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Abstract 

 The watershed segmentation is an algorithm used to systematically track 

cell intercalary behaviors during germ band extension of the Drosophila embryo. 

Neighboring cells share a contracting vertical interface, called a T1, which 

continues contracting to a single point, a T2, and extending in the horizontal 

direction to create what is called a T3 interface (Fig. 1). Additionally, higher 

order vertices called rosettes occur when five or more cells meet at a common 

vertex. Simulated T2 events demonstrate that cell angle and not noise level in 

the image contributes to the incorrect detection of artifactual T1s in more acute 

angled cells and T3s for obtuse angled cells. Short T1 simulations show a 

systematic overestimation of T1 lengths detected by the watershed 

segmentation. Order three vertex simulations show central vertex displacement 

is biased toward the smallest angled cells. Rosette simulations of order 5 to 11 

provide a working definition of rosettes in the context of the watershed 

segmentation in terms of short interface frequency, length, and radius of 

artifactual vertices.   
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Introduction 

In the early Drosophila embryo, germ band extension (GBE) occurs to 

elongate the body axis during gastrulation (Fig. 2A) (Irvine & Wieschaus, 1994). 

This results from a remodeling of cell topologies driven by cell intercalation, a 

phenomenon where cells insert themselves between previously neighboring 

cells (Fig. 2B) (Butler, et al., 2009; Irvine & Wieschaus, 1994; da Silva & 

Vincent, 2007; Wang, et al., 2017). Neighboring cells share a contracting 

vertical interface that lies along the anterior-posterior (AP) axis, referred to in 

developmental biology as a T1 event, which continues contracting to a single 

point, until four cells share a common vertex, a T2 event. These previously 

separated cells create a horizontal interface between them along the dorsal-

ventral (DV) axis, and this is called a T3 event (Fig. 1, 2C) (Bertet, et al., 2004; 

Blankenship, et al., 2006; Collinet, et al., 2015; Irvine & Wieschaus, 1994; 

Jessica & Fernandez-Gonzalez, 2016). In polymer physics, this is collectively 

referred to as a topological T1 process and results in a systematic contraction 

of the epithelium along the DV axis and a perpendicular elongation along the 

AP axis of the embryo (Weaire & Hutzler, 2000). Higher order intercalation 



 2 

events deemed rosettes also occur, and form when successive vertical interfaces 

contract to bring five or more cells together to a single vertex, which finally 

resolve into many elongating horizontal interfaces (Fig. 2C) (Blankenship, et al., 

2006; Irvine & Wieschaus, 1994).           

 

Figure 1: Illustration of topological T1 process. During cell intercalation, 
neighboring cells share a vertical T1 interface, which contracts to a single point, 
and four cells meet at a single vertex, a T2. This then resolves into a horizontal 
T3 interface. Illustration modified from (Vichas & Zallen, 2011). 

T1 T2 T3

interface
vertex interface
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Figure 2: GBE occurs via cell intercalation. (A) Graphic of the germband 
elongating towards the posterior end and folding upward and around to the 
dorsal side of the embryo. Anterior, posterior, dorsal, and ventral are labeled A, 
P, D, and V respectively. Illustration is modified from (Vichas & Zallen, 
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2011).(B) Intercalation shown through time lapse images of the germband with 
rows of cells tracked and colored, by Dr. Timothy Vanderleest. (C) Illustration 
of a T1 process (top) and a rosette (bottom). Illustration courtesy Dr. Timothy 
Vanderleest and is modified from (Vichas & Zallen, 2011). Scale bars are 10 
µm. 
  

In order to study the molecular mechanisms that are directing these 

topological transitions, we rely on image analysis tools. These tools allow us to 

analyze large numbers of cells in a reproduceable fashion rather than relying on 

the biased segmentation of one individual. One fundamental image analysis 

tool is the watershed segmentation, which does the first step of cell fate analysis 

by identifying cell interfaces (Fernandez-Gonzalez & Zallen, 2011; Jewett, et al., 

2017; Leung & Fernandez-Gonzalez, 2015). 

 The watershed segmentation, first introduced in the late 1970s, is a 

powerful tool for segmenting grayscale images (Beucher & Lantuéjoul, 1979). It 

has origins in mathematical morphology (Serra, 1982), and has been developed 

in terms of accuracy and efficiency since it emerged (Beucher, 1992; De Smet & 

Pires, 2000; Meijster & Roerdink, 1995; Meyer, 1994; Vincent & Soille, 1991). 

This algorithm is used to systematically interrogate interface dynamics 

and intercalary behaviors in microscopy images by systematically differentiating 

between objects of interest and the background. It treats a grayscale image as a 

topographic map where pixel brightness represents elevation, and each regional 
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intensity minimum on the image is considered a “catchment basin” holding 

water. If the water levels were to rise, the points at which the water from 

neighboring catchment basins meet become the watershed segmentation lines 

(Fig. 3). Upon finding the areas where these theoretical water sources would 

meet, this algorithm segments the image according to each regional minimum. 
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Figure 3: One-dimensional illustration of the Watershed Transform. The black 
curve represents the image intensity, where the minima represent “catchment 
basins”. When the gray dashed line representing water rises, these points where 
water from adjacent catchment basins meet becomes the watershed 
segmentation lines. In this example the curve is segmented into the three 
regions indicated by the colors red, yellow, and blue.	Illustration courtesy of 
Dr. Timothy Vanderleest. 
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Watershed segmentation is used to differentiate cell interfaces from the 

background in fluorescence microscopy images and movies. As proteins in the 

cell membranes of embryos are tagged with fluorescent probes, the resulting 

microscopy images are brightest at the cell interfaces (Fig 4A). Because those 

pixels in the image along the cell interfaces have the highest intensity, the 

watershed segmentation applies segmentation lines along those pixels, 

differentiating them from the local intensity minima inside the cells (Fig 4B). 

The result is an image with lines one pixel in width representing all locations in 

the image where two cells are touching one another, a cell interface, or multiple 

cells are touching one another, a vertex (Fig. 4B, subset). The relevant 

information from the segmented images such as vertex position and interface 

length can then be extracted and analyzed.  
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Figure 4: Raw data and the result of the watershed transform on that 
image. (A) Spinning disc confocal fluorescence microscopy image of mCherry 
tagged Gap43 in the Drosophila embryo. (B) Segmented image yielded from 
watershed segmentation. A and B courtesy of Dr. Timothy Vanderleest. 
Zoomed in portion of panel B illustrates examples of an interface and a vertex. 

 

Now that cell interfaces can be segmented from cell areas, we can apply 

this analysis to long time resolved movies in order to track interfaces over time. 

A B

vertex
interface
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To examine the dynamics of interface transitions, we look at the length of these 

interfaces, which is defined as the distance between vertices.  

Upon tracking interface lengths in movies demonstrating T1 to T3 

processes in GBE of the Drosophila embryo, the length traces show steadily 

contracting T1 interfaces. As the interface length approaches zero, a T2 event, 

the length traces near this supposed T2 time point are unstable, as the 

watershed segmentation measures alternating positive and negative values as if 

the interface was switching back and forth between a vertical T1 to a horizontal 

T3 interface before steadily expanding in length in the horizontal direction into 

a T3 event (Fig. 5). This observation led to the question: is this phenomenon 

an instability of the vertex itself or the watershed segmentation algorithm? In 

order words, is this an inherent biological process, or is this an error with the 

way the vertex is being defined by the watershed segmentation algorithm? 
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Figure 5: Interface length trace of Drosophila cells during a T1 to T3 
transition of GBE. Red (positive) length values represent a vertical T1 interface 
and blue (negative) length values represent a horizontal T3 interface. 
Surrounding length zero, a supposed T2 event, the length trace is highly 
unstable, moving from relatively high positive to relatively low negative values 
before decreasing uniformly as time passes and the interface extends in the 
horizontal direction. Courtesy of Dr. Timothy Vanderleest. 

 

In order to interrogate the source of this error, I created simulated 

images of T2 and T1 events with varying levels of noise and internal angles of 

the cells as they meet at the common vertex. I then subjected them to the 

watershed segmentation and analyzed the manner in which the algorithm 
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segmented the cells in order to identify any possible error in interface 

identification and measurement.  

This experimentation led to the next question, which was: What is the 

precision and accuracy of watershed-based vertex measurements under this 

experimental framework? To explore this question, I simulated three-cell 

junctions and measured watershed identified vertex position displacement from 

true vertex position as a function of internal cell angle.  

Furthermore, higher-order rosette structures composed of five or more 

cells meeting at a common vertex have been implicated in linking local cell 

interactions to global tissue reorganization during morphogenesis (Blankenship, 

et al., 2006). Although rosettes are easily detectable by eye, the watershed 

segmentation algorithm only allows for an accurate visualization of third and 

fourth order vertices, or cell junctions in which only three or four cells share a 

common vertex. Due to the square nature of pixels, vertices with an order of 5 

or higher are broken down into a series of short interfaces. This precludes an 

accurate systematic identification of rosette events, requiring all rosette 

identifications to be manually done by eye, introducing the possibility of bias 

and error. For this reason, I created rosette simulations where at least five cells 

shared a common vertex and analyzed the manner in which the watershed 

segmentation broke down the central vertex into a series of short interfaces. 
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This was done in order to propose a working definition of a rosette in the 

context of the watershed segmentation’s output to aid in systematic detection. 

 

Methods 

T2 simulations 

In order to accurately emulate experimental data, I analyzed the 

intensities of cell interfaces and background found in real data. This was done 

by analyzing an image of an mCherry tagged Gap43 Drosophila embryo and its 

accompanying watershed segmented image (Fig. 6A, 6B).  I first determined the 

width in pixels of the cell interfaces by performing a Euclidean distance 

transform on the segmented image (Fig. 6C). For each pixel in the image, this 

process assigns a number that is the distance between that pixel and the nearest 

nonzero pixel. This yields a matrix with cell interface lines represented by zeros, 

each pixel surrounding those zeros are ones, and each around those ones are 

twos, etc. I was able to use that information to index pixel positions on the 

experimental image in descending order from the center of the interfaces.  

I next interpolated the distance transform values against the intensity 

values of the image using a gaussian weighting of distances, due to the 

diffraction limit of light emitted by a fluorophore as observed by a lens with a 

circular aperture (Fig 6D). The profile of intensities emitted by each 
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fluorophore on the plasma membrane of these cells is characterized by the Airy 

Disc, with a bright central region that falls to zero with increasing distance 

from the center and a series of concentric rings that surround it. An alternative 

measure of this is to ignore the small outer rings, and to approximate the 

central lobe to a gaussian profile. I used a bin size of 0.5793 pixels, consistent 

with the diffraction limit of light of the spinning disc confocal microscope used 

to capture the image that has a numerical aperture of 1.4 and the emitted 

wavelength of the mCherry fluorophore, 650 nm. I calculated the standard 

deviation of this distribution, and when multiplied by three to encompass three 

standard deviations from the mean (or 99.7% of the data), was calculated to be 

6.9607 pixels. This represented the distance from the center of the interface to 

the edge of the interface, meaning that the full width of the interface was 

approximately 14 pixels. With that information I was able to measure the 

average intensity within that 14-pixel range, which was 3279.5 arbitrary 

fluorescence units. Excluding the range of values that lied within the interfaces, 

I calculated the average background fluorescence to be 2,765.2 units.  
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Figure 6: Scaling simulations to experimentally relevant values. (A) 
Spinning disc confocal fluorescence microscopy image of mCherry tagged 
Gap43 in the Drosophila embryo (B) Segmented image yielded from watershed 
segmentation.  A and B courtesy of Dr. Timothy Vanderleest. (C) Distance 
transform of B. (D) Plot of interpolated distance transform values against the 
intensity values of the image using a gaussian weighting of distances, bins of 
0.5793. 

 
Once I had these experimentally relevant values, I created binary images 

of polygons that mimicked four cells meeting at a common vertex (Fig. 8A). 
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lines had an intensity value of one, and all background pixels had an intensity of 

zero. I then scaled the simulated interface and background to the 

experimentally relevant intensity values calculated above. 

After creating this polygonal representation of a T2 event, I tilted the 

images ten, twenty, thirty and forty degrees to avoid any privileged situation for 

the watershed segmentation (Fig. 7). If an interface line perfectly lined up with 

one column or row of pixels, this would be a particularly stable configuration 

for the watershed segmentation to draw from when segmenting the image and 

is unrealistic in terms of configuration of interfaces in actual data, which are 

distributed in an isotropic manner across both stable and unstable 

configurations. 
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Figure 7: Tilting simulated images to avoid privileged situations for 
watershed segmentation. First column shows polygonal image simulating a 
central vertex of a T2 event with internal angles of 90 degrees, at various 
degrees of tilt. Second column shows the implementation of a gaussian filter, 
third column shows addition of random noise, and rightmost column shows 
the result of the watershed segmentation overlaid on top of simulated T2 event.  
 

Next, I added a gaussian filter to my binary image that mimicked the 

blurring effect due to the diffraction limit of light as described above (Fig. 8B). 

The standard deviation of interface fluorescence obtained from the 

40°
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interpolation procedure above gave me an experimentally relevant sigma value 

to input in the imgaussfilt command in MATLAB. This filter expanded the 

interface to a similar width of the interfaces in the real data. 

 

Figure 8: Addition of gaussian filter and noise to emulate real data in T2 
simulations. (A) Polygonal simulated T2 event tilted 10 degrees. (B) Addition of 
gaussian filter to image. (C) Addition of gaussian random noise to image. 

 
In order to incorporate the background noise in the measured 

fluorescence signal into the simulated image, I added random gaussian white 

noise with the standard deviation of background intensity in the Gap43 image 

(Fig 8C). This image now accurately simulated experimental data (Table 1). 

 

 

 

 

 

A B C
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  Gap43 image  Simulation  
Mean interface intensity 3.2795e+03       3.2789e+03  

  
  

Mean background intensity 2.7652e+03        2.7637e+03  
  

STD of background intensities    164.9333    164.0479  
STD of interfaces  262.2585    253.4403  
Signal to noise ratio 1.1860      1.1864  

  
  

Table 1: Comparison of experimental data to simulation. Intensity units 
are arbitrary fluorescence units. Signal to noise ratio was calculated as the ratio 
between mean interface intensity and mean background intensity. STD: 
standard deviation. 
 

Next, I created this image 100 times using 100 different iterations of 

random noise, then subjected each simulation to segmentation. 

The first step in the watershed segmentation is to select the seeds for 

segmentation that designate local minima. The seeds were selected using the 

point seeding method, where small circular spots several pixels in diameter 

were manually placed within the cells, and polygon mask seeding to exclude the 

background area surrounding the four cells of interest (Fig. 9A). This was 

manually done for the first frame of the 100-frame collection, and these seeds 

were propagated to the other 99 frames that differed only in the new iteration 

of random noise, and segmentation commenced (Fig 9B). 
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Figure 9: Initializing seeds and mask and segmentation output. (A) The 
green points are the locations where local minima were designated for the 
watershed segmentation algorithm to recognize. The blue area is the mask 
applied to exclude that area from segmentation. (B) Output of segmentation 
based on designated seeds and mask. 

 

The segmented representation of the simulated T2 event yielded vertex 

position and interface lengths in units of pixels, which were stored together 

with cell-cell and vertex-vertex connectivity matrices. Vertical interfaces were 

recorded as positive values, and horizontal interfaces were recorded as negative 

values to distinguish the two classes of artifacts. This data simulation process 

was repeated to emulate data with different levels of background noise: signal 

to noise ratios of 1.0729 and 1.3831, as well as different internal angle 

measurements of cells in combinations ranging from 30 degrees to 140 degrees 

by intervals of 10 degrees (Fig. 10). 

A B
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Figure 10: Examples of T2 simulations with varying levels of noise and 
internal angle measurements. Rows A and B were simulations with a SNR of 
1.864, consistent with real data, and C and D had a lower SNR of 1.0729. 
Watershed segmentation lines overlaid in yellow.  

 

Short T1 simulations 

 I created short T1 simulations by adding a three-pixel interface between 

one pair of oppositely juxtaposed cells (Fig. 11). Simulations were tilted 10 

degrees. All methods used to scale simulation to experimentally relevant 
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conditions (with a signal to noise ratio of 1.864), segment and extract data as 

described in the T2 simulations were used. 

 

Figure 11: Simulated image of short T1 interface 3 pixels in length. Left 
represents the skeletonized image, middle shows gaussian filtering and right 
shows addition of random noise. 
 
 
Three cell vertex simulations 

I created order-three vertex simulations (Fig. 12) with internal angles in 

intervals of 20 degrees in the range 80 to 160 degrees. Simulations were tilted 0, 

10, 20 30 and 40 degrees. All methods used to scale simulation to 

experimentally relevant conditions (with a signal to noise ratio of 1.864), 

segment and extract data as described in the T2 simulations were used. 
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Figure 12: Simulated three-cell junction. Left represents the polygonal image, 
middle shows gaussian filtering and right shows addition of random noise. 
 

Rosette Simulations 

 I simulated rosettes composed of 5 to 11 cells with equal internal cell 

angles (Fig. 13). All methods used to scale simulation to experimentally relevant 

conditions (with a signal to noise ratio of 1.864), segment and extract data as 

described in the T2 simulations were used. 

 

Figure 13: Simulated 6-cell rosette with equal internal angle measurements. Left 
represents the polygonal image, middle shows gaussian filtering and right 
shows addition of random noise. 
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Results 

Internal cell angle has significant influence on artifactual interface 
length in T2 simulations, not level of background noise 
 
 Although all simulations were done with all four cells meeting at a 

common vertex, the watershed segmentation often detected a T1 interface 

between either cells C and D or a T3 interface between cells A and B (Fig. 14). 

The length of that artifactual interface was averaged over each 100-frame 

collection, assigned a positive value for a vertical T1 interface between cells C 

and D and a negative value for horizontal T3 interfaces between cells A and B. 

The parameters tested, level of noise and cell angle, each influenced the result 

of the watershed segmentation. Different iterations of noise can result in 

differently oriented artifactual interfaces, with one realization of noise resulting 

in an interface separating cells A and B, and another realization of random 

noise resulting in the separation of cells C and D (Fig. 14). Additionally, the cell 

angle influences both the length and direction of the artifactual interface. The 

more acute oppositely juxtaposed cells are, there is a higher likelihood of a long 

artifactual interface that separates the neighboring cells (Fig. 15).  
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There was a much stronger relationship between artifactual interface 

length and internal cell angle than there was with interface length and level of 

noise in the simulated image (Fig. 16). In these simulations with equivalent 

opposite cell angles, regardless of the level of noise added to the simulations, 

the highest artifactual interface length is a result of more acute internal angles 

in oppositely juxtaposed cells.  The error in interface measurement can be quite 

large, as seen in the artifactual interface length measurement of approximately 

16 pixels in the simulation with opposite angles of 30 degrees although the true 

length of the interface was zero. However, as the simulations approach a more 

isotropic balance of cell angle, when all cells are the same measure of 90 

degrees, the average artifactual interface length was very near the true length of 

zero. 
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Figure 14: T2 simulations with cell ID letters and watershed segmentation lines 
overlaid. The left column shows the skeleton image, top, and the resulting 
blurred appearance after addition of the gaussian filter, bottom. The middle 
column shows the implementation of random noise in one frame, top, and the 
resulting segmentation lines overlaid in yellow with cell ID letters, bottom. 
Note that the artifactual interface is a horizontal T3 in this example, separating 
cells A and B. The rightmost column shows another iteration of random noise, 
that results in segmentation that separates cells C and D, a vertical T1 interface.  
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Figure 15: Internal angle measurement and its effect on artifactual interface 
length. The top row of images shows a T2 simulation with opposite angle 
measurements of 40 degrees, and its subsequent watershed segmentation 
results with a several pixel long artifactual interface separating two cells. The 
bottom row of images shows a similar T2 simulation, but with cells measuring 
60 degrees. The subsequent watershed segmentation still shows an artifactual 
interface separating two cells, however, it is shorter in length than it was with 
more acute angle measurements. 
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Figure 16: Mean artifactual interface length detected by the watershed 
segmentation of 100 simulated T2 images as a function of internal cell angle, 
for low, realistic and high signal to noise ratios. The value on the x axis 
corresponds to the angle measurements of cells C and D (Fig. 13) of the T2 
simulation. Error bars: standard deviation.  SNR: signal to noise ratio. 
 
Artifactual interface lengths and direction depend on internal angle 
measurements 
 
 Successive T2 simulations were done at the SNR of 1.1864, comparable 

to real data, and with different C and D angle measurements combinations, 
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and interface lengths between angles A and B (horizontal T3s) were measured 

as negative values. The heatmap in Figure 17 shows the artifactual interface 

length and direction for each combination of angles between 40 and 140. When 

angle C and D are more acute, the artifact tends to be longer, up to 

approximately 12 pixels, and is in the vertical T1 direction. When angles C and 

D are more obtuse, the artifact tends to occur in the horizontal T3 direction 

and can be about 12 pixels in length as well. When all four angles are 90 

degrees, the error is quite small, with interfaces being on average less than a 

pixel long and very close to the true length of zero.  

 

Figure 17: Heatmap of artifactual interface lengths of T2 simulations with 
varying combinations of cell C and D angle measurements. All simulations 
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were tilted 10 degrees. Each data point is an average of 100 simulations, each 
with a unique realization of noise. Positive values denote a vertical T1 interface 
between cells C and D, and negative values denote a horizontal interface 
between cells A and B.  
 

The watershed segmentation systematically overestimates T1 interface 
lengths  
 

When examining real angle measurements of cells at the T2 timepoint in 

actual data, we can analyze what angle combinations are occurring most often. 

In figure 18, the angle measurements of cells C and D (situated opposite each 

other) during the T2 timepoint were plotted. The data is concentrated around 

the cell pairs that both measure 80 degrees. Far fewer cell combinations are 

composed of one acute and one obtuse angle, and few have both highly acute 

or obtuse angles. 
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Figure 18: Scatter plot of internal angle combinations of cells C and D 
(See Fig. 14) during a T2 timepoint in real data. N = 26067 cells. Data courtesy 
of Dr. Tim Vanderleest. 

 

I next calculated the probability of each angle combination occurring in 
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degree range for both cells (Fig. 19). These angle combinations have 

corresponding artifact lengths ranging from -0.5 to 2.3 pixels. However, the 

most common angle combination is not the situation of complete isotropy, 

where all four cells meet at 90 degree angles. The distribution is biased toward 

angle C and D combinations that are more acute, with the most common angle 

combinations being 80 and 70 degrees. 

 

 

Figure 19: Probability of angle combinations at the estimated T2 timepoint in 
real data of 26067 cells. Red box around the 90 degree – 90 degree case shows 
the situation in which the T2 event has complete isotropy, where all four cells 
have equal angle measure. 
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Measurements of actual cell angles C and D at the T2 time point in real 

data were then convolved with their corresponding calculated artifact length. 

From this I was able to obtain a distribution of possible artifact lengths at the 

estimated T2 time point (Fig. 20). This distribution has a mean of 0.4195 and a 

standard deviation of 1.9490 pixels.  

The areas with no data or “holes” in the distribution are present because 

the watershed segmentation does not measure an interface of length 1 pixel – it 

either measures a length of 0 or 2 pixels for an interface. This distribution is 

shifted toward the right side due to the bias toward acute angles at the T2 

timepoint, and therefore longer positive T1 length measurements.  
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Figure 20: Convolved angle probabilities at estimated T2 time with 
corresponding artifact lengths of 26067 cells in real data. Half-pixel bins. Mean: 
0.4195 pixels and standard deviation: 1.9490 pixels. 
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T2 interface, measuring between -1.5 and 1.5 pixels, with a mean of -0.11 pixels 

and standard deviation of 0.45 pixels. The right lobe that holds the remaining 

34.2% of the data shows the probability that the algorithm is overestimating 

the measurement as a T1 1.5 pixels or longer, with an average overestimation 

of 2.6 pixels and a standard deviation of 0.67 pixels.  

 The mean of the entire distribution is positive, demonstrating that in real 

data, there is a systematic overestimation of interface lengths in the positive T1 

direction. This is corroborated by the cumulative probability distribution of 

these artifact lengths (Fig. 21) which shows that approximately 30% of the data 

are above 1.5 pixels, shown in the rightmost blue line, while only 13.4% are 

lower than -1.5 pixels. This demonstrates a systematic bias toward measuring a 

T1 interface even though the interface has a true length of zero.  
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Figure 21: Cumulative probability distribution of artifact length. Blue lines 
represent values -1.5 pixels and 1.5 pixels.  
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of the T1 interface from the true value of 3 pixels was calculated (Fig. 22). 

There is a substantial overestimation of T1 lengths by the watershed 

segmentation in these simulations, especially with more acute angle pairs. 

Additionally, it is evident that each of the two vertices composing the T1 

interface are segmented independently of one another, due to the error in 

interface measurement at the 90-90 degree combination compared to the T2 

simulation with the same angle measurement (Fig. 17). In the latter case, the 

isotropy of all four cells measuring 90 degrees resulted in the most accurate 

measurement of the interface as it was quite close to zero. In the T1 

simulations, the measurement is not as accurate in the 90-90 degree case – the 

length is overestimated by approximately 3 pixels. The measurement is the 

most accurate when the angle pairs are 120 and 120 degrees, because every cell 

surrounding both vertices composing the short T1 interface measures 120 

degrees. This isotropy of angle measurements around each vertex serves to 

reduce the bias of the watershed segmentation.  
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Figure 22: Heatmap showing the error in interface length measurement after 
watershed segmentation of three-pixel T1 simulations. Each data point is the 
average of 100 simulations, each with a different realization of noise. Positive 
values represent increase in T1 length from true length and negative values 
represent a decrease in measured T1 length from true length.  
 
 These data show a systematic overestimation of T1 interface length 

measurements. The distribution of artifact length for both the T2 and T1 

simulations is biased toward the positive direction (Fig. 23) for both true 

lengths of 0 and 3 for interface length between cells. The possibility of 

incorrectly measuring a T3 interface is reduced drastically with the addition of a 

short T1 interface between cells C and D, however, the T1 length is still greatly 
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overestimated in some cases. The distribution of T2 error in length is shifted 

down slightly when incorporating data from other orientations of the simulated 

image by tilting the simulation 0, 10, 20, 30 and 40 degrees when compared to 

the distribution of error in measurements for the simulations only tilted 10 

degrees. This is due to the slight bias that the watershed segmentation has in 

segmentation due to the discrete nature of the algorithm when choosing pixels 

to serve as segmentation lines (Fig. 7). However, both distributions show a bias 

toward over estimating the length of the interface by measuring it as a positive 

T1 interface. 

 

Figure 23: Violin plots showing distribution of artifact lengths. T2 simulations 
tilted 10 degrees, left, (n=121) tilted 0, 10, 20, 30 and 40 degrees, middle 
(n=605) , and short T1 simulations tilted 10 degrees, right (n=121). Each data 
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point of different cell angle combinations is the average of 100 simulations, 
each with a different realization of noise. Positive values represent vertical T1 
interfaces and negative values represent horizontal T3 interfaces. Green box: 
mean, and red cross: median.  
 
Order three vertex simulations: measured centroids are biased toward 
most acute angle  
 

In order to understand why the watershed segmentation is biased toward 

overestimating T1 lengths, three-cell junctions were simulated, and the error in 

measurement of the true vertex position was measured and plotted relative to 

true vertex and interface positions (Fig. 24).  

 In the isotropic situation with all three cells having equal measure, when 

the simulation was tilted 0-40 degrees, the centroids were recognized by the 

watershed segmentation at the correct position 12.2% of the time. The points 

were plotted in the bottom cell 33.4% of the time, the left cell 1.6% of the time 

and the right cell 52.8% of the time (Fig 25).  
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Figure 24: Three cell junction simulation and central vertex position 
measurements with varying image tilt. Internal cell angle measurements were 
120 degrees for each cell. Percentages represent the fraction of points that were 
measured inside each cell or were measured correctly at the true centroid for 
each simulation orientation, averaged over 100 iterations for each orientation.  
 

In the simulations with one two obtuse angles, the measured vertex 

positions were again plotted on top of true interface and vertex positions (Fig. 

25). In this case, a vast majority of points were plotted inside the most acute 

cell. In the simulation that wasn’t tilted, 63% of the centroids were detected 

along the one of the interfaces, and 1% of centroids were detected in the 

correct position. In the other simulations tilted 10-40 degrees, the vast majority 

of centroids were detected inside the bounds of the most acute cell that 

measured 80 degrees. Over all, in the entire simulation pool incorporating tilts 

0-40 degrees, 90.5 % of centroids were detected incorrectly within the bounds 

of the 80 degree cell by the watershed segmentation (Fig. 26). This pattern is 

upheld with other angle combinations, and the majority of centroids are 

incorrectly detected inside the cell with the most acute angle measurement (Fig. 

26).  
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Figure 25: Three cell junction simulation and central vertex position 
measurements with varying image tilt. Internal cell angle measurements: 80 
degrees, 140 degrees and 140 degrees. Percentages represent the fraction of 
points that were measured inside each cell or were measured correctly at the 
true centroid. 
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Figure 26: Bar graph of watershed segmentation detected centroids displaced 
into each cell’s area defined by their angle measure. 500 simulations for each set 
of cell angle combinations, 100 for each degree of tilt: 0, 10, 20, 30 and 40 
degrees (See fig. 7). 
 
Rosette simulations: threshold of vertices and interfaces as definition of 
a rosette 
 

In order to propose a working definition of a rosette structure in the 

context of the watershed segmentation, I created rosette simulations composed 

of 5 to 11 cells, as this is a possible range of rosette orders identified during 
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morphogenesis (Blankenship, et al., 2006). After subjecting them to the 

watershed segmentation, I analyzed the manner in which the true centroid 

broke down into a series of short interfaces.  

 In a five-cell rosette, 6 or 7 interfaces were present near the true centroid 

including the interfaces separating each of the five cells. This means up to two 

artifactual interfaces are present in a true five cell rosette 1 to 5 pixels in length 

(Fig. 27). The distance of the vertices on these interfaces from the true centroid 

of the rosette was also calculated and can occur up to 8 pixels away from the 

true vertex. Therefore, the identification of 7 interfaces up to length 5 pixels in 

a radius of 16 pixels can be considered indistinguishable from a five-cell 

rosette. 

 For the six-cell rosette simulations, up to 9 interfaces including the 

interfaces separating each of the six cells were detected. The short interfaces 

reached five pixels in length, and the maximum distance of the artifactual 

vertices were displaced by over 8 pixels. The distribution of these data was 

shifted right compared to the distribution for the five-cell rosette, as the 

average number and length as well as vertex displacement increases when the 

number of cells in the rosette increases. This pattern was consistent throughout 

the simulations of up to 11 cells (Appendix).  
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Figure 27: Distribution of detected number of interfaces, length of interfaces in 
pixels, and distance of detected vertices from true centroid in 5 and 6 cell 
rosette simulations. 100 simulations each. 
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Discussion 
 

Artifactual interface length and orientation depends on internal angle of 
cell, not noise 
 
 In simulated T2 events, where all four cells meet at a common vertex, 

the watershed segmentation commonly incorrectly identifies an interface 

between two cells that does not actually exist (Fig. 28). The length of this 

artifactual interface was not influenced by the level of noise added to the 

simulated images and remained quite similar across varying signal to noise 

ratios. Strikingly, however, there was a direct relationship between the 

acuteness of opposite cells in the T2 event and length of the artifactual 

interface. As the internal angle measurements decreased in oppositely 

juxtaposed cells, the longer the artifactual interface separating their neighboring 

cells became.  

Although the ground truth is that all cells are meeting at a common 

vertex, the angles of the cells as they meet have a strong influence on the 

direction and length of the artifactual interface. If opposing cells in a T2 

structure are both obtuse, a horizontal artifactual interface or T3 event is 

detected by the watershed segmentation and gets longer as the sum of the two 
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obtuse angles become larger. If opposite cells in a T2 structure are both acute, a 

vertical T1 interface is incorrectly detected by the watershed segmentation, 

separating cells with an interface that in reality share a common vertex. This 

artifactual T1 becomes longer as the two opposite cells become more acute, or 

the sum of their angle measures become smaller. The most accurate detection 

of interface length, or when the algorithm was closest to detecting a true length 

of zero, was in the isotropic situation of all four cells measuring 90 degrees.  

Real data of cell angles at the T2 timepoint show a bias toward slightly 

acute angles in cells C and D (Fig. 14) that are opposite each other. When these 

angle combinations were convolved with their corresponding artifact length 

discovered by the simulations, it became clear that the watershed segmentation 

systematically detects T1 interfaces when they are not present. Because both 

the top and bottom cells of a T2 event are more likely to be slightly acute, the 

watershed segmentation is more likely to incorrectly detect a short T1 interface 

rather than accurately detecting a T2.  
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Figure 28: Illustration that represents the tendency of the watershed 
segmentation to incorrectly measure a T1 interface instead of a T2 event. If a 
T2 event is composed of two oppositely juxtaposed cells on top and bottom 
that are acute, the watershed segmentation will detect an artifactual vertical 
interface. Left image shows the true situation, a T2 event with four cells 
meeting at one vertex, top and bottom cells with acute internal angle 
measurements. The right image shows the output of the watershed 
segmentation incorrectly identifying a vertical interface. Black lines represent 
interfaces, red dots represent vertices, and red lines represent T1 interfaces.  

 
 

The watershed segmentation systematically overestimates T1 interface 
lengths, and each vertex is segmented independently  
 

When simulating T1 events where two cells were separated with a short 

vertical interface 3 pixels in length, a clear systematic overestimation of T1 

lengths was identified. Although the true length of the interface was 3 pixels, 

the watershed segmentation overestimated this length by up to 11 pixels in the 
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most extreme case, again directly influenced by the acuteness of the opposing 

cells (Fig. 29).  

The most accurate detection of interface length in the T1 simulations 

was not the isotropic case when all four cells measured 90 degrees, as was the 

case for the T2 simulations. The most accurate measurement was made when 

the two cells separated by the vertical T1 interface were 120 degrees. From this, 

independent segmentation of each vertex can be concluded. This situation 

allowed for equal angle measure around each vertex composing the vertical T1 

interface, and its isotropy is hypothesized to be the contributing reason for 

such accuracy. 

 

Figure 29: Illustration representing the watershed segmentation’s tendency to 
overestimate T1 interface length. Left image shows the true situation, a short 
T1 interface separating the left and right cells, and the top and bottom cells 
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have an acute internal angle measurement. The right image shows the output of 
the watershed segmentation incorrectly identifying the T1 interface as much 
longer than it actually is. Black lines represent interfaces, red dots represent 
vertices, and red lines represent T1 interfaces. 

 
 
 

Order three vertex simulations: measured centroids are biased toward 
most acute angle  
 

 Three cell vertex simulations provided evidence for why acuteness of 

opposing angles results in a likelihood of an artifactual interface to be detected. 

In cases where one cell was acute and the other two were obtuse, the watershed 

segmentation displaced the position of the central vertex into the area inside 

the acute angle the vast majority of the time regardless of tilt of the simulated 

image (Fig. 30). This corroborates previous findings that show a systematic 

overestimation of T1 lengths as a function of cell acuteness. Each small angle 

draws the position of each artifactual vertex further from each other, displaced 

into each acute cell and resulting in a measurement of interface length that is 

higher than the ground truth. 
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Figure 30: Illustration showing the watershed segmentation’s tendency to 
displace vertices in three-cell junctions toward the cell with the smallest angle 
measure. Left image shows the true situation, three cells meeting at a single 
vertex, with one cell being much more acute than the other two. The right 
image shows the output of the watershed segmentation incorrectly identifying 
the vertex of the junction as displaced in the direction of the area of the most 
acute cell. Black lines represent interfaces, red dots represent vertices. Arrow 
represents direction of vertex displacement. 
 

Rosette simulations: threshold of vertices and interfaces as definition of 
a rosette 
 

Because the watershed segmentation does not allow for accurate 

visualization of vertices composed of five or more cells, the manner in which 

the watershed segmentation breaks down the central vertex of a rosette into a 

series of short interfaces was analyzed (Fig. 31). In a five-cell rosette, two 

additional interfaces were detected on top of the 5 interfaces separating each of 

the 5 cells, and were up to 5 pixels in length. The distribution of artifactual 
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vertices occurred within a radius of 8 pixels from the true central vertex of the 

rosette. The number and length of artifactual interfaces and radius of artifactual 

vertices increased as the number of cells in the rosette increased. These data 

may serve as a threshold of interface frequency and length that when detected 

in real data, is indistinguishable between a series of short interfaces and a true 

rosette. 

  

Figure 31: Illustration showing the watershed segmentation’s inability to 
represent a vertex joining more than four cells. The left image shows the 
ground truth of a six-cell rosette, where six cells are joined at a single common 
vertex. The right image shows one way the watershed segmentation may breaks 
down this central vertex into a series of short interfaces with multiple vertices, 
all distributed in a certain radius, represented with the opaque red circle. Black 
lines represent interfaces, red dots represent vertices.  
 

There are limits to these findings. By creating simulations and measuring 

the difference between the ground truth and the algorithm’s measurements, the 

question of what parameters increase bias is answered, but when working with 

real data, the inverse problem is proposed. When measuring real data, we have 
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measurements done by an imperfect algorithm, but no absolute ground truth to 

compare the measurements to. Although my findings show what parameters 

may influence error on the part of the watershed segmentation’s detection, it is 

unclear still whether conclusions made from watershed analysis are the truth or 

an artifact in real data. There are also alternative approaches for image 

processing and use of thresholding for boundary recognition that may be 

developed past the efficacy of the watershed segmentation (Farrell, et al., 2017; 

Rauzi, et al., 2008). 

Additionally, more robust and detailed simulations could provide more 

insight into the intricacies of each parameter’s influence on incorrect 

measurements by the algorithm that accounts for varying fluorescence levels 

across experimental conditions, and that incorporates image tilt that is 

distributed across experimentally relevant cell orientations. It would be 

interesting to see how different imaging techniques, fluorescent probes or noise 

reduction methods influence the accuracy of the watershed segmentation. It 

will also be interesting to see the advancement of artificial intelligence to 

accomplish segmentation and tracking with more efficacy, as recent 

applications of machine learning for this purpose have resulted in promising 

new findings (Wang, et al., 2017). 
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My results may complicate the claims made by many researchers in terms 

of interface and cell dynamics when using this algorithm as a means of 

detection, due to the identified sources of error in detection for these purposes. 

The errors detected may increase hesitance when making definitive claims 

about the length of T1 or T3 events and the additional criterion may aid in 

identification of rosettes to further study whether rosettes are functionally 

distinct or occur by random chance.  
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Appendix 

 

Figure 32: Distribution of detected number of interfaces, length of interfaces in 
pixels, and distance of detected vertices from true centroid in 7 and 8 cell 
rosette simulations. 100 simulations were done for each rosette. 
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Figure 33: Distribution of detected number of interfaces, length of interfaces in 
pixels, and distance of detected vertices from true centroid in 9 and 10 cell 
rosette simulations. 100 simulations were done for each rosette. 
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Figure 34 : Distribution of detected number of interfaces, length of interfaces 
in pixels, and distance of detected vertices from true centroid in 11 cell rosette 
simulations. 100 simulations were done for the 11 cell rosette. 
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