first extract a structure from the 

production run simulations that were in conformational equilibrium. This section describes in 

detail how the final structure was acquired from the GROMACS simulations as well as how 3D 

structure descriptors were generated.  

Table 6.6. List of software packages used in this research to prepare and simulate the protein structure and 

dynamics. 

Software Version Description 

MODELLER 9.20 Used for structure prediction from primary sequence with the help of PDB 

templates. Implemented to restrain distances between cysteines involved in 

disulphide bridges. 

GROMACS 5.1.4 Simulation software to estimate the protein dynamics of a target protein 

structure in a defined environment. 

CHIMERA 1.13 Visualisation and analysis software. Useful for editing structure and fill in 

missing loops. 

VMD 1.9.2 Visualisation and analysis software. Useful for calculation of protein 

RMSD and RMSF as well as visualising the dynamic of the protein 

through a playback function of the trajectories. 

ACPYPE 0.1.0 Software that simplifies the generation of small molecule topologies and 

parameters that are compatible with many existing forcefields such as 

AMBER and CHARMM. 

PROPKA 3.1 Software for the prediction of pKa values of acidic and basic residues in a 

protein structure. PROPKA takes into account if the residue is buried or 

accessible on the surface in order to perform more accurate calculations. 

PDB2PQR 2.1 Fills in any missing heavy atoms and adds hydrogen atoms according to 

protonation states computed from PROPKA. Also optimises structure by 

resolving residues involved in steric clashes. 
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6.6.1 Time frame selection 

Due to the constraints placed on the backbone in production run, relaxation of the structures 

occurred in the beginning of the simulation for each mAb. This is illustrated in Figure 6.14 

which shows the conformational change of adalimumab simulated in water. It can be observed 

in Figure 6.14a that a conformational shift occurs from its original conformation (t=0) to a more 

relaxed conformation (t=5) which is then retained throughout the rest of the simulation 

indicating that an equilibrium has been reached. The RMSD used in the figure is a measurement 

of atomistic deviation over time from a reference structure where the constrained structure from 

the previous NPT equilibration was used. This conforms to the idea of the energy landscape 

illustrated in Figure 6.3a where the protein structure will strive to attain as low conformational 

energy as possible. It also illustrates the structure bias from MODELLER where the predicted 

structure is biased towards the template and not necessarily in a relaxed state. 

Further analysis showed that the smaller fluctuations (vibrations) observed in Figure 6.14a were 

due to local motions of the loops and turns in the mAb and are illustrated as the peaks in Figure 

6.14b and Figure 6.14c for the light chain and heavy chain, respectively. The RMSF values 

used in the figures are temporal averages of the atomic trajectories (i.e. motions) in space of the 

residues, thus capturing the residue fluctuation over time. The RMSF values in the figures were 

calculated from the protein motions acquired after equilibrium had been reached until the end 

of the simulation.  

Based on these facts, the extraction of the structure was therefore performed by selecting a time 

frame located in the equilibrium interval of the simulations. The timeframe was selected 

towards the end of each simulation in order to allow the structures to relax and reach 

conformational stability. This was due to the fact that relaxation times between mAbs varied, 

thus introducing uncertainty of conformational stability if earlier timeframes were used. This is 

covered more in detail in Section 7.1.2 which discusses the simulation results for the 137 mAbs 

in the publication of Jain et al. (2017). 
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Figure 6.14. MD simulation result for adalimumab. (a) The conformational change of adalimumab evolving over 

time in the production run. (b) The average fluctuations of the individual residues in the light chain between t=5 

ns and t=50 ns. (c) The average fluctuations of the individual residues in the heavy chain between t=5 ns and t=50 

ns. 

6.6.2 Descriptor software and calculations 

Similar to the primary sequence-based descriptors, ProtDCal was used for generation of 3D 

structure descriptor by using the acquired PDB structures from the MD simulations as input 

(Ruiz-Blanco et al., 2015). GROMACS was used to generate the solvent accessible surface area 

(SASA) for the residues in the mAbs which were used as basis or modification of many of the 

generated descriptors. Table 6.7 lists the descriptors. Focus was placed on descriptors pertaining 

to the surface, shape and energies that were impossible to capture when using the primary 

sequence.  
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Table 6.7. List of energy and topological descriptors used to describe the protein structure 

Descriptor ProtDCal GROMACS Type Description 

𝑮𝒄(𝑭) ●  Energy Contribution to the free energy from the 

conformational entropy in a folded state 

𝑮𝑾(𝑭) ●  Energy Contribution to the free energy from the 

entropy of the first shell of water 

molecules in a folded state 

𝑮𝒔(𝑭) ●  Energy Interfacial free energy of a folded state 

𝑾(𝑭) ●  Energy Number of water molecules close to a 

residue in a folded state 

𝑯𝑩𝒅 ●  Energy Number of hydrogen bond in the 

backbone of the protein 

𝚫𝑮𝒔 ●  Energy Variation of the interfacial free energy 

between folded and unfolded states 

𝚫𝑮𝑾 ●  Energy Contribution to the folding free energy 

of the first shell off water molecules 

𝚫𝑮𝒆𝒍 ●  Energy Free energy contribution of the charge 

distribution within the protein 

𝚫𝑮𝑳𝑱 ●  Energy Contribution of the Van der Waals 

interaction to the folding free energy 

𝚫𝑮𝒕𝒐𝒓𝒔 ●  Energy Contribution of the dihedral torsion 

potential to the folding free energy 

𝑺𝑨𝑺𝑨𝒑𝒐𝒍𝒂𝒓   ● Topological The total solvent accessible surface area 

from the polar residues 

𝑺𝒑𝒐𝒍𝒂𝒓  ● Topological The effective surface polarity from the 

charged and polar residues  

𝑺𝑨𝑺𝑨𝒏𝒐𝒏−𝒑𝒐𝒍𝒂𝒓  ● Topological The total solvent accessible surface area 

from the non-polar residues 

𝑺𝒏𝒐𝒏−𝒑𝒐𝒍𝒂𝒓   ● Topological The effective surface hydrophobicity 

from the non-polar residues 

𝒍𝒏(𝑭𝑫) ●  Topological Logarithm of the folding degree 

 

In addition, 37 Transferable Atom Equivalent (TAE) descriptors were used in order to describe 

electron and charge densities of the mAbs. TAE is in simple terms a library of empirical atomic 

charge density components that are used to construct electron densities able to describe the 

protein surface of individual amino acids (Breneman and Rhem, 1997). 

The TAE descriptors used in this research were available in ProtDCal as listed value for each 

amino acid. This meant that the generated TAE descriptors were based on the amino acid 

composition in ProtDCal rather than feature of the protein and therefore no different from using 

the primary sequence as input. In order to conform these descriptors to represent the surface of 

the mAb the generated SASA values from GROMACS were used according to eq.(6.21). The 

equation calculates the fraction of each amino acid that is accessible to solvent and is known as 
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the relative surface area (RSA) and ranges from zero (the residue is completely buried) to one 

(maximum exposure). 

 

 
𝑇𝐴𝐸𝑘

𝑆𝑢𝑟𝑓𝑎𝑐𝑒
= ∑

𝑆𝐴𝑆𝐴𝑖

𝑀𝑎𝑥𝐴𝑆𝐴𝑖
𝑇𝐴𝐸𝑖𝑘 =

𝑖

∑𝑅𝑆𝐴𝑖 ∙ 𝑇𝐴𝐸𝑖𝑘

𝑖

 (6.21) 

 

𝑇𝐴𝐸𝑘
𝑆𝑢𝑟𝑓𝑎𝑐𝑒

 is the resulting 𝑘𝑡ℎ TAE descriptor for the surface, 𝑆𝐴𝑆𝐴𝑖 is the solvent accessible 

surface area of residue 𝑖, 𝑀𝑎𝑥𝐴𝑆𝐴𝑖 is the maximum accessible surface area of a residue 𝑖, 

𝑇𝐴𝐸𝑖𝑘 it the 𝑘𝑡ℎ listed TAE descriptor for residue 𝑖 and 𝑅𝑆𝐴𝑖 is the relative surface area of 

residue 𝑖. The 𝑀𝑎𝑥𝐴𝑆𝐴 value is defined as the accessible surface area of an amino acid X in a 

Gly-X-Gly tripeptide conformation. Published empirical values from Tien et al. (2013) were 

used to calculate the descriptor in this research.  

In a similar fashion, descriptors for describing the hydrophobicity, eq.(6.22), and the polarity, 

eq.(6.23), of the surface were generated by using the Kyte-Doolittle scale. Specifically, the 

hydrophobicity of the surface was calculated by using the nine in the NPR amino acid group in 

Table 3.3 in Chapter 3 and the polarity was calculated using the 11 residues in the PLR amino 

acid group. 

 

 
𝑆𝑛𝑜𝑛−𝑝𝑜𝑙𝑎𝑟 = ∑

𝑆𝐴𝑆𝐴𝑖

𝑀𝑎𝑥𝐴𝑆𝐴𝑖
𝑘𝑖

𝐾𝐷

𝑖 ∈ 𝑁𝑃𝑅𝑝

 (6.22) 

   

 
𝑆𝑝𝑜𝑙𝑎𝑟 = ∑

𝑆𝐴𝑆𝐴𝑖

𝑀𝑎𝑥𝐴𝑆𝐴𝑖
𝑘𝑖

𝐾𝐷

𝑖 ∈ 𝑃𝐿𝑅𝑝

 (6.23) 

 

𝑆𝑛𝑜𝑛−𝑝𝑜𝑙𝑎𝑟is the surface descriptor describing the hydrophobicity, 𝑆𝑝𝑜𝑙𝑎𝑟is the surface 

descriptor describing the surface polarity and 𝑘𝑖
𝐾𝐷 is the Kyte-Doolittle value for residue 𝑖. 

No treatment was needed for the generated energy descriptors from ProtDCal as these are 

calculated based on the surrounding environment.  

6.6.3 Descriptor resolution 

Similar to the primary sequence-based descriptor, strategies for defining the descriptor 

resolution was used where selection of residues to use were based on the intrinsic structural 

features of all mAbs (see Section 3.3). Three different resolutions were considered when 
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generating 3D structure descriptors: Chain, Domain and Substructure. Table 6.8 lists the 

number of generated descriptors for the three resolution in a VH/VL and a Fab configuration. 

Table 6.8. Number of generated descriptors based on resolution type and size of the mAb.  

Method VH/VL Fab Input type Descriptors per 

input 

Chain Skipped (1) 104 (2) Chain 52 

Domain 104 (2) 208 (4) Domain 52 

Substructure 728 (14) 1456 (28) Substructure 52 

(1) Is identical to the domain resolution when VH/VL is used 

6.7 Summary 

In this chapter a workflow for generating and simulating mAb structures has been presented. 

Due to the high structural similarities shared between mAbs and availability of structure 

templates, the homology modelling approach with MODELLER was selected for initial 

prediction of the mAb structure. However, due to the high sequence dissimilarity in the variable 

regions between the predicted structure and the template it was assumed that predicted 

structures would have an unfavourable energetic state and therefore not be relaxed. MD 

simulations with GROMACS was therefore performed as a subsequent step after the homology 

modelling in order to relax the predicted structures.  

Descriptor were then generated with ProtDCal but modified with residue SASA values from 

GROMACS in order to only capture the surface properties. Generated descriptors presented in 

this chapter has been applied and assessed on prediction of HIC retention times and mAb yields 

in Chapter 7. 
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Chapter 7  

 

QSAR Model Development: 3D Structure 

Descriptors 

In Chapter 6, a workflow for the generation of novel 3D structure descriptors was presented 

which provided an alternative approach to describe the mAb structure compared to the 

previously explored descriptors generated from the primary sequences described in Chapter 3. 

The 3D structure descriptors were designed to represent the surface properties as well as the 

stability properties of the mAbs. Three different 3D structure descriptor resolutions were 

investigated which were generated based on the full chains, the individual domains and the 

individual substructures present in the mAb structure (from the lowest to the highest resolution). 

The new 3D structure descriptors were first evaluated for potential systematic variation 

originating from the unique structure of the light chain isotypes with the use of PCA. In 

addition, the potential variation originating from the species origins was also explored with 

classification methods such as PLS-DA and SVC. These were important factors in the 

development of the predictive models presented in Chapter 5 where the primary sequence-based 

descriptors contained systematic variation uncorrelated to the investigated responses.  

HIC retention times and mAb yields were chosen as response vectors for model development 

due to being important parameters in pharmaceutical industries for the assessment of 

productivity and product stability, respectively. All models were developed according to the 

benchmarking scheme first presented in Chapter 5. PLS and SVR were used as modelling 

methods. Model optimisation was performed in incremental steps where V-WSP was used for 

initial variable reduction. rPLS, LASSO and GA was then applied for subsequent variable 

selection on the V-WSP reduced descriptor set in order to increase correlation between 

descriptors and responses. 
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7.1 Material and Methods 

7.1.1 Response Data 

In this research quantitative process data published by Jain et al (2017) was used to develop 

predictive models for HIC retention times and mAb yields. For more details on the dataset and 

experimental setup of the mAb yield and HIC, refer to Section 5.1.1. Out of the 137 available 

mAbs in the data set, 131 were retained based on the reasoning discussed in Section 5.1.1.3. 

7.1.2 Descriptor Data Generation 

Fab fragments of the mAbs were prepared for simulation using the available sequences of the 

variable domains VH and VL provided as supplementary information in the study of Jain et al 

(2017). The heavy chain was prepared by attaching an IgG1 CH1 sequence obtained from allele 

sequence IGHG1*01 to the provided VH domains. Similarly, the light chain was prepared by 

attaching a CL domain sequence to the provided VL domains obtained from either allele 

sequence IGLK1*01 (kappa) or IGLC1*01 (lambda).  

Homology models were generated using MODELLER version 2.17 (Webb and Sali, 2014) with 

a single template where PDB 2FGW and 7FAB were used for Fab fragments of kappa and 

lambda isotypes, respectively (see Table 6.2 in Chapter 6). Pair-wise cysteines involved in 

disulphide bridges were restrained where the sulphur atoms were placed at a distance of 2 Å 

from each other in order to properly connect the cysteine residues. Two mAbs (muromonab and 

teplizumab) were excluded in this process due to having cysteines in the CDR regions which 

caused MODELLER to form incorrect disulphide bridges, thus misrepresenting the structure. 

Atomistic simulations of the Fab fragments were performed with GROMACS (version 5.1.4) 

and simulated in water with a concentration of 0.1 M NaCl in order to stabilise surface charges. 

Prior to the production run, the system was equilibrated to a temperature of 25 oC and pressure 

of 1 bar. In this research, the high-performance computing (HPC) service ROCKET at 

Newcastle University was used run the production simulation. Each Fab fragment was 

simulated for a total of 50 ns to allow structure to reach conformational equilibrium described 

in Section 6.6.1. Atezolizumab was excluded in this process due to causing critical failures in 

the simulation. Several attempts were performed to re-simulate atezolizumab but all failed due 

to high system instability.  

Structural descriptors for the remaining mAbs were generated based on the methodology 

presented in Section 6.6 where three unique descriptor sets were obtained: Chain based 

(MSD1), Domain based (MSD2) and Substructure based (MSD3) where MSD is short for 

“Molecular Structure Descriptors”. In total, this resulted in 128 mAbs being selected for further 
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evaluation as listed in Table A.3 in Appendix A with corresponding experimental 

measurements for HIC retention times and mAb yields. 

7.1.3 Modelling Methods 

7.1.3.1 PCA 

PCA was used as an exploratory analysis tool to investigate the three descriptor sets and the 

relationship between descriptors and the light chain isotypes as well as the species origins. PCA 

implementation was performed using the PLS Toolbox version 8.6.1 (Eigenvector Research, 

Inc). For more details on PCA, see Section 2.2.1. 

7.1.3.2 PLS-DA 

The NIPALS algorithm was used to develop a PLS regression model for predicting the dummy 

variables generated from the class information pertaining to the species origin of the mAbs. 

Discriminant Analysis (DA) was then applied to create decision thresholds in order to classify 

the predictions of the developed PLS model.  For more details on PLS-DA, see Section 2.3.1. 

7.1.3.3 SVC 

The LibSVM toolbox was used and implemented in MATLAB 2016a for SVC model 

development (Chang and Lin, 2011). The C-SVM function in LibSVM was used for multiclass 

classification problems. A shell script was developed to implement the OvR multiclass strategy 

in SVC instead of using the default OvO strategy in LibSVM in order to reliably compare SVC 

to PLS-DA. The shell scripts for model fitting and prediction are presented in Appendix B, 

Code B.1 and Code B.2, respectively. Optimisation of the model parameter 𝐶 was performed 

using a grid search approach on defined points over specified ranges for each parameter (for 

details on parameters see Section 2.3.2). The grid points used for 𝐶 were  

[10-5, 10-4, 10-3, 10-2, 10-1, 100, 101, 102, 103, 104]. 

7.1.3.4 PLS 

Partial Least Squares regression was performed using the NIPALS algorithm. The first 20 latent 

variables were calculated to allow for a majority of the data variation in 𝑿 and 𝒀 to be captured. 

A higher number of latent variables is often not recommended as they usually only improve 

fitting of individual samples, thus causing over-fitting (Wold et al., 2001). For more information 

on PLS, refer to Section 2.4.1. 
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7.1.3.5 SVR 

The optimisation of the model parameters 𝐶 and 𝜖 was performed by using a grid search 

approach on defined points over specified ranges for each parameter (for details on parameters, 

see Section 2.4.2). The grid points used for 𝐶 were [10-5, 10-4, 10-3, 10-2, 10-1, 100, 101, 102, 103, 

104] whereas the grid points used for 𝜖 were [10-3, 10-2.5, 10-2, 10-1.5, 10-1, 10-0.5, 100, 100.5, 101]. 

This resulted in 90 different model parameter permutations that were evaluated in the model 

cross validation. 

7.1.4 Data curation and pre-treatment 

An initial data curation step was performed where descriptors with a standard deviation lower 

than 0.0001 were removed as they were considered to be static and thus not contributing 

informational content to the model. 

Both the descriptor set (𝑿 block) and the response vector (𝒀 block) were autoscaled when used 

in regression models in order to allow the descriptors to influence the resulting model equally 

(see Section 2.7). In classification models, only the 𝑿 block was autoscaled whereas the class 

labels were assigned as zero and one in PLS-DA and minus one and one in SVC. 

7.1.5 Model Training and Validation 

7.1.5.1 Structured data splitting 

Prior to model development the data set was split into a calibration set and an external test set 

to represent future samples. The Kennard-Stone (CADEX) algorithm was used to divide the 

samples according to structural similarity based on the Euclidean distance between samples in 

the descriptor space (see Section 2.5.1 for more details). 80% of the samples were retained for 

model calibration and the remaining 20% were used for external testing and model validation. 

7.1.5.2 Cross-Validation scheme 

A repeated k-fold cross validation scheme was applied for model development where k was 

chosen to be five in order to get an 80/20 sample split ratio between training and validation 

samples, respectively. 20 iterations were performed to better utilise the data set and to decrease 

the potential impacts of outliers in the data on the cross validation. For more information, see 

Section 2.5.2. 

7.1.5.3 Model Validation 

The validation of PLS-DA and SVC models was performed using the overall error rate (ER) 

and the Matthews Correlation Coefficient (MCC) based on the confusion matrices of the 
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developed models. The appropriate model complexity of the PLS-DA and SVC models was 

determined through the selection of model complexity with the lowest ER in the cross 

validation. For more information on the classification metrics, refer to Section 2.6.2. 

All regression models were validated using the OECD guidelines for 𝑅2 and 𝑄2 for QSAR 

models (Veerasamy et al., 2011, Alexander et al., 2015). The guidelines state that 𝑅2 and 𝑄2 

should be greater than 0.5 and 0.6 in the cross-validation and external prediction, respectively. 

In addition, the difference between 𝑅2 and 𝑄2 should not exceed 0.3. The thresholds 𝑅2 and 

𝑄2 in the OECD guidelines are intended to be used for early model development to explore 

potential correlation of factors and descriptors related to the modelled responses. Once 

characterised, additional descriptor development and adjustments can be performed to further 

improve model performance. For more information on the regression metrics, refer to Section 

2.6.1. 

7.1.5.4 Y-Randomisation 

Y-randomisation was used to evaluate the presence of random correlation between a descriptor 

set and a randomised response vector. The response vector was randomised 50 times and an 

individual model was developed on each permutation. Calculated 𝑅2 and 𝑄2 values from the 

50 models were then averaged. If no chance correlation is present in the descriptor set, both the 

averaged 𝑅2 and 𝑄2 values will be low. For more details on Y-randomisation, refer to Section 

2.6.3. 

7.1.6 Variable reduction and Selection 

7.1.6.1 V-WSP 

The V-WSP algorithm was applied as an unsupervised variable reduction method to remove 

collinear descriptors present in the 𝑿 block. Implementation of V-WSP was performed in the 

same way as described in Section 5.1.5.1.  

In order to avoid removal of collinear descriptors belonging to different chains, domains or 

substructure, the V-WSP reduction was performed on groups of descriptors defined by the 

resolution of the descriptor set. In MSD1, the groups were defined as individual chains. In 

MSD2, the groups were defined as individual domains. In MSD3, the groups were defined as 

individual substructures. This was done in order to avoid excessive information loss and to 

represent each group individually. Reduction with V-WSP was performed prior to any 

supervised variable selection method. 
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7.1.6.2 rPLS 

Supervised variable selection with rPLS was performed using PLS Toolbox 8.6.1 (Eigenvector 

Research Inc) together with MATLAB 2016a (Mathworks®). An initial PLS model was 

developed with selected descriptors from V-WSP reduction and the latent variable with the 

smallest RMSECV was selected as a starting point for the rPLS selection. For more information 

on rPLS, refer to Section 2.9.1. 

7.1.6.3 GA 

Supervised variable selection with Genetic Algorithm (GA) was performed using PLS Toolbox 

8.6.1 (Eigenvector Research Inc) together with MATLAB 2016a (Mathworks®) and PLS as 

the fitness function. A population size of 100 was used and the maximum number of generations 

was set to 100. The convergence for the GA algorithm was set to 50%. Default values for the 

mutation rate and the ratio of kept variables in the initial models was kept as 0.5% and 30%, 

respectively. For more information on GA, refer to Section 2.9.2. 

7.1.6.4 LASSO 

The LASSO algorithm was implemented using the function fitrlinear in MATLAB 2016a 

(Mathworks®) where SVR was set as the learner and LASSO selected as the regularisation 

method. A grid search was performed in the same fashion to that of SVR described in Section 

5.1.5.4 in order to optimise the parameter selection. 

7.2 Results and Discussion 

7.2.1 Analysis of protein dynamics 

The evaluation of the simulations was performed by observing the generated RMSD plots for 

the 128 mAb simulations which are shown in Figure 7.1. The majority of the mAb structures 

reached conformational stability after 15 ns which can be observed as the plateaus in Figure 

7.1a. However, four mAb structures failed to reach conformational stability during the 

simulation where the RMSD value instead kept increasing as illustrated in Figure 7.1b. 

Interestingly, three of these mAbs: briakinumab, fezakinumab and tralokinumab are of lambda 

conformation whereas eldelumab is of kappa conformation. It has been shown in research that 

light chains of the lambda isotype in general are more unstable than kappa which might explain 

why conformational stability were not reached in the simulations (Rouet et al., 2014).  



179 

 

Figure 7.1. RMSD plots of GROMACS simulations where (a) mAbs have reached conformational stability and 

(b) mAbs that have not reached conformational stability. 

In addition to the plots, the standard deviation of the RMSD, 𝜎𝑅𝑀𝑆𝐷, was calculated from the 

snapshots obtained between 15 ns and 50 ns in the simulations according to equation (7.1). 

 

𝜎𝑅𝑀𝑆𝐷 = (
1

𝑁𝑓𝑟𝑎𝑚𝑒𝑠 − 1
∑ (𝑅𝑀𝑆𝐷𝑡 − 𝐸(𝑅𝑀𝑆𝐷))

2
50 𝑛𝑠

𝑡=15 𝑛𝑠

)

1
2

 (7.1) 

 

where 𝑁𝑓𝑟𝑎𝑚𝑒𝑠 is the number of snapshots between 15 ns and 50 ns, 𝑅𝑀𝑆𝐷𝑡 is the RMSD value 

at time 𝑡 and 𝐸(𝑅𝑀𝑆𝐷) is the expected value or average of the RMSD according to equation 

(7.2).  

 

𝐸(𝑅𝑀𝑆𝐷) =
1

𝑁𝑓𝑟𝑎𝑚𝑒𝑠
∑ 𝑅𝑀𝑆𝐷𝑡

50 𝑛𝑠

𝑡=15 𝑛𝑠

 (7.2) 

 

The 𝜎𝑅𝑀𝑆𝐷 value thus represents the variability of the RMSD curve in the simulation interval 

between 15 ns and 50 ns where stability had been reached for the majority of mAb structures. 

Therefore, in a more indirect manner, the 𝜎𝑅𝑀𝑆𝐷 value can be used to infer conformational 

stability of a protein where a low value represents a stable conformation whereas a high value 

represents conformational change. The four mAb structures: briakinumab, fezakinumab, 

tralokinumab and eldelumab illustrated in Figure 7.1b had 𝜎𝑅𝑀𝑆𝐷 values above 0.12 with the 

highest value of 0.21 (fezakinumab). The mAb structures that were considered stable all had 

values below 0.07, thus having less conformational variation occurring after the structure had 

been relaxed (data not shown). Further inspection of eldelumab was performed in order to 
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investigate the second plateau illustrated in Figure 7.1b between 30 ns and 50 ns of the 

simulation. It was observed that the rise in RMSD occurring at 30 ns was caused by the VH 

domain slightly twisting upwards in the Fab fragment as illustrated in Figure 7.2 where Figure 

7.2a and Figure 7.2b are snapshots taken at the 25 ns and 35 ns timeframes of the simulation 

respectively. The new structural conformation of eldelumab illustrated in Figure 7.2b then 

remained stable throughout the rest of the simulation. In the case of briakinumab, fezakinumab 

and tralokinumab, twisting occurred in all domains where the VH and VL domains packed closer 

to the CL and CH1 domains respectively, thus resulting in a more compact and spherical 

structure (data not shown). The observed conformational change of the structures were gradual 

throughout the simulations which also explains the continued increase of the RMSD values for 

briakinumab, fezakinumab and tralokinumab. 

 

Figure 7.2. Displacement of the VH domain (blue arrow) in the simulation of eldelumab from the domains original 

position captured at (a) 25 ns to its new placement captured at (b) 35 ns. The heavy chain is coloured blue while 

the light chain is coloured red. 

For all simulations except briakinumab, eldelumab, fezakinumab and tralokinumab, the 

structures remained stable throughout the simulation and no conformational changes occurred. 

The last timeframe in each of these simulations was therefore used to generate a PDB structure 

from which descriptors were later generated (see Section 6.6). For eldelumab, the last timeframe 

was used due to that the second plateau remained stable from 30 ns until the end of the 

simulation. Preferably, continued simulation of briakinumab, fezakinumab and tralokinumab 

would be desirable in order to allow the structures to converge to a stable conformation. 

However, due to time constraints within the project, the last timeframe in the simulations (50 

ns) were used to generate the descriptors. Though it introduces some uncertainty regarding 
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briakinumab, fezakinumab and tralokinumab structural stability, it was believed that if the 

simulations were allowed to run further, they would converge to a stable conformation. 

Therefore by selecting the last timeframe in the simulation, it could be assumed that the 

structures would be closer to the stable conformations than they were prior to the simulations.  

7.2.2 Impact of the light chain isotypes 

Similar to the exploratory analysis performed in Chapter 4 on the 273 mAb sequences obtained 

from the IMGT database, the impact of the light chain isotypes, kappa and lambda, on the 

generated 3D structure descriptors described in Chapter 6 was explored with PCA. Only 

descriptors generated from the light chain were used in this exploratory analysis because no 

structural information relating to the heavy chain isotype were present in the structures due to 

all mAbs being expressed as IgG1. The number of principal components (PCs) was 

incrementally increased until approximately 90% of the data variation in the descriptors sets 

had been explained. This was done due to the light chain isotype being expected to have a strong 

impact on the generated descriptors in a similar fashion as was observed in Chapter 4 for the 

primary sequence-based descriptors. 

A clear diagonal separation of kappa and lambda could be observed in the first and second PCs 

in MSD1 (Figure 7.3a), MSD2 (Figure 7.3b) and MSD3 (Figure 7.3c) with an explained 

variation of 81.18%, 72.0.3% and 42.45%, respectively. However, not all of the explained 

variation of the first two PCs can be attributed entirely to the separation of the isotypes which 

also separates the individual samples from each other due to their unique surface properties. It 

is difficult to estimate to what extent the VL and CL domains influence the separation. However, 

a clear contribution from both domains could be observed when investigating the loadings of 

PC1 and PC2, as illustrated in Figure C.7 in Appendix C. The remaining PCs showed no further 

separation of the light chain isotypes and were therefore assumed to capture variation related to 

individual samples instead (data not shown). A short summary of the PCA results is presented 

in Table 7.1. 

The statistical analysis on the response vectors of the HIC retention time and mAb yield 

performed in Section 5.2.2 is still valid due to being independent from the generated descriptors 

and only investigates the behaviour of the responses according to the isotypes. Just as with the 

primary sequence-based descriptors, a strong impact of the isotypes on the generated 3D 

structure descriptors was evident (see Figure 7.3). This can potentially act as a systematic 

variation that is uncorrelated to the response and can have a negative impact on the performance 

of developed regression models (Wold et al., 1998). It is important to remember that the heavy 

chain was modified by Jain et al (2017) where all heavy chain constant domains were expressed 
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as IgG1 regardless of their original conformation. Therefore, no conclusions can be drawn with 

regards to the impact of the original heavy chain isotypes on the responses. For these reasons, 

only IgG1-kappa samples were used for further model development, resulting in 79 samples 

being retained from the previously 128 selected samples.  

As previously described in Chapter 4, the amino acid composition of the primary sequence in 

the VL domain will be different between kappa and lambda due to being expressed from 

separate genes in the VJ recombination (Jung and Alt, 2004). This had a significant impact on 

the generated 3D structure descriptors from the VL domain which had high contributions to the 

loadings of the PC1 and PC2 (see Figure C.7 in Appendix C). This indicates that a fraction of 

residues directly related to the light chain isotype are present on the surface and it further 

highlights the need for an appropriate selection of samples in order to avoid introduction of 

uncorrelated systematic variation prior to model development. 

 

 

Figure 7.3. PCA score plots of the first two components calculated from the light chain descriptors from MSD1 

(a), MSD2 (b) and MSD3 (c) where kappa and lambda samples are coloured red and green, respectively. 
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Table 7.1. PCA exploration summary of light chain descriptors from MSD1, MSD2 and MSD3 where each model 

was developed to capture approximately 90% of the total data variation. The last two columns show information 

of PCs related to the LC isotype separation and the cumulative explained variation of those PCs. 

Descriptor 

Set 

Number of 

Descriptors 

Principal 

Components 

Explained 

Variation (%) 

LC Isotype 

separating 

components 

Explained 

Variation (%) by 

selected component 

MSD1 50 4 90.04 1 and 2 81.18 

MSD2 100 6 90.24 1 and 2 72.03 

MSD3 632 26 90.12 1 and 2 42.45 

 

7.2.3 Impact of species origin 

To explore the potential impact of the species origin, classification methods such as PLS-DA 

and SVC were applied to the 79 selected IgG1-kappa samples. All 100 descriptors in MSD1 

were used in the model development due to having been calculated on the full heavy or light 

chains where separation of constant and variable domains is not possible (see Section 6.6.3). 

As for MSD2 and MSD3, only descriptors belonging to the variable domains VH and VL were 

used which resulted in 100 and 644 descriptors being used, respectively. The CADEX algorithm 

was used to split the data into 80/20 for calibration and test, respectively, according to the 

structural information contained in the individual descriptor sets MSD1, MSD2 and MSD3. 

When CADEX was used directly, the algorithm produced a skewed split of species origins in 

the calibration and test sets in all individual descriptor sets. This was especially pronounced for 

the chimeric species origin where only one sample was placed in the test set for MSD2 and 

MSD3 while no samples were placed in the test set for MSD1. Instead, a sample stratification 

strategy was implemented to ensure that all species origins were appropriately represented in 

the test set (Shahrokh and Dougherty, 2013). This was performed by applying the CADEX 

algorithm individually on the three species origins where 80% were retained for training and 

20% for model validation in the test set. A summary of the sample splitting is presented in Table 

C.6 in Appendix C. 

A summary of the performance of the developed PLS-DA and SVC models is presented in 

Table 7.2 for the three descriptor sets. None of the developed models performed well in the 

cross-validation where the error rates were close to 0.4 regardless of modelling method or 

descriptor set, meaning that approximately 40% of the samples were classified incorrectly. The 

corresponding MCC values showed an indication of a weak correlation (0.2-0.3) between the 

generated descriptors and the species origin classes, thus indicating a lack of correlation in the 

data (Jurman et al., 2012). This is further supported through investigation of the individual AUC 

values of the three species origins obtained from the ROC curves illustrated in Figure C.8 in 
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Appendix C. For both PLS-DA and SVC models developed on the MSD1 and MSD2 descriptor 

sets, the AUC values tended to be placed around 0.65 for the chimeric and human species 

origins while the humanised species origin was around 0.75. For PLS-DA and SVC models 

developed on the MSD3 descriptor set, the AUC value of the chimeric species origin tended to 

be around 0.8 while the human and humanised classes had values around 0.7. The AUC values 

are considered to be relative and dependent on the data set used. However, as a rule of thumb 

AUC values above 0.8 can be considered as a reasonable performance while values below 0.8 

can be considered poor (Fawcett, 2006). Thus, none of the developed classification models were 

able to identify an underlaying correlation between the generated 3D structure descriptors and 

the species origins. 

Compared to the cross-validation, the results observed in the test set tended to vary a bit more. 

In general, SVC models tended to have slightly higher MCC values and lower ER values 

compared to PLS-DA.  The best performance was observed in the SVC model developed on 

the MSD3 descriptor set with a MCC value of 0.75 and an ER value of 0.18.  However, due to 

the poor performance in cross-validation this model cannot be considered to produce accurate 

predictions in future samples.  

Table 7.2. Summary of PLS-DA and SVC model performance developed on the descriptor sets: MSD1, MSD2, 

and MSD3. The MCC and ER performance metrics for calibration (Cal), cross-validation (CV) and the external 

test (Test) set are provided as well as the explained data variation of 𝑿 and 𝒀 by PLS-DA. 

Method 
Descriptor 

Set 

Explained 𝑿 

Variation (%) 

Explained 𝒀 

Variation (%) 

Cal   CV   Test  

MCC ER   MCC ER   MCC ER 

PLS-DA 

MSD1 86.68 62.27 0.86 0.08   0.19 0.48   0.29 0.41 

MSD2 76.59 45.97 0.72 0.16  0.20 0.48  0.07 0.53 

MSD3 26.95 57.52 0.78 0.13   0.26 0.42   0.59 0.24 

SVC 

MSD1 - - 0.89 0.06   0.28 0.40   0.48 0.29 

MSD2 - - 0.92 0.05  0.32 0.37  0.37 0.35 

MSD3 - - 0.97 0.02   0.26 0.40   0.75 0.18 

 

When compared to the classification results in Section 4.2.5 where primary sequence-based 

descriptors had a strong correlation to the species origin classes, the 3D structure descriptors 

investigated in this chapter could not be directly linked to the species origin. A plausible cause 

for this could be that the necessary information needed for a reliable classification becomes 

buried inside the protein structure. Compared to the primary sequence-based descriptors, where 

each residue in the VH and VL domains had equal representation, in the 3D structure descriptors 

the species origin related residues might no longer be represented due to having been modified 

to conform to the solvent accessible surface area. Thus, the systematic variation related to the 



185 

species origins observed in Section 4.2.5 becomes nearly negligible when 3D structure 

descriptors are used.  

It is important to note that there was no significant statistical difference between the means of 

the HIC retention time between the three species origins whereas for the mAb yields, a 

significant statistical difference between the means of the chimeric and humanised samples was 

observed (see Section 5.2.2). However, due to the lack of systematic variation present in the 3D 

structure descriptors related to the species origin, all 79 IgG1-kappa samples were retained for 

further model development presented in Table A.3 in Appendix A. 

7.2.4 HIC model development on IgG1-kappa samples 

The same structured approach for model benchmarking described in Chapter 5 was applied for 

regression fitting with regards to the HIC retention times. The CADEX algorithm was used to 

divide the 79 retained IgG1-kappa samples into a calibration set for training (80%) and a test 

set for model validation (20%). PLS and SVR were used as modelling methods. A first set of 

initial models was developed on all available descriptors in MSD1, MSD2 and MSD3. A second 

set of models was developed with collinearity reduction using the V-WSP algorithm to reduce 

the number of descriptors in MSD1, DS and MSD3. Lastly, a final set of models was developed 

on the retained descriptors from the V-WSP reduction using rPLS, LASSO and GA for variable 

selection to reduce the number of descriptors even further. The model quality metrics on cross 

validation and test set validations for all developed models are presented in Table C.7a in 

Appendix C. These were benchmarked according to the OECD guidelines. 

Models developed on the MSD1 never attained good performance and the cross-validation of 

𝑅2 and 𝑄2 remained below or around 0.2 regardless of the modelling method or the level of 

reduction of the descriptors. Models developed on MSD2 followed a similar trend as MSD1 

but had slightly increased 𝑅2 and 𝑄2 values of 0.39 and 0.34, respectively, in PLS whereas 

values of 0.30 and 0.29 were obtained in SVR after variable selection with GA. Adequate cross-

validation performance was first observed when models were developed on MSD3 in the 

following cases: 1) PLS model after descriptor selection with rPLS, 2) PLS model after 

descriptor selection with GA and 3) SVR model after descriptor selection with GA. Out of these 

three, only descriptor selection with GA demonstrated satisfactory performance in the external 

test with a 𝑅2 and 𝑄2 of 0.66 and 0.65, respectively, for PLS and a 𝑅2 and 𝑄2 of 0.64 and 0.63, 

respectively, for SVR. Neither rPLS nor LASSO performed as well as GA for variable selection 

on the MSD3 descriptor set. LASSO especially had poor performance in both the cross-

validation and test set whereas rPLS had acceptable performance in terms of the OECD 

guidelines in the cross-validation but poor performance in the test set. A potential cause to this 
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might be due to the descriptor sets containing redundant descriptors with differing levels of 

collinearity toward response correlated descriptors. Especially for the LASSO algorithm to 

work properly, only a small degree of collinearity can exist between redundant and response 

correlated descriptors in order for the appropriate selection to be performed (Meinshausen and 

Yu, 2009). In conclusion, only the PLS and SVR models developed using MSD3 (Substructure 

based) and optimised with GA fulfilled the OECD criteria for both cross validation (𝑅2 and 

𝑄2  >  0.5) and external testing (𝑅2 and 𝑄2  >  0.6) (Veerasamy et al., 2011, Alexander et al., 

2015). Due to similar model performance, both the PLS and SVR models can be used for the 

prediction of HIC retention times. However, the PLS model is preferred in an industrial setting 

due to being more straightforward to train where only one model parameter needs to be 

specified. The PLS model also have stronger diagnostic capabilities where the investigation of 

sample and descriptor contribution towards 𝒀 is more intuitive.  

The selected model was developed initially from the original 1163 descriptors available in the 

full MSD3 descriptor set where 319 were retained from the V-WSP reduction, thus effectively 

reducing the number of descriptors by ~70%. The Procrustes index was used to evaluate the 

loss of information when comparing the full and V-WSP reduced MSD3 descriptor sets. A 

value of 0.0638 was obtained, indicating that only a small fraction of the information was lost 

in the reduction step (Ballabio et al., 2014). This can also be observed in benchmark table for 

MSD3 (see Table C3.2a in Appendix C) where the of 𝑅2 and 𝑄2 values in the cross validation 

and the test set remained mostly unchanged after the reduction. Out of the 319 remaining 

descriptors, GA selected a subset of 51 descriptors used to develop the final PLS model. A full 

list of the selected descriptors is presented in Table C.8 in Appendix C. Model predictions of 

the calibration samples (dark circles) and test samples (red circles) are shown in Figure 7.4a as 

a measured vs predicted parity plot. The test samples from Figure 7.4a are further illustrated in 

Figure 7.4b as a bar plot for easier comparison of the measured and predicted values for 

individual mAbs. The model performance is summarised in Table 7.3. 

Y-Randomisation (or Y-Scrambling) was used as a final validation step to evaluate the selection 

of the descriptors (Rücker et al., 2007). A PLS model was trained on a randomised (scrambled) 

HIC response vector while the sample order in the MSD3 descriptor set was kept unchanged. 

This was repeated 50 times and the average of 𝑅2 and 𝑄2 for the cross validation was calculated. 

A resulting 𝑅2 value of 0.03 and a 𝑄2 value of -3.94 was obtained. This indicates that no chance 

correlation is captured by the model and that the selected descriptors are important to describe 

the relationship between the structure of the mAbs and HIC responses. The results are 

summarised in Table 7.3. 
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Figure 7.4. Predictions of HIC retention times with PLS-GA model developed on the MSD3 descriptor set (LVs 

= 9). (a) Measured versus predicted plot with calibration samples in black and test set samples in red. (b) Measured 

(black) and predicted (red) values of test set samples.  

Table 7.3. PLS model summary developed for HIC retention time prediction using the MSD3 descriptor set. Root 

Mean Square Error (RMSE), R2, Q2 and model bias are listed for Calibration, Cross validation, Test set and Y-

randomisation (Y-scrambled). The Y-randomisation metrics are the average values of 50 randomised models. 

  PLS 

 
RMSE R2 Q2 Bias 

Calibration 0.13 0.98 0.98 0.00 

Cross Validation 0.51 0.75 0.71 0.02 

Test 0.59 0.66 0.65 -0.11 

Y-scrambled 

(Average) 
2.01 0.03 -3.94 -0.01 

 

The developed PLS model has signs of slight over-fitting when observing the calibration 

samples (dark) and the test set samples (red) in Figure 7.4a. The calibration samples showed a 

low RMSE value of 0.13 compared to the test set with an RMSE value of 0.59, which is also 

indicated by a greater distance of these samples from the parity line. This is an indication of 

over-fitting as the RMSE values between the calibration and test set should be ideally similar 

to each other (Lever et al., 2016). A likely reason for this is that a small number of redundant 

or noisy descriptors were selected by the GA algorithm to better fit the calibration samples in 

the cross-validation which in turn resulted in a high calibration fit with 𝑅2 and 𝑄2 values of 

0.98 and 0.98, respectively (Leardi, 2000). However, though not perfect, the underlaying 

correlation between the mAb structures and the HIC retention times has been captured by the 

PLS model as indicated by 𝑅2 and 𝑄2 values greater than 0.6 for the test set (Veerasamy et al., 

2011) 
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A general trend observed in the descriptors was that about 45% of all descriptor belonged to 

the CDR regions, 31% to the framework regions and the remaining 24% belonged to both the 

constant domains of CH1 and CL (see Table C.8 in Appendix C). This indicates the importance 

of the structural information contained in the variable domains. This is sensible as the CDRs 

are the source of the greatest sequence variability in the entire mAb structure which in turn 

affects surface and structure related properties of both the CDRs as well as framework regions 

in the variable domains (Lefranc et al., 2003). The effect will likely not be as pronounced in the 

constant domains of the 79 IgG1-kappa samples due to having identical primary sequence. 

Instead, the variability present in the 3D structure descriptors of the constant domains are likely 

to be related to conformational differences originating from the molecular dynamics 

simulations. However, it is important to note that the  descriptors from the constant domains 

cannot be disregarded due to dynamic interactions between the constant and variable domains 

which in turn will affect the generated descriptors (Feige et al., 2010). 

A closer inspection of the descriptors revealed that selected descriptors describing the polar 

surface areas (Spolar and SASApolar) and non-polar surface areas (Snon-polar and SASAnon-polar) 

belonged almost exclusively to the CDR regions. Representation of the volume (VOLTAE) and 

the electrostatic potential (SIEP) generated as part of the TAE descriptors were also commonly 

found belonging to the CDRs. This is consistent with published research where the CDRs have 

a pivotal role in binding to the HIC column resin with stronger binding usually occurring when 

the CDRs are long and hydrophobic (Hebditch et al., 2018).  

In addition, the stability of the mAb structures played a central role for prediction of the 

retention times represented mostly by energy-based descriptors. 11 of the 24 GA selected 

energy descriptors were related to the conformational entropy Gc(F), which describes the 

stability of the protein with regards to the hydrophobic interactions in the protein core which 

were selected for the CDRs, framework regions and the constant domains. Other important 

energy descriptors of note were the number of estimated water molecules surrounding the 

surface, W(F), and the interfacial free energy, ΔGs, representing the energy contribution from 

interactions between polar residues and surrounding water molecules. This is supported by 

published literature where the protein stability has been reported to play a pivotal role in HIC 

binding (Beyer and Jungbauer, 2018). This is further elucidated when considering that salt is 

added to promote binding in HIC columns and more stable mAbs require higher concentration 

of salt to disrupt electrostatic forces on the surface in order to expose hydrophobic patches 

(Gagnon, 1996a). 
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In retrospect, a replacement for the TAE descriptors might help to improve model performance. 

This is due to the TAE descriptors  consisting of static values for the individual amino acids 

which will be identical regardless of the environment they are in (Breneman and Rhem, 1997). 

Similarly, an alternative to the ProtDCal descriptors describing the energy and stability of the 

structure might also improve model performance due to being based on simplified empirical 

calculations. It was shown that they can provide a fair and often good approximation of stability 

energies when compared to experimental results. However, their applicability was not suited 

for all protein structures where large differences were observed between predicted and observed 

experimental energies in some cases (Ruiz-Blanco et al., 2013). A suggestion would be to 

perform surface properties and energy calculations directly in GROMACS or similar software 

as will be discussed further in Section 8.1. 

7.2.5 mAb yield model development on IgG1-kappa samples 

An identical benchmarking scheme as described at the start of Section 7.2.4 was performed to 

fit the MSD1, MSD2 and MSD3 descriptor sets to the mAb yield response. The cross validation 

and test set validation for all developed models are presented in Appendix C, Table C.7b. The 

developed models behaved similarly to the models for the prediction of the HIC retention times, 

where adequate performance in the cross validation was only achieved after variable selection 

had been performed. GA selection and rPLS achieved acceptable performance with 𝑅2 and 𝑄2 

greater than 0.6 for both PLS and SVR developed using MSD3 descriptor set. Selection with 

LASSO however suffered due to correlation between redundant and response-correlated 

descriptors as explained in Section 2.9.3. 

Unfortunately, none of the developed models had an adequate performance in the external test 

set regardless of which permutation of modelling, reduction or variable selection method was 

used. The predictions from the PLS model developed using MSD3 and optimised with GA is 

illustrated in Figure 7.5a. The test samples (red circles) from Figure 7.5a are further illustrated 

in Figure 7.5b as a bar plot for easier comparison of the measured and predicted values for 

individual mAbs.It can be observed that many of the test set samples have been underpredicted 

which resulted in low 𝑅2 and 𝑄2 values of 0.11 and -0.92, respectively. The model performance 

is summarised in Table 7.4. 
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Figure 7.5. Predictions of mAb yield with a PLS-GA model developed on the MSD3 descriptor set (LVs = 3). (a) 

Measured versus predicted plot with calibration samples (black) and test set samples (red). (b) Measured (black) 

and predicted (red) values of test set samples. 

Table 7.4. PLS model summary developed for mAb yield prediction using the MSD3 descriptor set. Root Mean 

Square Error (RMSE), R2, Q2 and model bias are listed for Calibration, Cross validation and Test set. 

  PLS 

 
RMSE R2 Q2 Bias 

Calibration 20.09 0.90 0.90 0 

Cross Validation 36.42 0.69 0.68 -2.73 

Test 74.25 0.11 -0.92 49.55 

 

It is difficult to identify the true reason for the poor performance in the test set although a 

potential cause may be the lack of necessary variation in the data. Addition of extra samples to 

the data set might aid to better represent the range of 𝒀 responses, but also to introduce more 

structural variation in the 𝑿 block. Noise and descriptor collinearity are also influencing factors 

in the model development where the descriptor selection methods can suffer where the wrong 

descriptors are selected thus leading to fitting of noise uncorrelated to the samples in the test 

set (Fan and Lv, 2010). A nested cross-validation approach might help in improving the model 

generalisation due to using all the available data but at the loss of a dedicated test set (Cawley 

and Talbot, 2010). Another approach would be to try ensemble techniques such as bagging or 

boosting where multiple models are developed on separate sample subsets which have been 

shown to improve model performance and generalisation (Drucker, 1997).  

From a more biological perspective, transcription and translation of the heavy and light chains 

occurs separately within the cell which usually result in a higher concentration of light chains 

being expressed compared to the heavy chains. The structure of the mAbs might therefore not 

be directly related to the mAb yields (Bayat et al., 2018, Bhoskar et al., 2013). In Pybus et al. 

(2014), the authors investigated the mAb expression with regards to the corresponding mRNA 
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structure in CHO cells. They found that expression was significantly impacted by the stability 

of the mRNA structure where less stable mRNA structures resulted in lower yields. The mRNA 

sequence also determines which RNA codons are used during translation which has a 

significant impact on the expression as also reported by the authors. Optimisation of the 

nucleotide sequence is therefore vital in order to have an efficient expression of mAbs. The 

sequence variation in the variable domains has also been shown to impact expression in CHO 

cells which relates back to the mRNA and RNA codons (Mason et al., 2012). The sequence 

variation can impact the protein folding in the endoplasmic reticulum which in turn can become 

overloaded due to the accumulation of unfolded or misfolded proteins, thus leading to lower 

expression rates (Braakman and Bulleid, 2011, Stoops et al., 2012). Based on these facts, it is 

therefore difficult to accurately predict the yields based on the mAb structure alone, but 

information pertaining to the mRNA sequences would be needed as well (Pybus et al., 2014).  

7.2.6 Comparison to primary sequence-based models 

Initially, a model comparison for HIC retention time prediction of the developed primary 

sequence-based model presented in Section 5.2.3 and the developed 3D structure model 

presented in Section 7.2.4 was supposed to be performed with an independent external data set. 

Due to using CADEX, different samples were selected for the test set in the two models which 

meant that an unbiased evaluation using the samples from the data set provided by Jain et al. 

(2017) could not be performed. Instead, HIC retention times for humanised mAbs from the 

Advanced Manufacturing Supply Chain Initiative (AMSCI) data were supposed to be used 

(CPI, 2015). However, due to project time constraint and the lengthy process to draw up 

confidentiality agreements, the AMSCI sequences and HIC retention times could not be 

accessed in time and a direct comparison between the models was therefore no longer possible.  

However, some conclusions regarding the applicability can be made. As was observed in 

Chapter 5, when all species origins were used in model development, none of the resulting 

models had adequate performance with regards to the OECD criteria due to poor performance 

in the test set (𝑅2 and 𝑄2  <  0.6). This was caused by the systematic variation in the primary 

sequence-based descriptors that originated from structural differences between the species 

origins which were uncorrelated to the HIC response (see Section 5.2.2). Adequate performance 

was not reached until only humanised samples had been selected, significantly increasing the 

model performance in both the cross validation and test set when primary sequence-based 

descriptors were used. In comparison, due to the negligible systematic variation present in the 

generated 3D structure descriptors from the species origins, model development could proceed 

with all available IgG1-kappa samples as well as achieving adequate performance in both the 
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cross-validation and test set (see Section 7.2.4). The use of 3D structure descriptors therefore 

increases the applicability of the QSAR model to the point where the species origin can be 

ignored. However, stronger systematic variations originating from the different mab isotypes 

still needs to be considered and therefore the model will only be able to predict accurately on 

IgG1-Kappa samples. 

From the perspective of a pharmaceutical industry, neither the primary sequence-based model 

or the 3D structure descriptor model has adequate performance to be used as a predictive tool 

in QbD risk assessment as of yet. This would require a higher model performance with  𝑅2 and 

𝑄2 values of at least 0.8 in both the cross-validation and test set in order to decrease the offset 

between measured and predicted values thus increasing the confidence in the predictions. 

However, based on the acquired results, both the primary sequence-based descriptors and the 

3D structure descriptors shows promise for further improvements. In this research, the initial 

descriptor sets were developed to capture a wide range of different properties and features in 

although the majority of these were discarded in the model optimisation with V-WSP reduction 

and GA selection. Further model development is therefore recommended by re-evaluating the 

properties of the selected descriptors in order to expand and incorporate more related structural 

properties and features in the descriptor sets. It is important to note that the 3D structure 

descriptors are more flexible than the primary sequence-based descriptors. This is due to that 

process related information regarding the environment e.g. temperature, pH, molality etc can 

be incorporated in the MD simulations and their effects on the protein structure can be 

approximated (see Section 6.5). This is not possible with the primary sequence-based 

descriptors due to being static.  

7.3 Summary 

In this chapter the 3D structure descriptors, developed from mAb structures simulated with 

GROMACS, were explored and used for the development of predictive models for the 

prediction of HIC retention times and mAb yields. 

Exploration of the 3D structure descriptors of the light chain with PCA showed a strong 

correlation to the kappa and lambda isotypes which were present in all of the three generated 

descriptor sets. Based on previous results from the statistical hypothesis testing in Section 5.2.2, 

no correlation between the light chain isotypes and responses of HIC retention times as well as 

mAb yields could be significantly proven. As described in Section 7.1.1, modification of the 

heavy chain was made by Jain et al (2017) as they expressed all IgG2 and IgG4 mAbs as IgG1. 

If the original isotypes were preserved, though unknown, it could have potentially altered the 

measured experimental responses. For this reason, only IgG1 samples were selected due to the 
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uncertainty of the true behaviour of the IgG2 and IgG4 mAbs. Contrary to the previously 

explored primary sequence-based descriptors, only negligible correlation between the 

generated 3D structure descriptors and the species origins was observed through classification 

models based on PLS-DA and SVC. As a result, selection of a subset of 79 IgG1-kappa samples 

of all species origins from the available 128 samples was used in order to reduce harmful 

systematic variation uncorrelated to the response vectors as well as keeping the samples true to 

their original conformations.  

In this chapter, it has been shown that a model for predicting the HIC retention times could be 

developed with 3D structure descriptors generated from the individual substructures (MSD3) 

of a Fab fragment. Both PLS and SVR models developed on the MSD3 descriptor set after 

descriptor selection with GA had similar performance, but the PLS model was selected due to 

more straightforward implementation. The PLS model had adequate performance in accordance 

with the OECD guidelines for QSAR models with a 𝑅2 and 𝑄2 of 0.75 and 0.71, respectively, 

in the cross validation and a 𝑅2 and 𝑄2 of 0.66 and 0.65, respectively, in the test set. Though 

not all variation was explained by the model, it provided valuable insight into important 

descriptors and factors affecting model performance.  

No satisfactory model could be developed for the prediction of mAb yields as indicated by the 

signs of overfitting evidenced by the poor test set results. A potential cause could be that 

structural information alone might not be directly correlated to the yield and other factors 

related to the expression from the cell might be missing. 

Unfortunately, no direct comparison could be made between the selected primary sequence-

based model in Chapter 5 and the 3D structure model in this chapter for prediction of HIC 

retention times as explained above. However, the model developed using the 3D structure 

descriptors showed broader applicability due to being unconstrained in regards to the species 

origins. In comparison, the model developed on the primary sequence-based descriptors was 

trained on humanised samples only and would not be able to reliably predict retention times for 

chimeric and human samples. Further improvement of the developed models is still necessary 

in order to increase prediction accuracy prior to application in risk assessment. 
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Chapter 8  

 

Conclusions and Future Work 

In this project the QbD framework was reviewed due to being commonly used in process 

development for mAbs and provides a systematic approach to increases process understanding 

through characterisation of process parameters and their effect on the product quality. However, 

due to the numerous process parameters that need to be characterised, the QbD framework still 

faces challenges in implementation. Much research has been focused in areas such as high-

throughput platforms and process optimisation to reduce attrition in the process development. 

However, it was identified that one of the biggest challenges in QbD implementation is the lack 

of knowledge about both the process and product in early process development where the 

manufacturability of an mAb might not be possible. 

In the literature review, it was shown that the QSAR framework for in silico model development 

has become increasingly popular for end point predictions of protein behaviour in different unit 

operations. This makes the QSAR framework a potentially valuable tool which can aid risk 

assessment in early process development to better direct experimental designs and thus reduce 

costs. The use of in silico approaches therefore allows for more informed estimates of the 

potential behaviour of a mAb in different unit operations of the process. This could become 

possible by efficiently making use of historic prosses data from previously established mAb 

manufacturing processes and constructing an expert system. The integration of QSAR into the 

QbD framework was therefore proposed in order to increase product understanding which is 

especially important in early process development.  

In this research, an extensive framework was developed based on QSAR in order to address the 

challenges facing mAb process development. The framework can roughly be divided into three 

parts according to: 1) Generation of descriptors relating both to the primary sequence as well 

as the 3D structure of mAbs. 2) Exploration and statistical assessment of generated descriptor 

and responses, respectively, for elimination of detrimental systematic variation. 3)  Model 
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development and validation coupled with descriptor reduction and selection. The 

implementation of such frameworks is becoming increasingly important in pharmaceutical 

industries in order to speed up development and lower the costs of new biopharmaceuticals. 

Due to the shifts toward high-throughput technology that has occurred during the recent years 

in both upstream and downstream of the mAb process, the increased availability of process data 

introduces and excellent starting point for the implementation of the presented framework. 

In this research, focus was placed on the development of predictive models assessing HIC 

retention times and mAb yields due to these important factors for protein stability and 

productivity assessment in process development. The highlights from the different chapters in 

this thesis and potential improvements are addressed according to the following areas: 1) 

Descriptors, 2) Sample Selection and 3) Model Development and Assessment for easier 

evaluation. 

8.1 Descriptors 

Two different approaches for generating descriptors for development of predictive models was 

reviewed and implemented in this project. The first approach presented in Chapter 3, used the 

primary sequence of the mAbs where descriptors were produced using EMBOSS Pepstats, 

ProtDCal and amino acid scales. These descriptors were designed to capture structural 

variations based on differences in amino acid compositions between mAbs. The second 

approach presented in Chapter 6, was based on development of 3D structure from the primary 

sequences. Due to the lack of published structures, homology modelling was applied to produce 

approximations of the 3D structures for all mAbs used in this research. Molecular Dynamics 

simulations was then performed to relax the homology structures. Descriptors were then 

developed with GROMACS and ProtDCal and captured properties related to the surface and 

stability of the mAbs. 

In both approaches, descriptor sets of different resolutions were generated. For the primary 

sequence-based descriptors, the lowest resolution was attained when descriptors were 

calculated from all residues in an individual domain which meant that each domain could be 

represented individually. The highest resolution was attained when descriptors were generated 

for each individual residue in the primary sequence. For the 3D structure descriptors, the lowest 

resolution was calculated from each individual chain while the highest was calculated from the 

individual substructures present in the mAb structure. By comparing the different resolutions 

in the developed predictive models, a trade-off could be made in order to investigate the 

required resolution for adequate model performance. More explicitly, a too low resolution 

would often confound important structural properties while to high resolution would introduce 
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noise in the form of redundant descriptors into the developed models where in both cases lead 

to poor model performance.  

8.1.1 Suggestion for Improvements 

One of the biggest weaknesses with the generated descriptors is the absence of data on protein 

modifications such as the mAb glycan structure which has a major impact on the mAb stability. 

Due to that the upstream environment was identical for all mAbs in data set acquired from Jain 

et al. (2017), it was assumed that the glycan structure would be similar between the mAbs used 

for model development in this research. However, this assumption cannot be made in an 

industrial setting where the glycan structure is likely to be different between mAbs and therefore 

must be considered as a source of variability and represented in the modelling data. 

In this research atomistic simulations using GROMACS were performed on all mAbs in order 

to relax the structure and capture the structure dynamics. However, as presented in Section 

7.2.1, three mAbs failed to converge to a stable conformation. It was suggested that continued 

simulation would be necessary in order for the structure to converge to a stable conformation. 

In retrospect, a longer simulation time, such as 100 ns as well as multiple runs for each structure, 

would be beneficial for all structures as it allows for more structural variation to be captured 

while at the same time minimises the risk of simulations ending at conformational transition 

points. However, running all simulations at atomistic resolution for 50 ns takes considerable 

amounts of time. An alternative would be to investigate coarse-grained simulations which will 

run much faster due to the protein structure being simplified thus resulting in less particles in 

the simulation system. A comparison would need to be made to ensure that the protein dynamics 

of coarse-grained simulation is representative to that of the atomistic simulation in order to not 

bias the resulting structure. The use of coarse-grained simulation would also allow for longer 

simulations to be run, thus generating a stronger foundation for understanding to structure 

dynamics.   

3D structure descriptor in this research were generated from a PDB structure acquired from a 

single time-frame from the MD simulation. However, due to the structure being dynamic and 

changing slightly over time, only using single time-frame might not accurately represent the 

surface and stability of the structure. An alternative would be to generate descriptors on all 

available time frames from when the structure has reached conformational stability to the end 

of the simulation and then average the descriptors over time. This would probably result in 

more stable and representative descriptors due to conforming to the dynamics of the mAb 

structure.  
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As mentioned earlier in Chapter 7, the calculation of energy descriptor through ProtDCal are 

based on simplified empirical mathematical models which might not accurately represent the 

environment in which the mAbs are simulated. It is therefore proposed that stability and energy 

related descriptors are calculated directly in GROMACS or equivalent software which can take 

into consideration many different interactions between the atoms in the system. GROMACS 

also supports energy calculations of predefined groups of residues, thus allowing for calculation 

of descriptors conforming to the different descriptor set resolutions presented in Chapter 6. 

Though never implemented, a workflow of modifying the titration states of residues in the mAb 

structure as well as adding co-solvents to the system was presented in Chapter 6. It would be 

interesting to see how the descriptors change in response to the change in pH and co-solvent 

concentration. If the HIC elution curves were available for the mAbs in Jain et al. (2017) instead 

of just the end point retention times, several simulations with differing salt concentrations could 

have been performed and linked to the cumulative elution, thus expanding the data set. 

Alternatively, the proposed methodology could be used on published experimental data which 

follows DoE experimental design. 

8.2 Sample Selection 

Selection of samples played a critical role in the model development in order to reduce 

systematic variation uncorrelated to the response vectors where a structured approach for 

investigating sources of variation was proposed. Two sources of variation were identified early 

on where the first originated from the unique structures of the heavy chain isotypes IgG1, IgG2 

and IgG4 whereas the second originated from the unique structure of the light chain isotype 

kappa and lambda. Exploration of the primary sequence-based descriptor with PCA on the 

gathered 273 IMGT sequences presented in Chapter 4 revealed that both the heavy and light 

chain isotypes had a clear and strong separation. Further analysis showed that a significant 

portion of the data variation in the descriptors were used to explain the observed separations. 

Similar results were observed when exploring the 3D structure descriptors of the 128 samples 

acquired from Jain et al. (2017) presented in Chapter 7, where a clear separation of light chain 

isotypes kappa and lambda were observed with PCA. However, due to the alteration of the 

heavy chain constant domains in the original mAb structures which were all expressed as IgG1, 

no conclusive results could be drawn regarding isotypes IgG2 and IgG4. 

The statistical analysis performed in parallel on the response vectors of HIC retention times and 

the mAb yields from the data set provided by Jain et al. (2017) showed that no differences could 

be significantly proven in either of the responses when the heavy or light chain isotypes were 

compared. Important to note is that the statistical analysis performed on the heavy chain 



199 

isotypes was biased due to all samples being expressed as IgG1 and was therefore not likely to 

show a significant difference between the isotypes. However, due to the clear separation of 

IgG1, IgG2 and IgG4 that was observed in Chapter 4 when exploring the primary sequence-

based descriptors, it was impossible to know if the unaltered mAbs would have an effect on the 

responses.  

A similar analysis of the species origins was performed by exploring data variation in the 

generated descriptor correlated to that of the species origins. These analyses were performed 

with classification methods such as PLS-DA and SVC instead of PCA due to higher degree of 

variability in the explored descriptors.  A strong correlation was observed between the species 

origins and the primary sequence-based descriptors but not with the 3D structure descriptors.   

Elimination of systematic variation uncorrelated to the responses was performed by removing 

groups of samples belonging to a specific isotype or species origin which were strongly 

correlated with the descriptors but where a difference between responses could not be 

significantly proven in the statistical analysis. It is important to mention that the reasoning of 

selecting the IgG1 in this research was based on the assumption that the experimental 

measurements of the response vectors might have been different for the IgG2 and IgG4 samples 

if they were not expressed as IgG1. The IgG1 samples were therefore selected due to their heavy 

chain isotype not having been altered. 

8.2.1 Suggestion for Improvements 

Though it was never followed up due to time constraints, the good classification performance 

observed when predicting the species origins in Chapter 4 might be interesting to look into. It 

is often assumed that there is no intrinsic difference between humanised and human samples. 

However, the prediction accuracy was high in both the cross-validation and the test set, thus 

indicating that a structural difference between human and humanised samples are present. 

Homology models and MD simulations of true IgG2 and IgG4 mAbs were never performed in 

this research. It was shown that only a negligible correlation was present between the 3D 

structure descriptors and the light chain isotypes. It would therefore be interesting to observe if 

the performance of classification models developed on a mix of IgG1, IgG2 and IgG4 mAbs 

where 3D structure descriptors are used as model input would be different. 

8.3 Model Development and Assessment 

Model development on the significantly larger data set provided by Jain et al. (2017) allowed 

for more advanced testing and benchmarking. In Chapter 5 and Chapter 7, predictive models 

for HIC retention times and mAb yields were developed with primary sequence-based 
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descriptors and 3D structure descriptors, respectively. Due to the larger sample sets that were 

retained after samples selection a dedicated test set could be used to validate the developed 

models properly. A model development framework was proposed for testing different 

permutation of modelling methods with descriptor reduction and selection methods. In this 

research, an initial model was developed on the full descriptor set. The unsupervised V-WSP 

algorithm was then applied to decrease the number of collinear descriptors where a new model 

was developed on the reduced descriptor set. A subsequent descriptor selection was performed 

on the reduced descriptor set with supervised descriptor selection techniques such as rPLS, 

LASSO and GA which resulted in three new models being developed. This process was 

performed for all available descriptor sets in order to identify needed resolution for adequate 

model performance in both the cross-validation and the test set. The performance of all models 

was evaluated based on the OECD guidelines for QSAR models. 

Predictive models for HIC retention times were successfully developed for both the primary 

sequence-based descriptors and the 3D structure descriptors. The model developed on the 3D 

structure descriptors had a larger applicability due to having been trained on all chimeric, 

human and humanised samples and passed the OECD criteria. The model developed on the 

primary sequence-based descriptors was more constrained due to having been trained solely on 

the humanised samples due to a poor performance of the model when different samples were 

included into model calibration. The reason for this was due systematic variation originating 

from the species origins which was much more pronounced in the primary sequence-based 

descriptors due to capturing all information from the primary sequence. For the 3D descriptors 

however, due to being buried inside of the protein structure, residue related to the species origin 

class did not translate over to the descriptors due to their SASA values being close to zero (see 

Section 6.6.2). This resulted in 79 mAbs being used to train the 3D structure-based model 

compared to 45 mAbs being used for training the primary sequence-based model. Much more 

structural variability is therefore introduced in the 3D structure based-model which increases 

the model’s robustness when predicting retention times for future samples.  

In the paper of Robinson et al. (2017), a QSAR model was developed for predicting the elution 

salt concentration in a HIC column where the authors developed descriptors generated from 3D 

structures of Fab fragments which was then trained with SVR. The authors reported that a R2 

of 0.60 was observed in the cross-validation while a R2 of 0.44 was observed in the external 

test set. Both the primary sequence-based model and 3D structure-based model presented in 

Chapter 5 and Chapter 7, respectively in this research, attained a higher R2 in both the cross-

validation and external test set compared to Robinson et al. (2017).  
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8.3.1 Suggestion for Improvements 

In this research much focus was placed on developing a single model by splitting all available 

samples once into a calibration set and a test set. However, alternative training approaches for 

model development exist such as nested cross-validation which consist of two validation loops: 

an outer loop for model validation and an inner loop for model training. The available samples 

are often split at random in the outer loop which can be repeated any number of times and have 

shown to produce models with good generalisation (Raschka, 2018). Other alternatives are 

ensemble techniques such as bagging and boosting which have also been shown to produce 

models with good generalisation capabilities. A drawback with these methods is that no 

dedicated test set will be available to substitute as future samples. 

A recommendation from Leardi (2000) was that the GA algorithm should not be used on 

problems with more than 200 descriptors which can result in over-fitting which was observed 

in the mAb yield models. A work-around would be to modify the GA algorithm to generate 

random descriptor subsets based on groups instead of the individual descriptors. The descriptors 

used in this research can all be grouped according to the structure they were generated from e.g. 

chain, domain, substructure etc as well as the type of the descriptor e.g. topological, energy 

based etc. This would not only make GA selection faster but the importance of the individual 

structures of the mAb as well as the descriptor types could be assessed more efficiently. 

As mentioned in this research, the V-WSP algorithm was applied to reduce the number of highly 

correlated descriptors. The implementation however, is very dependent on the data set where 

the correlation thresholds were selected in order to minimise loss of information. The resulting 

reduction might therefore be slightly different if performed on another data set and is therefore 

subjective. However, in both the primary sequence-based descriptors and 3D structure 

descriptors, it was observed that the constant domains generally had a lower correlation 

threshold applied (~0.6-0.7) resulting in less descriptors being retained, while the variable 

domains generally had a higher correlation threshold applied (~0.8-0.9) resulting in more 

descriptor being retained (data not shown). A recommendation would be to use static correlation 

thresholds when reducing the descriptor sets based on the observed values for the constant and 

variable domains. This would in turn lead to a more objective reduction of descriptors 

regardless of the data set used. 

A common problem encountered model development is that the distribution of response data if 

often skewed. This if often true in experimental data of mAbs where the majority of samples 

are well-behaved whereas only a few are flagged as problematic. The CADEX algorithm used 

in this research only takes into account the structural descriptors when selecting samples for 
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training and validation. For a more controlled selection, a stratification strategy with regards to 

the response distribution could be applied in order to split the distribution in to three to four 

equal sample sizes in which the CADEX algorithm is applied individually.  

8.4 Summary 

In summary, the work presented in this thesis has provided an extensive framework for 

generation of structural descriptor and predictive model development that can be applied for 

prediction of mAb behaviour in processing. As was demonstrated, successful model 

development was achieved for prediction of HIC retention times. Though the model 

performance can be further improved, it allows for further study into development of new 

descriptors and approaches for which several suggestions for improvement on the defined 

framework have been given. The framework is therefore very promising due to that only the 

structural information of the mAbs is needed in order to predict chromatographic behaviour. 

The applied descriptor generation and modelling frameworks has therefore the potential to work 

in other chromatographic systems such as AIEX, CEX, etc where column binding is dependent 

on the structural features of the mAbs, which has also been supported by literature. Therefore, 

continued development and implementation of the proposed framework could be used to 

acquire a foundation of risk assessment tools to aid in early process development of new drug 

candidates and used to investigate potential processing behaviour and process route selection. 

This has the added value of increasing the process and product understanding which can 

potentially lower the number of required experiments in order to characterise the process design 

space and in turn lower development costs. As stated by DiMasi et al. (2016), the expected total 

cost from clinical phase I to market release was approximated to $1.460 billion. Even if the 

proposed implementation of QSAR modelling into the QbD framework only reduces cost by 1-

2% at minimum, this is still a reduction of $14.6-29.2 million.  

A continued development and expansion of QSAR risk assessment tools, not only in process 

development, but for clinical safety and biological activity as well, might allow for prediction 

of mAb developability (Zurdo et al., 2015). This means, that based on the potential risk of a 

mAb candidate to fail due to lack of clinical safety, problematic in manufacture or lack of 

biological activity, a more informed decision can be made to either fail or proceed with the 

candidate. This can therefore aid in reducing attrition as well as prevent large investments from 

being made on mAb candidates with low developability. 
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Appendix A  

A.1 Marketed mAbs 

Table A.1. List of market approved and withdrawn mAbs in the EU and the US between 1986-2017 with their 

corresponding approval years from EMA and FDA, respectively. mAbs highlighted in blue are biosimilars.  

Trade Name INN EMA Approval FDA Approval Comment 

Amjevita adalimumab 2017 2016 Biosimilar, same as Humira 

Cyltezo adalimumab 2017 2017 Biosimilar, same as Humira 

Imraldi adalimumab 2017 Not approved Biosimilar, same as Humira 

Zinplava bezlotoxumab 2017 2016 

 

Bavencio avelumab Not approved 2017 

 

Dupixent dupilumab Not approved 2017 

 

Imfinzi durvalumab Not approved 2017 

 

Ocrevus ocrelizumab Not approved 2017 

 

Siliq brodalumab Not approved 2017 

 

Cinqair reslizumab 2016 2016 

 

Lartruvo olaratumab 2016 2016 

 

Darzalex daratumumab 2016 2015 

 

Empliciti elotuzumab 2016 2015 

 

Portrazza necitumumab 2016 2015 

 

Inflectra (US), 

Remsima (EU) 

infliximab 2013 2016 Biosimilar, same as Remicade 

Ixifi infliximab Not approved 2017 Biosimilar, same as Remicade 

Flixabi (EU), 

Renflexis (US) 

infliximab 2016 2017 Biosimilar, same as Remicade 

Anthim obiltoxaximab Not approved 2016 

 

Tecentriq atezolizumab Not approved 2016 

 

Cosentyx secukinumab 2015 2015 

 

Nucala mepolizumab 2015 2015 

 

Opdivo nivolumab 2015 2015 

 

Praluent alirocumab 2015 2015 

 

Praxbind idarucizumab 2015 2015 

 

Repatha evolocumab 2015 2015 

 

Unituxin dinutuximab 2015 2015 Withdrawn from use in the 

European Union 

Blincyto blinatumomab 2015 2014 

 

Mvasi (US) bevacizumab Not approved 2017 Biosimilar, same as Avastin 

Keytruda pembrolizumab 2015 2014 

 

Cyramza ramucirumab 2014 2014 

 

Entyvio vedolizumab 2014 2014 

 

Sylvant siltuximab 2014 2014 

 

Lemtrada alemtuzumab 2013 2014 
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Trade Name INN EMA Approval FDA Approval Comment 

Kadcyla trastuzumab 

emtansine 

2013 2013 Conjugated antibody 

Perjeta pertuzumab 2013 2012 

 

Gazyvaro obinutuzumab Not approved 2013 

 

Adcetris brentuximab 

vedotin 

2012 2011 Conjugated antibody 

Abthrax raxibacumab Not approved 2012 

 

Benlysta belimumab 2011 2011 

 

Vervoy ipilimumab 2011 2011 

 

Xgeva denosumab 2011 2011 

 

Prolia denosumab 2010 2010 

 

Arzerra ofatumumab 2010 2009 

 

Scintimun besilesomab 2010 Not approved 

 

RoActemra tocilizumab 2009 2010 

 

Ilaris canakinumab 2009 2009 

 

Simponi golimumab 2009 2009 

 

Stelara ustekinumab 2009 2009 

 

Cimzia certolizumab 

pegol 

2009 2008 PEG conjugated Fab fragment 

Removab catumaxomab 2009 Not approved 

 

Soliris eculizumab 2007 2007 

 

Lucentis ranibizumab 2007 2006 Fab fragment 

Vectibix panitumumab 2007 2006 

 

Tysabri natalizumab 2006 2004 

 

Proxinium catumaxomab 2005 2005 

 

Avastin bevacizumab 2005 2004 

 

Xolair omalizumab 2005 2003 

 

Erbitux cetuximab 2004 2004 

 

Raptiva efalizumab 2004 2003 Voluntarily withdrawn from 

the market in EU in 2009 and 

in US in 2009 

Zevalin ibritumomab 

tiuxetan 

2004 2002 Conjugated antibody 

NeutroSpec fanolesomab Not approved 2004 

 

Humira adalimumab 2003 2002 

 

Bexxar tositumomab Not approved 2003 

 

Campath alemtuzumab 2001 2001 

 

Herceptin trastuzumab 2000 1998 

 

Ogivri trastuzumab Not approved 2017 Biosimilar, same as Herceptin 

Ontruzant trastuzumab 2017 Not approved Biosimilar, same as Herceptin 

Mylotarg gemtuzumab 

ozogamicin 

Not approved 2000 Conjugated antibody. 

Voluntarily withdrawn from 

the market in US in 2010. 
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Trade Name INN EMA Approval FDA Approval Comment 

Remicade infliximab 1999 1998 

 

Synagis palivizumab 1999 1998 

 

Zenapax daclizumab 1999 1997 Withdrawn from the market 

for commercial reasons in EU 

in 2009 and in US in 2009 

Simulect basiliximab 1998 1998 

 

Rituxan, 

MabThera 

rituximab 1998 1997 

 

Rixathon rituximab 2017 Not approved Biosimilar, same as Rituxan 

Truxima rituximab 2017 Not approved Biosimilar, same as Rituxan 

Humaspect votumumab 1998 Not approved Withdrawn from the market in 

EU in 2003 

LeukoScan sulesomab 1997 Not approved 

 

CEA-scan arcitumomab 1996 1996 Withdrawn from the market in 

EU in 2005 

MyoScint imiciromab Not approved 1996 Has been discounted 

ProstaScint capromab Not approved 1996 

 

Verluma nofetumomab Not approved 1996 

 

ReoPro abciximab 1995 1994 Country-specific approval 

(prior to EMA Centralized 

Procedure). 

OncoScint satumomab Not approved 1992 

 

Orthoclone 

OKT3 

muromonab-

CD3 

1986 1986 Country-specific approval 

(prior to EMA Centralized 

Procedure). 

Panorex edrecolomab 1995 Not approved Withdrawn from the market in 

EU in 2006 

Centoxin nebacumab 1991 Not approved Withdrawn from the market in 

EU in 1993 
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A.2 IMGT mAbs 

Table A.2. List of 273 mAbs collected from the IMGT database. The original chain isotypes, species origin and 

development status are given for each antibody.  

INN HC LC Species Origin Development Status 

abituzumab IgG2 kappa humanised Phase I 

abrilumab IgG2 kappa human Phase II 

actoxumab IgG1 kappa human Phase III 

adalimumab IgG1 kappa human Phase M 

aducanumab IgG1 kappa human Phase III 

afasevikumab IgG1 kappa human Phase I 

alemtuzumab IgG1 kappa humanised Phase M 

alirocumab IgG1 kappa human Phase I 

amatuximab IgG1 kappa chimeric Phase II 

andecaliximab IgG4 kappa chimeric Phase II 

anifrolumab IgG1 kappa human Phase III 

anrukinzumab IgG1 kappa humanised Phase II 

aprutumab IgG1 lambda human Phase I 

ascrinvacumab IgG2 kappa human Phase II 

atezolizumab IgG1 kappa humanised Phase III 

atinumab IgG4 kappa human Phase I 

avelumab IgG1 lambda human Phase III 

bapineuzumab IgG1 kappa humanised Discontinued 

basiliximab IgG1 kappa chimeric Phase M 

bavituximab IgG1 kappa chimeric Phase II 

benralizumab IgG1 kappa humanised Phase III 

bevacizumab beta IgG1 kappa humanised Phase III 

bevacizumab IgG1 kappa humanised Phase M 

bezlotoxumab IgG1 kappa human Phase M 

bimagrumab IgG1 lambda human Phase II 

bimekizumab IgG1 kappa humanised Phase III 

bleselumab IgG4 kappa human Phase II 

blosozumab IgG4 kappa humanised Phase II 

bococizumab IgG2 kappa humanised Phase III 

brazikumab IgG2 lambda human Phase II 

brentuximab vedotin IgG1 kappa chimeric Phase II 

briakinumab IgG1 lambda human Phase I 

brodalumab IgG2 kappa human Phase II 

brontictuzumab IgG2 lambda humanised Phase I 

burosumab IgG1 kappa human Phase II 

cabiralizumab IgG4 kappa humanised Phase I 

camrelizumab IgG4 kappa humanised Phase I 
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INN HC LC Species Origin Development Status 

canakinumab IgG1 kappa human Phase II 

cantuzumab ravtansine IgG1 kappa humanised Phase II 

carlumab IgG1 kappa human Phase II 

carotuximab IgG1 kappa chimeric Phase II 

cergutuzumab amunaleukin IgG1 kappa humanised Phase II 

cetuximab IgG1 kappa chimeric Phase M 

cixutumumab IgG1 lambda human Phase II 

clazakizumab IgG1 kappa humanised Phase II 

clivatuzumab tetraxetan IgG1 kappa humanised Phase II 

codrituzumab IgG1 kappa humanised Phase II 

coltuximab ravtansine IgG1 kappa chimeric Phase II 

conatumumab IgG1 kappa human Discontinued 

concizumab IgG4 kappa humanised Phase I 

cosfroviximab IgG1 kappa chimeric Phase I/II 

crenezumab IgG4 kappa humanised Phase III 

crizanlizumab IgG2 kappa humanised Phase II 

crotedumab IgG4 kappa human Phase I 

dacetuzumab IgG1 kappa humanised Phase I 

daclizumab IgG1 kappa humanised Phase M 

dalotuzumab IgG1 kappa humanised Phase I 

daratumumab IgG1 kappa human Phase M 

dectrekumab IgG1 kappa human Phase II 

demcizumab IgG2 kappa humanised Phase I 

denintuzumab mafodotin IgG1 kappa human Phase I 

denosumab IgG2 kappa humanised Phase III 

dezamizumab IgG1 kappa humanised Phase I 

dinutiximab beta IgG1 kappa chimeric Phase I 

dinutuximab IgG1 kappa chimeric Phase M 

diridavumab IgG1 lambda human Not Stated 

domagrozumab IgG1 kappa humanised Phase II 

drozitumab IgG1 lambda human Phase I 

duligotuzumab IgG1 kappa humanised Phase II 

dupilumab IgG4 kappa human Phase III 

durvalumab IgG1 kappa human Phase III 

dusigitumab IgG2 lambda human Phase II 

efalizumab IgG1 kappa humanised Withdrawn 

eldelumab IgG1 kappa human Phase II 

elezanumab IgG1 lambda human Phase I 

elgemtumab IgG1 kappa human Phase I 

elotuzumab IgG1 kappa humanised Phase M 
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INN HC LC Species Origin Development Status 

emactuzumab IgG1 kappa humanised Phase I 

emapalumab IgG1 lambda human Phase III 

emibetuzumab IgG4 kappa humanised Phase II 

emicizumab IgG4 kappa humanised Phase M 

enavatuzumab IgG1 kappa humanised Phase I 

enfortumab vedotin IgG1 kappa human Phase I 

enoblituzumab IgG1 kappa humanised Phase I 

enokizumab IgG1 kappa humanised Phase II 

enoticumab IgG1 kappa human Phase I 

ensituximab IgG1 kappa chimeric Phase II 

eptinezumab IgG1 kappa humanised Phase III 

erenumab IgG2 lambda human Phase III 

etaracizumab IgG1 kappa humanised Phase II 

etrolizumab IgG1 kappa humanised Phase III 

evinacumab IgG4 kappa human Phase II 

evolocumab IgG2 lambda human Phase M 

farletuzumab IgG1 kappa humanised Phase III 

fasinumab IgG4 kappa human Phase III 

fezakinumab IgG1 lambda human Not Stated 

ficlatuzumab IgG1 kappa humanised Phase I 

figitumumab IgG2 kappa human Phase I 

firivumab IgG1 kappa human Not Stated 

flanvotumab IgG1 kappa human Phase I 

fletikumab IgG4 kappa human Phase II 

foralumab IgG1 kappa human Phase I 

foravirumab IgG1 kappa human Phase II 

fremanezumab IgG2 kappa humanised Phase III 

fresolimumab IgG4 kappa human Phase I 

fulranumab IgG2 kappa human Phase III 

futuximab IgG1 kappa chimeric Phase II 

galcanezumab IgG4 kappa humanised Phase II 

ganitumab IgG1 kappa human Phase I 

gantenerumab IgG1 kappa human Phase III 

gatipotuzumab IgG1 kappa humanised Phase I 

gedivumab IgG1 kappa human Phase II 

gemtuzumab ozogamicin  IgG4 kappa humanised Phase M 

gevokizumab IgG2 kappa humanised Phase II 

girentuximab IgG1 kappa chimeric Phase III 

glembatumumab vedotin IgG2 kappa human Phase III 

glembatumumab IgG2 kappa human Phase II 
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INN HC LC Species Origin Development Status 

guselkumab IgG1 lambda human Phase M 

ibalizumab IgG4 kappa humanised Phase III 

icrucumab IgG1 kappa human Phase II 

ifabotuzumab IgG1 kappa humanised Phase I/II 

imalumab IgG1 kappa human Not Stated 

imgatuzumab IgG1 kappa humanised Phase II 

inclacumab IgG4 kappa human Phase II 

indatuximab ravtansine IgG4 kappa chimeric Phase II 

indusatumab vedotin IgG1 kappa human Phase I 

indusatumab IgG1 kappa human Not Stated 

inebilizumab IgG1 kappa humanised Phase II 

infliximab IgG1 kappa chimeric Phase M 

intetumumab IgG1 kappa human Not Stated 

ipilimumab IgG1 kappa human Phase M 

iratumumab IgG1 kappa human Phase II 

isatuximab IgG1 kappa chimeric Phase III 

itolizumab IgG1 kappa humanised Phase II 

ixekizumab IgG4 kappa humanised Phase II 

labetuzumab govitecan IgG1 kappa humanised Phase II 

lacnotuzumab IgG1 kappa humanised Phase II 

lanadelumab IgG1 kappa human Phase III 

landogrozumab IgG4 kappa humanised Phase II 

laprituximab emtansine IgG1 kappa chimeric Phase I 

laprituximab IgG1 kappa chimeric Phase I 

larcaviximab IgG1 kappa chimeric Phase I/II 

lebrikizumab IgG4 kappa humanised Phase III 

lenzilumab IgG1 kappa human Phase II 

lesofavumab IgG1 kappa human Preclinical 

lexatumumab IgG1 lambda human Phase I 

lifastuzumab vedotin IgG1 kappa humanised Phase II 

ligelizumab IgG1 kappa humanised Not Stated 

lirilumab IgG4 kappa human Phase II 

lodelcizumab IgG1 kappa humanised Phase II 

lorvotuzumab mertansine IgG1 kappa humanised Phase I/II 

lucatumumab IgG1 kappa human Phase I 

lumretuzumab IgG1 kappa humanised Phase I 

lupartumab amadotin IgG1 lambda human Phase I 

lupartumab IgG1 lambda human Phase I 

margetuximab IgG1 kappa chimeric Phase II 

mavrilimumab IgG4 lambda human Phase II 
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INN HC LC Species Origin Development Status 

milatuzumab doxorubicin IgG1 kappa humanised Phase I 

mirvetuximab soravtansine IgG1 kappa chimeric Phase III 

mirvetuximab IgG1 kappa chimeric Phase I 

modotuximab IgG1 kappa chimeric Phase II 

mogamulizumab IgG1 kappa humanised Phase I 

monalizumab IgG4 kappa humanised Phase I 

motavizumab IgG1 kappa humanised Phase III 

namilumab IgG1 kappa human Phase I 

naratuximab IgG1 kappa chimeric Phase II 

narnatumab IgG1 kappa human Phase I 

natalizumab IgG4 kappa humanised Phase M 

navivumab IgG1 kappa human Not Stated 

necitumumab IgG1 kappa human Phase M 

nemolizumab IgG2 kappa humanised Phase II 

nesvacumab IgG1 kappa human Phase I 

nimotuzumab IgG1 kappa humanised Phase M 

nivolumab IgG4 kappa human Phase M 

obiltoxaximab IgG1 kappa chimeric Phase I/II 

obinutuzumab IgG1 kappa humanised Phase M 

ocaratuzumab IgG1 kappa humanised Phase I/II 

olaratumab IgG1 kappa human Phase II 

oleclumab IgG1 lambda human Phase I 

olokizumab IgG4 kappa humanised Phase I 

omalizumab IgG1 kappa humanised Phase M 

onartuzumab IgG1 kappa humanised Phase M 

opicinumab IgG1 kappa human Phase II 

orticumab IgG1 lambda human Phase II 

oxelumab IgG1 kappa human Discontinued 

ozanezumab IgG1 kappa humanised Phase I 

pamrevlumab IgG1 kappa human Phase I 

parsatuzumab IgG1 kappa humanised Phase II 

pateclizumab IgG1 kappa humanised Phase II 

patritumab IgG1 kappa human Phase III 

pembrolizumab IgG4 kappa humanised Phase III 

perakizumab IgG1 kappa humanised Phase I 

pidilizumab IgG1 kappa humanised Phase II 

pinatuzumab vedotin IgG1 kappa humanised Phase I 

plozalizumab IgG1 kappa humanised Phase II 

polatuzumab vedotin IgG1 kappa humanised Phase I 

ponezumab IgG2 kappa humanised Phase II 



245 

INN HC LC Species Origin Development Status 

porgaviximab IgG1 kappa chimeric Phase I/II 

prezalumab IgG2 kappa human Phase I 

pritoxaximab IgG1 kappa chimeric Phase II 

quilizumab IgG1 kappa humanised Phase II 

rafivirumab IgG1 lambda human Phase II 

ralpancizumab IgG2 kappa humanised Phase I 

ramucirumab IgG1 kappa human Phase II 

refanezumab IgG1 kappa humanised Phase II 

rilotumumab IgG2 kappa human Phase II 

rinucumab IgG4 kappa human Phase I 

risankizumab IgG1 kappa humanised Phase III 

rituximab IgG1 kappa chimeric Phase M 

robatumumab IgG1 kappa human Preclinical 

roledumab IgG1 kappa human Phase II 

romosozumab IgG2 kappa humanised Phase III 

rontalizumab IgG1 kappa humanised Phase II 

rosmantuzumab IgG1 kappa humanised Phase I 

rovalpituzumab IgG1 kappa humanised Not Stated 

sacituzumab govitecan IgG1 kappa humanised Phase III 

sacituzumab IgG1 kappa humanised Not Stated 

sarilumab IgG1 kappa human Phase M 

satralizumab IgG2 kappa humanised Phase III 

secukinumab IgG1 kappa human Phase M 

selicrelumab IgG2 kappa human Phase I 

seribantumab IgG2 lambda human Phase II 

setoxaximab IgG1 kappa chimeric Phase II 

sifalimumab IgG1 kappa human Phase I 

siltuximab IgG1 kappa chimeric Phase II 

simtuzumab IgG4 kappa humanised Phase II 

sirukumab IgG1 kappa human Phase III 

solanezumab IgG1 kappa humanised Phase III 

suptavumab IgG1 kappa human Discontinued 

suvizumab IgG1 kappa humanised Phase I 

suvratoxumab IgG1 kappa human Phase II 

tabalumab IgG4 kappa human Phase III 

tanezumab IgG2 kappa humanised Phase III 

tarextumab IgG2 kappa human Phase I/II 

telisotuzumab IgG1 kappa humanised Phase I 

teplizumab IgG1 kappa humanised Phase III 

teprotumumab IgG1 kappa human Phase I 
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INN HC LC Species Origin Development Status 

tesidolumab IgG1 lambda human Phase II 

tezepelumab IgG2 lambda human Phase III 

TGN1412 IgG4 kappa humanised Phase III 

tigatuzumab IgG1 kappa humanised Phase II 

tildrakizumab IgG1 kappa humanised Phase III 

timigutuzumab IgG1 kappa humanised Phase I 

timolumab IgG4 kappa human Phase I 

tisotumab IgG1 kappa human Not Stated 

tocilizumab IgG1 kappa humanised Phase M 

tomuzotuximab IgG1 kappa chimeric Phase II 

tosatoxumab IgG1 lambda human Phase I/II 

tovetumab IgG2 kappa human Phase I/II 

tralokinumab IgG4 lambda human Withdrawn 

trastuzumab emtansine IgG1 kappa humanised Phase III 

trastuzumab IgG1 kappa humanised Phase M 

tregalizumab IgG1 kappa humanised Phase II 

tremelimumab IgG2 kappa human Phase III 

trevogrumab IgG4 kappa human Phase II 

ublituximab IgG1 kappa chimeric Phase I 

ulocuplumab IgG4 kappa human Phase I 

urelumab IgG4 kappa human Phase II 

ustekinumab IgG1 kappa human Phase M 

utomilumab IgG2 lambda human Phase I 

vadastuximab talirine IgG1 kappa chimeric Phase III 

vadastuximab IgG1 kappa chimeric Not Stated 

vantictumab IgG2 lambda human Phase I 

varisacumab IgG1 kappa human Phase I 

varlilumab IgG1 kappa human Phase I 

vatelizumab IgG4 kappa humanised Phase I 

vedolizumab IgG1 kappa humanised Phase M 

veltuzumab IgG1 kappa humanised Phase I 

vesencumab IgG1 kappa human Phase I 

vonlerolizumab IgG1 kappa humanised Phase I 

vorsetuzumab IgG1 kappa humanised Phase I 

vunakizumab IgG1 kappa humanised Not Stated 

xentuzumab IgG1 lambda human Phase I 
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A.3 Predictive Modelling mAbs 

Table A.3. List of 137 mAbs from Jain et al (2017) “Biophysical properties of the clinical-stage antibody 

landscape” PNAS. The original chain isotypes and species origin is given for each mAb along with the 

corresponding experimental measurements for melting point (Tm), HIC retention times and mAb yield from HEK 

cell line. The two last columns indicate if either primary sequence-based or MD based descriptors were generated 

for a sample and then used for model development. 

Name HC LC Species Origin Tm HIC Yield Primary MD 

abituzumab IgG2 kappa humanised 75.50 9.23 89.56 ● ● 

abrilumab IgG2 kappa human 71.00 9.41 100.22 ● ● 

adalimumab IgG1 kappa human 71.00 8.82 134.93 ● ● 

alemtuzumab IgG1 kappa humanised 74.50 8.77 144.65 ● ● 

alirocumab IgG1 kappa human 71.50 9.04 69.23 ● ● 

anifrolumab IgG1 kappa human 62.50 8.80 82.05 ● ● 

atezolizumab IgG1 kappa humanised 73.50 13.35 164.09 ●  

bapineuzumab IgG1 kappa humanised 73.00 8.86 151.09 ● ● 

basiliximab IgG1 kappa chimeric 60.50 9.58 107.46 ● ● 

bavituximab IgG1 kappa chimeric 59.50 11.50 45.11 ● ● 

belimumab IgG1 lambda human 60.00 10.46 10.47 ● ● 

benralizumab IgG1 kappa humanised 76.00 9.47 146.71 ● ● 

bevacizumab IgG1 kappa humanised 63.50 11.77 49.98 ● ● 

bimagrumab IgG1 lambda human 72.00 10.13 150.24 ● ● 

blosozumab IgG4 kappa humanised 70.50 9.24 120.01 ● ● 

bococizumab IgG2 kappa humanised 67.00 10.18 95.79 ● ● 

brentuximab IgG1 kappa chimeric 72.00 10.54 268.06 ● ● 

briakinumab IgG1 lambda human 71.50 9.36 121.99 ● ● 

brodalumab IgG2 kappa human 74.50 9.08 150.86 ● ● 

canakinumab IgG1 kappa human 72.00 9.32 45.72 ● ● 

carlumab IgG1 kappa human 69.50 11.17 243.32 ● ● 

certolizumab IgG1 kappa humanised 81.50 11.48 186.71 ● ● 

cetuximab IgG1 kappa chimeric 68.50 10.11 109.16 ● ● 

cixutumumab IgG1 lambda human 73.50 11.76 154.26 ● ● 

clazakizumab IgG1 kappa humanised 69.50 9.57 113.48 ● ● 

codrituzumab IgG1 kappa humanised 73.00 8.84 66.35 ● ● 

crenezumab IgG4 kappa humanised 72.00 10.03 149.27 ● ● 

dacetuzumab IgG1 kappa humanised 68.00 8.47 128.45 ● ● 

daclizumab IgG1 kappa humanised 74.00 9.29 245.11 ● ● 

dalotuzumab IgG1 kappa humanised 77.00 9.89 82.42 ● ● 

daratumumab IgG1 kappa human 71.00 9.51 233.33 ● ● 

denosumab IgG2 kappa human 69.50 8.50 134.17 ● ● 

dinutuximab IgG1 kappa chimeric 69.00 9.83 76.43 ● ● 

drozitumab IgG1 lambda human 63.00 9.29 22.07 ● ● 

duligotuzumab IgG1 kappa humanised 67.50 10.21 192.58 ● ● 
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Name HC LC Species Origin Tm HIC Yield Primary MD 

dupilumab IgG4 kappa human 76.50 10.16 163.55 ● ● 

eculizumab IgG2/G4 kappa humanised 66.00 10.61 226.47   

efalizumab IgG1 kappa humanised 72.50 8.67 166.99 ● ● 

eldelumab IgG1 kappa human 59.50 12.42 89.25 ● ● 

elotuzumab IgG1 kappa humanised 83.50 10.31 213.19 ● ● 

emibetuzumab IgG4 kappa humanised 71.50 9.64 98.75 ● ● 

enokizumab IgG1 kappa humanised 68.00 12.93 239.82 ● ● 

epratuzumab IgG1 kappa humanised 65.00 9.19 78.23 ● ● 

etrolizumab IgG1 kappa humanised 76.00 9.32 173.84 ● ● 

evolocumab IgG2 lambda human 65.00 10.36 260.68 ● ● 

farletuzumab IgG1 kappa humanised 75.50 9.49 220.82 ● ● 

fasinumab IgG4 kappa human 71.00 10.03 110.37 ● ● 

fezakinumab IgG1 lambda human 69.00 11.80 141.45 ● ● 

ficlatuzumab IgG1 kappa humanised 75.00 9.42 249.03 ● ● 

figitumumab IgG2 kappa human 66.50 10.75 119.92 ● ● 

fletikumab IgG4 kappa human 71.50 11.04 220.38 ● ● 

foralumab IgG1 kappa human 66.00 9.84 174.44 ● ● 

fresolimumab IgG4 kappa human 74.00 10.88 166.04 ● ● 

fulranumab IgG2 kappa human 68.50 9.33 142.02 ● ● 

galiximab IgG1 lambda chimeric 67.50 12.20 174.12 ● ● 

ganitumab IgG1 kappa human 78.50 9.33 229.44 ● ● 

gantenerumab IgG1 kappa human 77.50 9.00 162.66 ● ● 

gemtuzumab IgG4 kappa humanised 72.50 12.26 171.30 ● ● 

gevokizumab IgG2 kappa humanised 71.50 8.83 136.36 ● ● 

girentuximab IgG1 kappa chimeric 63.00 9.08 30.72 ● ● 

glembatumumab IgG2 kappa human 70.50 13.68 152.71 ● ● 

golimumab IgG1 kappa human 70.00 11.36 163.24 ● ● 

guselkumab IgG1 lambda human 69.50 11.40 167.34 ● ● 

ibalizumab IgG4 kappa humanised 72.00 10.24 133.28 ● ● 

imgatuzumab IgG1 kappa humanised 71.50 10.09 187.71 ● ● 

infliximab IgG1 kappa chimeric 64.50 10.36 6.58 ● ● 

inotuzumab IgG4 kappa humanised 83.00 9.72 169.77 ● ● 

ipilimumab IgG1 kappa human 73.00 11.57 169.56 ● ● 

ixekizumab IgG4 kappa humanised 83.00 10.94 97.28 ● ● 

lampalizumab IgG1 kappa humanised 67.00 9.25 187.08 ● ● 

lebrikizumab IgG4 kappa humanised 66.00 12.38 61.61 ● ● 

lenzilumab IgG1 kappa human 74.00 8.72 184.74 ● ● 

lintuzumab IgG1 kappa humanised 75.50 10.87 229.97 ● ● 

lirilumab IgG4 kappa human 70.00 25.00 270.48   

lumiliximab IgG1 kappa chimeric 64.50 9.55 86.27 ● ● 
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Name HC LC Species Origin Tm HIC Yield Primary MD 

matuzumab IgG1 kappa humanised 72.00 9.84 224.33 ● ● 

mavrilimumab IgG4 lambda human 68.50 10.30 150.55 ● ● 

mepolizumab IgG1 kappa humanised 78.50 9.24 221.48 ● ● 

mogamulizumab IgG1 kappa humanised 68.50 9.64 89.77 ● ● 

motavizumab IgG1 kappa humanised 86.00 9.69 133.55 ● ● 

muromonab IgG2 kappa chimeric 74.50 8.90 113.52 ●  

natalizumab IgG4 kappa humanised 79.50 9.70 251.75 ● ● 

necitumumab IgG1 kappa human 76.50 10.81 198.60 ● ● 

nimotuzumab IgG1 kappa humanised 65.50 25.00 15.13   

nivolumab IgG4 kappa human 66.00 9.02 178.81 ● ● 

obinutuzumab IgG1 kappa humanised 73.00 10.64 176.44 ● ● 

ocrelizumab IgG1 kappa humanised 70.50 9.91 137.77 ● ● 

ofatumumab IgG1 kappa human 68.00 9.73 249.75 ● ● 

olaratumab IgG1 kappa human 62.50 10.61 141.94 ● ● 

olokizumab IgG4 kappa humanised 69.00 9.91 115.26 ● ● 

omalizumab IgG1 kappa humanised 77.50 9.52 150.45 ● ● 

onartuzumab IgG1 kappa humanised 80.00 9.92 147.93 ● ● 

otelizumab IgG1 lambda 
humanized/ 

chimeric 
75.50 9.08 152.08   

otlertuzumab IgG1 kappa humanised 68.50 10.96 149.60 ● ● 

ozanezumab IgG1 kappa humanised 67.00 10.03 97.07 ● ● 

palivizumab IgG1 kappa humanised 79.50 9.33 243.12 ● ● 

panitumumab IgG2 kappa human 78.50 9.48 179.59 ● ● 

panobacumab IgM kappa human 69.00 9.83 107.60   

parsatuzumab IgG1 kappa humanised 64.50 9.11 40.02 ● ● 

patritumab IgG1 kappa human 71.50 10.15 68.77 ● ● 

pembrolizumab IgG4 kappa humanised 66.00 11.07 64.91 ● ● 

pertuzumab IgG1 kappa humanised 78.50 10.11 31.43 ● ● 

pinatuzumab IgG1 kappa humanised 79.00 9.22 130.58 ● ● 

polatuzumab IgG1 kappa humanised 74.00 8.76 225.06 ● ● 

ponezumab IgG2 kappa humanised 61.00 10.50 16.96 ● ● 

radretumab IgE kappa human 77.00 9.51 151.17   

ramucirumab IgG1 kappa human 66.00 9.43 90.67 ● ● 

ranibizumab IgG1 kappa humanised 65.00 12.14 41.45 ● ● 

reslizumab IgG4 kappa humanised 75.50 9.82 191.57 ● ● 

rilotumumab IgG2 kappa human 79.00 12.63 173.08 ● ● 

rituximab IgG1 kappa chimeric 69.00 10.80 164.14 ● ● 

robatumumab IgG1 kappa human 80.00 9.51 117.12 ● ● 

romosozumab IgG2 kappa humanised 76.00 9.18 227.69 ● ● 

sarilumab IgG1 kappa human 64.00 8.99 181.79 ● ● 
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Name HC LC Species Origin Tm HIC Yield Primary MD 

secukinumab IgG1 kappa human 72.00 11.39 148.96 ● ● 

seribantumab IgG2 lambda human 77.50 10.42 189.98 ● ● 

sifalimumab IgG1 kappa human 67.00 9.65 158.63 ● ● 

siltuximab IgG1 kappa chimeric 64.50 11.00 95.67 ● ● 

simtuzumab IgG4 kappa humanised 66.50 10.41 191.44 ● ● 

sirukumab IgG1 kappa human 68.00 11.26 109.81 ● ● 

tabalumab IgG4 kappa human 64.00 10.85 121.60 ● ● 

tanezumab IgG2 kappa humanised 75.50 12.39 48.86 ● ● 

teplizumab IgG1 kappa humanised 64.50 8.79 150.88 ●  

tigatuzumab IgG1 kappa humanised 64.50 10.02 178.97 ● ● 

tildrakizumab IgG1 kappa humanised 77.50 11.08 181.89 ● ● 

tocilizumab IgG1 kappa humanised 91.50 9.09 139.65 ● ● 

tovetumab IgG2 kappa human 63.50 8.67 277.18 ● ● 

tralokinumab IgG4 lambda human 63.00 10.26 121.43 ● ● 

trastuzumab IgG1 kappa humanised 78.50 9.66 159.48 ● ● 

tremelimumab IgG2 kappa human 75.00 11.56 229.59 ● ● 

urelumab IgG4 kappa human 66.00 11.16 143.92 ● ● 

ustekinumab IgG1 kappa human 69.50 8.78 152.72 ● ● 

vedolizumab IgG1 kappa humanised 80.50 10.94 221.76 ● ● 

veltuzumab IgG1 kappa humanised 70.00 11.09 224.95 ● ● 

visilizumab IgG2 kappa humanised 71.00 9.01 242.01 ● ● 

zalutumumab IgG1 kappa human 72.50 9.34 200.51 ● ● 

zanolimumab IgG1 kappa human 80.50 9.59 116.37 ● ● 
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Appendix B  

B.1 MATLAB Scripts 

Code B.1. MATLAB script for implementation of OVR classification strategy in SVC function from LibSVM 

toolbox for model fitting. 

function [assignedClass,prob,model] = fitSVC_ovr(X,labels,svmcmd) 

 

nSam = size(X,1); 

labelSet = unique(labels); 

nClasses = length(labelSet); 

 

% MEMORY ALLOCATION 

SVC = cell(nClasses,1); 

prob = zeros(nSam,nClasses); 

decv = zeros(nSam,nClasses); 

     

for i=1:nClasses         

    % MODEL DEVELOPMENT 

    SVC{i} = svmtrain(double(labels == labelSet(i)),pX,svmcmd); 

 

    % PREDICTION OF SAMPLES 

    [~,~,prob(:,i)] = svmpredict(double(labels == labelSet(i)), ...  

                      X,SVC{i},'-q'); 

 

    % DECISION VALUES 

    decv(:, i) = prob(:,i) * (2 * SVC{i}.Label(1) - 1); 

end 

 

% CLASS ASSIGNMENT 

[~,assignedClass] = max(decv,[],2); 

assignedClass = labelSet(assignedClass); 

 

model.SVC = SVC; 

model.labelSet = labelSet; 

end 
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Code B.2. MATLAB script for implementation of OVR classification strategy in SVC function from LibSVM 

toolbox for model prediction. 

function [assignedClass,prob] = predictSVC_ovr(X,labels,model) 

 

SVC = model.SVC; 

nSam = size(X,1); 

labelSet = model.labelSet; 

nClasses = length(labelSet); 

 

% MEMORY ALLOCATION 

prob = zeros(nSam,nClasses); 

decv = zeros(nSam,nClasses); 

     

for i=1:nClasses          

    % PREDICTION OF SAMPLES 

    [~,~,prob(:,i)] = svmpredict(double(labels == labelSet(i)), ...  

                      X,SVC{i},'-q'); 

 

    % DECISION VALUES 

    decv(:, i) = prob(:,i) * (2 * SVC{i}.Label(1) - 1); 

end 

 

% CLASS ASSIGNMENT 

[~,assignedClass] = max(decv,[],2); 

assignedClass = labelSet(assignedClass); 

end 
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B.2 GROMACS Parameters 

Code B.3. Energy minimisation parameters in EM.mdp. 

integrator   = steep 

emstep   = 0.002 

nsteps   = 50000 

emtol   = 20.0 

 

; Parameters for atom neighbour search and interaction calculations 

nstxout   = 800  

nstlist   = 1 

cutoff-scheme  = Verlet 

ns_type   = grid 

coulombtype  = PME  

rcoulomb   = 1.0 

rvdw   = 1.0 

pbc   = xyz 
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Code B.4. NVT parameters with defined volume and temperature (NVT.mdp).  

title   = NVT equilibration  

define   = -DPOSRES 

 

; Run parameters 

integrator   = md ; leap-frog integrator 

nsteps   = 5000 ; 2 * 5000 = 10 ps 

dt   = 0.002 ; 2 fs 

 

; Output control (saves coordinates, velocities and energies to log file) 

nstxout   = 5000 

nstvout   = 5000 

nstenergy   = 5000 

nstlog   = 5000 

 

; Bond parameters 

Continuation  = no 

constraint_algorithm  = lincs  

constraints  = all-bonds 

lincs_iter   = 1 

lincs_order  = 4 

 

; Neighborsearching 

cutoff-scheme  = Verlet 

ns_type   = grid 

nstlist   = 10 

rcoulomb   = 1.0  

rvdw   = 1.0 

 

; Electrostatics 

Coulombtype  = PME 

pme_order   = 4 

fourierspacing  = 0.16 

 

; Temperature coupling is on 

tcoupl   = V-rescale 

tc-grps   = Protein Non-Protein 

tau_t   = 0.1 0.1 

ref_t   = 300 300 

 

; Pressure coupling is off 

pcoupl   = no 

 

; Periodic boundary conditions 

Pbc   = xyz 

 

; Dispersion correction 

DispCorr   = EnerPres 

 

; Velocity generation 

gen_vel   = yes 

gen_temp   = 300 

gen_seed   = -1 
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Code B.5. NPT parameters with defined pressure (NPT.mdp). Resumes after end of NVT simulation. 

title   = NPT equilibration  

define   = -DPOSRES 

 

; Run parameters 

integrator   = md ; leap-frog integrator 

nsteps   = 5000 ; 2 * 5000 = 10 ps 

dt   = 0.002 ; 2 fs 

 

; Output control (saves coordinates, velocities and energies to log file) 

nstxout   = 5000 

nstvout   = 5000 

nstenergy   = 5000 

nstlog   = 5000 

 

; Bond parameters 

continuation  = yes ; Restarting after NVT  

constraint_algorithm  = lincs  

constraints  = all-bonds 

lincs_iter   = 1 

lincs_order  = 4 

 

; Neighborsearching 

cutoff-scheme  = Verlet 

ns_type   = grid 

nstlist   = 10 

rcoulomb   = 1.0 

rvdw   = 1.0 

 

; Electrostatics 

coulombtype  = PME 

pme_order   = 4 

fourierspacing  = 0.16 

 

; Temperature coupling is on 

Tcoupl   = V-rescale 

tc-grps   = Protein Non-Protein 

tau_t   = 0.1 0.1 

ref_t   = 300 300 

 

; Pressure coupling is on 

pcoupl   = Parrinello-Rahman 

pcoupltype   = isotropic 

tau_p   = 2.0 

ref_p   = 1.0 

compressibility  = 4.5e-5 

refcoord_scaling  = com 
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Code B.5 Continued. NPT parameters with defined pressure (NPT.mdp). Resumes after end of NVT simulation. 

; Periodic boundary conditions 

pbc   = xyz 

 

; Dispersion correction 

DispCorr   = EnerPres 

 

; Velocity generation 

gen_vel   = no 
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Code B.6. Production run parameters (MD.mdp). Resumes after end of NPT simulation. 

title   = MD simulation 

 

; Run parameters 

integrator   = md ; leap-frog integrator 

nsteps   = 25000000 ; 2 * 25000000 = 100 ns 

dt   = 0.002 ; 2 fs 

 

; Output control 

nstxout   = 20000 

nstvout   = 20000 

nstenergy   = 20000 

nstlog   = 20000 

 

; Bond parameters 

continuation  = yes ; Restarting after NPT  

constraint_algorithm  = lincs 

constraints  = all-bonds 

lincs_iter   = 1 

lincs_order  = 4 

 

; Neighborsearching 

cutoff-scheme  = Verlet 

ns_type   = grid 

nstlist   = 10 

rcoulomb   = 1.0 

rvdw   = 1.0 

 

; Electrostatics 

coulombtype  = PME 

pme_order   = 4 

fourierspacing  = 0.16 

 

; Temperature coupling is on 

tcoupl   = V-rescale 

tc-grps   = Protein Non-Protein 

tau_t   = 0.1 0.1 

ref_t   = 300 300 

 

; Pressure coupling is on 

Pcoupl   = Parrinello-Rahman 

Pcoupltype   = isotropic 

tau_p   = 2.0 

ref_p   = 1.0 

compressibility  = 4.5e-5 

 

; Periodic boundary conditions 

pbc   = xyz 

 

; Dispersion correction 

DispCorr   = EnerPres 

 

; Velocity generation 

gen_vel   = no 
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Appendix C  

C.1 Chapter 4 Modelling Results 

 

Figure C.1. PCA exploration of descriptors from VH, CH1, CH2 and CH3 heavy chain domains with a clear 

separation of IgG1 (red), IgG2 (green) and IgG4 (blue) occurred in the scores generated from PSD2 (a), PSD3 (c) 

and PSD4 (e). The vast majority of domain contribution for the HC isotype separation of the scores originated 

from the constant domains for the descriptor sets PSD2 (b), PSD3 (d) and PSD4 (f). 
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Figure C.2. PCA exploration of descriptors from VL and CL light chain domains with a clear separation of kappa 

(red) and lambda (green) occurred in the scores generated from PSD2 (a), PSD3 (c) and PSD4 (e). Both VL and 

CL domains contributed to the LC isotype separation of the scores for the descriptor sets PSD2 (b), PSD3 (d) and 

PSD4 (f). 
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Figure C.3. Impact of LC isotype from the VL domain on the PCA exploration with two principal components. No 

clear separation of the species origins: chimeric (red), human (green) and humanised (blue) samples were apparent 

in PSD2 (a), PSD3 (c) and PSD4 (e). Instead, structural features related to the LC isotype from the VL domain had 

a larger impact on the PCA scores in descriptor set PSD2 (b), PSD3 (d) and PSD4 (f). 
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Figure C.4. ROC curves and AUC of cross-validation for chimeric (red line), human (green line) and humanised 

(blue line) with PLS-DA developed on (a) PSD1, (c) PSD2 and (e) PSD4 as well as SVC developed on (b) PSD1, 

(d) PSD2 and (f) PSD4. 
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C.2 Chapter 5 Modelling Results 

 

Figure C.5. PLS error for prediction of mAb yields in the calibration (blue line) and the cross-validation (red line) 

with regards to the number of latent variables developed from the V-WSP reduced descriptor sets of (a) PSD1, (b) 

PSD2, (c) PSD3 and (d) PSD4. 
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Figure C.6. Impact of species on PLS models developed on the mAb yield where chimeric samples are coloured 

red, human samples in green and humanised in blue. PLS Influence plots for PSD1 (a), PSD2 (c), PSD3 (e) and 

PSD4 (g). PLS scores, 𝑻, for the individual samples for PSD1 (b), PSD2 (d), PSD3 (f) and PSD4 (h). 

  



267 

Table C.1. Hypothesis testing of heavy and light chain isotypes using Anderson-Darling Normality Test with a 

significance level of 0.05. H0 represents that the data follows a normal distribution. 

Factor Level Samples 
HIC   Yield 

p Decision   p Decision 

Species 

chimeric 10 0.9900 Keep H0  
0.2387 Keep H0 

humanised 45 0.0007 Reject H0  
0.1195 Keep H0 

human 26 0.0050 Reject H0  
0.8751 Keep H0 

 

 

Table C.2. Hypothesis testing of with a significance level of 0.05. Ho represents that there is no significant 

difference between means of different species origins. Non-parametric tests are referred to as NP and parametric 

test as P. 

Response Factor Levels Type Test 
Equal 

Variance 
p Decision 

HIC Species 3 NP Kruskal-Wallis - 0.3923 Keep H0 

Yield Species 3 P 1-Way ANOVA 
Yes 

(p=0.9315) 
0.0244 

Reject 

H0 

 

 

Table C.3. Multiple comparison hypothesis testing with 2-sample T-test with an effective significance level of 

0.0133 according to Bonferroni Correction. H0 represents that no difference between means can be observed. 

First Level Second Level Equal variance p Decision 

chimeric human Yes (p=0.7314) 0.0313 Keep H0 

chimeric humanised Yes (p=0.8420) 0.0093 Reject H0 

human humanised Yes (p=0.7917) 0.6086 Keep H0 
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C.3 Chapter 7 Modelling Results 

 

Figure C.7. PCA loadings of light chain descriptors from MSD1, MSD2 and MSD3. The first (a) and second (b) 

component of MSD1 calculated from descriptor generated from the entire light chain. The first (c) and second (d) 

component of MSD2 were calculated from descriptors generated individually from the VL and CL domains. The 

first (e) and second (f) component of MSD3 were calculated from descriptors generated from individual 

substructures in the VL and CL domains. Domain specific descriptors are separated by the black vertical dashed 

line in MSD2 and MSD3. 
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Table C.6. 80/20 sample splitting of the 79 selected IgG1-kappa samples. Splitting was performed with the 

CADEX algorithm on the three descriptor resolutions MSD1, MSD2 and MSD3 generated from the variable 

domains VH and VL. The splitting results of a stratified and non-stratified strategy is presented. The implemented 

sample stratification strategy was designed to place approximately 20% of each species origin in the test set for 

model validation.  

Descriptor 

Set 

Species  

origin 

Not Stratified  Stratified 

Calibration  Test  
Ratio 

(Test) 

 
Calibration  Test  

Ratio 

(Test) 

MSD1 

chimeric 10 0 0.00  8 2 0.20 

human 23 3 0.12  20 6 0.23 

humanised 30 13 0.30  34 9 0.21 

MSD2 

chimeric 9 1 0.10  8 2 0.20 

human 23 3 0.12  20 6 0.23 

humanised 31 12 0.28  34 9 0.21 

MSD3 

chimeric 9 1 0.10  8 2 0.20 

human 21 5 0.19  20 6 0.23 

humanised 34 9 0.23  34 9 0.21 
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Figure C.8. ROC curves and AUC of cross-validation for chimeric (red line), human (green line) and humanised 

(blue line) with PLS-DA developed on (a) MSD1, (c) MSD2 and (e) MDS3 as well as SVC developed on (b) 

MSD1, (d) MSD2 and (f) MDS3. 
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Table C.7. Model benchmarking table for (a) HIC retention times and (b) mAb yields. Performance of all model 

permutations and descriptor sets in the Cross validation and Test set developed from 79 IgG1-kappa samples have 

been presented. Colouring was applied conforming to the OECD guidelines. Green indicates values higher than 

0.5 and 0.6 in the cross validation and Test set, respectively. Yellow indicates values between 0.3 and 0.5 in the 

cross validation as well as between 0.3 and 0.6 in the Test set. Red indicates values below 0.3. 
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Table C.8. List of descriptors from PLS model developed with GA for prediction of HIC retention times (LVs = 

9). The descriptor names and types have been given as well as which domain and substructure the descriptors were 

generated from.  

Index Descriptor Type Domain Substructure 
Regression 

Coefficient 

1 GC(F) Energy VH FW1 0.0673 

2 SIEP TAE VH FW1 -0.0892 

3 W(F) Energy VH CDR1 -0.0867 

4 SASAnon-polar Topo VH CDR1 0.0235 

5 SIEPMax TAE VH CDR1 -0.0898 

6 GC(F) Energy VH FW2 0.1844 

7 ΔGs Energy VH FW2 0.1245 

8 ln(FD) Topo VH FW2 0.0534 

9 Del(K)IA TAE VH FW2 -0.1129 

10 Gc(F) Energy VH CDR2 0.2312 

11 VOLTAE TAE VH CDR2 0.0738 

12 SIEPMax TAE VH CDR2 0.0272 

13 VOLTAE TAE VH FW3 -0.0655 

14 Del(G)NMax TAE VH FW3 -0.0755 

15 GC(F) Energy VH CDR3 0.1747 

16 GW(F) Energy VH CDR3 0.2325 

17 ΔGs Energy VH CDR3 -0.0820 

18 ΔGel Energy VH CDR3 0.1667 

19 SASApolar Topo VH CDR3 0.3130 

20 Spolar Topo VH CDR3 0.0776 

21 Snon-polar Topo VH CDR3 -0.1258 

22 VOLTAE TAE VH CDR3 0.0730 

23 SIEPMax TAE VH CDR3 -0.0948 

24 GC(F) Energy VH FW4 0.0297 

25 SASApolar Topo VL FW1 0.1018 

26 Gc(F) Energy VL CDR1 0.1803 

27 SASAnon-polar Topo VL CDR1 0.0818 

28 Snon-polar Topo VL CDR1 0.0066 

29 ln(FD) Topo VL CDR1 0.1763 

30 Del(Rho)NMax TAE VL CDR1 -0.1068 

31 ΔGs Energy VL FW2 -0.1137 

32 HBd Energy VL FW2 -0.1156 

33 SIDel(K)N TAE VL FW2 -0.1292 

34 ΔGTors Energy VL CDR2 0.2147 

35 SASAnon-polar Topo VL CDR2 0.2519 

36 Snon-polar Topo VL CDR2 0.1550 

37 Gc(F) Energy VL FW3 0.1116 
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Index Descriptor Type Domain Substructure 
Regression 

Coefficient 

38 Gc(F) Energy VL FW4 0.2662 

39 ΔGW Energy VL FW4 0.0374 

40 GC(F) Energy CH1 A-Strand 0.1552 

41 Gc(F) Energy CH1 B-Strand -0.1913 

42 SIEP TAE CH1 B-Strand 0.0681 

43 HBd Energy CH1 D-Strand 0.0992 

44 SASApolar Topo CH1 E-Strand -0.2145 

45 Del(K)Max TAE CH1 E-Strand -0.0814 

46 ΔGLJ Energy CH1 G-Strand -0.1064 

47 Del(K)Max TAE CH1 G-Strand -0.1336 

48 Del(K)Max TAE CL A-Strand 0.1670 

49 W(F) Energy CL C-Strand 0.1686 

50 ΔGTors Energy CL F-Strand -0.2348 

51 GC(F) Energy CL G-Strand 0.0874 
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Appendix D  

D.1 Eigenvectors and Eigenvalues 

Eigenvectors are a special case of matrix multiplication where a transformation of these vectors 

only changes their magnitude where their original direction is retained. Eigenvectors can only 

be calculated for square matrices, but it should be noted that not all square matrices have them 

(Abdi, 2007). The definition of eigenvectors is presented in eq.(D.1). 

 

 𝑨𝒗 = 𝜆𝒗, 𝒗 ≠ 𝟎 (D.1) 

 

Here, 𝑨 is an arbitrary non-symmetric transformation matrix with 𝑀 rows and 𝑀 columns, 𝒗 is 

the eigenvector and 𝜆 is the eigenvalue. Given the square form of the transformation matrix, 𝑨, 

there will be 𝑚 eigenvectors and eigenvalues. Eq.(D.1) can then be rewritten to include all 

eigenvectors and eigenvalues according to eq.(D.2) and is referred to as the eigen space of 𝑨. 

 

 𝑨𝑽 = 𝑽𝚲 (D.2) 

 

Where, 𝑽 = [𝒗1 … 𝒗𝑀] is the eigenvector matrix and 𝚲 = diag(𝜆1, … , 𝜆𝑀) is a diagonal 

matrix consisting of the eigenvalues. 𝑽 is invertible if, and only if all eigenvectors are linearly 

independent, then the transformation matrix, 𝑨 can be decomposed according to eq.(D.3) which 

is also called the eigen-decomposition of 𝑨. 

 

 𝑨 = 𝑽𝚲𝑽−1 (D.3) 

 

However, for a special type of matrices often used in statistics called positive semi-definite, the 

eigen-decomposition will always exist. A matrix, 𝑨, is positive semi-definite if obtained as the 

product of some matrix 𝑿 and its transpose according to eq.(D.4).  

 

 𝑨 = 𝑿𝑿𝑇 or 𝑨 = 𝑿𝑇𝑿 (D.4) 

 

The positive semi-definite matrices are therefore always symmetric which results in all 

eigenvectors becoming orthonormal, meaning that pair-wise eigenvectors are orthogonal, 

eq.(D.5), and that the magnitude of each eigenvector is equal to one, eq.(D.6). The eigenvalues 

obtained from a positive semi-definite matrix will always be larger or equal to zero, eq.(D.7). 



278 

 

 𝒗𝑘
𝑇𝒗𝑙 = 0 if 𝑘 ≠ 𝑙, 𝑘, 𝑙 = 1, … , 𝑀 (D.5) 

 ‖𝒗𝑘‖ = 𝒗𝑘
𝑇𝒗𝑘 = 1 (D.6) 

 𝜆𝑘 ≥ 0 (D.7) 

 

The orthogonality of the eigenvectors implies that 𝑽−1 = 𝑽𝑇 and greatly simplifies the eigen-

decomposition of 𝑨 due to that the inverse does not need to be calculated. The expression in 

eq.(D.3) can be rewritten according to eq.(D.8). In statistics, common positive semi-definite 

matrices include the covariance, 𝚺, matrix and the correlation matrix. 

 

 𝑨 = 𝑽𝚲𝑽𝑇 (D.8) 
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D.2 Singular Value Decomposition 

The Singular Value Decomposition (SVD) is another common technique that is used for 

calculating the principal components in PCA where 𝑿 is decomposed according to: 

 

 𝑿𝐶𝑒𝑛𝑡 = 𝑼𝑺𝑽𝑇 (D.9) 

 

where 𝑼 (N x N) is unitary matrix, 𝑺 = diag(𝑠1, 𝑠2, … , 𝑠𝑚𝑖𝑛(𝑁,𝑀)) (N x M) is a diagonal matrix 

which will contain extra rows or columns of zeros if N > M or N < M, respectively. The matrix 

𝑽 is the eigenvector matrix and is equal to 𝑽 in the eigen-decomposition in eq.(2.12) only when 

𝑿 has been mean centred prior to SVD decomposition (Wall et al., 2003). Through substitution 

of eq.(D.9) into eq.(2.11), the relationship between the eigenvalues and the and the singular 

values can be calculated to: 

 

 𝚲 =
𝚺2

𝑁 − 1
, 𝜆𝑘 =

𝑠𝑘
2

𝑁 − 1
, 𝑘 = 1,… ,min (N,M) (D.10) 

 

The PC loadings will be the eigenvector matrix as stated in eq.(2.13) which means that the PC 

scores are calculated as the product of 𝑼 and 𝑺 according to: 

 

 𝑻 = 𝑼𝐒 (D.11) 

  



280 

D.3 Lagrange Multipliers in SVC 

Application of Lagrange multipliers is described here for the soft-margin SVC classifier 

covered in Section 2.3.2.2. In its essence the Lagrange multipliers reformulates the primal 

optimisation problem by adding the constraints to the maximisation or minimisation expression 

according to: 

 

 

ℒ(𝝎, 𝑏, 𝝃) =
1

2
‖𝝎‖2

2 + C∑𝜉𝑖

𝑁

𝑖=1

− ∑𝛼𝑖(𝑦𝑖(𝝎
𝑇𝒙𝑖 + 𝑏) − (1 − 𝜉𝑖))

𝑁

𝑖=1

 

= −∑𝛽𝑖𝜉𝑖

𝑁

𝑖=1

 

(D.12) 

 

where the constraints for the class boundaries have been multiplied by 𝛼𝑖 and the constraints 

for the slack variables have been multiplied by 𝛽𝑖. This is necessary in order to formulate the 

dual problem where optimisation is performed with regards to the samples instead of the 

variables. For the SVC algorithm to properly select the optimal solution, the Karush–Kuhn–

Tucker (KKT) conditions must hold true (Kuhn and Tucker, 2014). This means that the 

resulting Lagrangian, ℒ, in expression in eq.(D.9) must be differentiable as presented in KKT 

condition 1. The initial constraints from the primal must also hold true in the solution and is 

represented as KKT condition 2. KKT condition 3 is called the complementary slackness 

condition and is necessary in order to have a strong duality, meaning that the solution of the 

dual is equal to that of the primal.  

KKT condition 1 

 

 
𝜕ℒ(𝝎, 𝑏, 𝝃)

𝜕𝝎
= 𝝎 − ∑𝛼𝑖𝑦𝑖𝒙𝑖

𝑁

𝑖=1

= 0 (D.13) 

 
𝜕ℒ(𝝎, 𝑏, 𝝃)

𝜕𝑏
= −∑𝛼𝑖𝑦𝑖

𝑁

𝑖=1

= 0 (D.14) 

 
𝜕ℒ(𝝎, 𝑏, 𝝃)

𝜕𝜉𝑖
= 𝐶 − 𝛼𝑖 − 𝛽𝑖 = 0 (D.15) 
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KKT condition 2 

 

 𝑦𝑖(𝝎 ∙ 𝒙𝑖 + 𝑏) − 1 ≥ 0 (D.16) 

 𝜉𝑖 ≥ 0 (D.17) 

 

KKT condition 3 

 

 𝛼𝑖(𝑦𝑖(𝝎
𝑇𝒙𝑖 + 𝑏) − (1 − 𝜉𝑖)) = 0 (D.18) 

 𝛽𝑖𝜉𝑖 = 0 (D.19) 

 

Through substitution with eq.(D.13) into eq.(D.12), the expression can be rewritten into the 

form of the Wolf dual according to: 

 

 

maximise
𝜶

= 𝑊(𝜶) = ∑𝛼𝑖

𝑁

𝑖=1

−
1

2
∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝒙𝑖 ⋅ 𝒙𝑗

𝑁

𝑖,𝑗=1

 

subject to = 0 ≤ 𝛼𝑖 ≤ 𝐶 

= ∑𝛼𝑖𝑦𝑖

𝑛

𝑖=1

= 0 

(D.20) 

 

The resulting constraints in eq.(D.17) are formulated based on eq.(D.13) and eq.(D.14) in KKT 

condition 2 as well as eq.(D.15) and eq.(D.16) in KKT condition 3. An example of the potential 

solutions for the Wolf dual is illustrated in Figure D.1 which is only dependent on the values 

𝛼𝑖. For more details on Lagrange multiplier in SVC, refer to the work of Hastie et al. (2009b). 
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Figure D.1. Example of optimisation solutions for the Lagrange dual which is only dependent on the values of 𝛼𝑖 

as well as the samples in the data set. 


