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A B S T R A C T

David Burke:
Runtime Methods for Energy-Efficient, Image Processing using Significance

Driven Learning.

Image and Video processing applications are opening up a whole
range of opportunities for processing at the "edge" or IoT applications
as the demand for high accuracy processing high resolution images
increases. However this comes with an increase in the quantity of data
to be processed and stored, thereby causing a significant increase in
the computational challenges. There is a growing interest in develop-
ing hardware systems that provide energy efficient solutions to this
challenge. The challenges in Image Processing are unique because the
increase in resolution, not only increases the data to be processed but
also the amount of information detail scavenged from the data is also
greatly increased. This thesis addresses the concept of extracting the
significant image information to enable processing the data intelli-
gently within a heterogeneous system.
We propose a unique way of defining image significance, based on
what causes us to react when something "catches our eye", whether it
be static or dynamic, whether it be in our central field of focus or our
peripheral vision. This significance technique proves to be a relatively
economical process in terms of energy and computational effort.
We investigate opportunities for further computational and energy
efficiency that are available by elective use of heterogeneous system
elements.
We utilise significance to adaptively select regions of interest for se-
lective levels of processing dependent on their relative significance.
We further demonstrate that exploiting the computational slack time
released by this process, we can apply throttling of the processor
speed to effect greater energy savings. This demonstrates a reduction
in computational effort and energy efficiency a process that we term
adaptive approximate computing.
We demonstrate that our approach reduces energy in a range of 50 to
75%, dependent on user quality demand, for a real-time performance
requirement of 10 fps for a WQXGA image, when compared with the
existing approach that is agnostic of significance. We further hypoth-
esise that by use of heterogeneous elements that savings up to 90%
could be achievable in both performance and energy when compared
with running OpenCV on the CPU alone.
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1
I N T R O D U C T I O N

1.1 rationale

Recent white papers and articles have indicated there may be a shift in
interest, by Systems Architects, in the types of devices required for the
Internet of Things (IoT). One such article by Altera (now Intel) [1] (Last
checked 16 Sep 2019), questions the simplistic approach of the IoT and
the cost of implementing individual single sensor devices. The article
suggests an integrated approach and as an example suggests that, in a
smart city application, the idea of a high definition camera, with video
analytics, that can fulfil the function of a number of the single sensors,
in this metropolitan scenario, while acting as a hub to gather data
from existing single sensor devices. This vision produces a number
of challenges to develop systems that can process significant volumes
of high resolution image data, identify, extract and transmit the extra
information content, while minimising energy usage, requiring highly
efficient heterogeneous processing solutions.

Market forecasts show that Artificial Intelligence devices in IoT
market are expected to grow from $5.1 billion to $16.2 billion in the
period 2019 to 2024, at a Compound Annual Growth Rate (CAGR) of
26.0%, [2] (Last checked 16th Sept 2019). The major factors expected
to drive the market are the need to efficiently process huge volumes
of real-time data being generated from IoT devices while reducing
maintenance costs and downtime.

Such IoT and other embedded devices show a broad range of appli-
cations including Image Processing at the Edge, such as:

• Smart-city applications for use in controlling traffic and pedes-
trian flow, smart Closed Circuit Television (CCTV) systems to
record only significant events in the field of view, vehicle num-
ber plate recognition for admission to car parks.

• There are a number of safety critical Automotive applications,
dozing driver recognition systems that can alert and awaken the
driver before an accident occurs, Driver Assistance Systems (DAS)
to ensure safety of vehicle passengers, pedestrians and other
traffic.

• Financial security is a constant development field, which will
always face persistent challenges from fraudsters and hackers,
currently utilises fingerprint, voice and iris recognition. Facial

2



1.2 energy efficiency 3

recognition systems for such security purposes is an obvious
future choice.

• Medical Imaging Processing has a multitude of applications
addressing enhancement, recognition and display of various
Magnetic Resonance Imaging (MRI), Ultrasound, optical, x-ray &
Clinical Tomography (CT) and nuclear images. There is evidence
that some of these techniques are migrating to portable personal
health devices.

• Machine Vision, since the 2012 ImageNet Large Scale Visual
Recognition Challenge (ILSVRC), is currently in a rapid growth
development scenario across most of the above categories mov-
ing from a phase where facial recognition is almost de rigueur,
to semantic segmentation where all individual objects in an
image can be detected or recognised using pre-trained models.
Typically this development is based on larger power computing
systems for the learning and classification phase with a growth
being seen in the detection phase on embedded or IoT systems,
in some cases utilising dedicated Neural Processing Unit (NPU)s.

Such growth in Image Processing will create a significant demand for
processing power and stored energy to power the processors. This
creates a unique opportunity to create processes that can assist in
improving the energy efficiency of these devices.

1.2 energy efficiency

If we consider a simple example of a current 640 x 480 VGA graphics
30fps video stream which can be processed efficiently by a single em-
bedded processor. Over a 24 hour period this would entail processing
around 0.8 Terapixels which equates to around 3.2 Terabytes of storage.
Growth of the image to a 4320 x 2432 Ultra High Definition (UHD)
picture represents around 35 times growth in the number of pixels
to be processed which not only increases the data and information
content of the image with an associated increase in the transfer rate
but also would necessitate a significant increase in the requirement of
processors and their computational ability, by an equivalent amount,
to process the frame. Such an increase requires heterogeneous re-
sources that bring together special purpose processors, floating point
devices, GPUs and perhaps FPGAs together. This allows the processor
to manage the data collection and interact with the IOs with the GPUs
utilised as special purpose processors, a growing number of FPGAs
are now providing special software support in order to provide image
processing in real time. This increase in computational power will
also carry a penalty in the energy required for such computations.
Realising the computational complexities and challenges of energy
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efficient computing there is a growing interest that requires novel
approaches to enable identification of the significant features in an
image, utilisation of approximate computation techniques and power
management in order to increase energy efficiency.

1.3 research questions

In order to address the challenging topic of energy efficiency, the
following research questions are relevant:

RQ1 Can we intelligently infer the significance of image blocks in
Image Processing?

RQ2 Can we exploit the knowledge of significance to control compu-
tational complexity using application level approximation?

RQ3 Can we exploit a synergistic approach of hardware and software
to maximise efficiency and reduce power consumption in hetero-
geneous systems in image processing workloads across different
components?

1.4 contributions and thesis overview

Current Image processing computation is effected by dividing the
image into blocks to permit parallel computation. Each block will have
a different level of information contained within but the same process
is applied to every block.

This research has provided a software demonstrator that illustrates
the use of approximate methods to derive the significance of the infor-
mation contained in blocks of an image so that they can be selected
for a level of processing complexity particular to their significance,
addressing research question RQ1.

Further, utilising a two threshold level selection process based on
user requested percentage levels, to effect a three level convolution
kernel concept, with increasing accuracy kernels to be applied to the
three increasing levels of incremental significance level blocks. This
three level system could then be allocated to a particular process-
ing engine, dependent on the on the complexity of the process. For
example a high significance complex process may be executed on a
GPU or FPGA, a mid significance process may be allocated to a DSP
engine based process and low significance blocks allocated to the CPU,
thereby addressing research questions RQ2 and RQ3.

The model also demonstrates these principles, via the Odroid XU4

platform, as to how Neon FPUs and GPU can potentially be used to
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tune power and performance and slack processing time can be utilised
to further control power reduction by application of Dynamic Voltage
and Frequency Scaling (DVFS) to the CPU or other available engines,
addressing RQ3.

The major contributions of this thesis are summarized as follows:
In Chapter 3 "Significance in Image Processing": We address research

question RQ1 by introducing and defining significance, based on a
standard deviation derived from a local mean. We provide three meth-
ods for extracting significance. The first based on traditional standard
deviation. A second more efficient method based on Absolute devia-
tion, and a third based on approximate absolute deviation with the
additional benefits of substantial savings in energy and performance.

In Chapter 5 "Significance Driven Adaptive Approximate Comput-
ing": We address RQ2 and demonstrate the efficiencies of utilising a
novel methodology, utilising Image significance to identify a percent-
age based selection of areas of an image to be selected for tailored
processing, the level of processing being dependent on the significance
level of that particular area. This allows the opportunity to disqual-
ify insignificant areas from any processing activity, thereby offering
processing and energy saving opportunities. Further the reduction in
processing time, particularly for video frames, yields slack time that
can be explored to utilise DVFS on the CPU to provide further energy
savings.

In Chapter 4 "CPU, GPU & Neon Energy and Performance Charac-
terisation" along with Chapter 5: RQ3 is addressed. We demonstrate
the potential performance increase and energy saving provided by
use of Neon FPU and/or GPU in image processing. This facilitates
further opportunities, for application of DVFS to both CPU and GPU
in order to yield further efficiencies in energy and processing, a major
advantage, especially for high resolution image processing.

This thesis is organized into six chapters:
Chapter 1 "Introduction": this chapter, introduced the aims and

structure of this thesis.
Chapter 2 "Background and Literature Review" provides the motiva-

tions, objectives for the thesis and reviews current applicable literature.
In Chapter 3 "Significance in Image Processing": This chapter pro-

vides an overview of current methods of finding significance in an
image and We then introduce further exploration of less computation-
ally expensive and approximate deviation methods.

In Chapter 4 "CPU, GPU & Neon Energy and Performance Char-
acterisation" demonstrates the potential performance increase and
energy savings provided by use of Neon FPU and/or GPU in image
processing.
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Chapter 5 "Significance Driven Adaptive Approximate Computing":
explores the use of a software model with image processing quality
percentage level control knobs to dynamically adjust the Significance
Threshold levels, and further utilise available slack time to allow ap-
plication of DVFS to reduce energy consumption. This chapter also
highlights roadblocks that hindered further development with the
tools implemented during development and indicates future opportu-
nities for further research and development of these topics.

In order to develop the underpinning background and also appre-
ciate the work done in the existing literature, Chapter 2 will give a
comprehensive coverage on approximate computing, hardware and
software topics.

Chapter 6 "Conclusion and Further Opportunities " Summarises this
thesis.



2
B A C K G R O U N D A N D L I T E R AT U R E R E V I E W

This chapter will provide background knowledge relevant to this
particular dissertation going into the topics of energy efficiency, ap-
proximate computation and the programming models available for
image processing
It will also comprehensively review the literature or research work
done to date, relevant to this particular work.
Section 2.1 will introduce the background to this research. Section 2.2
will outline the challenges arising from implementing image process-
ing on increasing image definition. Section 2.3 will outline some of the
recent advances in vision technology that are being implemented to
deal with this scenario. Section 2.4 will review the literature associated
with this wide field of research and the challenges of approximate com-
puting across a number of computing domains. Section 2.5 presents a
review of how achievements in four particular computing domains
may offer cross-domain solutions. Section 2.6 summarises this chapter.

2.1 background

In Chapter 1 the Altera article [1], proposed an argument about new
developments such that, instead of a huge bank of sensors, in say the
intelligent city, that by using high definition (4k or 8k ) video cameras
to enable the capture of a variety of events that would otherwise need
to use a large number of single sensor based devices. The camera
could produce the same city management information in video format.
This could avoid the large infrastructure building, maintenance and
security costs. All this means that the total cost of ownership can be
reduced while offering better safety, security and reliability of the
smart city system. However the article raises the point that, if a 4k or
8k camera were used in such devices, then some sort of processing
is required to extract the required data either by processing raw data
in the cloud or by substantial processing power close to the sensors,
termed ’edge’ processing.
Companies such as Cisco see the future IoT as consisting of application
specific virtual servers operating outside the cloud of the data centres,
in what they term as ’Fog computing’, utilizing lightweight Central
Processing Unit (CPU)s supported by hardware accelerators, be they
Floating Point Unit (FPU)s, Graphics Processing Unit (GPU)s, General
Purpose Graphics Processing Unit (GPGPU)s, Neural Processing Unit
(NPU)s, Field Programmable Gate Array (FPGA) or other evolving
technology, appearing as a portable container utilizing a Java virtual

7
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machine or OpenCL platform. Use of the cloud creates problems with
latency, security and bandwidth as the internet in it’s current form
would struggle to cope with the streaming rates required.
As an example of a 4k capable vision system, Omnivision produce
the OV24A10 image device, an active array of 5664 x 4248 pixels (24

Megapixels) operating at 30 frames per second (fps), the OV24A10

is currently their highest resolution image sensor currently available.
The raw data rate this gives is around 580MPixels/second, bearing
in mind that a pixel can be a number of bits in the range of 8 to 32

bits/pixel that will multiply the pixel rate. In the OV24A10 case the
pixel data width is 10 bits, giving a RAW data rate of just under 6Gb/s.
For reference, 2 Terabytes of disk storage, if it could handle the raw
data rate, would hold 44 minutes worth of data. Such data transfer
puts this application into the Volume and Velocity category of BIG
data.

2.2 challenges

Image capture, processing and display of 4K and 8K bring a number
of technical challenges in the transfer rates, storage of data and power
efficiency. Table 2.1 shows the emerging challenge of data transfer
rates and the quantity of Raw data produced over a 24 hour period
compared with historic and future imaging and display resolutions.
Columns 1 and 2 show the horizontal and vertical pixel counts of
some common image formats increasing from 640 x 480 VGA up to
4320 x 2432 UHD and onward to 8k. Column 3 shows the image pixel
count, the product of width and height. Columns 4, 5 and 6 show
image products for 30 frames per second processing based on an 8

bit pixel value giving the data rate for column 4. Column 5 shows the
total number of pixels that have each to be processed in a 24 hour
period by existing image processing techniques, note that this does
not include any convolution filter, MAC operations, activity which
would increase this figure significantly. Column 6 shows a relative
energy figure based purely on the known energy figure for the 640

x 480 process at 30fps, scaled up by the increase in pixels processed.
Columns 7, 8 and 9 show similar calculations for a higher 60 frames
per second operation.

It can be seen that for an order in magnitude increase in frame
size that the exponential relationships yield around two orders of
magnitude increase in Transfer rate, storage and energy requirements.
This scenario creates new challenges in:

• The transmission and storage of data.

• Creating energy efficient systems to process the data.

• Designing viable approximate computing systems hardware and
software.
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• Trading high performance operation aspects to enable lower
power consumption during critical power availability periods.

2.2.1 Data Rates

The significantly higher data rate associated with Ultra High Definition
cameras, above 4k width, create new challenges at the Printed Circuit
Board (PCB) level. Data transfer is usually achieved in these cases
by the use of multiple lane, Gigabit rate, serial differential drivers
for the PCB-camera interface and high bandwidth ethernet, WiFi or
other interfaces between the embedded system and the cloud. Data
Compression schemes such as Joint Picture Experts Group (JPEG),
Advanced Video Coding (AVC) ( also known as MPEG4 or H264) and
High Efficiency Video Coding (HEVC) ( H265) help mitigate these
transmission demands by reducing data rates, but this is a particular
use case of transmitting data between two points. JPEG compression
is used for still images, typically yielding 10:1 compression ratio for
a 20 Megapixel image, dependent on content. Tan [3] compares the
data reduction performance, for video test data, between HEVC and
AVC, measuring PSNR and a subjective audience test, Mean Opinion
Score (MOS), to yield relative performance figures. As an example,
the "Manege" UHD 3840 x 2160 60fps test video, would render a
raw data rate of around 16 Terabits per second. The reduced data
rates for a score of 35db PSNR and an acceptable level MOS score
of 7, yields a data rate of around 16Mbps for AVC and 8Mbps for
HEVC, representing a 1000:1 reduction for AVC and 2000:1 for HEVC,
a significant saving.

2.2.2 Data Storage

Table 2.1 columns 5 and 8 show the 24 hour period data quantity as a
total in TeraBytes for 30 and 60fps video, a pixel value is normally 24

bits held in a micro-system as a 4 Byte or 32 bit word, representing the
amount of Raw data produced at the camera over this 24 hour period.
Current top of the range hard disks are 6TB capacity and Solid State
at 1TB. Clearly some form of data reduction is required to store the
relevant information. The Closed Circuit Television (CCTV) Industry
is currently heading towards H265 compression for 4k and above
images, this still creates a computational challenge during processing
with the data having to be decompressed before analysis of the full
frame continuous historical data that has to be ”searched” for items of
interest.
The previous subsection demonstrates the data rate savings of AVC
and HEVC which translates directly into a compression figure which
offers considerable data storage savings. If the transmitted/stored
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compressed data is to be subsequently remotely processed at a higher
level other than simply being viewed, eg feature extraction or facial
recognition, then decompression has to be implemented before pro-
cessing of the reconstructed frame can take place thereby increasing
the overall required computational effort. It needs to be borne in
mind that such compression processes are lossy techniques with the
resultant image’s high frequency content being degraded. This thesis
offers a solution to this post-compression, image processing phase by
providing a methodology that can highlight significant areas of the
image and limiting processing to those significant areas.

2.2.3 Power Efficiency

Considering the power requirements to drive embedded devices using
a traditional micro-controller fitted to a PCB to capture the video from
a camera and display it on a screen. Currently this could be done
for the VGA size, 640 x 480, by use of a particular manufacturerś
Evaluation board, containing a Cortex M7 and small video screen, for
example, capable of running at up to 216MHz consumes around 1.5W.

If we now address driving 4K and 8K systems which in the case of
one particular image array uses 3 x 1.25Gbit/sec lanes to transfer the
image data. In order to handle these sort of frequencies we are near
the practical limit of traditional processor based PCB design! Traces
have to be kept very short and board layout require careful routing
consideration. We would need to scale up the microsystem to an array
of Arm Cortex-A series high-end application processors with around
2.0GHz operation, alongside a capable GPU to cope with such data.
We can now estimate that we are looking at tens of Watts of power
instead of single figure Watts.

In order to appreciate the extra energy requirements and processing
time required by increasing image sizes, Chapter 4 will show the
comparative results of increasing image size utilising a single processor
and further comparing it with hardware accelerator solutions.

2.2.4 Energy-Efficient Computing

Heterogeneous computing systems have seen significant growth in
various development platforms and software libraries. These software
libraries are optimised and aimed at performance rather than energy
efficiency. IoT devices and embedded systems along with Data centre
power consumption is currently a highly motivational topic promoting
interest in approximation methodology to enable energy saving and
efficiency concepts in data processing. As an example, efficiency short-
comings have been identified in power conversion and distribution
systems in data centres that show a result that 10% power saving at
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the server level can translate to 25% at the data centre input power,
Brady [4], Beitelmal [5]. While this is a pure data centre problem, it
reinforces the care that must be taken when considering embedded
and IoT systems power demand and conversion, providing benefit
from the cascading down of efficiencies and technologies utilised in
the data centre.

2.2.5 Approximate Computing System Design

This research investigated the use of approximation methods to re-
duce computation which consequentially results in power reduction.
Further power managment techniques are also investigated to offer
further power reduction. This thesis introduces image significance
based on standard deviation which can identify key areas of an im-
age and explores variations of this statistical based method to enable
minimisation of computation. The research then introduces an ap-
proximate form of image significance which allows a novel approach
of multi level threshold classification of areas of the image to allow
stepped accuracy convolution in areas of high significance down to
least accurate, or no, convolution in areas of least significance. This
scenario offers the further opportunities of application of Machine
Learning to utilise the threshold levels as a control knob. A further
control knob exists in exploration of utilising Dynamic Voltage and
Frequency Scaling (DVFS) to reduce the remaining computational slack
time available once each frame has been processed enabling a balanc-
ing of performance against power usage. This will be explained in
Chapter 5

2.2.6 High Speed Performance

To effect such image processing with the current traditional approach,
would normally require a Heterogeneous system implementation of
high performance processor or preferably an array of such processors,
using available software models and parallel programming techniques
along with system devices such as DSP or GPU accelerators. Alterna-
tively, previous experience has led to use of FPGAs to perform time
critical data processing in a power critical application in conjunction
with a processor to manage the data storage functions. The potential
data rates that are evident in this project will require an integrated
approach. It is believed that the functionality could benefit from the
application of high end ARM processors coupled with Neon FPUs,
GPU or possibly FPGA.
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2.2.7 IP issues when requiring component datasheets

Typically when faced with a difficult operating challenge with some
complex component or CPU it was usual to revert to the manufacturers
data sheet in order to help resolve the problem, but that scenario is
changing. Various component manufacturers are now very protective
of their intellectual property (IP) and demand that potential users of
their components, with a desire to build in their devices for some
new product, will have to sign an Non Disclosure Agreement (NDA)
before technical data such as data sheets or user manuals are released
to the developers. Provision of an NDA to be signed may also come
with a conditional restriction that there is an intention to source a
considerable quantity of the components to build into the end product.
As an example, Omnivision manufacture many of the computer vision
cameras used in computer vision applications, they are now very
protective of their IP such that they will not release a data sheet for
their product until the potential user has given them full information
on what the end product is to be. This presents a "no win" situation
when the developer has to reveal his design plans, exposing the
developers’ potential IP, in order to be able to sign an NDA for the
product being developed, a potential lockout situation.

Another such example is in the case of embedded processors and
withholding release of IP by manufacturers as a barrier to rapid
development by their competitors eg Samsung with its’ Exynos 5422

octacore processor and graphics driver. The datasheet is only released
under an NDA which is only offered to volume manufacturers.

2.3 recent advances in imaging processing

Vision Technology is a rapidly advancing topic with continuous im-
provements in the camera technology along with the electronic devices
and the software tools to process such images.

2.3.1 Ultra High Definition Cameras

There are a number of Semiconductor manufacturers with 4K Image
arrays which are now appearing as manufactured CCTV cameras. 8K
Image arrays are also now available but there is not much evidence
of these appearing in camera form at the moment. These devices
operate with multi lane GigaHerz+ Communication channels making
traditional embedded system and PCB design more complex. An early
opinion of this is that an FPGA System-on-Chip (SoC) design approach
would yield a successful approach. With such high frequencies we are
now nearing a time when current PCB design approach may need to
change.
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2.3.2 Programming Models for Image Processing Applications

There are a number of programming models that offer library func-
tions for different aspects of system software design to support the
development of various aspects of system operation. The OpenCV,
OpenCL, OpenMP, OpenMV, ACL etc. (OpenXXX) series of toolboxes
are Open Source libraries of software provided to enable growth in
their particular field by enabling academics, professionals and en-
trepreneurs to implement projects and perform research by providing
a logical and consistent C++ and/or Python interfaces to library func-
tions for the particular library.

Open Multi Processor (OpenMP) is an API supporting parallel pro-
gramming on multi-platform shared memory systems. It achieves this
by multithreading where a master thread forks other runtime threads
to be distributed via the runtime environment for concurrent running
on available processors. OpenMP orignated in 1997 to support High
Performance computing with C/C++ and Fortran. OpenMP is effective
for multi platform Multiprocessor applications for high performance
computing. At the moment we do not anticipate this to be an attractive
proposition for this project.

Open Computing Language (OpenCL) originated in 2010 and allows
parallel programming of diverse devices in heterogeneous platforms
including CPUs, GPUs, GPGPUs, FPGAs and SIMD coprocessors eg
Neon DSP engine. OpenCL is particularly useful where "embarassingly
parallel" computation is normally performed in software. OpenCL
offers the ability to perform intense software code in the hardware of
GPUs or alternatively as hardware configured in an FPGA. Application
of OpenCL in this thesis can only be reviewed once OpenCV function-
ality is fully understood. Research may show that some functionality
may possibly not be able to be implemented directly with OpenCV
and direct FPGA functionality programming may be required. Where
these combinations of processor and accelerators are used significant
higher performance can be gained from the use of GPUs, FPGAs or
other devices as they are optimised to deal with data without the
overhead of having to fetch the mixtures of program code and data
or the overhead of fetch, decode, execute cycles, they also do not
possess periodically redundant hardware items, registers, ALUs etc
that are necessary for a processor to function. OpenCL aims at this
type of application so that the application can be configured to run on
processor only, processor/GPU or processor/FPGA combinations or
indeed all three. OpenCL is still going through development stages
but it is felt that it is now at the stage of requiring a real project for it
to be applied to.
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Open Computer Vision (OpenCV) library, started in 1999, driven by
a number of trends such as mobile phone cameras, Internet search
engines accessing image databases, the available power in modern
computers and the maturity of vision algorithms which are now
moving towards neural network processing. Such is the width of al-
gorithms in OpenCV that the applications that can be generated are
limited only by the imagination of humanity and their ability to trans-
late their ideas into running code. OpenCV is effective at performing
in depth Computer Vision Image analysis. It provides a useful set of
algorithms for image analysis and will be a good starting point to
investigate the methodology for detecting objects moving into and
through the Field of View of a camera. AMD have instigated OpenCL
acceleration of OpenCV since 2011 and OpenCV 3.x will include the
Transparent API (TAPI) as sponsored by AMD and Intel. The OpenCL
OpenCV TAPI interface might be some risk to the project as initial
investigations give the impression that this interface is specifically for
GPUs or GPGPU with no reference to FPGAs.

Open Assymetric Multi Processing (OpenAMP) started life in 2005

and is aimed at a broader range of heterogeneous and homogeneous
processing architectures that include HPC cores Real-time cores, hard-
ware accelerators and programmable logic.

Open Machine Vision (OpenMV) is a fairly recent development, 2013,
targeted at supporting Machine Vision on low cost embedded Cortex-
M processors running OpenCV modules under microPython. This is a
milestone achievement to be able to run complex Vision Processing
modules on a low power embedded processor.

To slightly complicate matters further, Arm withdrew the Mali GPU
development kit, an early ARM centric OpenCL development platform,
from public release and subsequently released the ARM Compute
Library (ACL), aimed at mobile and embedded processors. This rep-
resents the embodiment of a selection of OpenCV functions and a
selection of machine learning algorithms, implemented in OpenCL, in
order to achieve best processing performance in computer vision and
Machine Learning by utilising the Neon SIMD architecture and GPU
Midgard and Bifrost architectures. While this Library offers significant
performance improvement, by the application of DVFS to processors
and GPU there is the possibility of selectable power vs performance
efficiency. Chapter 4 will explore the relative performance and power
efficiency gains of the use of Neon and GPUs in Image Processing over
CPUs. Chapter 5 will discuss balancing of DVFS and computational
performance to increase power efficiency.
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Most of the above tools are qualified for use on a host system under
the Ubuntu or Debian Linux operating system. It is possible that they
could be run under another flavour of Linux but when problems arise,
the linux community has to be referred to in order to find solutions. In
such cases most answers point out that the user wasn’t using Ubuntu
or Debian flavours of Linux and that the user should switch to one of
these. Requests to install Ubuntu on some organisations PCs result in
a flat refusal and the offer may only possibly be for CentOS without
super-user or sudo (administrator) access, which would seriously
hamper development work when needing to download the required
tools.

2.4 literature review

As previously shown in Table 2.1, emergent video recording cameras
are moving to a 4k format, around 3840 x 2160 pixels with a frame
resolution of 8.3Mpixels Ultra High Definition (UHD) format with a
data transfer rate of around 500Mpixels per second at 60fps frame rate.
These types of transfers are realised, typically as a 2.9Gb/s serial trans-
fer rate after framing and encoding of the data stream. The data rates,
data storage requirements and the processing power when compared
with a 1k format image, all increase by around an order of magnitude,
along with the infrastructure to support such recording. The move
to 4k is driven by the extra resolution offering fine picture detail.
Future trends indicate a move to even higher definition images with
8k cameras and beyond, again increasing the data rates, requirements
for image processing and data storage. The 2016 roadmap issued by
the Ethernet alliance shows a progression above 1Tb/s beyond 2020 as
outlined by D’Ambrosia [6] . The most recent Global Ethernet traffic
forecast from the Cisco expects data centre traffic to be 1.6 Zetabytes/-
month (1 Zetabyte = 1021) by 2021, up from 499 Exabytes/month
in 2016, (1 Exabyte = 1018), from the on-line Global- Data Center/
Cloud Traffic Forecast by Cisco [7] (Last checked 1 Oct 2019), select
the "Cloud Traffic Highlights" link.
The insatiable demand for increased performance to process the extra
information is now throttled by the limitation of the growth cycle
and performance that were once a by product of the geometry step-
ping provided by Moore’s law. There is a risk that this scenario could
reduce capital funding for new areas of exploration. Thompson [8],
discusses the pervasive effect of the slowing of Moore’s law, the
switch to specialised processing having an impact on overall mar-
ket demands, which are reducing for processors and increasing for
specialised computing, thereby accelerating this niche market. They
define a fragmentation cycle, technology advance slows, fewer users
adopt the slowing technology, thereby reducing available finance for
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innovation that advances technology.

The impact of these demands for higher resolution images creates a
further challenge in data storage. While Solid-state Disk Drive (SSD)
technology is rapidly replacing some magnetic Hard Disk Drive
(HDD)s in data centres, the increase in storage density of SSDs are also
impacted by Moores law. The evolution of magnetic recording is a
source of continuous amazement, while Moore’s law seems to have
reached it’s terminal growth step in device geometry, magnetic record-
ing still has some way to go before the terminal recording density is
reached. Over the years Wood predicted future recording densities [9],
in 2000 of 1 Tb/in2, [10], in 2009 of 10 Tb/in2, these predictions took
typically five to ten years to achieve as a finished product. In fact, for
a sustained period prior to 2002, magnetic storage exceeded Moore’s
law in doubling aereal density every year rather than 18 months [11].
Further research is demonstrating that 1 Tb/in2 has been achieved in
2013, in the laboratory by Wu [12] indicating the onward strides in
HDD magnetic recording.

The effects of such image developments will lead to significant
growth in data centres to transfer, store and process data. This has the
knock on effect of increased power demand by the data centres. An
Information Week 2013 survey on Data centre power, average power
is 8.5kW per rack with 27% of operators reporting >10KW per rack,
Kurt [13]. In the drive for efficiency and reducing operating costs, the
data centres are now demanding higher efficiency in equipment power
consumption.

This is not only a problem for data centres. Considering the tradi-
tional current design of an ’intelligent’ CCTV system utilising a number
of cameras, typically up to 16 remote cameras per system, directly
connected to the CCTV system box via coax or cat5 ethernet cable.
Each camera channel raw data is image processed and if movement
is detected, that channel is compressed and recorded to the disk. If
such an image system were to be up-scaled from HD to UHD, a four
times increase in pixels, the 3Gbit/s UHD camera output would be
unlikely to be directly connected using traditional coax or Ethernet.
In all probability the camera would require some form of processor
so that the signal would need to be compressed before transmission.
This further complicates the CCTV recording system as the input signal
would need a processor to decompress the data stream, before image
processing takes place, this probably requiring four times the number
of processors, then the images would need to be compressed again be-
fore storage. This indicates a significant increase of processing power
and an accompanying increase in power usage. The alternative, this
research proposes, is to perform all the image processing at the camera,



2.5 approximate computing in software and hardware 18

reduce the quantity of data, before compression and transmission to
the CCTV system for storage.

2.5 approximate computing in software and hardware

Approximate Computing is a highly diverse subject field with a num-
ber of motivational drivers. The following review will consider and
categorise their application into four main fields.

1. Solutions for Data Centre application that address potential
power savings while maintaining or even increasing performance.
This category in itself is a broad field of power conversion,
distribution and storage, cooling techniques and equipment,
server equipment and data storage equipment.

2. Solutions that require application specific hardware or tightly
constrained architectures. Such solutions will generally appear
as ASIC, SoC or possibly FPGA based products for integration
into other computer solutions.

3. Solutions for application in existing hardware, be it desktop,
portable or single board heterogeneous computers, basically
computers that could be operated by attaching to a mains supply
source.

4. Solutions for consumer, specialist or industrial embedded appli-
cations, generally mobile, that may have stricter power budget
or performance limitations. This section includes mobiles, hand-
held, Internet of Things (IoT), Industrial Internet of Things (IIoT)
and various types of energy scavenging or battery powered
computer solutions.

2.5.1 Data Centre Solutions

As previously mentioned, data centres have a number of challenges
with increasing data and demand to process that data, increasing the
power consumed and lost in the various conversion and distribution
chains which creates extra heat requiring additional cooling which
escalates power consumption, a vicious energy consuming cycle.
Wang, [14] deals with Cloud applications of SoC clusters. Also deals
with FPGA and cloud applications used in data transfer and com-
pute intensive applications performance and proposes a performance
model for both scenarios. Venkataramani [15] assesses the various ap-
proximate computing techniques across the computing stack from data
centres down to embedded and IoT. One of the key principles being
that approximate computing should yield disproportionate benefits, or
large improvements in performance or energy with little or no impact
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on output quality. Tatchell-Evans, [16] in a different approach outlines
a novel method for cooling in data centres. Increasing the efficiency of
the cooling air flow and reducing bypass flow, cools the equipment
more efficiently and reduces equipment power consumption. Barroso
[17] puts forward the case for energy-proportional computing. Essen-
tially Googles’ experience of server computation, power efficiency and
the need to improve energy proportionality in data centres. Sidler
[18] outlines an interesting application of a full segmentation offload,
low latency, FPGA solution to the challenge of TCP and UDP frames
normally handled by a software stack, reducing latency and power.
This has been implemented as a solution by Intilop. Duben, [19] offers
a preliminary study of the opportunities present in achieving energy
savings through novel approaches such as inexactness, applied to large
datasets.

The following papers are also aimed at servers in the data centre
and demonstrate their applicability to constantly changing heavy load
scenarios. These procedures require usage of a portion of the saved
power so currently may not be suitable for low power embedded
application but future developments could eventually witness these
techniques migrate to the Existing Hardware category and possibly
further to the Embedded category. Hoffman [20] proposes dynamic
knobs for responsive power-aware computing. Essentially a power
balancing tool for data centres, mixed strategies for servers with low
or high idle power in order to optimise power performance and la-
tency. Cheng [21] uses models at runtime, M@RT, to address assurance
for self-adaptive systems, outlining the complexities of self-adapting
models at run time, in various applications.

2.5.2 Application Specific Solutions

This section covers solutions that are realised as components that
require or generate application specific hardware or tightly constrained
architectures eg ASIC SoC or FPGA.
Shafique [22], provides an overall view of approximation techniques
including software, architectural and hardware components with an
emphasis on bridging the gap between these components for use in
integration at system level and adaptive systems.

At the SoC component level, Mittal [23] discusses the potential of
utilising domain wall memory for large, fast, low power memory in
processor components. Venkatachalam [24] discusses fundamental
power reduction techniques for microprocessor systems. An in depth
exploration of the various circuit silicon level challenges to energy
consumption and the methodology to optimise such usage. Tagli-
avini [25] offers an ASIC based, specialised implementation, utilising
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Standard Cell Memory in place of SRAM in instances where supply
voltage changes are used to reduce power and SRAM becomes unreli-
able, demonstrating application in the the PULP processor. Cyclops
by Rahimi [26] details a low power and resolution, 352x288, image
sensor to replace multiple environmental sensors. Ideal for large scale
wireless sensor network deployment with low power, tightly con-
strained and architected for low power, but emphasises that high
resolution images coupled with high speed processing requires a dif-
ferent platform. An energy efficient approximate multiplier based
scheme is demonstrated by Qiqieh [27], which shows how underly-
ing hardware processing can be simplified through progressive bit
significance-driven logic compression. Building on the Qiqieh work,
Esposito [28] introduces a low power approximate MAC unit, which
could demonstrate a future lower power development path for im-
plementation in conjunction with this project. Venkataramani [29],
outlines scalable machine learning for image processing, an optimised
machine learning process that reduces power consumption also [30],
"Computing Efficiently", proposes a framework for judging whether
approximation is giving “good enough” results.
Chippa discusses a sequence of processes in a number of papers
for SoC application, [31] characterises inherent application resilience,
the ability to produce acceptable results with approximate or inexact
computation. Mainly aimed at Recognition Mining (RM) and search
processes by a multi core RM Processor. [32] utilises dynamic ef-
fort scaling, SVM and K Means clustering, to modulate the effort, in
hardware and software, that is expended in computing the results
by dynamic management of the control knobs. [33] Brings together
automatic resilience, scalable effort and dynamic effort scaling for
approximate computing. These three techniques come together in [34]
scalable-effort classifiers, a new approach to optimizing the energy
efficiency of supervised machine-learning classifiers. Defines the struc-
ture of the RM Processor and the resultant energy savings for an
acceptable reduced quality of results.

2.5.3 Existing Hardware Solutions

This section addresses techniques that can be implemented in existing
general purpose computer systems hardware, be it desktops or laptops
etc. but could also possibly be industrial applications that are powered
by some type of external supply.
Van-den-Bergh, [35] introduces SEEDS, an algorithm that groups pix-
els belonging to the same object creating superpixels by using hill
climbing optimization, reducing run time and power for an object
detection system when compared with it’s predecessors. The algo-
rithm seems to have been developed to run on an I7 target and the
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only reference to image size is 480 x 320. Kudia, [36] approximate
computing can be employed for an emerging class of applications from
various domains such as multimedia, machine learning and computer
vision. The approximated output of such applications, even though
not 100% numerically correct, is often either useful or the difference
is unnoticeable to the end user. Appears to be a rather complicated,
perhaps advanced, error checking network for approximation. Perhaps
more suited to application as a debugging tool on an a new process
that may require debugging for large errors! Rumba by Mishra, [37]
introduces and explains use of iACT- Intel Approximate Computing
Toolkit. It seems this could be a useful tool for checking approxima-
tion results but only for Intel processor based applications. Universal
Image Quality Index (UIQI) by Wang, [38], an alternative quality mea-
surement system to the MSE and PSNR measure, also [39] further
develops Structural Similarity (SSIM) from UIQI measurement. This
process utilises a function of (mean, standard deviation and correla-
tion) between original and processed image to highlight structural
similarity. Mesheye by Hengstler [40] uses multiple vision devices to
detect motion with low resolution image devices, the derived parame-
ters are used to process events from higher resolution cameras, as per
the approach considered in this thesis in Section 2.5.7. This is quite an
intensive processing solution, showing it’s age with VGA camera as
the main viewer and sub sampled kilopixel stereo cameras for feature
extraction. Filtering techniques applied to sub-areas of an image as
Saliency detection by Hou [41], this paper appears to generate results
similar to those developed in this thesis but achieves it by tempo-
ral application of a Fourier Transformation which is claimed to be
a "simple method". Language and compiler support for auto-tuning
variable-accuracy algorithms by Ansel, [42] a method of achieving
variable accuracy with autotuning during the compilation phase. A
Reduce and Rank kernel by Raha, [43], performs a reduction operation
(e.g., distance computation, dot product, L1-norm) between an input
vector and each of a set of reference vectors, and ranks the reduction
outputs to select the top reference vectors for the current input. Para-
prox: Pattern-Based Approximation for Data Parallel Applications,
Samadi [44] approximates kernel filtering with its stencil and partition
algorithm by utilising a subset of the core pixel and its neighbours
across the entire image.

2.5.4 Embedded Hardware Solutions

The demand for autonomous embedded systems requiring better
performance but limited by power, is addressed here. This includes
hardware utilising energy scavenging systems or battery powered
systems which may include IoT and IIoT along with other specialised
types of industrial embedded applications.
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The dawn of more advanced image processing and neural net-
works in the embedded field has seen the evolution of small format
boards based on high performance, low power, multiprocessor/G-
PU/DSP/NPU SoCs as used in modern mobile handsets to effect a
Linux based solutions capable of demonstrating advanced applications
eg. AlexNET on Odroid XU4 utilising pre-learned databases to effect
in-field recognition or classification of objects.

In an ideal world, it would be possible to estimate energy require-
ments for an embedded system at the concept stage, rather than having
to design, build, write the software, define energy requirements and
re-design energy efficient software to drive it.
Energy-Efficient Design of Battery-Powered Embedded Systems by
Simunic, [45], discusses some of the various approaches and indicates
that, with a plethora of processor types and combinations available,
such solutions are not a simple task or possibly cost effective solution
for typical Small to Medium Enterprises (SMEs). At the embedded
processor level, OpenMV, by Abdelkader, [46] an affordable develop-
ment platform, utilises a dual embedded processor, Cortex-M7 with
a lightweight version of Python, MicroPython2013, to implement a
low-cost, low-power image processing platform. This implementation
provides a comprehensive library containing some advanced image
processing algorithms that can be easily implemented via Python.
Nguyen, [47] discusses generation of MCU + FPGA essential, low
power system to detect falls, uses Sobel filter to detect edges and
operates at 9.3 fps at 666MHz. Rusci [48] utilises PULP processor
to provide an integrated image device, albeit a small 128x64 image
with a four core low power processor to extract relevant ROI image
information and transmit correspondingly processed motion data, for
onward processing and feature extraction.

Energy harvesting and power management for autonomous sensor
nodes by Christmann [49] is a treatise on all the elements of an energy
harvesting Wireless sensor network challenges. It gives a fair bit of
detail on the various elements. Targeting a complex adaptive power
storage scenario utilising super-caps and battery thus powering loads
via super-caps and utilising excess power Vcap > Vmax to charge bat-
tery and using battery when Vcap< V min. Raghunathan, [50] outlines
design considerations for solar energy harvesting, wireless, embedded
systems. He gives an insight to the challenges of environmental energy
harvesting, specifically photo-voltaic generation, conversion, storage,
networking and power balancing/management. Rodriguez Arreola,
[51] discusses approaches to transient computing in energy harvesting
systems. He provides a methodology for survival in energy harvester
driven systems and discusses check-pointing of variables that can be
utilised to recover computation after a "brown out".

Real-Power Computing by Shafik [52] addresses the challenges pre-
sented for survivable computing in the embedded domain where the
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computational effort available is dictated by the amount of energy
available. In addition, if energy storage becomes critically low then the
system must be able to cope with suspension and recovery, survival
mode, when energy storage recovers. Yakovlev [53] covers enabling
survival instincts in electronic systems and discusses energy modu-
lated computing, a challenge to develop hardware that can survive
energy deficiency interludes. Grigorian, [54], provides a methodology
to perform adaptive error analysis for approximate computing based
on lightweight checks.

2.5.5 Other Literature

In order to investigate if any research may have been done in a similar
area to this thesis, a search filters of "significance" and "approximate
significance" along with combinations of "image" and "processing" was
performed. The results were then manually further filtered to remove
extraneous references. Search results of techniques and applications,
not necessarily approximate, that use the term, or define "significance"
yielded:-

Mohapatra, [55] utilises a DSP engine in 3D processing to detect
significance by targeting the motion estimation element of image
processing, by generating the sum of absolute differences between
adjacent frames, and applying voltage scaling. Godtliebsen,[56] utilises
a statistical significance gradient process to detect features in medical
image analysis for clinical diagnosis where the high quality of results is
preferential to lightweight or energy saving processing. Karakonstantis
[57] highlights an operating scenario where accurate or approximate
solutions to DCT/iDCT can be utilised, dependent on the level of
resultant quality or power saving required, but mainly seems to be
targeted at individually optimising task significance. Multi-focus and
multi-spectral image fusion, based on pixel significance using discrete
cosine harmonic wavelet transform, ShreyamshaKumar, [58] outlines
generation of pixel significance using compute intensive wavelet trans-
forms for medical imaging. While these papers individually provide a
solution to expose significance in some form, the techniques used do
not demonstrate a lightweight solution that can be aimed at embedded
or IoT solutions such as that presented in this thesis.

A further search to investigate use of the term "Approximate signifi-
cance", resulted in a number of papers where the two search words
appear somewhere in the context, thereby requiring a further manual
filtering to find any similarity to the use of the phrase in this thesis.

A survey of the plethora of techniques for approximate computing
by Mittal, [59], presents references exposing what methodologies are
available and how they perform. Xu, [60] offers an overall review of
various research topic domains but highlights that further effort is
required to bring approximation to the mainstream.
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While the "Approximate significance" phrase did not appear in ei-
ther of the above references, they are worth listing here, as between
them they review a wide number of approximate computation tech-
niques and systems and the sub word "significant" appears regularly
within the text (significantly)! Other instances of papers where the two
words appear independently follow, while they reveal a range of inter-
esting approximation and other techniques however, none approach
the methodology reported in this thesis.

Samadi [61] addresses an approximate optimisation process, SAGE,
to more efficiently execute image processing via GPUs, but specifically
aimed at CUDA kernels. A design methodology for Artificial Neural
Networks utilising approximation techniques, Zhang, [62] reports ap-
proxANN, selecting significant neurons in artificial neural networks,
approximates the computation and memory accesses of certain less
critical neurons based on a criticality analysis to obtain energy effi-
ciency under quality constraints. A temporal spectral technique for
fast salient motion detection by Cui [63], utilises removal of redundant
(static), features from video sequences and extracts the salient motion
features by use of a Fourier transformation on the temporal frames. A
mathematical exploration of significance in large datasets for analysis
by neural networks, for use on large scale compute networks utilising
Rough Set Theory by Bania, [64].

In all of this group of papers there was no incidence of the context
"approximate significance" apart from the Bania paper where the two
words appear next to each other in the Keywords after the Abstract.

2.5.6 A Subjective Assessment of Technique Migration

The relevant papers reviewed in this chapter, as previously mentioned,
fall into four distinct areas which the associated techniques are aimed
at, these being 1: Data Centres, 2: SoC applications, 3: Personal comput-
ing platforms (Desktop, laptop and mobile devices) and 4: Embedded
platforms which includes IoT. Each of the areas have their own par-
ticular demands and disciplines. In Table: 2.2 through to Table: 2.5
we present a personal subjective assessment for each of these areas,
1 to 4, and indicate the possibility of migration of the techniques to
other areas of application. Also to the right hand side of the appli-
cation areas a scoring system has been used to indicate the effect of
the technique on Power Reduction, Performance Enhancement and
Quality of Service. A further three columns, based purely on personal
experience and subjective scoring, have been added to indicate the
potential effect on manufacturers of electronic and computing systems,
that often have to deal with equipment lifetime issues of Reliability,
Maintainability and Sustainability. The ultimate issue often arises in
the form of component obsolescence in equipment that is demanded
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by the user to have a long lifetime, in excess of 20 years, and may
often cause re-design issues in the equipment later life. The scoring
for these six categories is as follows:

• 1 significant negative effect

• 2 negative effect

• 3 neutral effect

• 4 positive effect

• 5 significant positive effect

In order to explain this migration and scoring, if we take the Ethernet
Roadmap, the first entry in Table: 2.2 which is included as an example.
The roadmap will have a significant negative effect on power reduc-
tion but merely demonstrates how Ethernet speeds are expected to
increase over the coming years. The roadmap is mainly concerned
with supporting the Data Centre backbone communications, as in-
creased consumer demand for on-line services and the consequential
increase in equipment installations to deal with the demand increases
the requirement for faster interconnection services. We have witnessed
the migration of 1GB/s ethernet from the 1999 timeframe into today’s
home routers, so can probably expect further migration of evolving
higher ethernet speeds to migrate down the path towards embedded
systems. For the scoring, such increases in ethernet speed will add
a significant incremental contribution to the power consumption of
the next generation equipment along with other increases due to the
ever increasing demand for performance, hence this technique has
a significant negative effect on power reduction but a positive effect
on performance enhancement. The Quality of service score can be
expected to be positive as the Ethernet Alliance has a well ordered
development path and takes great care in development of standards
and approval of new techniques. The next three categories, Reliability,
Maintainability and Sustainability, rarely appear in literature but are
often some of the challenges that manufacturers and operators have to
deal with and try to overcome in the long term, during development
and in the subsequent lifetime of the equipment. Reliability or appar-
ent reliability can be caused by many issues, lack of documentation,
complexity of technique, inexperience of the user, lack of training,
configuration issues or just bad design. Maintainability, the task of
keeping the equipment in its correctly working state with relative ease.
With complex equipment this is not always a simple task and may
have to rely on built in debug facilities, or state logging as an aide
to remote diagnosis. Sustainability, is the task of keeping equipment
running through it’s working life, the main culprit here being obso-
lescence of electronic component parts, as new techniques result in
generation of higher performance near equivalents that aren’t always
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a full functional swap out alternative, so some sort of compromise
design activity may need to take place.

In some of the worlds largest data centres a vast amount of equip-
ment is used to transfer, store and process data. The ability to provide
a 24/7 service is critical so the backup power supply arrangements
often result in a complex power conversion and distribution network
leading to extra inefficiencies. The power usage is measured in the
100s of Megawatts range. In this case a small percentage saving in
power consumption at the equipment level can result in a large finan-
cial benefit. Data Centres are therefore one of the prime motivators for
reduction in energy usage whether it be by approximation methods or
any other efficiency technique, Table: 2.2, they also provide a sandbox
for carefully managed trials for tuning techniques for approximation
methods.

SoC provides the opportunity to experiment with novel techniques,
table: 2.3 and can provide dedicated hardware to explore Approxi-
mation and Quality of Service feedback statistics along with DVFS
to minimise energy consumption while providing reasonable perfor-
mance. These SoC devices once proven to be functionally capable, may
then migrate to inclusion in Data Centre equipment designs or to the
Personal Computing level.

Personal Computing includes items that can be attached to some
form of main power supply, eg desktops, or battery operated items
that can be periodically recharged from a main power supply, eg
laptops, tablets, mobile phones and possibly embedded development
boards used to explore new techniques for embedded systems. Table:
2.4 demonstrates that migration from this group is more likely to
move down to embedded applications especially now that some semi-
conductor manufacturers are seen to be releasing the SoC devices that
have been used in mobile phones, for use in the embedded market.

Embedded includes battery operated or power scavenging devices
where low power is an absolute necessity. Usually new embedded
techniques are so specialised that they are unlikely to migrate in an
upward direction to the other three categories, Table: 2.5 but this cate-
gory will benefit from techniques developed in the three other fields
but it is felt that there needs to be balancing support of error checking
and power demands or alternatively, waiting for the techniques to
mature and run without error checking.

Many Hardware and software techniques, (including OpenCV),
are aimed at achieving best performance and don’t consider energy.
Typical of this are applications in the medical and biological field
and image database retrieval where accuracy of results are far more
important than saving computation effort or power consumption.
Consequently when searching for literature using "adaptive" and
"filter" in the hope of finding some approximation references, an
overwhelming return illustrating a very active research field especially



2.5 approximate computing in software and hardware 27

A
pp

lic
ab

le
ar

ea
1

-D
at

a
ce

nt
re

2
-S

oC
3
-P

er
so

na
lc

om
p

4
-E

m
be

dd
ed

Ti
tl

e
Pa

pe
r

re
f.

A
ut

ho
r

C
on

te
nt

no
te

s
Pr

im
e

ar
ea

Po
te

nt
ia

lM
ig

ra
ti

on
to

P
ow

er
re

d
u

c-
ti

on

Pe
rf

or
m

an
ce

en
ha

nc
e-

m
en

t

Q
u

al
it

y
of Se

rv
ic

e

R
el

ia
bi

lit
y

M
ai

nt
ai

na
bi

lty
Su

st
ai

na
bi

lit
y

2
0
1
6

Et
he

rn
et

R
oa

dm
ap

[6
]

D
’A

m
br

os
ia

Et
he

rn
et

ro
ad

m
ap

1
2

3
4

1
4

4
3

3
2

C
om

pu
tin

g
ap

pr
ox

im
at

el
y,

an
d

ef
fic

ie
nt

ly
[1

5
]

Ve
nk

at
ar

am
an

iA
ss

es
se

s
ap

p
ro

xi
m

at
e

te
ch

ni
qu

es
ac

ro
ss

th
e

st
ac

k
1

2
3

4
4

4
3

3
3

3

T
he

C
as

e
fo

r
E

ne
rg

y-
P

ro
p

or
ti

on
al

C
om

-
pu

ti
ng

[1
7
]

Ba
rr

os
o

G
oo

gl
e,

po
w

er
cf

m
ob

ile
.D

V
FS

on
se

rv
er

s
1

3
4

5
5

5
4

4
4

P
re

lim
in

ar
y

St
u

d
y:

In
ex

ac
t

G
en

er
al

P
u

r-
p

os
e

P
ro

ce
ss

or
s

fo
r

H
ig

h-
P

er
fo

rm
an

ce
an

d
Bi

g-
D

at
a

A
pp

lic
at

io
ns

[1
9
]

D
ub

en
ad

d
re

ss
es

p
ro

ce
ss

or
,d

at
ap

at
h

an
d

m
em

or
y

1
3

5
5

5
3

3
3

A
n

en
er

gy
-e

ffi
ci

en
ts

ys
te

m
on

a
ch

ip
pl

at
-

fo
rm

fo
r

cl
ou

d
ap

pl
ic

at
io

ns
[1

4
]

W
an

g
So

C
cl

us
te

r
cl

ou
ds

1
3

4
5

5
4

4
3

Th
e

fe
as

ib
ili

ty
of

m
ag

ne
ti

c
re

co
rd

in
g

at
1

Te
ra

bi
t

pe
r

sq
ua

re
in

ch
[9

]
R

W
oo

d
1

Tb
/i

n
1

3
3

5
4

3
3

3

Th
e

fe
as

ib
ili

ty
of

m
ag

ne
tic

re
co

rd
in

g
at

1
0

te
ra

bi
ts

pe
r

sq
u

ar
e

in
ch

on
co

nv
en

ti
on

al
m

ed
ia

[1
0
]

R
W

oo
d

1
0
Tb

/i
n

1
3

3
5

4
3

3
2

R
ec

or
d

in
g

te
ch

no
lo

gi
es

fo
r

te
ra

bi
t

p
er

sq
ua

re
in

ch
sy

st
em

s
[1

1
]

R
W

oo
d

ar
ea

ld
ou

bl
in

g
1

3
3

5
4

3
3

3

H
A

M
R

ar
ea

ld
en

si
ty

de
m

on
st

ra
tio

n
of

1
+

T
bp

si
on

sp
in

st
an

d
[1

2
]

W
u

1
Tb

/i
n

de
m

o
1

3
3

5
4

3
3

3

M
od

el
s

at
ru

nt
im

e
fo

r
se

lf
ad

ap
ti

ve
sy

s-
te

m
s

[2
1
]

C
he

ng
M

@
R

T
so

ft
w

ar
e

1
4

4
5

5
5

4

D
yn

am
ic

kn
ob

s
fo

r
po

w
er

aw
ar

e
co

m
pu

t-
in

g
ba

la
nc

in
g

po
w

er
[2

0
]

H
of

fm
an

Po
w

er
ba

la
nc

in
g

in
da

ta
ce

nt
re

1
5

5
5

4
4

4

D
at

a
C

en
tr

e
D

ec
is

io
n

Ti
m

e
[1

3
]

K
ur

t
D

at
a

ce
nt

re
po

w
er

1
4

3
3

3
3

3

Lo
w

-la
te

nc
y

TC
P/

IP
st

ac
k

fo
r

da
ta

ce
nt

er
ap

pl
ic

at
io

ns
[1

8
]

Si
dl

er
O

pt
im

is
e

TC
P/

IP
st

ac
k

on
FP

G
A

1
5

5
5

4
4

3

In
ve

st
ig

at
io

n
of

by
pa

ss
ai

r
in

da
ta

ce
nt

re
s,

im
pa

ct
on

po
w

er
co

ns
um

pt
io

n
[1

6
]

Ta
tc

he
ll-

Ev
an

s
ef

fic
ie

nt
co

ol
in

g
1

5
5

3
4

4
3

Ta
bl

e
2

.2
:D

at
a

ce
nt

re
ba

se
d

te
ch

ni
qu

es
.



2.5 approximate computing in software and hardware 28

A
pp

lic
ab

le
ar

ea
1

-D
at

a
ce

nt
re

2
-S

oC
3
-P

er
so

na
lc

om
p

4
-E

m
be

dd
ed

Ti
tl

e
Pa

pe
r

re
f.

A
ut

ho
r

C
on

te
nt

no
te

s
Pr

im
e

ar
ea

Po
te

nt
ia

lM
ig

ra
ti

on
to

P
ow

er
re

d
u

c-
ti

on

Pe
rf

or
m

an
ce

en
ha

nc
e-

m
en

t

Q
u

al
it

y
of Se

rv
ic

e

R
el

ia
bi

lit
y

M
ai

nt
ai

na
bi

lty
Su

st
ai

na
bi

lit
y

Lo
w

-p
ow

er
ap

pr
ox

im
at

e
M

A
C

un
it

[2
8
]

Es
po

si
to

A
p

p
ro

xi
m

at
e

M
A

C
th

at
co

u
ld

en
-

ha
nc

e
th

is
th

es
is

2
1

3
4

5
5

5
4

4
3

A
p

p
ro

xi
m

at
e

co
m

p
u

ti
ng

an
d

th
e

qu
es

t
fo

r
co

m
pu

ti
ng

ef
fic

ie
nc

y
[3

0
]

Ve
nk

at
ar

am
an

ij
ud

gi
ng

fr
am

ew
or

k
1

2
3

4
4

4
4

4
4

3

Sc
al

ab
le

-e
ff

or
t

cl
as

si
fi

er
s

fo
r

en
er

gy
-

ef
fic

ie
nt

m
ac

hi
ne

le
ar

ni
ng

[2
9
]

Ve
nk

at
ar

am
an

iM
L

ef
fo

rt
cl

as
si

fic
at

io
n

1
2

3
4

4
4

3
3

3
3

A
na

ly
si

s
of

in
he

re
nt

ap
pl

ic
at

io
n

re
si

lie
nc

e
fo

r
ap

pr
ox

im
at

e
co

m
pu

ti
ng

[3
1
]

C
hi

pp
a

A
p

p
lic

at
io

n
re

si
lie

nc
e

in
d

at
am

in
-

in
g

an
d

se
ar

ch
ap

ps
2

1
3

5
5

4
4

4
4

M
an

ag
in

g
th

e
Q

u
al

it
y

vs
.

E
ffi

ci
en

cy
Tr

ad
e-

of
f

U
si

ng
D

yn
am

ic
Ef

fo
rt

Sc
al

in
g

[3
2
]

C
hi

pp
a

D
ES

ap
pr

ox
to

su
it

da
ta

/a
pp

2
1

3
5

5
4

5
5

4

A
p

p
ro

xi
m

at
e

co
m

p
u

ti
ng

:A
n

in
te

gr
at

ed
ha

rd
w

ar
e

ap
pr

oa
ch

[3
3
]

C
hi

pp
a

fe
ed

ba
ck

co
nt

ro
lf

or
fir

st
tw

o
2

1
3

5
5

4
5

5
4

Sc
al

ab
le

ef
fo

rt
ha

rd
w

ar
e

de
si

gn
[3

4
]

C
hi

pp
a

Br
in

gs
al

l3
to

ge
th

er
2

1
3

5
5

5
5

5
5

Te
ch

ni
qu

es
fo

r
A

rc
hi

te
ct

in
g

P
ro

ce
ss

or
C

om
p

on
en

ts
U

si
ng

D
om

ai
n-

W
al

l
M

em
-

or
y

[2
3
]

M
it

ta
l

Lo
w

er
in

g
R

A
M

Po
w

er
2

1
3

5
4

4
5

5
3

Si
gn

ifi
ca

nc
e

d
ri

ve
n

lo
gi

c
co

m
p

re
ss

io
n

m
ul

ti
pl

ie
rs

[2
7
]

Q
iq

ie
h

SD
LC

2
1

3
5

5
4

3
3

3

C
yc

lo
ps

:I
n

Si
tu

Im
ag

e
Se

ns
in

g
an

d
In

te
r-

pr
et

at
io

n
in

W
ir

el
es

s
Se

ns
or

N
et

w
or

ks
[2

6
]

R
ah

im
i

Lo
w

po
w

er
em

be
dd

ed
,a

rg
ue

s
th

at
H

D
w

ill
re

qu
ir

e
di

ff
er

en
t

ap
pr

oa
ch

2
4

5
5

4
4

3
3

C
ro

ss
-la

ye
r

ap
pr

ox
im

at
e

co
m

pu
tin

g:
fr

om
lo

gi
c

to
ar

ch
it

ec
tu

re
s

[2
2
]

Sh
afi

qu
e

su
rv

ey
fo

r
So

C
ap

pl
ic

at
io

ns
2

5
5

5
3

3
3

A
lw

ay
s-

on
m

ot
io

n
d

et
ec

ti
on

w
it

h
ap

p
lic

at
io

n-
le

ve
l

er
ro

r
co

nt
ro

l
on

a
ne

ar
-t

hr
es

ho
ld

ap
p

ro
xi

m
at

e
co

m
p

u
ti

ng
pl

at
fo

rm

[2
5
]

Ta
gl

ia
vi

ni
SR

A
M

Po
w

er
sa

vi
ng

2
5

5
5

5
3

3

Po
w

er
re

du
ct

io
n

te
ch

ni
qu

es
fo

r
m

ic
ro

pr
o-

ce
ss

or
sy

st
em

s
[2

4
]

Ve
nk

at
ac

ha
la

m
In

d
ep

th
su

rv
ey

of
en

er
gy

d
ra

in
in

pr
oc

es
so

rs
2

5
5

4
5

3
3

Ta
bl

e
2

.3
:S

oC
ba

se
d

te
ch

ni
qu

es
.



2.5 approximate computing in software and hardware 29

A
pp

lic
ab

le
ar

ea
1

-D
at

a
ce

nt
re

2
-S

oC
3
-P

er
so

na
lc

om
p

4
-E

m
be

dd
ed

Ti
tl

e
Pa

pe
r

re
f.

A
ut

ho
r

C
on

te
nt

no
te

s
Pr

im
e

ar
ea

Po
te

nt
ia

lM
ig

ra
ti

on
to

P
ow

er
re

d
u

c-
ti

on

Pe
rf

or
m

an
ce

en
ha

nc
e-

m
en

t

Q
ua

lit
y

of Se
r-

vi
ce

R
el

ia
bi

lit
yM

ai
nt

ai
na

bi
lty

Su
st

ai
na

bi
lit

y

iA
C

T:
A

So
ft

w
ar

e-
H

ar
d

w
ar

e
Fr

am
ew

or
k

fo
r

U
nd

er
st

an
di

ng
th

e
Sc

op
e

of
A

pp
ro

xi
-

m
at

e
C

om
pu

ti
ng

[3
7
]

M
is

hr
a

In
te

l’s
A

p
p

ro
xi

m
at

e
co

m
p

u
ti

ng
to

ol
ki

t
3

1
4

4
5

5
5

4
3

La
ng

ua
ge

an
d

co
m

pi
le

r
su

pp
or

t
fo

r
au

to
-

tu
ni

ng
va

ri
ab

le
-a

cc
ur

ac
y

al
go

ri
th

m
s

[4
2
]

A
ns

el
va

ri
ab

le
ac

cu
ra

cy
at

co
m

pi
la

ti
on

3
4

3
5

5
3

3
2

M
es

hE
ye

:
A

H
yb

ri
d

-R
es

ol
u

ti
on

Sm
ar

t
C

am
er

a
M

ot
e

fo
r

A
p

p
lic

at
io

ns
in

D
is

-
tr

ib
ut

ed
In

te
lli

ge
nt

Su
rv

ei
lla

nc
e

[4
0
]

H
en

gs
tl

er
U

ti
lis

es
lo

w
re

s
lo

w
po

w
er

d
ev

ic
es

to
d

et
ec

t
m

ov
em

en
t

th
en

p
ro

ce
ss

hi
gh

er
re

s
ca

m
er

a
ou

tp
ut

3
4

5
5

5
4

4
3

Sa
lie

nc
y

D
et

ec
ti

on
:

A
Sp

ec
tr

al
R

es
id

u
al

A
pp

ro
ac

h
[4

1
]

H
ou

U
se

s
Fo

ur
ie

r
tr

an
sf

or
m

fo
rt

em
po

ra
l

di
ff

er
en

ce
s

3
4

5
5

5
5

4
3

Q
ua

lit
y

co
nfi

gu
ra

bl
e

re
du

ce
-a

nd
-r

an
k

fo
r

en
er

gy
ef

fic
ie

nt
ap

pr
ox

im
at

e
co

m
pu

ti
ng

[4
3
]

R
ah

a
Id

en
tif

y
ar

ea
s

th
at

m
ay

on
ly

re
qu

ir
e

ap
pr

ox
im

at
e

co
m

pu
ta

ti
on

3
4

5
5

5
5

4
3

P
ar

ap
ro

x:
P

at
te

rn
-B

as
ed

A
pp

ro
xi

m
at

io
n

fo
r

D
at

a
Pa

ra
lle

lA
pp

lic
at

io
ns

[6
1
]

Sa
m

ad
i

U
ti

lis
es

si
x

p
at

te
rn

s
to

id
en

ti
fy

&
pr

oc
es

s
ar

ea
su

bs
et

s
ap

pr
ox

im
at

el
y

in
G

PU
s

3
4

4
5

5
5

3
3

A
U

ni
ve

rs
al

Im
ag

e
Q

ua
lit

y
In

de
x

[3
8
]

W
an

g
U

ni
ve

rs
al

Im
ag

e
Q

ua
lit

y
In

de
x

3
4

4
5

5
5

4
3

Im
ag

e
qu

al
ity

as
se

ss
m

en
t:

Fr
om

er
ro

r
vi

s-
ib

ili
ty

to
st

ru
ct

ur
al

si
m

ila
ri

ty
[3

9
]

W
an

g
SS

IM
de

ri
ve

d
fr

om
U

IQ
I

3
4

4
5

5
5

4
3

R
um

ba
A

n
O

nl
in

e
Q

ua
lit

y
M

an
ag

em
en

t
Sy

st
em

fo
r

A
pp

ro
xi

m
at

e
C

om
pu

ti
ng

[3
6
]

K
hu

di
a

d
et

ec
t

ap
p

ro
xi

m
at

io
n

er
ro

rs
an

d
co

rr
ec

t
ac

cu
ra

te
ly

3
4

5
5

5
3

3

Su
pe

rp
ix

el
E

xt
ra

ct
ed

V
ia

E
ne

rg
y-

D
ri

ve
n

Sa
m

pl
in

g
[3

5
]

V
an

-d
en

-
Be

rg
h

SE
ED

S,
co

m
pr

om
is

e
fo

r
po

w
er

an
d

ef
fic

ie
nc

y
3

5
5

4
4

3
3

Ta
bl

e
2

.4
:P

er
so

na
lc

om
pu

te
pl

at
fo

rm
te

ch
ni

qu
es

.



2.5 approximate computing in software and hardware 30

A
pp

lic
ab

le
ar

ea
1

-D
at

a
ce

nt
re

2
-S

oC
3
-P

er
so

na
lc

om
p

4
-E

m
be

dd
ed

Ti
tl

e
Pa

pe
r

re
f.

A
ut

ho
r

C
on

te
nt

no
te

s
Pr

im
e

ar
ea

Po
te

nt
ia

lM
ig

ra
ti

on
to

P
ow

er
re

d
u

c-
ti

on

Pe
rf

or
m

an
ce

en
ha

nc
e-

m
en

t

Q
ua

lit
y

of Se
r-

vi
ce

R
el

ia
bi

lit
yM

ai
nt

ai
na

bi
lty

Su
st

ai
na

bi
lit

y

O
p

en
m

v:
a

P
yt

ho
n

P
ow

er
ed

,E
xt

en
si

bl
e

M
ac

hi
ne

V
is

io
n

C
am

er
a

[4
6
]

A
bd

el
ka

de
r

O
p

en
M

V
lo

w
-c

os
t

lo
w

-p
ow

er
em

-
be

d
d

ed
vi

si
on

m
ic

ro
py

th
on

p
la

t-
fo

rm

4
3

5
5

5
5

5
4

D
es

ig
n

C
on

si
d

er
at

io
ns

fo
r

So
la

r
E

ne
rg

y
H

ar
ve

st
in

g
W

ir
el

es
s

Em
be

dd
ed

Sy
st

em
s

[5
0
]

R
ag

hu
na

th
an

C
ha

lle
ng

es
of

en
vi

ro
nm

en
ta

l
en

-
er

gy
ha

rv
es

ti
ng

,
co

nv
er

si
on

,
st

or
-

ag
e,

ba
la

nc
in

g

4
3

5
5

5
5

4
3

E
ne

rg
y

ha
rv

es
ti

ng
an

d
p

ow
er

m
an

ag
e-

m
en

t
fo

r
au

to
no

m
ou

s
se

ns
or

no
de

s
[4

9
]

C
hr

is
tm

an
n

R
ev

ie
w

s
va

ri
ou

s
en

er
gy

ha
rv

es
ti

ng
an

d
m

an
ag

em
en

t
ar

ch
it

ec
tu

re
s

4
5

5
5

5
5

3

D
yn

am
ic

al
ly

ad
ap

ti
ve

an
d

re
lia

bl
e

ap
-

pr
ox

im
at

e
co

m
pu

ti
ng

us
in

g
lig

ht
-w

ei
gh

t
er

ro
r

an
al

ys
is

[5
4
]

G
ri

go
ri

an
ap

pl
ic

at
io

n
sp

ec
ifi

c
er

ro
r

co
nt

ro
lu

s-
in

g
LW

C
4

4
5

5
5

5
4

L
ow

p
ow

er
ar

ch
it

ec
tu

re
ex

p
lo

ra
ti

on
fo

r
st

an
da

lo
ne

fa
ll

de
te

ct
io

n
sy

st
em

ba
se

d
on

co
m

pu
te

r
vi

si
on

[4
7
]

N
gu

ye
n

lo
w

po
w

er
M

C
U

+
FP

G
A

fa
ll

de
te

c-
ti

on
sy

st
em

4
5

4
5

5
5

3

A
p

p
ro

ac
he

s
to

Tr
an

si
en

t
C

om
p

u
ti

ng
fo

r
En

er
gy

H
ar

ve
st

in
g

Sy
st

em
s

[5
1
]

R
od

ri
gu

ez
A

rr
eo

la
Su

rv
iv

al
st

ra
te

gy
,

ch
ec

kp
oi

nt
in

g
va

ri
ab

le
s

fo
r

re
co

ve
ry

4
5

5
5

5
4

4

A
n

Ev
en

t-
D

ri
ve

n
U

ltr
a-

Lo
w

-P
ow

er
Sm

ar
t

V
is

ua
lS

en
so

r
[4

8
]

R
us

ci
U

se
s

4
co

re
C

or
te

x
cl

us
te

r
to

ex
tr

ac
t

ev
en

td
ri

ve
n

fe
at

ur
e

in
fo

to
fo

rw
ar

d
to

cl
ou

d
ba

se
d

sy
st

em

4
5

5
5

4
4

3

R
ea

l-
Po

w
er

C
om

pu
ti

ng
[5

2
]

Sh
afi

k
su

rv
iv

ea
bl

e
em

be
dd

ed
co

m
pu

ti
ng

4
5

5
5

5
5

4

E
ne

rg
y-

E
ffi

ci
en

t
D

es
ig

n
of

B
at

te
ry

-
Po

w
er

ed
Em

be
dd

ed
Sy

st
em

s
[4

5
]

Si
m

un
ic

W
it

h
av

ai
la

bl
e

u
P

an
d

ap
p

ro
ac

he
s,

en
er

gy
ef

fic
ie

nt
de

si
gn

is
no

t
a

si
m

-
pl

e
ta

sk

4
5

5
5

5
5

4

E
na

bl
in

g
Su

rv
iv

al
In

st
in

ct
s

in
E

le
ct

ro
ni

c
Sy

st
em

s:
A

n
En

er
gy

Pe
rs

pe
ct

iv
e

[6
5
]

Ya
ko

vl
ev

A
ch

al
le

ng
e

to
de

ve
lo

p
ha

rd
w

ar
e

to
su

rv
iv

e
en

er
gy

de
fic

ie
nt

in
te

rl
ud

es
4

5
5

5
5

5
4

Ta
bl

e
2

.5
:E

m
be

dd
ed

ta
rg

et
te

ch
ni

qu
es

.



2.5 approximate computing in software and hardware 31

in attempts to improve filtering techniques in the biological, medical
and "big data" fields. As an example, Raghuwanshi [66] Proposes a
methodology of Image identification signature for Database retrieval.
Divides the image into sub areas before low pass filtering, tiling
with tetrolets, high pass filtering, then applies energy and standard
deviation characterisation for feature extraction to create a signature.
Further developments of this concept by Raghuwanshi [67] enhances
the previously cited work to reduce processing time and adds a feed
forward system to calculate image indexes on texture, edge and colour.
This technique appears to be computationally expensive which is to
be typically expected in database applications.

2.5.7 Identified Research Problems

From the literature review and the four system categories identified,
of data centre down to embedded applications, there are a myriad
of system and hardware architectures, operating systems, software
development platforms, producing a broad range of homogeneous,
heterogeneous or even single micro-controller solutions each with their
individual challenges. There is no "one size fits all" solution. Conflict-
ing design and implementation trade-offs constitute one of the major
challenges of many-core applications. As different applications have
varied performance, power, quality, reliability, maintainability and
sustainability requirements, meeting these demands for each domain
of application is difficult with a generic design and implementation
flow, Shafik [68] and Yakovlev [65].

Historical methods to tackle the increase in data rates and process-
ing power have been to increase the processor operating frequency,
effectively made achievable by the die shrink in the manufacturing pro-
cesses. Most of the performance increases have topped out at around
the 3GHz operating frequency and the method now used to handle
the increase in processing power has been to increase the number
of processors using multiprocessor techniques. This scenario has in-
creased the amount of power required to not only drive the extra
processors but also the air conditioning equipment in data centres to
keep the equipment cool. Further recent developments in the Data
Centres have seen FPGAs used as accelerators for specific tasks such
as Ethernet, Universal Data Packet (UDP) processing by Sidler [18]
and Intilop [69] to enable real time data extraction and encoding. This
problem arises when sending files, > 4k size, across the internet. Files
are broken down into a number of TCP/IP packets of Maximum
Transmission Unit MTU size which is typically 1536 bytes which also
includes the packet header and a checksum at the end of the packet.
The packetisation is a straightforward task at the transmission end but
at the receive end a number of issues arise. Each packet, on arrival
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will generate an interrupt for the processor to deal with the packet.
The packets won’t necessarily be in the same sending order or may
even result in simultaneous arrival of packets due to Internet routing,
thereby adding extra re-ordering or dropped packet challenges to the
receiving end. A solution to this process was realised in FPGA which
reduced the processing latency from 10’s of microseconds down to
around 100nS. Such implementations have shown a lower loading of
CPU processes and a reduction in dropped packets and significant
overall savings in power consumption.

OpenCV has demonstrated its usefulness in identifying features
in video such as moving objects and recognising features. OpenCV
algorithms have been developed with the aid of much higher definition
still photography (>20Mp) where processing time is not a critical issue,
so is able to process UHD video frames, but for video, the allowable
processing time is dependent on the frame rate to enable video frame
rate capture. The challenge for this research is to identify the relevant
area of data to be more efficiently extracted within defined Regions of
Interest (ROIs) in the scene.

A further problem to be addressed is, for instance, the amount of
processing required on a UHD frame to detect significant events is a
large task because of the quantity of pixels to be processed. Could it
be possible to use either a reduced resolution image or a lower reso-
lution camera, viewing the same scene as the UHD camera, suitably
calibrated, to detect movement and define the area to be extracted by
the UHD device thereby offering the potential of reducing the frame
processing time? Alternatively would it be possible to utilise a mask
to select a subset pattern of the UHD pixels and utilise the resultant
smaller subset of image pixels to detect significant events?

2.5.8 Research Challenges

The development of heterogeneous systems is a challenging area and
involves a steep learning curve in:

• Gaining new knowledge in heterogeneous architectures com-
bined with high bandwidth interfaces.

• Investigation of novel techniques to improve performance with-
out demanding high clock rates and reducing overall power
consumption.

• Gaining familiarity with operating systems, Linux and Yocto.

• Understanding and utilising high levels of software integration.

• Most of the software library tools have not yet reached full
maturity, they are still in development stage and as such present
several challenging issues that require granting the user some
level of administrator access to the operating system.
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• Adopting use of emergent library facilities OpenCV, OpenCL,
OpenMP.

• Gaining awareness of security implementation issues.

• Exploring operating system management methods and power
gating to reduce power consumption.

2.6 summary

Approximate computing is a very active and dynamic subject area
currently. Latest developments demonstrate migration of complex
developments from initial concepts in SoC or FPGA, down the chain
to data centres, to desktop or mobile applications then onwards to
embedded systems. This has recently been witnessed in the Computer
Vision and Machine learning areas where techniques, developed in
software and realised in hardware components, are migrating down
the chain from data centres towards portable then onward to embed-
ded instantiations.
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S I G N I F I C A N C E I N I M A G E P R O C E S S I N G

In this chapter a key methodology for extracting image significance is
described based on a localised standard deviation. We then go on to
describe how the computational effort can be reduced by exploring
absolute deviation, pyramid image reduction with standard and ab-
solute deviation, before moving onto approximate absolute deviation
which produces an economical method for deriving image signifi-
cance values. This work allows a definition of Image significance to
be created. Section 3.1 Introduces the topic and the reason for the
research. Section 3.2 Outlines the motivation for such research. Section
3.3 explains the rationale and the contributions we make to the subject
of significance in image processing. In Section 3.4 we define image
significance and the development of the processes used to exploit
image significance, identifying three suitable candidates from five
different techniques, explained in Sections 3.5 through 3.9. Section
3.10 illustrates the comparative execution time results for these differ-
ent approaches. In Section 3.11 we briefly outline a case study that
proved the viability of an adaptive approximate significance model
concept for further progress. Section 3.12 outlines the proposed adap-
tive approximate computing approach underpinning the definition
of significance and the proposed path for a transition to adaptive
approximate computing. Section 3.13 explains the control variables
to achieve the adaptive approach. Finally Section 3.14 Introduces the
next phase of research, Significance Driven Adaptive Approximate
Computing.

3.1 introduction

Image processing applications, which include acquisition, process-
ing and analysis of real-world digital images, are increasingly being
employed in myriad of embedded and ubiquitous systems. These
applications have two major challenges posed by their conflicting
requirements of performance and energy efficiency. Firstly, with con-
tinued advancement of camera and sensing technologies, there is a
persistent demand for higher resolution of the captured frames (i.e.
images) that require decoding at real-time, Beckett [70]. As such, the
volume of data to be processed over a given time is increasing rapidly
(see Table. 2.1). Secondly, processing this ever-increasing volume of
data requires more processing power. This has made achieving energy
efficiency highly challenging, even when the underlying hardware/
software stack is by-design low-power.

34
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3.2 background and relevant work

Table. 2.1, in Chapter 2, shows typical data rate, storage and energy
requirements for current and future image resolutions. The storage
requirements and energy consumption results were generated from
simple experiments on an Odroid XU4 platform at 2.0GHz operating
frequency. As can be seen, the volume of raw image data that needs
processing over a 24 hour period increases dramatically with increas-
ing image pixel dimensions. Over the years, significant research works
have been carried out to address the energy efficiency of real-time
image processing applications. Approximate computing has recently
emerged as a promising approach, which leverages the intrinsic re-
silience of these applications to imprecision, Han & Mittal [71, 59].
Energy efficiency is achieved through replacing the compute-intensive
hardware/software routines by low-complexity ones, which essen-
tially allow the application to run faster at lower energy consumption,
Duben [19]. However, the quality of processing is compromised to
a point, which is deemed acceptable using subjective or objective
metrics.

Existing works in approximate computing in the domain of image
processing consist of various methods to determine significant areas of
an image in order to target computational effort to those particular ar-
eas. Godtliebsen [56] addresses significance of features in noisy images
by analysing the gradients at each pixel and generating significant
streamlines to find significance peaks. A different approach is taken
by Mohapatra [55], by creating a significance driven motion estimator
using temporal difference on video streams. Vassiliadis [72] utilises
a program model and runtime process to extract a Discrete Cosine
Transform (DCT) based task significance to allocate lower significance
blocks for more approximate levels of processing and thereby increase
energy efficiency in approximate computations. Superpixels are used
by Van-den-Bergh [35] to segment the image by grouping pixels that
are part of the same object by using hill climbing optimization with
an iterative refinement in a process entitled SEEDS. Image fusion is a
challenging topic where composite images are required for enhanced
image processing by integration of images from different types of
camera, eg Infra-Red and visible spectrum. ShreyamshaKumar [58, 73]
generates a pixel significance based on Discrete Cosine Harmonic
Wavelet Transform (DCHWT) for multi-focal multi-spectral images in
the first instance and a version based on a Cross Bilateral Filter (CBF)
in the second instance.

This chapter addresses significance, which we describe as "what
catches your eye". It transpires that, in the literature, there is an
alternative equivalent nomenclature for significance, called saliency,
references to which, we include here. The Learning OpenCV 3 manual
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by Kaehler [74] defines the saliency as "Where humans would look in a
scene". The following papers all use the term "saliency". Viola uses this
term in [75] to achieve object detection and in [76] for real-time facial
detection, these techniques use the OpenCV Integral() function for
calculation of standard deviation which we will explore in more detail
in Section 3.5. Hou [41] utilises a log Fourier spectrum to facilitate
object detection, in a process specified for use in Machine Learning
and is computationally intensive. A temporal spectral technique for
fast salient motion detection by Cui [63], utilises removal of redundant
(static), features from video sequences and extracts the salient motion
features by use of a Fourier Transformation on the temporal frames.

3.3 rationale and contributions

Images typically consist of areas where the contrast between colors
define the artefacts and features of the image more than those without
any contrast, Preston [77]. In other words, areas where the raw data
variation is higher are of more informational value than others. It
can be postulated that these informational values, i.e. significance,
can be used to modulate the computation efforts with the aim of
achieving energy minimization, while also retaining the best possible
quality of images. In this project, we define this as significance-driven
adaptive approximate computing. The main premise is to adopt higher-
precision computing for image areas that are more significant, and
conversely allocate low-precision and low-complexity computing for
areas that are deemed less significant. In a parallel image processing
system, this will then lead to a problem of appropriate hardware/
software allocation, coupled with DVFS decisions to achieve quality-
aware energy reductions against real-time performance requirements.
This is a departure from the existing approaches that are agnostic of
data significance within images and demonstrate clear advantages of
the proposed approach.

In this work, the following specific contributions are claimed:

1. For the first time the concept of significance in the context of
image processing applications is defined.

2. We present three individual methods of extracting significance.
Standard Deviation and Absolute Deviation based on a local
area mean and a more computational and energy efficient Ap-
proximate Absolute deviation based on a mean of four adjacent
work-areas, these work areas being a choice of 4x4, 8x8 or 16x16

size.

3. A parallel image processing approach using significance driven
approximate computing is proposed. Core to this approach is
hardware/software resource allocation, coupled with DVFS con-
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trols to optimize the energy and quality trade-offs with real-time
performance requirements.

4. A further proposal is an adaptive machine learning approach
that is constrained by an energy budget along with a quality bud-
get to act as control inputs to the significance level thresholding,
thereby modulating the resultant precision based computation.

5. Alongside this work, but not reported here, two concrete case
studies were performed: an application-specific hardware-based
adaptive approximate image filter and a software-based variable-
kernel based parallel convolution filter running on an Odroid
XU-4 platform, demonstrating advantages over the existing ap-
proaches.

3.4 defining image significance

Significance in the context of an image, is defined as areas where
the pixel value deviation is significantly different to a local mean,
such that, it exposes information features arising from changes in
visual effects and perception, Godtliebsen [56]. The research origi-
nated by investigating, by means of a software demonstrator, based on
OpenCV version3.3 to determine if significance in still images can be
estimated through parallel inference of mean and standard deviation
per image block. The calculation of mean and standard deviation was
based on the the work of Viola [76] and initially used integral im-
ages. Five approaches were initially investigated, standard deviation,
absolute deviation, pyramid reduction with both previous methods,
a sobel 2nd order filter and finally approximate absolute deviation.
Three methods were chosen to generate the image masks. Method
1 generates Standard deviation using Integral Images with sum and
square sum matrices on 32x32 clusters, the size chosen to constrain
the Integral mean computations to 16-bit integers, these are further
sub-divided, for performance comparison purposes, into smaller 4x4

blocks. Method 2 generates deviation by utilising the absolute dif-
ference between sample and mean, avoiding the use of the Integral
images square sum matrix and subsequent square roots. Method 3

generates an Approximate Absolute deviation by direct computation
of a single value, from each of 4 adjacent sub-groups of 4x4 blocks.

Figure 3.1 shows four images generated by the software demonstra-
tor. The original image, Figure 3.1(a), after conversion to a monochrome
image was clustered in smaller 4x4 blocks with thresholded devia-
tion mask applied to the gray scale matrix of the original image (<
threshold is black and non-significant, >= threshold is the correspond-
ing pixel grey level and significant). A variable number of clusters
per image 8x8, 16x16 can also be applied with Power, Performance,
Quality (PPQ) trade-offs.
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Figure 3.1: Significance of image with different threshold levels. (a) is original
image. Red area detail is enlarged in (d). (b) Methods 1,2 & 3,
threshold = 3. (c)Methods 1,2 & 3, threshold = 20. (d) Red area
Top Methods 1 & 2, Lower 3, threshold =120

Figure 3.1(b) and (c) demonstrate that at low threshold levels, 3

and 20, the deviation figures for each block using the three methods
don’t show immediately discernible differences in the image masks.
Figure 3.1(d) shows a zoomed-in red area of image (a) with a threshold
of 120. The top image shows little difference between Methods 1 and 2,
the lower image shows the sparser image results of Method 3. Method
1 utilises the compute-intensive OpenCV function integral() to generate
Integral and Square Sum matrices and subsequent sqrt operations,
leading to up to 180 ms latency per 20Mpixel image. Method 2 utilises
the integral() function to generate the Integral matrix only and then
uses the less intensive abs() function to generate absolute variance.
This reduced the latency to ≈160 ms. Method 3 in Figure 3.1(d) used
only one sample from each 4x4 block to compute an approximate
absolute deviation using simplified summation, with only ≈ 6ms
latency per image.

Varying the thresholds can generate optimistic (too few significant
blocks) or pessimistic (too many significant blocks) outcomes. This will
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be used as a control knob for meeting specified quality requirements
in our proposed approach.

The calculation of standard deviation is compute intensive, requiring
squares and square roots. As the fundamental point of the research
project is to explore ways of reducing processing effort on UHD
images (>2kpixel width), the research shifted to ways of investigating
a reduction in the compute intensity and power consumption. This
led to exploratory work with a C++, OpenCV3.1 based demonstrator
in the following areas:-

• Standard deviation based on equation 3.1, computed using Inte-
gral Image functionality.

σ =

√∑N
j=1(xj − µ)

2

N− 1
(3.1)

• Utilising Absolute Deviation based on equation 3.2, instead of
standard deviation, removing the requirement for square and
square root computations, reducing computation time and effort.

σ =

∑N
j=1 | xj − µ |

N− 1
(3.2)

• Reduction of Original image size by pyramid reduction by a
factor of 16, utilizing the OpenCV pyrDown() function.

• Investigation of the Sobel filter second order differential trans-
form.

• Generating an Approximate Absolute Deviation concept based
on sub-sampling the image pixels.

Further details on each of how these phases are generated and the
timing results will be discussed as follows.

3.5 standard deviation method

Calculating standard deviation with Integral images is a methodology
heavily used in facial recognition and other OpenCV functionality.
While Viola’s paper [76] explains how the Integral Image Sum and
Square sum matrices are generated and can be used to generate rectan-
gle sums, there is no further elaboration of how the Integral matrices
can be used to generate a mean and deviation calculation. It was
necessary to perform a verification exercise in an excel spreadsheet to
ascertain that the calculations will be accurate and that explanation
follows.
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Fig:- 3.2 shows a small example of an Excel based ’dummy’ Image
for this exercise. The background and four coloured regions were
generated using the Excel RANDBETWEEN() function to create areas
with differing means and standard deviation. At the bottom left of this
figure are shown the excel calculated values of mean and standard
deviation for the whole matrix area and each of the four coloured
sub areas, the results were generated with the Excel AVERAGE() and
STDEV() functions. It needs to be highlighted at this stage that the
Excel STDEV() function utilises Sample standard deviation and not
population standard deviation i.e. applies Bessel Correction using ’n-1’
as a divisor rather than ’n’.

Fig:- 3.3 shows the RANDBETWEEN() values used for the five areas
of the dummy image.

The next stage is to generate the Integral Image Sum and Square
sum matrices. In this process both matrices are increased in dimension
by one row and one column, in row and column zero, with all the
values initialised to zero. If I is considered as the original Image Matrix
and I’ as the newly generated sum. Each pixel element reference I(x,y)
in the original image, then corresponds to the calculated sum element
I’(x+1,y+1) in the Integral Sum matrix. The individual elements are
then calculated starting from I(1,1), x=1, y=1 as

I ′(x,y) = I(x− 1,y− 1) + I ′(x,y− 1) + I ′(x− 1,y) − I ′(x− 1,y− 1)

(3.3)

Note that the second and third elements of the above equation also add
in the fourth element I’(x-1,y-1) twice, so the one value is subtracted
to generate the correct sum.

In order to understand how the generated Image sum matrix is now
used to generate means, refer to Fig:3.4.

Each rectangle now has a sum at the bottom right, A-D, representing
the sum of everything above and to the left of that cell, so in this case D
represents the sum of the whole image. In order to extract the sum for
the partial area, coloured light blue, of Area D, bounded by A,B and C,
we need the value of the four references A:D and calculate D-C-(B-A),
effectively subtracting rectangles. In this calculation the value of area
A is contained in each of the sums B and C and is therefore subtracted
twice so one value of A is added back in to give the correct total for
the sub area D.

Fig: 3.5 shows the Integral Sum Matrix which is now used to gener-
ate the mean of each of the five areas, whole area and four coloured
areas, utilising the Integral Image Sum Matrix. This matrix shows the
incremental Integral sum from top left to bottom right. At the bottom
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Figure 3.3: Construction of integral image areas.

Figure 3.4: Calculation of integral image area sum.

left, below the matrix, are shown the five calculated means for each
area section. The whole area total is the value of the bottom right
value and the mean calculated through division by the cell count. For
the four coloured areas in the centre of the sum matrix, can be seen
highlighted Values, labelled A-J. These nine look up values are used
to calculate each of the four area sums, demonstrating the relative
efficiency of this technique when processing multiple RoIs. How the
sum of the RoI is calculated is covered in the Viola paper [76] but is
repeated here.
Each value in the integral sum represent the total of the original image
pixels above and to the left of the pixel being referenced Table: 3.1
Shows the A-J values and the excel calculations to generate the four
individual means for these areas.

Fig: 3.6 shows the Sum of squares matrix, generated in an identical
fashion to the sum matrix but adding in the square of the pixel value
elements. The nine squares sums A2-J2, which are used, along with
the corresponding Sum matrix values, to generate the variance values
for each of these areas. The variance is calculated by

Var(x) = 1/(n− 1)(S2− (S12)/n) (3.4)
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Minimising mean calculations example

A 26 B 72 C 118

D 84 E 913 F 3070

G 149 H 3757 J 9588

Sum1 783 E-D-(B-A)
Sum2 2111 F-E-(C-B)
Sum3 2779 H-G-(E-D)
Sum4 3674 J-H-(F-E)

Mean1 48.9375 Sum1/COUNT(E25:H28)
Mean2 131.9375 Sum2/COUNT(I25:L28)
Mean3 173.6875 Sum3/COUNT(E29:H32)
Mean4 229.625 Sum4/COUNT(I29:L32)

Table 3.1: Excel calculation of the four integral image means from the sum
matrix.

with Bessel correction applied, where S2 = sumofsquares and S1 =
integralsum. Table: 3.2 shows the extracted values and the calcu-
lations for the four variances. Again the whole image variance is
calculated solely from the lower right value along with it’s correspond-
ing Integral sum value.

Minimising variation calculations example

A2 170 B2 520 C2 854

D2 576 E2 41171 F2 322312

G2 1053 H2 527561 J2 1655600

SumSq1 40245 E2-D2-(B2-A2)
SumSq2 280807 F2-E2-(C2-B2)
SumSq3 485913 H2-G2-(E2-D2)
SumSq4 846898 J2-H2-(F2-E2)

Variance Formula
Var1 128.4625 1/(COUNT(E46:H49)-1)*(((SumSq1)-((Sum1_)^2)/COUNT(E25:H28)))
Var2 152.4625 1/(COUNT(I46:L49)-1)*(((SumSq2)-((Sum2_)^2)/COUNT(I25:L28)))
Var3 215.6958 1/(COUNT(E50:H53)-1)*(((SumSq3)-((Sum3_)^2)/COUNT(E29:H32)))
Var4 217.05 1/(COUNT(I50:L53)-1)*(((SumSq4)-((Sum4_)^2)/COUNT(I29:L32)))

Sigma Formula
SD1 11.33413 SQRT(Var1)
SD2 12.34757 SQRT(Var2)
SD3 14.68659 SQRT(Var3)
SD4 14.73262 SQRT(Var4)

Table 3.2: Calculation of integral image variance from square sum and sum
matrices.
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All that remains is to calculate the square root of the Variance to
yield the Standard Deviation. It can be seen by comparing the Integral
Image calculations of the mean, variance and standard deviation in Fig:
3.6 produce the same results as the excel functional values calculated
in Fig: 3.2.

The OpenCV function integral() is utilized to generate 32x32 Integral
and Square Sum matrices. The matrix size was chosen to try and
constrain the Integral mean computations to 16bit integers for the
initial research.

The 32x32 Integral matrices were then used to generate pre-selectable
sub array sizes of NxN where N is one of 4,8 or 16. The results of the
mean and standard deviation for each sub array were then written to
an equivalent image size mask matrix, using a rectangle fill over the
sub array size within the appropriate area of the mask array, this was
purely to give an easy masking process with the mask the same size as
the image. The mask array was then used with a threshold mask slider
bar value to generate an image/mask combination to demonstrate
and compare the effects of sub array size, mask value and calculation
time for the image in real time. Flowchart Fig: 3.7 indicates the steps
required in calculation of the standard deviation results in this process.

3.6 absolute deviation method

The traditional standard deviation value utilises square values to avoid
the generation of negative numbers in the course of generating the
average deviation. After the average variation is found the value has
to be square rooted to generate the deviance value. This means that
due to the squaring the furthest outliers from the mean have a greater
effect on the overall standard deviation. There is considerable dis-
cussion and argument as to the use of either standard or absolute
deviation, Leys [78]. Absolute deviation can be calculated from the
simple function, deviation = abs(value-mean) utilising the C library
function abs(value). This removes the necessity for squaring and it-
erative square root functions and is a much simpler operation for a
processor to perform leading to a reduction in the time difference
between calculation of standard and absolute deviation. The flow
chart for Absolute deviation is structurally similar to the standard
deviation, Fig. 3.7, the main differences being that in the first process
box the square sums are not required and in the second box Absolute
deviation is calculated, thus removing the necessity for squaring and
square root calculations thereby reducing computational effort.



3.6 absolute deviation method 46

Fi
gu

re
3

.6
:I

nt
eg

ra
li

m
ag

e
su

m
of

sq
ua

re
s

m
at

ri
x.



3.7 pyramid reduction method 47

Figure 3.7: Flowchart for absolute (and standard) deviation utilising integral
images.

3.7 pyramid reduction method

The OpenCV pyrDown() function reduces an image size by a maxi-
mum factor of two in each dimension. In order, therefore, to reduce
each image dimension by a factor of 4, the process has to be repeated
twice to generate an image pyramid, see Fig. 3.8. However this does

Figure 3.8: Pyramid image concept, the larger image is reduced by a factor
of 2 in stages.

add significant time to the initial reduction but a much greater time
saving is made on the reduced image deviation computations. This
process acted as a good demonstrator that the Approximate Absolute
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Deviation route was worth investigation and would probably be a
viable solution.

3.8 sobel 2nd order derivative method

After the initial demonstrator software development, thoughts turned
to thinking about other ways of discovering significance. One other
technique that came to mind was the second order derivative. It turns
out this can easily be achieved in OpenCV by using the second order
Sobel filter. However the result is slightly noisier, Fig. 3.9 and initial

Figure 3.9: Sobel 2nd order derivative with low threshold value.

experimentation showed lack of definition and dynamic threshold
range that is available with the standard and absolute deviation masks.
The computation time was only slightly quicker than the standard
deviation run time, roughly equivalent to the absolute deviation run
time. For these reasons any further progression with the Sobel filter
had been discounted for this thesis.

3.9 approximate absolute deviation method

For the approximate calculation, one pixel is sampled in each of a
4x4 image sub area and used to generate a local mean and absolute
deviation between a group of 4 (2x2) sample sub areas,(4 samples
out of 64). This is performed as a two pass methodology, the first
pass reads the values of two full image rows into a 2 X(width/4) sub
matrix, the local mean and absolute deviations are calculated and
written to the appropriate two rows of the full size mask matrix. This
is then repeated for the remaining pairs of row values extracted from
the image, in effect the means and approximate absolute deviation
are calculated across the image width for the two sub-sampled image
rows in turn. The code was written to take best advantage of main
memory accesses, line fills, efficient cache usage and utilization of
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right shifts instead of division as divisors are straight powers of two.
Fig. 3.10 shows the processing steps required.

Figure 3.10: Calculation flowchart for approximate absolute deviation.

3.10 experimental results

The comparative timing results were all generated utilising a 4x4 sub-
array computation during the various forms of deviation calculation,
in order to offer a fair timing comparison between the different pro-
cesses. In reality for a large UHD image >2k width, 16x16 sub arrays
generate adequate results in a shorter period but the approximate ab-
solute deviation gives acceptable results in a much shorter time with a
currently in-built 4x4 resolution. All the following timing information
tests were conducted on a 5184 x 3888 pixel (20.1 MPixel) image, with
the software running on an Ubuntu based Toshiba Satellite Pro laptop
in order to render comparative timing results. The timings were based
on computation of the results without image display in order to avoid
the vagaries of timing variation due to GUI display in the OS.

3.10.1 Standard Deviation

Fig. 3.11 shows the timing for Standard deviation on a full size im-
age with 4x4 sub arrays. These standard deviation figures should be
taken as the normal reference that we are trying to improve on. Note
that the ‘create mask array time’ is included in Fig. 3.11 for reference
only. The demonstrator program generates full size Mask matrices
to demonstrate the masking effect on the original size image when



3.10 experimental results 50

Figure 3.11: Timing for standard deviation run on full image.

raising the minimum threshold, so some of the large time periods seen
here would not appear in an end product. Instead a smaller deviation
matrix could be used to hold the calculated values for onward signifi-
cance detection. It was also not possible to isolate some portions of the
standard deviation computation elements that were included with the
demonstrator masking which would cause slightly longer execution
times in an end product.

3.10.2 Absolute Deviation

Fig. 3.12 compares the calculation times between Standard and ab-

Figure 3.12: Timing for standard vs absolute deviation run on full image.

solute deviation. The three columns, left to right, show the OpenCV
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Integral() execution time, the deviation calculation time and the total
time of column 1+2. At this stage no optimisation of the code has
been performed as it was merely meant for use as a demonstrator.
The first noticeable time difference is that standard deviation requires
Integral and Square Sum matrices whereas Absolute deviation only
requires the integral matrix to calculate the means. The Calculation
time for Absolute deviation is also slightly quicker due to the lack of
square and square root computations. The overall time saving on the
absolute calculation was in the order of 30mS when compared with
the 189.2mS for standard deviation.

3.10.3 Pyramid Reduced Image Standard and Absolute Deviation

Fig. 3.13 shows the run times for a reduced image utilising the Pyr-
Down() function to 1/16th of the original image size for both Standard
and Absolute deviation. Here there is an extra image reduction time

Figure 3.13: Timing, for standard. vs absolute, deviation run on 16x reduced
image.

of 16mS appearing due to the extra functionality to perform the Pyr-
Down() function but the overall effect is to significantly reduce both
the standard and absolute deviation phase calculation times and the
overall calculation time by an order of magnitude, around 26mS for
both as opposed to 190mS for Standard Deviation. The image thresh-
old masking showed similar results for both types of deviation results
with the Absolute deviation equivalent feature masking occurring at
slightly lower values.
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3.10.4 Approximate Absolute Deviation

Fig. 3.14 compares the approximated absolute deviation against the
previous full image standard and absolute deviation.

Figure 3.14: Timing for approximate vs absolute & standard, deviation run.

The much reduced calculation time for the approximated Absolute
Deviation is now around two orders of magnitude quicker than the
original standard and absolute deviation for a 20MPixel image. Over-
all, comparing the run time of the original whole image standard
deviation of 189mS with the run time of the approximate Absolute de-
viation of 6.8mS represents a considerable computational and energy
saving.

In order to give an appreciation of why we see such time differences
between the standard, absolute and approximate absolute calculations
the following explanation will reinforce the reasoning. In a generic
computer system, operations on data constitute two elements:

1. Data movement, ie fetching data from main memory, a read
operation, to the cache for the processor to access the data lo-
cally or alternatively transferring the data in the cache back to
main memory, a write operation. This process is typically accom-
plished as a batch of 8 64 bit words, known as a line fill, in order
to optimise DDR-DRAM memory usage.

2. Data processing, where the data in cache is transferred to the
processor, the required functions performed and the resultant
data is written back to the cache, to await transfer back to main
memory.

In order to give an understanding of the computation performed dur-
ing the three main deviation calculations and highlight the relative
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Main Memory Compute
Data Movements Maths Operations Time ms

Deviation
calculation

read
line
fills

write
line
fills

add/
sub

multiply divide sqrt Integral
Image

Total

standard 64 64 29699 12288 8449 4096 46.3 189.2
absolute 64 64 16387 0 1 0 24.3 163.4
Approximate
Absolute

16 4 448 0 64 0 NA 6.9

Table 3.3: Table of operations.

computational demands of the standard, absolute and approximate ab-
solute deviation, Table 3.3 breaks the operations down into a simplified
number of data movements and maths processes that are performed
on a single 64x64 pixel equivalent work-group area to generate the
significance values by the three deviation calculations.

In the data movement columns we see that in the exact calculations
there would be 64 line reads to extract the pixel information of the
particular segment of the image, bearing in mind that one line fill will
transfer 64 bytes of information, so 64 line fills will render 64x64 bytes.
In the case of the approximate calculation, assuming we are using a
4x4 sub-group, we only need to transfer in every fourth row values
and the subsequent calculation extracts every fourth value to generate
a local mean as previously explained in Section 3.9. Hence we see an
equivalent figure of 16 line fill reads and only 4 line fill writes.
Operations used in the calculation of the three types of local deviation
values are as follows:

• Standard Deviation utilises the Integral sum and Integral square
matrices, the calculations are quite involved and are as follows.
For each element of the sum and square matrices there are two
adds and one subtract during generation. 64 x 64 x 3 =12288

add/subtract operations each. The square value generation in-
volves a squaring of each value before the add/subtract, ie. 4096

multiplies. Generation of each of the local means involves 3

add/subtract and 1 divide for 256 values ie 768 add/subtract
and 256 divides. Generation of variance, first generate the square
sum for each 4x4 sub-array from the Integral square matrix, 3

Add/subtract operations for 16 x 16 sub-arrays, 16 x 16 x 3 =768.
Next generate the 4096 variance values, which for each value
involves, 1 square ie. multiply, 4096 operations, 1 subtract 4096,
2 multiplies, 8192 2 divisions 8192. Finally generate standard
deviation for each value by square rooting the variance, 4096.
Giving the following totals:
Add/subtract 12288 + 12288 + 3 + 256 + 4096 + 768 = 29699.
Multiply; 4096 + 8192 = 12288.
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Divide; 8192 + 256 + 1 = 8449.
Square root; 4096.

• Absolute deviation is a relatively simpler operation and utilises
only the Integral sum matrix. Generating the sum matrix requires
3 add/subtract operations for each value in the 64x64 array
1̄2288. It then generates a local mean for the whole 64x64 matrix
3̄ add/subtract operations with 1 division. It then generates
an absolute deviation by simply differencing every value in
the array from the mean = 4096 add/subtract operations. ie
12288+3+4096 = 16387 add/subtract and 1 divide.

• Approximate Absolute deviation reduces the 64x64 array down
to a 8x8 array of approximate values which then utilises 3 ad-
ditions and 1 division to generate each mean of 4 values in an
8x8 work item. There are then 4 differences generated for the
deviation values, giving a total of 7 add/subtracts and 1 divide
for each of the 8x8 values.

Once the calculation is finished, the calculated values are then trans-
ferred out into the main memory array that holds the calculated
significance values. This process is repeated for every work-area in
the image which for the example Cedar waxwing image we use here,
consists of 1000 work-areas. To the right of the table we show the
timings from Fig. 3.14 that indicate the relative calculation times of
the three methods. Note that the software was an early demonstra-
tor, not optimised for speed, that creates an image mask the same
size as the original image, which consumes a considerable amount
of computational effort. A more efficient system was created for the
demonstrator software discussed in Chapter: 5. The difference in the
Integral Image processing time is shown for Standard deviation, using
Sum and Square sums, as opposed to the time to generate a Integral
sum for Absolute deviation. The Integral sums are not utilised by the
Approximate method. The Total deviation calculation time illustrates
the considerable saving by the Approximation methodology.
It can be seen that absolute deviation provides a lower workload on
the system than standard deviation and approximate absolute devia-
tion provides a huge saving on workload than either of the other two
deviation calculations.
The approximate absolute deviation is based on sampling one value in
every 4x4 sub area, effectively reducing the Cedar waxwing example
from 2560 x 1600 down to a more efficient 640 x 400 area for signifi-
cance calculations. This scenario instigated the idea of increasing the
sub area size for larger >4k images to 8 x 8 or 16 x 16 which will be
addressed in Chapter: 5 .
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3.11 case study

An opportunity was taken to perform a separate case study, as part
of an undergraduate project, in parallel to this research to evaluate
the effectiveness of this approach and moving it forward to hardware
GPU implementation. This case study built on the approaches of
Totoni [79] & Bui [80] and demonstrated a software variable-kernel
based parallel convolution filter using machine learning techniques
to increase power efficiency and demonstrate application of DVFS,
running on an Odroid XU-4 platform consisting of 8 CPU cores, A15

and A7 in a big.LITTLE configuration alongside a MALI T628 MP6

GPU core. This approach has proven useful in generating performance
data and further system development application concepts.

3.12 transition to adaptive approximate computing

From the above experiments, and experience gained from the case
study, it was proposed to explore the use of optimised Machine Learn-
ing algorithms, Venkataramani [30] & [29], and Raha[43]. Runtime
management and energy efficiency methodology will be explored to
take advantage of the lower computation requirements of the approx-
imation methods. This will utilise Approximate Absolute Deviation
with three or four adaptable significance levels. The controlling inputs
will be a defined Energy usage target and an expected output image
quality, ie two control knobs, Fig. 3.15. Primarily energy usage predic-

Figure 3.15: Proposed adaptive approximate computing approach.

tions can be used to set significance threshold levels to identify the
areas of an image that hold most significance. This could allow dis-
crimination between areas that are either background or foreground,
thereby identifying areas that qualify for a range of significance values
with higher significance, requiring higher accuracy or full resolution
image processing and lower significance areas that should be subject
to either a lower accuracy processing or less frequent update or a
combination of both. Secondly the Quality of the image output will act
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as a feedback control to the Machine Learning input in order to adapt
to the best balance of energy usage against processed image quality.
Currently PSNR is used to derive the QoS figures for processed im-
age quality, however a more lightweight solution such as Grigorian
[54] may be explored or possibly particularly UIQI by Wang[38]. It is
anticipated that experimentation and development will initially take
place based on a GPU assisted processor system. The project may
then evolve to a Significance driven parallel computation approach
based on an SoC FPGA platform to enable hardware acceleration of
the Adaptive approximation methodology.

3.13 factors affecting significance

Significance threshold and Energy usage can be seen to be obvious
candidates for use as control knobs in conjunction with a PSNR feed
back figure to close the control loop. Intuitively, as larger images (>2K
pixel width) are processed, a larger approximation array 8x8 or 16x16

instead of the existing 4x4 are feasible. In the case where GPUs are
involved with the image processing, the WorkPackage size may also
benefit from adjustment, dependent on the GPU architecture.

3.13.1 Significance Thresholds

The case study utilised a simple single threshold scenario where any
significant areas above a feedback derived threshold were adaptively
processed by a 3x3 kernel filter and those below threshold with a
1x1 filter (effectively no processing), or alternatively above threshold
with a more accurate 5x5 kernel and below with a 3x3. This then
begs the question about the use of three (2 down to 0), or four thresh-
olds, (3 down to 0) where 0 is least significant. The lower threshold
being processed with 1x1 and incremental levels with 3x3, 5x5 and
7x7 kernel filters. This contrasts with the current situation in image
processing where a single kernel filter, 3x3, 5x5 or more rarely 7x7 is
applied as a sliding window across and down the image matrix where
the product of the kernel filter against the selected and surrounding
pixels is calculated. Table. 3.4 shows the total multiplies and additions
(MAC operations) that are required per each pixel processing. The
total for each pixel is dependent on the kernel size where the number
of elements, N, is the product of the width and height of the kernel.
The kernel generates a sum of weighted values with the number of
operations required, calculated as N multiplies followed by N-1 accu-
mulates or additions. Note that the 1x1 operation is considered here as
a unity gain multiplication. These figures can be utilised as a basis to
generate energy usage cost estimates in a Machine Learning approach.
It may be argued that FPUs and GPUs can perform combined multiply
and accumulates efficiently in a single processor instruction but this



3.13 factors affecting significance 57

scenario still utilises significant hardware to perform these individual
tasks.

Kernel multiplies accumulates Total
size per kernel per kernel

1x1 1 0 1

3x3 9 8 17

5x5 25 24 49

7x7 49 48 97

Table 3.4: MAC operations per pixel per kernel size.

By using an approximation method for absolute deviation, we ex-
tract, in our examples, one pixel from every 4x4 sub area. and compute
a mean for each group of four sub areas in an 8x8 array of sub areas,
ie we are generating a mean from four values in a 32x32 pixel image
section. The absolute deviation from this local mean for each sub area
is calculated. After suitable thresholding the whole 8x8 area can then
be allocated for a suitable level of Kernel filtering from 1x1, 3x3, 5x5

etc. For GPU applications the workpackage area is subject to minimum
size, dependent on the particular GPU architecture used, in order to
achieve maximum efficiency. In an FPGA application this may be able
to process individual sub areas but is currently beyond the scope of
this thesis.

3.13.2 Work Area Variation and Approximation Stride

In GPU operation with OpenCL, the image, Workarea, is divided into
workgroups, which is the block of data submitted to the GPU for
processing and can differ between GPU architectures. The workgroup
is further subdivided in to smaller work-items, which may require to
share information between them.

In Convolutional Neural Network (CNN) operation a similar tech-
nique to that explained previously, called stride, is used to reduce the
number of computations during learning and recognition phase. A
stride of 2 will apply a kernel to every other pixel in both column
and row. So the approximation stride in this case is effectively four,
starting at element (1,1), in order to keep away from image edges, and
progressing in order (1,5).... (5,1), (5,5).... and so on over the entire
image. As higher dimensional images develop eg 8k image, further
research may be needed to investigate increasing the stride size to
eight and the effects on image processing.
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3.13.3 Energy Usage & DVFS

After applying the pixel totals of Table: 2.1 to the per pixel MACs of
Table. 3.4 it can be seen that a 5x5 filter applied to a 640x480 image
increase from 15 x 10e6 MACs to a total of 514 x 10e6 for a 4320 x 2432

image, which represents a 34 fold increase in computational effort.
Significant reduction of computation and utilisation of, either or

both, CPUs, and associated FPUs, and GPUs presents the opportunity
to utilise DVFS. The case study illustrated a scenario in which DVFS
could be implemented in the case of the GPU. As the time to calculate
3x3 kernel on a workgroup was significantly shorter than that for a 5x5.
This generated slack time that allowed queueing of extra 3x3 kernels
while the 5x5 was still being processed. Tuning of the thresholds
in the approximated deviation was able to optimise calculation to
maximise fill up of the workgroup queues. The use of Neon FPU and
GPU offer significant speed up of parallel calculations which offered
the opportunity to decrease the CPU and GPU operating frequency.
Variation of the CPU/GPU voltages separately didn’t seem to be an
option during the case study as there appears to be a withholding of
IP for the Odriod XU4 cpu-set by the manufacturer.

3.14 summary and discussion

By further investigation of the above techniques reinforced by the
results of the case study we have a model and the tools for imple-
mentation of Significance Driven Adaptive Approximate Computing,
the details, along wth the further development, of which will be ex-
plained in Chapter: 5. A limitation of the case study was the inability
to examine more accurately the runtime and energy usage during
the runs to allow comparison of energy usage during CPU and GPU
runs. This is addressed in the next Chapter: 4 by utilising OpenCV
and Arm Compute Library to render energy and performance results
for running convolutions on the CPU, GPU or Neon DSP.



4
E N E R G Y A N D P E R F O R M A N C E
C H A R A C T E R I S AT I O N I N H E T E R O G E N E O U S
S Y S T E M S

In this Chapter we investigate energy and performance characteristics
to allow comparison and contrast between implementations of im-
age processing convolutions performed primarily on a CPU utilising
OpenCV and those performed by executing them in a Neon DSP or
Mali GPU, utilising OpenCL via the Arm Compute Library. In Section
4.1 we introduce the odroid XU4 platform which was to be the base
platform upon which subsequent work would be based. In Section 4.2
we discuss the rationale for this work and in Section 4.3 we discuss the
methodology to enable power measurement of the XU4 platform dur-
ing execution of software models which until this phase had shown
to be a problematic experience. Section 4.4 outlines the strategy for
measuring both the run time and energy measurement over a suitable
measurement period. This section also demonstrates some exploratory
work and some observational guidelines for the actual measurement.
The results of the measurements and runs are reported in Section 4.5
along with a number of extra observations to be taken into account.
Section 4.6 summarises this work.

4.1 introduction

The previously mentioned case studies proved that the Odroid XU4,
Fig: 4.1 was a very able Linux platform for experimentation with a
variety of homogeneous elements, Multiple CPU, Neon FPU and GPU,
but presented a challenge in trying to measure the runtime power
whilst executing convolution kernels on these on-board facilities.

Specifications for this platform, briefly include:

• Processor Samsung Exynos5422 Quad ARM A15 2.0GHz Quad
A7 1.4GHz.

• 3D Accelerator Mali T628 MP6 OpenGL/OpenCL

• Memory 2Gbyte RAM.

• USB3.0 Host, 2x USB2.0 port

• eMMC module socket, MicroSD Card Slot Flash Storage (up to
64GByte each).

• Fast Ethernet LAN 10/100/1000Mbps.

59
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Figure 4.1: The Odroid XU4 platform with Samsung exynos octacore proces-
sor and T628 GPU.

• OS Ubuntu 16.04.

• Size 82 x 58 x 22 mm approx.

GPUs, Neon DSPs and sometimes FPGAs are often perceived as power
hungry units as opposed to CPUs. While these devices are observed
to use a larger quantity of power during the execution phase, the task
is finished much quicker so the total energy used in the operation
may well be smaller than that during equivalent execution solely on a
CPU. It was decided to run 3x3, 5x5 convolutions via ARM Compute
Library, in order to enable running the convolutions on both GPU and
Neon DSP. In addition 1x1, 3x3 and 5x5 convolutions, using OpenCV
were run on the processor only, while simultaneously measuring the
Power used by the Odroid XU4 board in all cases.

The first challenge was that, the predecessor to the XU4, the XU3 was
the subject of investigation into Power-aware performance adaptation
by Aalsaud [81] and had current measurement facilities built in to the
board but were not implemented on the XU4. The XU3 utilises Texas
Instruments INA231, Inter Integrated Circuit (I2C) communication
based current and power monitor, to measure four out of the ten
separate board regulated supplies at various voltages. As there is only
one 5 Volt supply voltage to the XU4, a Texas Instruments Evaluation
module, the INA231EVM, was identified, and delegated to measure
the Power input to the board which gives an overall power figure,
rather than the XU3’s subset of the total power and perhaps misleading
picture of the whole power supply scenario.
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If we can quantify the amount of power and execution time for a
3x3 or 5x5 convolution on a single pixel, computed on each device,
CPU, GPU and Neon DSP, an estimate of the frame processing time
and energy consumption for a range of image sizes can be evaluated
and help define an evaluation strategy for parallel computation of the
various NxN convolutions on a mixture of devices eg 5x5 on GPU, 3x3

on Neon(DSP) and 1x1 on CPU.

4.2 rationale and previous research

Among the various challenges in designing a computer system, espe-
cially with battery powered heterogeneous embedded targets is the
question of how many computing elements, CPU, GPU, FPGA etc. are
needed, can we achieve sufficient run time to viably achieve execution
of the required task without running out of power reserve?

While most embedded applications have historically utilised low
power Cortex-M family there is great interest in adapting vision pro-
cessing on embedded systems and currently there is evidence of vision
processing facilities running on Cortex-M, by OpenMV, Abdelkader
[46], albeit they run under MicroPython, while this option may be
optimal for demonstrating the concept of embedded vision processing,
it is hard to imagine adoption of this language by embedded C/C++
purists in their search for ultimate low power applications. Moves to
using Cortex-A systems in order to provide fall detection systems,
Nguyen [47], security cameras with night vision, by Abaya [82] and
Image Processing Units on low cost embedded hardware, Nair [83],
provide evidence of the demand for embedded image processing.

Arm Compute Library released in 2017, provides a number of
OpenCV style, along with Machine Learning, functions to run on
Cortex-A processors and GPUs, aimed at embedded applications. The
Documentation for the ARM Compute Library emphasises the process
performance gains by utilising GPU or Neon but there are no clues
if the performance could be tuned to reduce energy consumption or
what the power demand will be. For this reason it was decided to char-
acterise the performance and power demand of the Compute Library
and OpenCV library running on an Odroid XU4 platform, in order to
investigate what heterogeneous elements, running under direction of
Approximate Significance, could provide the best power-performance
trade-offs. As Compute Library is a more recent development, lacking
a reasonable user manual, there are not many published papers in this
respect.
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4.3 power measurement methodology

The Texas Instruments INA231EVM Evaluation Module is a USB
based device Fig: 4.2, that comes with a Windows Graphical User
Interface (GUI) based software module which enables real time viewing
and logging of power usage against time. In this experimental setup
the module is configured to utilise the Texas Instruments INA231

device to measure high side power consumption of the Odroid XU4

during software testing.

Figure 4.2: The Texas Instruments INA231 evaluation module with the USB
interface on the right and the measurement connections shown
along the top.

The evaluation module is connected as a high side measurement
device, Fig: 4.3, with a 10 milli-Ohm wire wound precision, 1%, current
sensing resistor in series with the load. The INA231 device takes
two measurements Applied voltage and Shunt Voltage it calculates
shunt current and load power from these values. The INA231 also
has a programmable conversion time and averaging mode so that
multiple measurements can be made and averaged during the USB-
I2C measurement periods, typically one second, with the supplied
software.

The INA231EVM kit is supplied with GUI based software to drive
the device from a Windows based platform, which allows set-up of
the device, Fig: 4.4.

The EVM was setup to provide 256 averaged samples per interval in
the "Step 2: Configuration Operation" setup box, Averaging Mode was
typically set to 256 samples during the one second polling interval.
The current shunt value is entered as 10m (milliohms) in the "Step5

Configuration Register" Resistance box and Max Current is set to 6A
(Amps). Clicking outside this default value box will see the software
generate two values for Low LSB and High LSB. The Low LSB value
(183.1uA, microAmps) is entered into the Current LSB box. Near the
top of the setup box, "Write All Reg" is clicked, followed by "Read
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Figure 4.3: Schematic of INA231 load connection schemes.

Figure 4.4: INA231EVM GUI measurement parameter setup page.

All Reg". The bottom row of boxes at the bottom area of the page
should now show typical values of Bus and Shunt Voltage, Current
and Power to demonstrate the module is now set up. Selecting the
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calculations page tab will now show the steps in the calculation of the
device energy parameters instead of the default zero values.

Clicking on the Graph tab shows a selectable graph parameter in
the drop down box where "Power" is selected. Selecting "Continuously
Poll Data" now provides real-time graphing of the Power consumption
of the Device Under Test (DUT) and can be stopped and restarted on
subsequent "Continuously Poll Data" selections. The EVM software
provides graphical display, Fig: 4.5, and export of results in a com-
patible Comma Separated Variables (CSV) file. This provides a route
to export the results into excel and as a quick sanity check, graphing
the results in Excel to ensure the resultant graph of the imported data
has the same appearance as in the EVM software graph page. This
provision allows further viewing and calculation of the performance
and energy results.

Figure 4.5: INA231EVM graphical result viewing page.
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4.4 convolution run-time and energy measurement strat-
egy

The power tests were to be executed on the XU4 board which is
running Linux and needs to be borne in mind with all power mea-
surements. As the operating system is continuously running and the
requirement is to measure the power of the convolution process itself,
the image is loaded and the computation only is repeated the required
number of times, see Table: 4.1. XU4 linux idle power is around 4.3
Watts with occasional periodic peaks above this, thought to be some
Linux system management activity. Occasionally the fan will start to
run which consumes around a further 0.8 Watts. In order to retrieve
an energy figure for the computation being run we need to measure
the total power, subtract the idle power then average the power over
the reported run time to give the compute power. The total loop time
is then divided by the number of iterations in order to yield the frame
time. This figure can then be multiplied by the Compute Power, in
Watts, to give the energy per frame, in Joules. This figure can then be
further divided by the number of pixels in the frame in order to give
an execution time and energy usage for a pixel-kernel, which repre-
sents the activity, multiplies and accumulates, required to perform an
NxN convolution on a single pixel and it’s computational neighbours.

In order to perform this measurement, two special versions of
Software were generated to run on Odroid XU4 but could be easily
adaptable to other targets:

The first version was for an OpenCV version of software to repeat a
number of tight loops, I, of 1x1 convolution (for reference), J, of 3x3

convolution or, K, of 5x5 convolutions across the whole image. I, J
and K chosen to give a number of seconds for total loop time. The
software outputs to the console which convolution is being run, what
size image is being processed, total execution time in milli-seconds
and the number of iterations for each convolution. This allows easier
alignment of the computation being run with the Power measurements
of the INA231EVM spreadsheet output.

The second version was an Arm Compute Library run time module
of the above software functionality. As it was not possible to identify
an equivalent 1x1 kernel in the Arm Compute Library v17.12 the 1x1

test was excluded, but running, J, 3x3 or K, 5x5 loops on either Neon
DSP coprocessor or Mali T628 GPU. Console output information is
identical to option 1 with the inclusion of which device, Neon or GPU
is being run.

In order to evaluate performance across a range of image dimen-
sions, the target images, of varying sizes were created from a single
large resolution, 5184 x 3888, 20Mpixel, still image, with a range of
nine sizes from 320 x 240 through to 8192 x 4608 pixels. The 320 x 240

was only run on the GPU and Neon, mainly to explore and emphasise
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the recommendations by ARM to use GPUs etc on HD images and
above only.

Image size GPU Neon OpenCV

Width Height 3x3 5x5 3x3 5x5 1x1 3x3 5x5

320 240 40,000 20,000 40,000 20,000 N/A N/A N/A

640 480 10,000 5,000 5,000 2,500 2,000 1,000 500

1024 768 10,000 5,000 5,000 2,500 2,000 1,000 500

1280 720 10,000 5,000 5,000 2,500 2,000 1,000 500

1600 900 10,000 5,000 5,000 2,500 2,000 1,000 500

1920 1080 10,000 5,000 5,000 2,500 2,000 1,000 500

2048 1152 10,000 5,000 5,000 2,500 2,000 1,000 500

4320 2432 10,000 5,000 2,500 1,250 2,000 1,000 500

8192 4608 10,000 5,000 2,500 1,250 2,000 1,000 500

Table 4.1: Number of iteration loops performed during power and perfor-
mance analysis.

4.4.1 Exploratory Runs and Fans

Initially some exploratory runs with the software and power measure-
ment facility were performed to highlight any issues that may arise.
While running the tests, the cooling fan typically started immediately
with neon and processor, when running the GPU, the fan started
typically 1 second after the software started running, this is thought to
be related to the 600MHz GPU frequency as opposed to the Processor
2.0GHz operating frequency.
For the largest images the fan could be heard and observed to be
ramping up and down a range of speeds occasionally, especially when
running the Neon processor, which could be observed as steps on
the power graphs. The Linux fan driver for the Odroid XU4 is based
on three temperature thresholds providing four fan speeds includ-
ing ”off”. The system monitors the core temperature of the processor
clusters to initially control the cooling fan and further apply DVFS to
reduce core frequency and voltage if fan cooling isn’t successful. The
initial runs with large images, 4K and above, also highlighted issues
with the technique used to control fan speed and processor throttling
with DVFS by the Linux system, generating power spikes greater than
20 Watts. Figs: 4.6 & 4.7 illustrate this effect. ARM DS-5 Streamline
community edition was used to investigate the stepped variation of
the Cortex A15 processor frequency from 2GHz downwards. This
shows that the system then seemed to enter a cyclical sequence of,
increasing fan speed to max, slowing down the processor via DVFS to
cool it, processor cools - slow down the fans, re-increase the processor
frequency for performance, increase fan speed etc. causing the large
scale variations in power demand.
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This effect turned out to be due to having compiled the Compute
Library version with debug enabled to gain access to some GPU regis-
ters via Streamline! The software was recompiled as a release version
and the software and power consumption subsequently showed more
reasonable behaviour having done so.
Observation 1: Care needs to be taken during intensive use of the
Neon FPU (HD images continuously running) to avoid heating of
the CPU and cyclic cooling by the OS.
Observation 2: Ensure software is compiled with debug off.

Because it appears the XU4, when idle, is running just below the fan
switch on point. The XU4 was covered with a small box after which
the fan started to run continuously and the static power, for fairness,
with the fan running at first speed was determined to be the average
at 5.4 Watts. This became the figure for subtraction of Linux Idle static
power from the results, any further speed increases are considered
as part of the run-time dynamic power consumption and should be
included as part of run-time energy requirement.
Observation 3: XU4 Linux system idle power is to be taken as 5.4
watts.

The tests were then able to be run in three batches. The first run
was to perform the openCV 1x1 convolution on all 9 image sizes,
in increasing order, for reference. The second run was to perform
OpenCV 3x3 followed by 5x5 convolution on all the image sizes, again
in increasing order. The third run was to perform the Compute Library
based 3x3 and 5x5 on the GPU, followed by 3x3 and 5x5 on the Neon
processor, on the increasing image sizes. At the end of each set of runs
the command line output log was saved for alignment and calculation
of the required values in the spreadsheet.

4.5 results

The power measurement results from each set of runs were imported
to a spreadsheet, an initial power plot was generated after each set
of runs, to ensure it accurately resembled the plot on the TI EVM
software. Three sets of power profiles for the runs were generated.

Fig:4.8, shows OpenCV 1x1 convolutions on the increasing range
of image sizes ranging from 640 through to 8192 widths. One notable
feature of this power profile is that the maximum power level, around
8 Watts is fairly constant through all the frame size tests. A fact to be
borne in mind is that while the tests are running, Linux is running
management tasks in the background, sometimes on other processors,
explaining some of the spike and/or step anomalies.
Observation 4 Neon processing at higher definition for long time
periods may show small steps and spikes due to OS events
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Fig:4.9, shows OpenCV 3x3 followed by 5x5 on each of the increasing
range of image sizes, so each image size shows a pair of 3x3 and
5x5 power pulses. Again the power profile shows a fairly constant
maximum level response throughout the tests.

Fig:4.10, shows application of GPU 3x3 followed by GPU 5x5, Neon
3x3 then Neon 5x5 in that order on the increasing range of image
sizes. At the end are the four 320x240 image power profiles. Below
the main image is a magnified version of the two Neon 8k runs. So
there are four power pulses for each image size. Note the obvious
increase in power between the convolution size, GPU, Neon and with
increasing image size. The upward steps in the increasing image sizes
are due to the extra workload generating heat in the Exynos processor
silicon, further requiring extra power to drive the higher fan speeds
as the silicon temperature crosses the threshold settings in the Linux
OS. The two right hand, Neon 3x3 and 5x5 on 4320 x 2432 and 8192 x
4608, appear noisier, this was due to the Linux OS cycling the fan and
DVFS control loop albeit in a more controlled format and this may
have skewed the results for that combination at the 4k and 8k image
sizes. The two GPU 3x3 and 5x5 runs, at 8k image size, show small
step intervals, this being due to the fans changing speed, which could
be noticeably heard during the runs. It becomes noticeable at the long
8k runs that the GPU running at 600MHz is having little effect on the
processor whereas the Neon processor which is an integral part of the
CPU is having a thermal effect on the processor causing the fan/DVFS
cooling to be cycled by the OS CPU management.
Observation 5: Neon FPU has a greater thermal effect on it’s CPU.
Observation 6: GPU has no visible effect on CPU, only on fan
speed.
The command window output information produced during the runs
was coordinated with the spreadsheet power results to establish the
start and end of the timed loops for each run. This is mainly required
in the GPU run kernels due to the methodology in which OpenCL
works. OpenCL has a one time, start-up and tear-down overhead
associated with it during which the device, (GPU) characteristics are
fetched and the hardware configured for the required task. Once the
hardware is set up, no further action is required other than to execute
the desired functions or kernels in this case.

The run time is used with a summation of the Power figures to
generate an overall average power figure from which the Linux Idle
Power figure is subtracted to provide an average kernel runtime power
figure. This figure can then be divided by the number of iterations as
previously indicated in Table: 4.1 in Section 4.4. This enables an overall
calculation to generate the comparative frame energy and execution
times and with further division by the frame pixel count to yield
the pixel-kernel energy and execution time results which follow in
summary form.
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4.5.1 Pixel-Kernel Results

For illustrative purposes, the following result comparisons and pre-
sentations the tables and graphs have been reordered to show GPU,
Neon then OpenCV result figures. Figs: 4.11 & 4.12 illustrate that for

Figure 4.11: Comparison of energy (nanoJoules) per pixel-kernel per image
size.

Figure 4.12: Energy requirement per pixel-kernel per image size.

the GPU the advice given by ARM that GPUs only achieve efficiency
in above HD image sizes and the higher energy figures reflect this,
the 320 x 240 image size was included in the GPU test to reinforce
this advice. The figures also demonstrate that the Mali T628 performs
equally well illustrating consistency at all image sizes above 1k width
whereas the Neon may be slightly more challenged, thermally and
performance wise at 4K and above as witnessed by the increase in
energy requirement. OpenCV seems to be slightly challenged perfor-
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mance wise at the 8k image size.
Observation 7: Only utilise XU4 T628 GPU with image sizes above
1024x768.
Observation 8: Only utilise XU4 Neon with images above 640x480
and ensure that above 4k running is restricted to intermittent oper-
ation.

Figure 4.13: Comparison of time (in nanoSeconds) per pixel-kernel per image
size.

Figure 4.14: Compute time requirement per pixel-kernel per image size.

Figs: 4.13 & 4.14 similarly show that performance of the GPU at low
resolution should obviate it’s use for small images and that there is a
consistent performance across images > 1k width. The Neon appears
to execute faster at the 8k image size while the power increases as
pointed out previously, certainly the right hand side of Fig: 4.10 shows
noise at the top of the power waveform, at the higher current which is
due to the cycling effect of fan speed variation and DVFS, each between
their lower and higher parameters of operation. Our opinion is that
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use of Neon alone to continuously process these large images, with
the Exynos 5422 technology, may be working beyond its’ capability.

4.5.2 Frame Energy and Performance Results

Figure 4.15: Comparison of energy (Joules) per frame per image size.

Figure 4.16: Logarithmic view of energy per frame per image size.

Figs: 4.15 & 4.16 show the energy demand of each frame processed
across each image size, the vertical axis of the plot is scaled logarithmi-
cally to demonstrate the exponential impact of image size on energy
consumption as estimated in Chapter: 2 Table: 2.1. The results rein-
force the ability of the GPU to efficiently reduce energy consumption,
by roughly an order of magnitude, in continuous whole frame image
processing. The Neon processor also helps to reduce energy to around
40% of the processor consumption at the <4k image size. It has to be
borne in mind that the figures were derived from continuous frame
processing which generates significant heat and higher fan speeds
so at reasonable frame rates, < 30fps, may well give more consistent
results for larger images.

Figs: 4.17 & 4.18 show the frame execution times across the image
sizes, the vertical axis of the plot is also scaled logarithmically and
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Figure 4.17: Comparison of time (100 uSecs) per frame per image size.

Figure 4.18: Logarithmic view of time per frame per image size.

likewise demonstrates the exponential increase in processing times
as also estimated in Chapter: 2 Table: 2.1. This demonstrates that for
8k images, significantly higher performance SoC components are re-
quired as the execution time for the frame at 245mS would only render
around 4 fps video update rate, unless we improve performance by
utilising approximation methodology.

4.6 summary

The results demonstrate that, while GPUs and Neon DSPs may appear
to show a higher wattage while running, in actual fact these devices
are far more efficient energy-wise than running the same function on
a processor with the GPU emerging with the greatest efficiency and
performance overall, dispelling the often held conception that GPUs
are energy-hungry devices.
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These results reinforce the concept of being able to perform a sig-
nificance based on two thresholds in an image to yield three levels of
processing, in parallel form, such that most significant areas could be
computed with 5x5 convolution performed on the GPU, mid signif-
icant areas with 3x3 performed on Neon DSPs and low significance
areas with 1x1 by the processor, all of which will be discussed in the
next chapter.



5
S I G N I F I C A N C E D R I V E N A D A P T I V E
A P P R O X I M AT E C O M P U T I N G

In this chapter we demonstrate a novel idea of utilising image signifi-
cance to identify the more significant areas in an image. By utilising
a dynamic dual threshold system we can ultimately partition these
image areas for three different levels of image processing, based on
a percentage requirement by the user, ranging from no processing
in insignificant areas through to more complex or accurate in high
significance areas. We then go on to demonstrate that, due to the
lower requirements for processing effort which generates slack or idle
time, we can manage the CPU frequency and voltage to further reduce
computational effort and power by judicious use of this slack time.
We term this technique as significance driven adaptive approximate
processing. In Section 5.1 we will introduce the idea of how we will
utilise approximate image significance to direct areas of the image to a
level of processing relevant to that significance. Section 5.2 introduces
the rationale of a three level processing derived from two adjustable
thresholds determine by the user requirements of percentages of the
whole image to be processed at these levels. Section 5.3 explains how
we utilise a series of stepped percentage levels that trade off power,
performance and quality to achieve a demonstrable computational
and power efficiency at the quality expense of not processing the in-
significant areas. Section 5.4 will describe the approach used to design
the operation of the demonstrator along with the reduced size signifi-
cance and pooled matrices, used to determine which candidate area is
selected for the relevant processing. Section 5.5 explains in detail the
runtime option selection and operation of the software demonstrator,
along with evaluation of the results. Section 5.6 gives a background
of the challenges discovered that prevented the demonstrator moving
on to a parallel approach or implementation of Neon or GPUs in
the image processing. This section goes on further to indicate the
efficiency savings that could potentially be achieved over OpenCV if
the Neon/GPU phase could be implemented. Section 5.7 summarises
this chapter.

5.1 introduction

Current image processing commonly utilises 3 x 3 and/or 5 x 5 con-
volutions across every pixel in an image. It is unusual to witness the
use of 7 x 7 or 9 x 9 convolutions due to the extra overheads of energy

77
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and performance at the processor level.

The ability to detect significance in an image as outlined in Chapter
3, along with evidence gathered from the case study based on image
significance generated a single threshold approach, dividing the image
into areas, below threshold, that were processed as a 1 x 1 or 3 x 3 ker-
nel and areas that were processed, above threshold, with 3 x 3 or more
precise 5 x 5 convolutions. The Odroid XU4 was used for this work
and OpenCL was utilised to generate the kernel convolution in a much
quicker time than it’s software CPU equivalent, via the Mali T628 GPU.

In this work, reference may be made to a 1 x 1 convolution as the
data below threshold is unprocessed or the equivalent of a 1 x 1 con-
volution with unity gain. This reference may also be seen in relation
to Neural Network processing but in that case the 1 x 1 represents a
matrix operation on multi-dimensional Tensors.

For a practical demonstrator this has been limited to a two threshold
system giving three levels of processing as follows:

• 0 Below threshold, simply pass data across without computation
equivalent to a 1 x 1 convolution with unity value.

• 1 Above 1st threshold, perform 3 x 3 convolutions

• 2 Above upper 2nd threshold perform 5 x 5 convolution in those
areas.

It can easily be envisaged that extra thresholds could be added
to provide 7 x 7 and 9 x 9 convolutions, dual combinations of 3x3

and 5x5, or even offering more precise higher order convolutions, in
highly significant areas of an image. The software demonstrator was
designed with expansion of this concept borne in mind.

5.2 rationale and relevant research

In Image Processing with OpenCV, currently kernels are applied across
whole image. Significance creates an opportunity to only process
significant areas and leave insignificant areas with no processing. The
case study investigated this concept using the Arm Mali development
kit version of OpenCL with a single threshold level so that the more
significant areas in an image were processed with 3x3 kernels and
below threshold with 1x1, effectively no processing. A further variation
was to use 5x5 above the threshold and 3x3 below threshold.
In this demonstrator we illustrate usage of two thresholds providing
three levels of processing at 1x1, 3x3 and 5x5 convolutions for each of
the workgroups. The demonstrator software could be easily altered to
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implement more threshold levels, other convolutions or combinations
of convolutions.

A GPU enforces a minimum work-group size, dependent on GPU
architecture but in the case of the XU4 T628 GPU this appeared as
64x64 pixels. This work-group size was adopted for this work, while
always bearing in mind the ability to process other sizes for different
GPUs.

The work-group size imposes another constraint when working
with OpenCV, having to add padding at the edges or cropping the
image in order to make the source image an integral number of work-
group sizes. With Arm Compute Library the GPU takes care of this
issue.

The structure of the demonstrator was architectured to utilise ap-
proximate significance to perform adaptive filtering based around the
OpenCL methodology of utilising Workgroups and submitting them
for GPU processing by utilising threads programming, Lawlor [84],
Connors [85]. The functionality of the convolution filtering section, in
an OpenCV version, attempts to follow the techniques employed in
the Arm Compute Library which utilise the Neon FPU or GPU, with
the intention of ultimately utilising the Compute Library methods in
order to provide an easier migration path to a Neon/GPU version.

Relevant research that addresses the issue of identifying significance
to process in images, tend to utilise compute intensive techniques, in-
clude: Statistical significance of features in digital images is addressed
by Godtliebsen [56] which utilises local probability distributions and
gradients around pixels to locate significant areas in noisy medical
images. SEEDS by Van-den-Bergh [35] approach uses an iterative hill
climbing technique to locate and process significance. A spectral resid-
ual technique discusses that natural images have highly predictable
distributions and applies a compute intensive saliency technique,
Hou [41]. Image database retrieval that approaches human perception
techniques with the aid of tetrominoes and tetrolet transforms by
Raghuwanshi [66, 67]. A more recent development by Metwalli [86]
is a proposal for static significance analysis to identify areas of a
programme in which approximation should be applied.

5.3 power, performance, quality trade-off models

For the proposed three level of interest system we require two thresh-
olds. Approximate significance along with the idea of multiple variable
thresholds can be easily achieved at the demonstrator level by the use
of threshold slider bars to control the significance interest levels which
would then allow fine control of both thresholds over the full pixel
value ranges with the constraint that the higher level (threshold2) must
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always be greater than the lower (threshold1). As the threshold levels
are raised from zero, fewer work-groups are processed in each of the
two higher significant areas reducing processing of the more complex
convolutions which in turn will reduce energy demands and will also
affect the quality of the resultant image. This variable threshold ability
can provide a useful control knob for interactive or Machine Learning
instances of image processing.

For the demonstrator it was decided to have a handful of preset
Power, Performance and Quality, PPQ, levels in order to enable a
flexible, easier set-up during experiments with varying pixel size
images, videos and camera input. These threshold levels are dynamic,
based on the demanded percentages of the image to be processed at
each level. The two threshold levels are determined by an interactive
process based on a histogram of the significance levels of the current
frame, Fig: 5.1 shows a simplified flowchart version, more detail of
this interactive process will be provided later in Section: 5.5.2.

Figure 5.1: Determining interactive threshold from image significance.

The updated thresholds are then used to segregate the workgroups
into their determined levels and designated to their equivalent pro-
cessing. In this demonstrator, below threshold1, (ie level0), a 1x1 is
performed. Between threshold1 and threshold2, (level1), a 3x3 is per-
formed. Above threshold2, (level2), a 5x5 is performed. Table 5.1 shows
the preset levels. As an example PPQ level 0 will effectively ignore
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90% of the image workgroups that are below threshold1, process 5%
of the image with a 3x3 convolution that lies between threshold1 and
threshold2, the remainding 5%, above threshold2 are processed with
5x5 convolution. PPQ levels 5 and 6 are effectively a whole frame 3x3

or 5x5 process, purely for comparison demonstrations.

PPQ levels for Demonstrator software

Level 0 Level 1 Level 2

PPQLevel %age %age %age

0 90 5 5

1 80 10 10

2 70 15 15

3 60 20 20

4 50 30 20

5 0 100 0

6 0 0 100

Table 5.1: Percentage proportions of image significance assigned to process-
ing level by PPQ value.

5.4 proposed adaptive approximate significance concept

The concept was envisaged as a multi step process.

1. Calculate Approximate significance of the image, generating a
smaller Approximate significance matrix, smaller Matrix access
requires less energy and execution time.

2. Pool the Significance matrix by using Mean, Maximum value or
Dynamic range of all Significance in each of the the equivalent
work-groups.

3. Generate target work-group numbers to be processed at each
level based on a percentage of the work-area size.

4. Generate a significance Pooled matrix indicating to which level
each work-group should be processed, 0,1,2.

5. Compute the convolution of each workgroup based on the
pooled significance value being below the first threshold, 1x1,
between the low and higher threshold, 3x3, or above the upper
threshold, 5x5.
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5.4.1 Structure and Operation of Software Demonstration Model

The software was written, based on the earlier approximation soft-
ware with a number of extra features highlighted by experimentation
with the earlier version, thereby enabling more flexible experimenta-
tion with Larger images. A command line option system along with
runtime slider controls were utilised to provide the following options:

• A choice of image source of either a video camera input, video
file input or still image input which is recalculated on a 10fps
basis. The latter being useful for debugging and performance
checking.

• Choice of 2x2, 4x4, 8x8 or 16x16 sub arrays for calculation of the
approximate significance, in order to allow a greater reduction
in the significance arrays for higher definition images above 2k
width eg a 2560 x 1600 image will be reduced to a 640 x 400

significance array with a 4x4 sub array and 320 x 200 with 8x8,
offering better performance for larger images.

• Reduce the significance values matrix dimensions. In the original
demo software this matrix was the same size as the source
image in order to act as a thresholded image mask for the early
research explorations. By reducing this to one matrix value per
sub-array, 2x2, 4x4, 8x8 or 16x16, each dimension is reduced by
the array size, providing faster access to values while accessing
significance values in later computations.

• Choice of workgroup size 16x16, 32x32 or 64x64. The larger 64x64

matches the GPU based ARM Compute Library workgroup size
and in actual fact provides faster computation times.

• A Pooling or clustering of the approximate significance values,
corresponding to the workgroup area, into a classification level
for the two level thresholding of workgroup values based on
mean, maximum value or dynamic range (Maximum - mini-
mum).

• Introduction of upper and lower threshold sliders to enable divi-
sion of the Pooled matrix into 3 areas of significance, 0 for low
significance, 1 for mid and 2 for high significance. This feature
allows each Workgroup to be selected for dedicated processing
relative to its significance. Fig: 5.2 illustrates the relationship
between the matrix sizes and the significance processing.

• Histograms of these pooled values are utilised to automatically
set the threshold level sliders used to determine what processing
is utilised for each Workgroup significance value.
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• While the demo is running a PPQ slider was introduced to en-
able five preset percentage levels to be used to generate target
counts for the three processing levels for Power, Performance
and Quality, 0 being the lowest Power and quality and 4 being a
higher level of Quality and Performance at the expense of Power
consumption. The percentage levels are converted to workgroup
proportions dependent on the size of the image. By defining two
percentage values for the 5x5 and 3x3 computation the third is
derived and used to represent control knobs that can be applied
to the image. A further two levels 5 and 6 provide 100% 3x3

or 5x5 processing of the whole image, merely for comparison
purposes. The previous Table: 5.1 shows percentage levels for
the seven slider positions, 0 to 6.

• When the Software is run on the Odroid XU4 platform, there is
a facility to utilise DVFS to alter the CPU core frequency and
voltage by a system call. The runtime software utilises a slider
"cpu-freq" offering 19 positional step settings that vary the CPU
frequency and/or voltage, according to the Samsung Exynos
5422 specification and controlled by the device tree settings
in linux, [87], 18 representing 2GHz down to 0 representing
200MHz, in 100MHz steps. Thereby allowing reduced frequency
and energy running when lower values of PPQ are selected and
sufficient slack time is available.

• The introduction of a 64x64 workgroup can cause issues with
border adjustment. If the image dimensions, height and width,
are not exactly divisible by the workgroup edge size then extra
border rows or columns have to be added in order to prevent
exceptions caused by the OpenCV dimension checking. The
ARM Compute Library has built in functions to deal with this
and padding is handled during the allocation functor but when
using OpenCV care must be taken to handle and adjust image
dimensions by padding the image with borders before calling
kernel functors. This is performed by a method in the software.

• An option to view extra windows while debugging Pooling etc.

• An option to remove all windows other than the slider during
performance testing.

In the following explanations the OpenCL concept of work-area,
work-group and work-item have been adopted. Referring to Fig: 5.2
Work-area represents the total WXQGA image size of 2560 x 1600

pixels. The 4x4 approximate significance sub-arrays can be considered
as work-items. The image in this example is split into 64 x 64 pixel
Work-groups each containing 16x16 work-items with the Pooled sig-
nificance level of each group held in a 40 x 25 pooled matrix. The
array of pixels in the 64x64 work-group are processed as a number of
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work-items that are normally processed in parallel and is dependent
on the structure of the parallel array.

Figure 5.2: Relationship of image matrices, sub-arrays and workgroup in
image processing demonstrator software.

In design of all aspects the software, care was taken to utilise inte-
ger powers of two in order to utilise left and right shifts to replace
multiplication and division operations.

5.5 software demonstrator development and operation

The software was developed to run on Ubuntu Linux based x86 and
ARM platforms based on the earlier Image Significance Demonstrator
in Chapter: 3 and improving on some of the lessons learned dur-
ing that phase, along with the thresholding features exposed during
the Case study. It was anticipated that the software could explore
utilisation of the GPU, Neon DSP or Thread implementation on the
Multi-processor availability, to perform the convolutions but a number
of issues, outlined in Section: 5.6, prevented either of these desires to
occur therefore development proceeded as a software model only.

For this section, a link to the OpenCV demonstrator software can
be found on GitHub via the web link in the following reference, [88]
(Last checked 1 Oct 2019).

5.5.1 Runtime Option Selection

The application is called from the Linux command line with ./Si-
gApproxCamCap utilising the <unistd.h> getopt() interface [89] (Last
checked 1 Oct 2019). Help on the command options available can
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be found by entering ./SigApproxCamCap -h at the command line.
which produces the output shown in Table: 5.2.

Print this help info
Call with selections of following arguments
-i image <filepath/filename>Path & alternate file to <default>
-v video <filepath/filename>file sequence for input
-c Use camera input instead of file
-t (two) 2x2 sub array size
-q Quad 4x4 sub array size
-o Octal 8x8 sub array size
-x (hex) 16x16 sub array size
-s small WorkGroup size 16x16

-m medium WorkGroup size 32x32

-l Large WorkGroup size 64x64

-w Use extra windows for debug of Poolin
-n No windows for performance testing
-M Significance based on max value in Workgroup
-d Significance based on dynamic range value in Workgroup
Default run action is -cqlM

Table 5.2: Software demo help output

Command line input can include a combination of commands but
there are some mutual exclusions that must be observed which are
explained as follows:

The first three i,v and c set the source of the image to be processed
and only one must be selected. ’i’ and ’v’ expect a file path to be
provided to access an image file,’i’ or video file,’v’. ’c’ utilises an
attached video camera for the image source.

The next four arguments, ’t’ (2x2), ’q’ (4x4), ’o’(8x8) and ’x’(16x16) of
which only one must be selected, set the sub-array size from which one
pixel value is extracted for the Approximate Significance calculation.
There is an associated fixed offset value to select the pixel value
just above and to the left of each of the sub-array centres, e.g. (1:1)
for a 4x4 sub-array. This fixed option could easily be changed to a
selectable option if ever required. These choices are provided to enable
experimentation with larger sub-arrays for higher resolution images
which will reduce the computation required for such images.

The work-group arguments ’s’ (16x16), ’m’ (32x32) and ’l’ (64x64)
of which only one must be selected, were provided to allow for work-
group size comparison to match those that may be selected when
using a GPU. Early experimentation with the OpenCV based software
has shown that the extra context switching overhead of the extra
number of work-groups generated by the two smaller sizes slows the
computation significantly.
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The Windows commands ’w’ and ’n’ are exclusive as there is no
point in providing extra debug windows while switching window
display off altogether.

The Pooling selections ’M’ (maximum) and ’d’ (Dynamic Range ie
Max - Min) are essentially a choice of one or the other.

The command line options, when processed set up the runtime
variables and a structure of inter-related variables is used to deal
with adjustment and correlation between sizes of the full image, the
Approximate Significance matrix and the Pooled Significance, work-
group based, Matrix.

5.5.2 Runtime Operation

The software now opens up the selected image source, camera, video
file or still image file. The still image file is treated like a video file
with the image being reprocessed on a 10 frames per second basis,
this allows debug testing of a stable image to ensure the processing is
consistent and to experiment with larger images, >2k pixels width.

The software then sets up a selection of display windows, dependent
on the command line options to show the results of the processing.
One further window with sliders is set up in order to control the
processing and display the adaptive thresholding.

The image structure variables are then initialised to suit the image
size and the subsequent sizes of the Approximate Significance and
Pool matrices dependent on the command line selections.

As mentioned previously, the source image dimensions, height
and width, need to be checked that they are evenly divisible by the
work-group size, if not extra padding needs to be added to both
edges of the non compliant dimension(s) and the image dimensions,
in the structure, updated accordingly. The matrices to be used in
the significance processing can now be defined and dimensioned as
follows:

• Approximate Significance matrix, approxSig size = (Source size)
/ (Sub-Array Size).

• Destination Matrix for processed image, dst, Same size as Source.

• Pool values Matrix, (Pool size) = (Source size) / (Work-group
size) holds Pooled significance values, Maximum or dynamic
range.

• Thresholded level Pool values matrix, sigPool, is the same size
as Pool but holds the thresholded level values, 0 to 2, relative to
Pool value and threshold levels.

After a bit of housekeeping the main processing loop is now entered
in an infinite loop.
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In the absence of C++11 support by OpenCV 3.3, the chrono library
could not be used so a self created timing system was used to generate
a 1/fps frame timer update flag and a one second timer flag.

The one second timer flag is used to update the target threshold
values, adjust_thresholds(), based on the selected PPQ value which
defines the percentage of Work-groups to be processed at each thresh-
old level. This process is complicated by the fact that the calculated
threshold can vary dramatically between frames when processing
video as it is derived from a count of the number of Workgroups
processed at each of the three levels of processing, 5x5, 3x3 and 1x1,
so the counts are averaged over a number of frames, typically 4 or 8,
in order to bring some stability to the overall process of the automatic
update mode. The threshold values are derived from summing the
histogram of the values in the Pool matrix and is calculated to be the
nearest histogram index required to achieve the required threshold
targets. In order to minimise the calculation of the threshold level the
target levels are calculated by counting from 255 down to 0 as the
higher two threshold are generally smaller than the level 0 count. So
the percentage levels are converted to a work-group count for the two
upper threshold levels, 2 & 1, and the remaining values are therefore
level 0.

If the PPQ slider is changed at any time a semaphore is set for
the software to call a routine, changePPQvars(), to convert the 3 pre-
set percentage levels to target level work-group counts, for use in
adjusting the thresholding of the significance data.

The frame timer function sets a semaphore for the software to
retrieve the next video frame when the frame interval time has expired.
The inter-frame time interval is created from the fps rate recovered
from the camera or the video file metadata. In the case of still images a
preset 10 frames per second rate is used in order to offer sufficient time
to process large images > 2k width during large image investigation.

The software, if border padding has been earlier identified, then has
to adjust each frame image before video processing, camera or file,
takes place.

The next step is to calculate The Approximate Absolute Devia-
tion values for the current frame, storing the resultant values in the
ApproxSig matrix.

Having updated this matrix, the next task is to update the Pool
and sigPool values which represents another level of complexity in
the processing due to the variable sub-array sizes and work-group
sizes. The ApproxSig Matrix dimensions are the source image size
divided by the sub array size and the two Pool matrices dimensions
are the image size divided by the work-group size. So the Pooled
values are derived from an equivalent positional rectangular group
of ApproxSig values of size: ApproxSig size divided by the Pool size.
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The following worked example, using a convention for array sizes of
Mat(width,height), shows the calculation of the matrix element sizes:

• Original image Source(2560,1600)/Sub-array(4,4) yielding a ma-
trix ApproxSig(640,400)

• Original image Source(2560,1600)/Work-Group(64,64) yielding
a matrix Pool(40, 25)

• ApproxSig(640,400)/Pool(40,25) yielding a pooling matrix Rect-
angle(16,16)

So our example shows that each Pool element is derived, in this case,
from a 16x16 rectangle of significance values, the derivation being
based on The maximum value in that rectangle or the Dynamic range,
(max-min) the value of which is entered into the Pool matrix at it’s
relevant position. During this processing phase the Pool values are
tested against the Upper and lower thresholds in ASPool() to classify
that value as 2 if above upper threshold, 1 if above lower threshold,
and 0 otherwise, below lower threshold by default. So this significance
level is entered into the sigPool Matrix, ready for the final processing
stage.

The software now performs, via ComputeASperSig(), one of three
Image Processing kernel convolutions on the source gray image utilis-
ing the OpenCV Rect class to select each rectangular area work-group
in turn and perform the appropriate 1x1, 3x3 or 5x5 convolution as
per the work-groups classification in sigPool and store the result in
equivalent image area in the destination matrix. The filters shown in
the Demonstrator are purely chosen and adapted to illustrate where
processing has taken place, so the image appears the same as the
source where level 0, 1x1, convolution has occurred, lighter shade of
grey where level 1, 3x3 sharpening filter, has occurred and a darker
shade where the Sobel, 5x5, filter has taken place.

The software creates tell-backs in order to monitor performance in
real time. These tell-backs appear in two places, the destination frame
window and the Command line terminal. The frame window values
are updated every frame period and the command line terminal values
are updated once every second. The displayed information comprises:

• Target level 0-2 workgroup counts which are the proportions
requested via the percentage values selected by the PPQ slider
value 0 to 4.

• Average achieved workgroup counts at each level which are the
nearest values that can be achieved to the target based on the
sigPool value histogram.

• The processing time for the image measured from just after the
timers have been set up and before the image dimensions are
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adjusted to the final image processing after the image processing
has taken place.

• The slack time is also displayed, derived from the frame time
minus the image processing time.

• In addition, the destination image displays an extra line with
the CPU core frequency, only utilised on the Odroid XU4 and
targeted at the exynos 5422 processor, this shows the current
CPU frequency in conjunction with the cpu frequency slider in
the sliders window.

The software displays the live RGB image along with the grey
source, slider and processed destination windows. The command line
options discussed previously can be used to display other windows
for additional information or debug. Figure 5.3 shows a frame from a
video of an overflying skein of geese, the geese are barely viewable in
the original frame. The images from the top left in an anticlockwise
direction show the incremental Percentage PPQ levels from 0-5. In the
video the geese are flying from left to right. It can be observed that
the geese are picked out for the 5x5 convolution filtering, the darker
boxes, at PPQ0 level, including the straggler geese at the rear of the
skein. The lower significance cloud edges are also being selected for
3x3 filtering, the lighter colour. As the PPQ level increases, more of
the sharper edges of the cloud formations become more significant
and selected for 5x5. Note that the filters were slightly amended to
show the dark colour for the sobel 5x5 and the lighter shade for the
3x3 sharpening filter applications. In a real filtering case without this
enhancement it is difficult to spot which area of the picture has been
filtered, especially with video images.

5.5.3 Demonstration Videos.

In order to give more clarity to using the Demonstrator software, two
youtube videos have been generated. The first video is around 20

minutes in length and shows the various stages of the processing, ap-
proximate significance, adaptive processing and application of DVFS.
A link to the video can be found at:- [90] (Last checked 1 Oct 2019). The
second video is around one minute 20 seconds and shows a short 20

second video without audio. The clip is then shown processed by the
software demonstrator and finally the raw video is shown with audio
enabled. The link to the video can be found at ref: [91] (Last checked 1

Oct 2019). The point of this is to demonstrate an issue pointed out in
Chapter 1, the introduction to this thesis concerning CCTV operators
and their difficulties having to scan recorded video for events, usually
over a much longer time-frame and without recorded audio informa-
tion. The adaptive processing and approximate significance highlights
elements that can easily missed by human perception.
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5.5.4 Application of DVFS

The DVFS facility is only utilised on the Odroid XU4 and implemented
purely for the exynos 5422 processor. This shows the current CPU
frequency selection in conjunction with the CPU frequency slider in
the sliders window. The actual Operating Performance Points (OPP)
ie. combinations of frequency and core voltages are determined by
the XU4 Linux device-tree as specified by the CPU manufacturer
(Samsung). There are warnings from Linux community that separate
voltage and frequency combinations are not to be experimented with
by the user.

The DVFS facility allows experimentation to take place with a range
of video files and live camera input, along with varying the PPQ levels,
while monitoring the slack time displayed in the tell-back information.
While the slack time is positive there is an opportunity to lower the
CPU frequency via DVFS using the slider bar. Once the slack time
turns to a negative value it can be observed that there will be some
image stuttering due to a frame being missed, the frequency is then
increased by one step until it becomes positive again and it can be
noticed that the video image returns to a non-stuttering scenario and
the optimal frequency for power reduction has been found.

5.5.5 Evaluation of Performance and Power Consumption with DVFS

At this point it is useful to quantify performance and power consump-
tion at the various PPQ levels (6:0). The Cedar wax wing WQXGA
image, 2560 x 1600 pixels, was used in the 10fps update mode. Table:
5.3 shows the execution and slack times for PPQ6 down to PPQ0 where
it can be seen the 5x5 convolution is in negative slack time, for a 10 fps
(100mS) update rate, with 150mS run time. Where there is a positive
slack time there is opportunity for applying DVFS in order for the
calculation period to just fit in the frame time. In order to explore the
application of DVFS at the PPQ levels which have a positive slack time,
PPQ6 is discounted for the negative slack time, then while reducing
quality from PPQ5 down to PPQ0, initially record the power of PPQ5

at full CPU frequency of 2.0GHz for comparison. The Texas Instrument
INA231EVM module was again utilised for power measurement as
detailed in Chapter 4. The DVFS frequency was reduced at each of the
PPQ (5:0) levels, to the point where the slack time stays just positive,
around 10mS, and the power level was recorded. This sequence was
followed by the same set of frequencies applied to running Linux only,
in idle mode and the idle power recorded. These pairs of figures were
then subtracted to evaluate the actual energy on image processing
alone rather than Linux OS plus the application.
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Processing and slack time for PPQ levels

PPQ level PPQ6 PPQ5 PPQ4 PPQ3 PPQ2 PPQ1 PPQ0

Processing time mS 150.5 70.9 68.5 63.7 54.6 47.5 36.7
frame time mS 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Slack time mS -50.5 29.1 31.5 36.3 45.4 52.5 63.3

Table 5.3: Execution and slack times over range of PPQ(6:0).

On the initial trial and examination of the results the power level for
all the PPQ levels, (6:0), at full 2.0GHz CPU frequency did not show
any variation whereas at PPQs 5 down to 0 and implementing CPU
frequency reduction on each, the power level reduced as was expected.
It was then realised that, while the software was developed with
threading in mind, that OpenCV 3.3 does not yet support threading
or the chrono timing facilities. Therefore while waiting for for the next
frame update or the one second timer the software is continuously
running round an idle loop awaiting the next action. When DVFS
is applied, since the processor is now running slower, the idle or
slack time is reduced and proportionally more time is expended on
the image processing. Only when the slack time approaches turning
negative and potential image stuttering occurs does a truer figure for
the power consumption emerge.

A further disruption to power measurement emerged while mea-
suring the Linux Idle power with DVFS applied. The exynos is a
"big.LITTLE" heterogeneous multi-processor system containing two
clusters of four processors, "big" containing four A15 cores, CPUs 4-7,
running from 200Mhz in 100MHz steps up to 2.0 GHz and "LITTLE"
containing four A7 cores, CPUs 0-3, running similarly from 200MHz in
100MHz steps up to 1.4 GHz. DVFS is applied to all CPUs in a cluster
but in the software demonstrator is only applied to the "big" cluster
of A15 cores. Consequently as the CPU frequency is lowered, Linux
shares the OS tasks around the other big cores and eventually onto
the LITTLE cores as the big cluster frequency reduces sufficient for
performance of Linux to be faster on the LITTLE cores. This situation
will obviously have some effect on the Power figures but on average
the same sort of event will happen in both the Linux Idle and Linux
+ App measurements and the overall difference figure should give a
good representation of the App only power.

Table: 5.4 shows a snapshot of the power consumption across the
range of seven CPU frequencies while running the demo software,
with PPQ (5:0), on Linux plus the power while the Linux system
was sitting Idle during DVFS. The Application Power is created by
subtracting Linux-Idle Power from the Linux + App power in each
frequency case. While the scenario of Linux moving OS modules onto
other cores the App continues on the same core so the figures should
give a reasonable representation of the actual energy savings.
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Power level (Watts) for DVFS with PPQ

PPQ level PPQ6 PPQ5 PPQ4 PPQ3 PPQ2 PPQ1 PPQ0

DVFS Unit No Yes Yes Yes Yes Yes Yes

Frequency GHz 2.0 1.5 1.4 1.2 1.1 0.9 0.7
Operation App+Linux Watts 9.15 6.00 5.71 5.30 5.23 4.79 4.58

Linux-Idle Watts 4.10 3.56 3.47 3.41 3.36 3.26 3.28

Difference App Only Watts 5.04 2.44 2.24 1.89 1.87 1.53 1.31

Table 5.4: Power consumption over DVFS range for PPQ(6:0).

5.6 technology roadblocks

5.6.1 OpenCV, Mali SDK and Compute Library

The previously mentioned Case study utilised the ARM Mali SDK to
generate an OpenCL based solution on the Odroid XU4 platform to
successfully demonstrate GPU computation of the 3x3 and 5x5 kernel
filters on a small demo image. Shortly after completion of the Case
Study, ARM withdrew the Mali SDK from public access, reserving it
for their customers to use to produce a customised solution to devel-
opers in driving their GPUs etc. At the same time ARM launched the
Compute Library, a customised version of OpenCV style functors with
pre-compiled OpenCL modules, some of which are ARM equivalents
to OpenCV functionality. However the compile tools, SCONS, and
Paths for Compute Library are not compatible with the tools, CMake,
used for OpenCV and mixing functionality of OpenCV and Compute
Library is therefore not easily feasible. In addition Compute Library
currently relies on the C++11 Chrono library and thread support, so
due to time constraints it isn’t possible to pursue a solution to this,
ARM Community discussion forum (checked 20/Sep/2019) refers. In
addition, while there are some limited examples which were able to be
developed for the performance and energy testing in Chapter: 3, there
is limited detailed documentation on the detail of using the library
functions. It is anticipated that someone is probably working in the
Open Community to solve these problems as the desire mixing the
two together is an often asked question but always receives a negative
response.

5.6.2 Threads and Timer Interval Programming

The active part of the demo would benefit from thread programming
in order to process a new frame when it either becomes available,
using camera, or when inter-frame timing requires fetching the next
frame when using a video file, also when a one second time interval
expires to update the Pool Thresholding when controlling it by the
slider bars. Thread programming would also have been of benefit to

http://tinyurl.com/y9xwq5xj
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performance for the image processing section for the paralleling of
the convolution kernels in the demonstrator software. Threads and
Chrono timer interval support has been introduced in C++11 but
support by OpenCV is only implemented with version 4, which is
only a beta release at the time of writing, full release is expected
shortly.

5.6.3 Utilisation of GPUs, DSPs, FPGA

5.6.3.1 GPU & DSP(Neon)

The results shown in Chapter: 4, Section: 4.5.2 demonstrate that further
significant process acceleration and opportunities for energy saving
could be available if it had been possible to integrate OpenCV and
Arm Compute Library and migrate the 3x3 and 5x5 convolutions to the
Neon DSP or Mali GPU. This would have enabled further investigation
of the application of DVFS to both the CPU system and the GPU in
concert.

Energy usage

Total mJ/frame Energy savings

PPQ
level

OpenCV Neon GPU Neon vs
OpenCV

GPU vs
OpenCV

0 57.4 21.1 5.3 63.2% 90.8%
1 66.4 23.9 6.1 64.0% 90.7%
2 75.4 26.8 7.0 64.5% 90.7%
3 84.5 29.6 7.9 65.0% 90.7%
4 88.8 31.2 8.2 64.8% 90.7%
5 91.3 34.6 8.4 62.2% 90.8%
6 186.0 58.4 17.6 68.6% 90.5%

Table 5.5: Demonstration of the potential Energy savings over OpenCV if
Neon or GPU operation could have been achieved.

As a theoretical ’what if’ exercise a large spreadsheet calculation
was created to explore what the energy and execution times, without
DVFS, measured in Chapter: 4, Section: 4.5.2, would be for the Cedar
Waxwing picture size image. The abbreviated results are shown in
Tables: 5.5, 5.6 for Energy and compute time per frame. Obviously
with such savings on compute time a larger amount of slack becomes
available, permitting further energy savings with DVFS.

5.6.3.2 FPGA

FPGAs have demonstrated a track record of optimal performance
and low energy usage as system accelerators and would offer another
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Compute performance

Frame time mS Compute savings

PPQ
level

OpenCV Neon GPU Neon vs
OpenCV

GPU vs
OpenCV

0 24.7 10.7 2.3 57% 91%
1 27.5 11.5 2.5 58% 91%
2 30.3 12.3 2.7 60% 91%
3 33.2 13.1 2.9 61% 91%
4 34.2 13.5 3.0 60% 91%
5 31.8 14.4 3.1 55% 90%
6 68.5 21.1 5.2 69% 92%

Table 5.6: Demonstration of potential computational savings over OpenCV if
Neon or GPU operation could have been achieved.

exploration area for this work. Previous personal experience of util-
ising FPGAs in both high volume, data streaming and processing
operations, while significantly reducing energy consumption, enables
a vision of executing approximate absolute significance while perform-
ing back to back reads concurrently. Betkaoui, [92] highlights the fact
that FPGAs often operate at greater efficiency than GPUs in terms
of performance per Watt. Kesturt, [93], also demonstrates the FPGA
using an order of magnitude less power than a GPU for equivalent
Linear Mathmatical processing operations.
The application of DVFS in FPGA has been a long standing target
for research. Chow [94] demonstrates an experimental approach for
a user to apply Dynamic Voltage Scaling (DVS), outside the specified
operational limits, to effect lower power consumption on an FPGA.
However Dahir [95], illustrates experimentation on the topic of full
DVFS is still at a very early stage of exploration and development and
as such is a non-trivial task.

5.7 summary

We have demonstrated a novel runtime methodology concept for
energy efficient, Adaptive, Image Processing utilising Approximate
Significance by utilising two percentage based thresholds, generat-
ing three levels of significance. Further energy efficiencies were also
demonstrated by application of DVFS on the CPU to minimise the
slack time.

This project was unable to proceed to a GPU or Neon implementa-
tion or even a multiprocessor implementation due to the roadblocks
previously mentioned but as the OpenXXX tools develop, we are con-
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vinced that this demonstrator will be able to proceed to that stage in
the near future.

Further efficiencies may be made available, when the libraries ma-
ture, to enable use of parallel programming with threads and enable
use of available hardware to accelerate performance and reduce power
by utilising GPU and Neon DSP.

The structure of the demonstrator program mimics the operation
of ARM Compute Library, OpenCL based, examples, ie divides the
work-area into 64x64 work-groups and submits a queue of tasks to
the GPU. It is felt that this process may be adding some overhead in
OpenCV when comparing it with the normal "whole image" filtering
that is normally applied in OpenCV. If this is true, the timing results
derived in Chapter 4 already include such overhead and would, there-
fore, provide a greater efficiency in performance and energy demand
than that illustrated in this chapter. A further feature that may be
introducing extra overhead is the requirement by OpenCV to have
to pad out the edges of the image if the image dimensions are not
integer divisible by the work-group dimensions. In this demonstrator
we chose to add extra rows and columns at both sides of the image.
We could have equally cropped the image down to the next divisible
size but there is still some computing effort required. In the ARM
Compute Library, no such action is required as the OpenCL/GPU
interface handles this automatically.

5.8 future opportunities

The software model presented here has potential to be developed
with further research in a number of ways in heterogeneous systems
utilising a mixture of technologies, MultiProcessor, GPU, DSP, FPGA
and perhaps ASIC.

5.8.1 Multi Level Threshold Operation

A multi-threshold significance level demonstrator extension could be
implemented from the current level 0 to 2, to offer higher levels of
image quality filtering by applying:-

• level 3, 7x7 kernel, or perhaps 3x3 followed by 5x5

• level 4, 9x9 kernel, or 5x5 followed by 5x5

• level 5, 11x11 kernel or 5x5 followed by 7x7

Another variant of this scheme would be to allow selection of the
single higher order filter or the dual sequence filter, within the selected
level. This scheme could provide a flexible approach to permitting
computationally expensive higher order filtering to a minor proportion
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of highest significance areas in an image, while minimising energy
usage.

A further exploration for energy saving in this area could include
utilisation of Sage/Paraprox approximate kernels, Samadi [61, 44], in
the convolution filter phase.

5.8.2 Approximate Significance on Three Dimensional RGB Images

In the early stages of the standard deviation Integral images research,
it was decided to explore applying the standard deviation process to
an RGB image as well as a gray sale image, a larger 20Mpixel image
was being used to explore the computational time relative to smaller
images. This resulted in a processing time of around 1 second for gray
scale and 3 to 4 seconds for an RGB version of this image, so it was
decided to stay with gray scale images for the research. Now that
we have seen the impact of approximate deviation it would be worth
re-exploring an RGB and/or YUV version of this process.

5.8.3 Slack Time Driven DVFS and Energy Modulated Computing

The demonstrator with the percentage levels controlling the process-
ing could be adapted to automatically lower the DVFS frequency to
keep the slack time just positive. A further development could be
envisaged in an energy scavenging application where the controlling
factor is the DVFS frequency being constrained to conserve energy
and the percentage levels are varied to ensure the image is processed,
keeping the slack time positive. If sufficient scavenged energy becomes
available the DVFS constraint could be relaxed, thereby adaptively
allowing higher percentage levels of data to be selected for processing.

5.8.4 Arm Compute Library Version of Demonstrator

A further step would be to implement the software principles used
here in an ARM Compute Library version, a major rewrite of the code,
in order to further explore the use of GPU and Neon frameworks. This
would require a considerable learning period and may well throw
down new challenges in the implementation phase. For example, the
software examples provided by Compute Library illustrate sequen-
tially well ordered kernel filters, being performed on a whole image
such as 3x3, followed by 5x5. One remaining question is how will the
memory manager cope when 1x1, performed by the CPU, 3x3 and 5x5

kernels,performed by the GPU, are thrown at targeted parts of the
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processed image contemporaneously?

5.8.5 Energy and Performance Characterisation with CPU, GPU DVFS

The energy and execution time characterization performed in chapter
4, was performed at the Maximum OPPs of both the CPU and GPU.
The resultant experiments, data analysis/calculation times involved a
fairly large Excel spreadsheet activity, consuming around two weeks
of analysis time. The CPU is capable of 19 distinct OPP levels and
the GPU has 10 OPP levels. In the case of being eventually able to run
the demonstrator model utilising the various combinations of 9 image
sizes with the 20 CPU OPPs and 9 GPU OPPs with both 3x3 and 5x5

kernel filters running on GPU and Neon, around 6500 combinations, it
would be useful to characterise the CPU and GPU performance and en-
ergy requirements over this total range. However it can be appreciated
that this would require some serious planning, benchmark testing,
power measurements and experimental time. Ideally the whole activ-
ity would need to be, perhaps, performed in a Python based activity in
order to automate the run time, data capture and analysis. This would
eventually enable a fully Artificial Intelligence (AI) based prediction
of OPPs to provide optimal performance or energy demand based on
implementation requirements.

5.8.6 Image Data Compression Applications

Another potential opportunity could be to address the possibility, in
data compression, where the significant areas are extracted from the
background image, compressed and forwarded as smaller entities,
or possibly as an augmentation in the next evolution of the H.264

(AVC) interframe or H.265 (HEVC) coding tree unit based compression
techniques.

5.8.7 Application in AI and ML

Arm recently released their ArmNN, neural networks library, for ex-
ploration of Machine Learning (ML), but is dependent on use of their
Compute Library.
This could open up two distinct application areas. The first being
possible use in the Training phase of machine learning techniques.
The second is possible use in the inference framework of Machine
Learning eg category identification. While ArmNN is not currently
available for embedded Cortex-M devices, that may change enabling
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instantiation in embedded applications at some future epoch.

5.8.8 Large Scale Astronomical Image Applications

Large data applications such as astronomical composite image process-
ing where image sizes can be of immense proportions, for example the
largest image released by Hubble of the M31 galaxy is a 4.3Gbyte file
of a 1.5 Billion pixel image, which is evidently a cropped version of
the full image. Adapting the existing software demonstrator to handle
such large images would be a challenge and may require some other
approach than, or enhancements for OpenCV.

5.8.9 Image Database applications

Could significance pattern combinations instead of Canny edges, be
utilised to create a collection of tetrominoes [66, 67], become part of a
signature file describing the content for image databases?

5.8.10 Mobile Camera Applications

Experimentation in this thesis has concentrated solely on a static cam-
era position due to time constraints. There is an opportunity to explore
use in a mobile camera applications, eg vehicle mounted.

5.8.11 OpenMV Demonstration Application

At the embedded level we have witnessed the arrival of OpenMV with
the more recent arrival of the reasonably low cost H7 camera and
an optional add on FLIR module. These elements operate under the
microPython software environment and while they could viably be
implemented in an embedded system, they may be a bit too power de-
manding for energy scavenging IoT instantiation, it can be envisaged
that such a system may well be future-capable of operating under
some form of OpenCV pre-compilation and ultimately with a GPU
based system.
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5.8.12 OpenCV Library

At some stage in the future the image significance extraction and
adaptive processing functionality could be offered to OpenCV via the
contributory modules where, depending on the demand of and usage
by other users, they may be further optimised and offered as OpenCV
modules in the main release.



6
C O N C L U S I O N

6.1 summary and conclusions

6.1.1 Background

In Chapter: 1 We discussed the growing number of applications of
IoT devices, increasing complexity and quantity of data produced,
especially image data with migration to 4k and 8k. This will require an
increase in backbone equipment and data centres to store and process
large volumes of data. This scenario requires a trade off between "Fog"
and "Cloud" computing in order to inteligently reduce data transmit-
ted to the Cloud. Data compression provides a first line solution but
creates extra burdens on the servers that have to decompress, process
and re-compress image data. The escalating costs of servicing this
demand is generating a requirement for a reduction in data rates, data
storage and power. Thereby justifying energy efficient design, devel-
opment and application of approximate computing techniques while
maintaining an acceptable level of high performance. The research
questions introduced in Section: 1.3 are restated here:

RQ1 Can we intelligently infer the significance of image blocks in
Image Processing?

RQ2 Can we exploit the knowledge of significance to control compu-
tational complexity using application level approximation?

RQ3 Can we exploit a synergistic approach of hardware and software
to maximise efficiency and reduce power consumption in hetero-
geneous systems in image processing workloads across different
components?

6.1.2 Solutions

Addressing image processing in particular. Previous research has
shown a myriad of solutions for determining significant areas of an
image or video stream. Most of these techniques generally utilise some
form of complex analysis to detect mobile features and significant
areas by processing of a sequence of frames, utilising various convolu-
tion kernels, to detect and predict movement and isolate these features
from static immutable background features.

101
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The research techniques claimed in this thesis have created the
following solutions to our Research Questions.

• Development of an image significance software technique that
demonstrates ability to easily identify significance from a sin-
gle frame, facilitating feature extraction. The technique can be
utilised in full accuracy Standard Deviation mode, in a lower
power Absolute deviation mode or in a further more energy
efficient Approximate Absolute deviation mode.

• The Approximate Absolute significance extraction is combined
with a novel approach to multi-level, significance based, image
processing. A demonstrator software model, which we term
Significance Driven Adaptive Approximate Computing (SDAAC),
illustrates how convolution kernels offering more accurate 5x5

filtering can be applied to a selectable percentage of the most
significant areas, the more normally used 3x3 filtering applied
to a second selectable percentage level of a mid-range of sig-
nificant areas and no filtering applied to the least significant
areas, thereby creating a reduced computational demand with
an accompanying reduction in energy demand. This distribution
of the significance areas, offers a further opportunity with the po-
tential of feature identification in Machine learning applications,
in both learning and segmentation phases.

• The ensuing partial, multi-level, image filtering, renders potential
computational and energy savings when compared with tradi-
tional whole frame image processing. The computational time
saved can further be translated as slack time that can be utilised
to control DVFS, permitting a maximised "just in time" energy
efficient processing during the inter-frame period of video se-
quences. Further power measurement experiments utilising GPU
and Neon FPU have illustrated how these heterogeneous ele-
ments can offer further potential for process acceleration with
more efficient energy usage which could augment the SDAAC
process outlined previously. Withdrawal of the Mali GPU devel-
opment kit and Incompatibility issues between the OpenCV and
ACL libraries prevented further development of the demonstra-
tor to explore utilisation of such heterogeneous elements.

6.1.3 Contributions

The development of the significance techniques realised a previously
undiscovered method which may have significant impact on future
research and further development of existing techniques.
The application of standard, absolute or approximate absolute devia-
tion with a local mean, presents a substantially economic method of
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determining significance in an image.

This thesis has demonstrated a systems engineering approach to
explore methodology that can aid reductions in computational and
energy requirements for image processing by use of a collection of
techniques to enable achievement of adjustable Power, Performance,
Quality (PPQ) targets.

The concept of utilising multiple threshold significance levels to
target a level of processing relevant to those significant areas of the
image, present a new approach to processing and power efficiency.
SDAAC presents a different approach to the traditional image process-
ing techniques, offering a tunable multi level process as an alternative
to traditional whole frame processing.

The use of the Odroid XU4 proved to be an extremely useful plat-
form for the development of the software model, offering 4 off A15

and 4 off A7 CPUs along with associated Neon FPUs, a Mali T628

MP6 GPU and running a stable version of Ubuntu Linux along with
the ability to apply DVFS to both the CPUs and GPUs. This in turn
permits the opportunity for use of DVFS to gain further power savings.

6.1.4 Findings

These techniques, especially SDAAC, offer a number of new opportu-
nities for areas of investigation as previously outlined in Section: 5.8,
along with computational and energy efficiency.

The results presented in Chapter: 4 give concrete evidence of the
processing and energy savings that can be achieved by the judicious
use of GPUs and FPUs.

This year, 2019, has seen the release of stable versions of OpenCV
version 4.x which now requires a C++11 compliant compiler and
also allows optional C++11 compilation of Version 3.4.5 and above.
Use of C++11 allows threading and <chrono> library timing event
methods and the possibility of merging OpenCV with ARM Compute
Library (ACL) in order to take advantage of heterogeneous hardware
elements but still requires some further research to sort/merge the
differences between CMake compilation for OpenCV and SConstruct
for ACL.
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6.1.5 Improvement opportunities

This work was centred around OpenCV3.3.0 libraries, it was not
possible to achieve an integrated OpenCV, Arm Compute Library
demonstrator to achieve GPU, Neon hardware and thread based so-
lutions. Elements of this thesis have illustrated the energy saving
and performance acceleration that could ultimately be achieved with
the concept of Adaptive Approximate Significance with dedicated
hardware and the use of parallel programming with threads. Further
energy savings and performance enhancement could be achieved by
deeper exploration in the use of FPGAs and DVFS. Other areas that
would benefit the process is the use of Machine learning to present
adaptive control of Power, Performance and Quality.

One of the personal motivational factors for starting this research
concerns methodology to reduce data rates by having some form
of intelligent camera that could identify relevant areas of an image
and only transfer those delta segments with a full image frame being
transferred on a less frequent period. This resultant research may
well present the opportunity for further research, to reduce the image
information transfer when utilising UHD cameras with embedded
systems, especially in IoT applications.

6.1.6 Self-Critique

The project plan for this research anticipated risks involved with trying
to utilise or merge the facilities offered with OpenCV, OpenCL and
other library tools but unfortunately had not expected the nuances
that would prevent the required merging of the facilities and achieve-
ment of a GPU/Neon based solution within the time-scales.

One issue that can arise among researchers is that, working at such
an advanced level of their own topics that are possibly unrelated to
each others’. In this case working with C++ with modern libraries,
there may be no-one else working at the same level, meaning there
are no peers to bounce ideas off or assist with reviewing code and
there may be no available user guides or text books in print yet. In
such events, topical websites and fora may have to be utilised to look
for answers to specific questions but often have to be treated with
caution! The end result may well be having to take a self-hypercritical
approach along with careful experimentation to ensure any problems
are addressed correctly and the solution is a valid answer to the
problem. This, personally, is familiar ground as often, while working
in an industrial capacity. Having to work outside a team to solve a
critical challenge that others may have passed over due to the technical
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difficulty or lack of understanding of the problem! This often calls
for a different approach that will yield an arguable solution that can
be demonstrated and accepted by what may be typically a ’not so
learned’ audience.
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