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Abstract 

A series of platinum(II) biphenyl 2,2’-bipyridine complexes containing electron-donating and 

electron-withdrawing moieties on the 4 and 4’ positions of the bipyridine ligand exhibit emission 

from excited states in the 600 nm region of the spectrum upon excitation in the metal-to-ligand 

charge transfer transition located near 450 nm.  These complexes are distorted from planarity 

based on both single crystal structure determinations and density functional theory (DFT) 

calculations of isolated molecules in acetonitrile.  The DFT also reveals the geometry of the 

lowest-lying triplet state (LLTS) of each complex that is important for emission behavior.  The 

LLTS are assigned based on the electron spin density distributions and correlated with the singlet 

excited states to understand the mechanism of electronic excitation and relaxation.  Time-

dependent DFT calculations are performed to compute the singlet excited state energies of these 

complexes so as to help interpret their UV-Vis absorption spectra.  Computational and 

experimental results, including absorption and emission energy maxima, electrochemical 

reduction potentials, LLTS, singlet excited states, and LUMO and HOMO energies, exhibit 

linear correlations with the Hammett constants for para-substituents σp.  These correlations are 

employed to screen complexes that have not yet been synthesized.  The correlation analysis 

indicates that electronic structure and the HOMO-LUMO energy gap in Pt(II) complexes can be 

effectively controlled using electron-donating and electron-withdrawing moieties covalently 

bonded to the ligands.  The information presented in this paper provides analysis and better 

understanding of the fundamental electronic and thermodynamic behavior of these complexes 

and could be used to design systems with specific applications. 
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Electronic properties including the HOMO-LUMO energy gap in Pt(II) complexes can be 

effectively controlled using electron-donating and electron-withdrawing moieties covalently 

bonded to the ligands.    
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Introduction 

Square planar complexes of platinum(II) containing a biphenyl dianion ligand and the other 

ligand being diimine,1,2,3,4 phosphine,5 pyridyl,6 acetonitrile,6,7 CO,8,9 or diene,10,11 as well as 

complexes containing η1-biphenyl monoanion12 and phenylpyridine13,14 ligands have been 

attractive to researchers due to potential applications in photocatalytic,5,15 optoelectronic,16,17,18 

chemosensory,1,13 and biomedical imaging devices.14  This research interest is largely due to the 

significant Stokes shift, tunable emission wavelengths and high photoluminescence efficiency of 

these compounds.19  Previously reported Pt(II)-biphenyl complexes containing 2,2'-bipyridine 

and 1,10-phenanthroline ligands exhibit broad absorption in the visible region of the solar 

spectrum in both solution and solid state and emit in the visible light region.1,2  The 

photophysical properties of these complexes are associated with the metal-to-ligand charge 

transfer (MLCT) transition that has been extensively studied by UV-Vis absorption and emission 

spectroscopies.2  The emission under dilute conditions for these complexes has been assigned 

primarily as triplet MLCT (3MLCT) and triplet ligand-centered (3LC).1,2,4,7,11  According to 

Kasha’s rule, fast decay occurs in the triplet manifold to the lowest-lying triplet state (LLTS), 

which is the emissive state.20  Despite extensive exploration with the most advanced 

spectroscopic techniques, there is no solid evidence showing violation of this rule except for case 

of photoisomerization21  and at low temperature due to constrained thermal relaxation.22  

 Density functional theory (DFT)23  calculations have been extensively employed to study 

the geometry and electronic structure of square planar transition metal complexes of 

Pt(II),17,24,25,26,27 Ni(II),28,29 and Pd(II)30,31 as well as those embedded in doped carbon nanocones, 

nanotubes and fullerenes.32   In the latter study, DFT has revealed extended metallic states that 

participate in axial coordination of ions controlled by using external electric field, as highly 
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relevant to scanning tunneling microscopy and nanoelectronic devices.32  The bathochromic 

shifts of the phosphorescence emission spectra of [Pt2(µ-P2O5H2)4]4- and Pt(bph)(CO)2 have been 

attributed to Pt-Pt bonding and stacking of these square-planar complexes in the triplet 

state.17,26,33  The mechanism of axial coordination to Ni(II) porphyrins upon excitation from 

singlet ground to triplet excited states in the presence of pyridinic ligands has also been 

investigated.28 

 The time-dependent DFT method (TD-DFT)34 allows one to compute singlet and triplet 

excited state energies26,35 as well as to optimize the geometry of excited electronic states.36,37  

The photophysical properties of Ru(II),17,38 Fe(II),39 and Re(I) complexes16,40 have been 

investigated to provide spectral assignments and detailed interpretation of  electronic 

transitions.41,42  In a recent report, Zhekova et al. have evaluated the DFT and TD-DFT methods 

with respect to the prediction of excitation energies of tetrahedral Cu(II) complexes.43  Also, 

Escudero and Thiel have investigated the emission behavior of a cyclometalated Pt(II) complex 

using these methods.37 

 In this paper, [Pt(bph)(4,4’-X2bpy)] complexes, where bph is the 2,2’-biphenyl dianion 

and bpy is 2,2’-bipyridine functionalized with electron donating and electron withdrawing 

substituents in the 4,4’-positions (listed in Table 1) are correlated experimentally and 

theoretically with their ground state and excited state properties., Earlier, Cummings and 

Eisenberg reported excited state properties of platinum(II) diimine dithiolate complexes could be 

tuned with various functionalized diimine ligands.44  Tuning of HOMO and LUMO energies by 

using electron-donating or electron-withdrawing substituents was used for iridium(III) 

complexes45 and for the design of dyes for dye sensitized solar cells.46  Here we examine 

electronic and thermodynamic free energy correlations guided by quantum chemistry treatments 
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involving DFT and TD-DFT.  The electronic absorption and emission spectra are correlated with 

calculated singlet excited states and LLTS, respectively.  The energies of the lowest unoccupied 

molecular orbitals (LUMO) computed using DFT are correlated with thermodynamic quantities, 

such as electrode potentials.  These correlations provide insights into the spontaneity and 

reversibility of redox processes as related to the nature of excited states.  The substituents are 

correlated based on the Hammett constants for para substitution47 σp that are listed in Table 1. 

Table 1. Hammett Constants for Para Substitution48 (σp) in Phenyl Groups  

Substituent σp per substituent σp for two substituents 
NH2 -0.66 -1.32 
CH3 -0.17 -0.34 

H 0.00 0.00 
C6H5 +0.07 +0.14 

Br +0.23 +0.46 
COOC2H5 +0.45 +0.90 

 

Experimental Section 

Materials All syntheses were performed under a dry and oxygen-free nitrogen atmosphere using 

standard Schlenk-tube techniques.  [Pt(bph)(C2H5)2S]2 was prepared as described.49,50,51  

Methylene chloride and hexanes were purchased from Fisher Scientific and were used as 

received.  Anhydrous diethyl ether (99.7%) was used as received from Aldrich.  All the diimine 

ligands were commercially purchased and used as received.  Fluka was the source of 

tetrabutylammonium hexafluorophosphate (TBAPF6). 

Instrumentation and Physical Measurements IR spectra were acquired using a Nicolet Avatar 

360 FT-IR spectrophotometer.  Proton NMR spectra were obtained using a Varian Inova 400 FT-

NMR spectrometer.  Elemental (C, H, & N) analysis was performed by Columbia Analytical 
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Services, Tucson, AZ.  An EG&G PAR Model 263A potentiostat/galvanostat was used to obtain 

the cyclic and differential-pulse voltammograms.  The measurements were carried out in a 

typical H-cell using a platinum disk working electrode, a platinum wire counter electrode, and a 

Ag/AgNO3 reference electrode in dichloromethane.  The supporting electrolyte used was 0.1 M 

tetrabutylammonium hexafluorophosphate (TBAPF6).  Ferrocene was added as the reference.  

Absorption profile and extinction studies were carried out using an OLIS Cary 14 

UV/Visible/NIR double beam spectrophotometer.  All solution samples were prepared using 

spectral grade acetonitrile or freshly distilled butyronitrile. 

Emission spectra, excitation spectra and emission lifetimes were obtained using a FL3-

2iHR Nanolog spectrometer from Horiba Jobin Yvon Technologies.  Solutions with an 

absorbance of ~0.1 at the λmax of each complex in butyronitrile were placed in Pyrex tubes (5mm, 

OD; 3 mm ID) and freeze-pump-thaw degassed.  After the final degassing, the glassy samples 

were placed in a Dewar located in the cavity of the spectrometer and maintained at 77 K during 

measurements.  Emission spectra were collected at λmax of the MLCT bands; excitation spectra 

were obtained at the emission maximum for each compound.  A NanoLED-460 pulsed diode 

light source was used in all lifetime decay determinations.  In this case the excitation wavelength 

used was set to 457 nm – the absorption maximum for the NanoLED-460 light source.  Emission 

curve-fittings were performed using the Origin Pro 8 program via non-linear curve-fitting modes. 

Computational Technique 

Method Exploration For geometry optimization of the complexes, we evaluated the 

performance of the hybrid exchange-correlation density functionals B3LYP,52 PBE0 (keyword 

PBE1PBE),53,54 PW91 (keyword PW91PW91),55,56,57 and B3PW91 (keyword BPBE and internal 
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options) as implemented in the Gaussian 09 computational chemistry software.58  These 

functionals were evaluated with respect to their capability to produce both the geometry, as in the 

X-ray diffraction (XRD) results, and excited states, as in the absorption spectra maxima.  The Pt-

N bond length, overestimated by 0.02-0.10 Å by the functionals, was selected as the geometry 

optimization performance criterion.  The rest of the geometry parameters were in a very good 

agreement with the X-ray diffraction results.  We found that the B3LYP predicted excited state 

energies and PBE0 yielded optimized geometries in a very good agreement with the absorption 

spectra maxima and XRD results, respectively, as reported in Supporting Information Tables S1 

and S2 and Figure S1.  The metal-ligand bond length over-estimation of B3LYP has been noted 

previously and reported elsewhere.16,59  The PBE0 functional gave optimized geometries in a 

good agreement with XRD, but predicted excited state energies substantially lower than the 

absorption band energies.  It is possible to calibrate excited state energies with respect to an 

experimental set of absorption spectra maxima, as we have shown previously.28 However; this 

requires an extensive calibration set.  Here, we employed the Becke’s 3-parameter hybrid 

functional with non-local exchange term of Becke, the local correlation term of Vosko, Wilk and 

Nusair (VWN),60 (as in B3LYP) as well as the non-local correlation of Perdew, Burke and 

Ernzerhof (PBE),53 (as in PBE0) and referred to it in the text as B3PBE.  This functional yields 

metal-ligand distances and singlet excited states in good agreement with PBE0 and B3LYP 

functionals, respectively, due to the favorable combination of non-local exchange and correlation 

terms. 

Computational Details The geometries were optimized in acetonitrile solvent using the 

conductor-like polarizable continuum model (CPCM) for solvation.61,62  The electronic singlet 

ground state (SGS) and LLTS for each complex were fully optimized using restricted singlet and 
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unrestricted triplet B3PBE, respectively.  After each geometry optimization, the second-order 

force constant matrix was calculated to confirm that the optimized geometry was a true minimum 

on the potential energy surface.  The Mayer bond order analysis63 was employed to analyze 

bonding.  No symmetry restrictions were imposed during geometry optimization.  The initial 

structures were taken from the XRD files, where available, and the rest were prepared by 

addition of methyl and phenyl groups.  

 For excited state calculations, we employed the tandem of non-equilibrium TD-DFT64,65 

and CPCM methods, as implemented in the Gaussian 09 software.58  Forty singlet excited-states 

were computed in acetonitrile solvent based on the respective SGS geometries optimized in 

acetonitrile using the CPCM method for Pt(bph)(X2bpy), X = NH2, Me, H, Br, NO2 and CN.  

Sixty singlet excited-states were computed for the complexes containing Ph and COOC2H5 

groups. This tandem approach adds a self-consistent reaction field around the solute and employs 

a linear response form for calculation of the excited states.61,66  The excited state energies 

computed using the TD-DFT/CPCM method correlate linearly with experimental UV-Vis 

spectra, as we67,28 and others have shown.68,69
 

The all-electron triple-ζ TZVP basis set (keyword Def2TZVP) was applied for H, C, N, 

and O atoms.70  The QZV effective core potentials were used for the Pt and Br atom cores.70   

The quadruple-ζ QZVP basis set was applied for the valence shells of Pt and Br atoms.70  This 

combination of basis sets, referred in the text as TZVP-QZV-P, is the largest tractable 

computationally for our complexes and resources.  The GaussView 4.1 visualization software 

was used to generate the molecular orbital and spin density isosurfaces. 

 

Page 9 of 43 Dalton Transactions

D
al

to
n

Tr
an

sa
ct

io
ns

A
cc

ep
te

d
M

an
us

cr
ip

t



 10 
 

Preparation of Compounds 

(1) Pt(bph)(4,4’-Me2bpy)  A solution of 4,4’-dimethylbipyridine (46 mg, 0.25 mmol) in 

methylene chloride (10 mL) was added drop-wise to a solution of [Pt(bph)(C2H5)2S]2 (100 mg, 

0.114 mmol) in methylene chloride (20 mL) under continuous stirring.  The brown colored 

reaction mixture was allowed to stir at room temperature for half an hour, rotary-evaporated to 

about 10 mL and added drop-wise to 500 mL hexanes.  The brown colored precipitate was 

isolated, vacuum filtered and washed with ether. Yield: 66 mg (50%) Anal. Calcd for 

C24H20N2Pt: C, 54.23; H, 3.79; N, 5.27. Found for C24H20N2Pt: C, 53.94; H, 4.20; N, 5.25. IR 

(KBr pellet): 3040, 1616, 1417, 1034, 830, 739, 521 cm-1. 1H NMR (CDCl3): δ ppm 9.39 (d, 2H, 

J = 5.6 Hz), 7.84 (s, 2H), 7.43 (d, 2H, J = 5.6 Hz), 7.42 (dd, 2H, J = 6.8, 2.0 Hz), 7.38 (dd, 2H, J 

= 6.8, 2.0 Hz), 7.00 (td, 2H, J = 6.8, 2.0 Hz), 6.94 (td, 2H, J = 6.8, 2.0 Hz), 2.41 (s, 6H). 

(2) Pt(bph)(4,4’-Ph2bpy)·3H2O Both 4,4’-diphenylbipyridine (18 mg, 0.06 mmol) and 

[Pt(bph)(C2H5)2S]2 (25 mg, 0.03 mmol) were added to a round-bottomed flask with a stir bar.  

Then 5 mL of dichloromethane was added and the mixture was allowed to stir at 40 C for 3 h.  

The solution was then filtered to remove solid impurities and the filtrate was evaporated to 

dryness.  The solid was redissolved in a small amount of methylene chloride and added to ether 

to precipitate the compound.  The precipitate was removed by vacuum filtration, washed with 

ether and dried under vacuum.  It was then dissolved in methylene chloride and passed over a 

silica gel column for purification.  Yield: 20 mg (51%) Anal. Calcd for C34H32N2O3Pt: C, 57.38; 

H, 4.53; N, 3.94. Found for C34H32N2O3Pt: C, 57.49; H, 3.71; N, 3.96. IR (KBr pellet): 3043, 

1610, 1580, 1466, 1412, 1054, 761, 740, 731, 693 cm-1. 1H NMR (CDCl3): δ ppm 9.58 (d, 2H, J 

= 5.6 Hz), 8.29 (d, 2H, J = 1.6 Hz), 7.75 (m, 10H), 7.55 (dd, 2H, J = 5.6, 1.6 Hz), 7.47 (dd, 2H, J 

= 6.8, 2.0 Hz), 7.34 (dd, 2H, J = 6.8, 2.0 Hz), 6.97 (m, 4H, J = 6.8, 2.0 Hz). 

Page 10 of 43Dalton Transactions

D
al

to
n

Tr
an

sa
ct

io
ns

A
cc

ep
te

d
M

an
us

cr
ip

t



 11 
 

(3) Pt(bph)(4,4’-(NH2)2bpy)·2H2O  Both 4,4’-diaminobipyridine (11 mg, 0.06 mmol) and 

[Pt(bph)(C2H5)2S]2 (25 mg, 0.03 mmol) were added to a round-bottomed flask with a stir bar.  

Then 5 mL of dichloromethane was added and the mixture was allowed to stir at 40 C for 3 h.  

During this time a yellow precipitate formed.  The solid was removed by vacuum filtration, 

washed with ether and dried under vacuum.  Yellow needles were obtained by recrystallization 

in methanol. Yield: 17 mg (63%) Anal. Calcd for C22H22N4O2Pt: C, 46.40; H, 3.89; N, 9.84. 

Found for C22H22N4O2Pt: C, 46.30; H, 3.97; N, 9.62. IR (KBr pellet): 3043, 1610, 1580, 1466, 

1412, 1054, 761, 740, 731, 693 cm-1. 1H-NMR (DMSO): δ ppm 8.68 (d, 2H, J = 5.6 Hz), 7.30 

(dd, 2H, J =5.6, 1.6 Hz), 7.24 (d, 2H, J =5.6), 7.16 (dd, 2H, J = 6.8, 2.0 Hz), 6.99 (d, 2H, J = 6.8), 

6.81 (td, 2H, J = 6.8, 2.0 Hz), 6.75 (m, 2H, J = 6.8, 2.0 Hz). 

(4) Pt(bph)(4,4’-Br2bpy)·5H2O  Both 4,4’-dibromobipyridine (19 mg, 0.06 mmol) and 

[Pt(bph)(C2H5)2S]2 (25 mg, 0.03 mmol) were added to a round-bottomed flask with a stir bar.  

Then 5 mL of dichloromethane was added and the mixture was allowed to stir at 40 C for 3 h.  

The orange color precipitate was isolated and washed with ether. Yield: 18 mg (48%) Anal. 

Calcd for C22H24N2O5Br2Pt: C, 35.17; H, 3.22; N, 3.73. Found for C22H24N2O5Br2Pt: C, 35.00; 

H, 2.87; N, 3.67. IR (KBr pellet): 3043, 1610, 1580, 1466, 1412, 1054, 761, 740, 731, 693 cm-1. 

1H-NMR (CDCl3): δ ppm 9.42 (d, 2H, J = 5.6 Hz), 8.16 (d, 2H, J = 5.6 Hz), 7.75 (dd, 2H, J = 

5.6, 1.6), 7.31 (dd, 2H, J = 6.8, 2.0 Hz), 7.17 (dd, 2H, J = 6.8, 2.0 Hz), 6.98 (dd, 2H, J = 6.8, 2.0 

Hz), 6.89 (dd, 2H, J = 6.8, 2.0 Hz). 

(5) Pt(bph)(4,4’-(COOC2H5)2bpy)  A solution of 4,4’-diethylesterbipyridine (75 mg, 0.25 

mmol) in methylene chloride (10 mL) was added drop-wise to a solution of [Pt(bph)(C2H5)2S]2 

(100 mg, 0.114 mmol) in methylene chloride (20 mL) under continuous stirring.  The reaction 

mixture was stirred at room temperature for half an hour and then rotary-evaporated to reduce its 
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volume to about 10 mL.  The purple crystals that formed were removed by vacuum filtration, 

washed with ether and dried under vacuum. Yield: 81mg (50%) Anal. Calcd for C28H28N2O4Pt: 

C, 51.61; H, 4.33; N, 4.30. Found for C28H28N2O4Pt: C, 52.12; H, 4.11; N, 4.36. IR (KBr pellet): 

3038, 2984, 1731, 1365, 1326, 1252, 1022, 761, 734 cm-1. 1H-NMR (CD2Cl3): δ ppm 9.40 (d, 

2H, J = 5.6 Hz), 8.20 (d, 2H, J = 1.6 Hz), 7.83 (dd, 2H, J = 5.6, 1.6 Hz), 7.09 (dd, 2H, J = 7.2, 2.0 

Hz), 7.02 (dd, 2H, J = 7.2, 2.0 Hz), 6.78 (td, 2H, J = 7.2, 2.0 Hz), 6.58 (td, 2H, J = 7.2, 2.0 Hz), 

4.49 (q, 4H, J = 7.2 Hz), 1.51 (t, 6H, J = 7.2 Hz). 

Results 

X-Ray Diffraction Crystallography Determination  

         The single crystal X-ray diffraction studies were carried out on a Bruker Kappa APEX-II 

CCD diffractometer equipped with Mo K
α
 radiation (λ = 0.71073 Å).71

  Crystals were mounted 

on a Cryoloop with Paratone-n oil.  Data were collected in a nitrogen gas stream at 100 or150 K 

using φ and ϖ scans.  Crystal-to-detector distance was 45 or 50 mm and exposure time was 5 or 

10 seconds per frame using a scan width of 0.5 or 1.0°.  Data collection was ~100% complete to 

25.00° in θ  for each structure.  The data were integrated using the Bruker SAINT software 

program and scaled using the SADABS software program.71 Solution by direct methods 

(SHELXS or SHELXT) produced a complete phasing model consistent with the proposed 

structure.  Crystallographic determination data for the compounds are collected in Table 2 and 

ORTEP diagrams are provided with thermal ellipsoids drawn at the 50% probability level in 

Figure 1. 

All nonhydrogen atoms were refined anisotropically by full-matrix least-squares 

(SHELXL-2014).  All hydrogen atoms were placed using a riding model.  Their positions were 
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constrained relative to their parent atom using the appropriate HFIX command in SHELXL-

2014. The Pt(bph)(4,4’-Me2bpy) complex sits on a general position in the monoclinic space 

group P21/n; Pt(bph)(4,4'-Br2bpy) sits on a general position in an orthorhombic space group 

Pbca and Pt(bph)( 4,4'-(COOC2H5)2bpy) on a general position in the monoclinic space group 

C2/c. 

Table 2.  X-ray Diffraction Crystallographic Determination of the Compounds 

Identification 
code 

Pt(bph)(4,4’-Me2bpy) Pt(bph)(4,4’-Br2bpy) Pt(bph)(4,4'-
(COOC2H5)2bpy) 

Empirical 
formula 

C23H20N2Pt1• CH2Cl2 C22H14Br2N2Pt C28H24N2O4Pt1 

Formula weight 616.44 661.26 647.58 
Temperature 150 K 100 K 150 K 
Wavelength 0.71073 Ǻ 0.71073 0.71073 Ǻ 
Crystal system Monoclinic Orthorhombic Monoclinic 
Space group P21/n Pbca C2/c 
Unit cell 
dimensions 

a = 13.7375(5) Å a = 7.2532(7) Å a = 22.3019(11) Å 

 b = 9.7822(4) Å b = 20.093(4) Å b = 7.1519(4) Å 
 c = 17.1526(7) Å c = 24.757(6) Å c = 31.0906(15) Å 
 α = 90° α = 90° α = 90° 
 β = 111.300(2)° β = 90° β = 105.466(3) ° 
 γ = 90° γ = 90° γ = 90° 
Volume 2147.56(15) Å3 3608.0(14) Å3 4779.4(4) Å3 
Z 4 8 8 
Calculated 
density 

1.907 g/cm3 2.435 g/cm3 1.800 g/cm3 

Absorption 
coefficient 

6.798 mm-1 12.217 mm-1 5.910 mm-1 

F(000) 1192 2464 2528 
Crystal size 0.33 x 0.23 x 0.04 mm 0.153 x 0.01 x 0.008 

mm 
0.33 x 0.25 x 0.18 mm 

Crystal habit Plate Needle Plate 
Crystal color Clear Light Red Orange Lustrous Dark Purple 
θ range for data 1.64o to 26.00o 2.027o to 26.428o 3.40o to 26.00o 
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collection 
Limiting indices -16≤ h ≤ 16 

-12 ≤ k ≤ 12 
-21 ≤ l ≤ 21 

-5≤ h ≤ 9 
-17 ≤ k ≤ 25 
-29 ≤ l ≤ 30 

-27 ≤ h ≤ 27 
-8 ≤ k ≤ 8 
-38 ≤ l ≤ 38 

Reflections 
collected / 
unique 

51173 / 4209 [R(int) = 
0.0330] 

18727/3689 [R(int) = 
0.0726] 

54008 / 4700 [R(int) = 
0.0472] 

Completeness to 
θ = 26.00 

100 % 99.9% 99.8 % 

Refinement 
method 

Full-matrix least-
squares on F2 

Full-matrix least-
squares on F2 

Full-matrix least-squares 
on F2 

Data / restraints / 
parameters 

4209 / 0 / 273 3689/ 0 /244 4700 / 0 / 318 

Refinement 
threshold 

I>2σ(I)] I>2σ(I)] I>2σ(I)] 

Data > threshold 3865  4351 
Goodness-of-fit 
on F2 

1.404 1.036 1.163 

Final R indices 
[I>2σ(I)] 

R1 = 0.0157, wR2 = 
0.0546 

R1 = 0.0379, wR2 = 
0.0644 

R1 = 0.0235, wR2 = 
0.0571 

R indices (all 
data) 

R1 = 0.0221, wR2 = 
0.0923 

R1 = 0.0580, wR2 = 
0.0703 

R1 = 0.0262, wR2 = 
0.0584 

Largest diff. 
peak and hole 

0.966 and -1.180 e- Ǻ-3 0.821 and -1.138 e- Ǻ-3 1.379 and -2.170 e- Ǻ-3 

               

   

Pt(bph)(4,4’-Me2bpy) Pt(bph)(4,4’-Br2bpy) Pt(bph)(4,4’-(COOC2H5)2bpy) 

Figure 1.  ORTEP diagrams of the complexes Pt(bph)(4,4’-Me2bpy), Pt(bph)(4,4’-Br2bpy) and 
Pt(bph)(4,4’-(COOC2H5)2bpy). 
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 Selected bond distances and angles measured using XRD for single crystals are listed in 

Table 3.  The results show that the Pt-N bonds are longer than the Pt-C bonds by ~0.10-0.12 Å.  

The C-Pt-C bite angles are ~80° and the N-Pt-N bite angles are 3° smaller at 77°.  The torsion 

angle between the best-fit planes of the biphenyl and 4,4’-bipyridine moieties, referred to as bpy-

bph, is particularly important for the evaluation of distortion of these pseudo square-planar 

complexes from planarity.  The bpy-bph torsion angles in the crystal structures of 

Pt(bph)(Me2bpy), Pt(bph)(4,4’-Br2bpy) and Pt(bph)(4,4’-(COOC2H5)2bpy) are close to that of 

the previously reported Pt(bph)(bpy)8 complex, highlighting the X-configuration characteristic to 

these distorted pseudo square-planar complexes of Pt(II).1  It is important to note that 

Pt(bph)(4,4’-Br2bpy) and Pt(bph)(4,4’-(COOC2H5)2bpy) as well as Pt(bph)(bpy)8 form dimers 

stacked along the axis perpendicular to the approximate plane of the complex and passing 

through the Pt atom, whereas the dimers of Pt(bph)(Me2bpy) are in parallel displaced 

configuration with only the Me2bpy moieties stacked (see Supporting Information, cif files).  In 

the dimers, the bpy ligands are stacked together in Pt(bph)(bpy),1 whereas the (COOC2H5)2bpy 

ligands are stacked oppositely in Pt(bph)(4,4’-(COOC2H5)2bpy). The latter stacking mode is 

similar to that of the Pt(bph)(CO)2 complex we reported previously.8,9 

Table 3.  Selected Bond Lengths (Å), Bond Angles (°) and Torsion Angles (°) Measured Using 
XRD Crystallography.  

Measured  Pt(bph)(4,4’-
Me2bpy) 

Pt(bph)(bpy) Pt(bph)(4,4’-
Br2bpy) 

Pt(bph)(4,4’-
(COOC2H5)2bpy) 

  
Pt – C1 
Pt – C2 
Pt – N1 
Pt – N2 

 
2.006(8) 
2.016(9) 
2.125(6) 
2.113(6) 

Bond length 
1.993 (9) 
2.021(10) 
2.101(8) 
2.125(8) 

 
1.994(7) 
2.006(7) 
2.112(5) 
2.128(4) 

 
2.009(4) 
2.002(4) 
2.118(3) 
2.129(3) 
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C1 – Pt – C2 
N1 – Pt – N2 
C1 – Pt – N1 
C2 – Pt – N2 

 
80.6(3) 
77.3(2) 
102.3(3) 
102.8(3) 

Bond angle 
80.2(4) 
76.6(3) 
102.5(3) 
104.1(3) 

 
81.0(3) 
77.5(2) 
102.3(2) 
103.0(2) 

 
80.5(3) 
77.4(1) 
102.3(1) 
102.7(1) 

  
C-C-N-N 
bph-bpy 

 
153.82 
28.2 

Torsion angle 
151.95 
31.3 

 
150.20 
37.5 

 
153.84 
32.6 

 

Geometry Optimization Geometry optimization of isolated complexes in acetonitrile solvent 

conducted using the B3PBE functional gave rise to the largely distorted from planarity X-

configurations, as highlighted in the side views shown in Figure 2.  In these optimized 

geometries, the bph-bpy torsion angles were ~5-6° larger than in the XRD results, due to the 

absence of intermolecular and crystal packing interactions.  The ethyl groups of the ester ligands 

are coplanar with the pyridyl moieties.  The torsion angle between the phenyl groups and the 

pyridyl moieties is 34°.  Selected optimized bond lengths, angles and charges were listed in 

Table 4.  The optimized Pt-C bond lengths were in excellent agreement with the XRD 

measurements, whereas the Pt-N bonds were systematically overestimated, as noted for other 

Pt(II)1 and Ru(II) diimine complexes16,59 and discussed above.  The optimized Pt-N bonds were 

longer than the Pt-C bonds by ~0.13-0.14 Å.  The ligand bite angels were in excellent agreement 

with the XRD results.  The Mulliken atomic charges on the Pt atoms increased from left to right 

along Table 4, as the electron-withdrawing strength of the 2,2’-bipyridine ligand substituents was 

increased.  The geometries of these complexes optimized in gas phase are in agreement with 

those in acetonitrile solvent.  The most notable difference is in the bpy-bph torsion angle that is 

up to 1.5° larger in gas phase.   
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Pt(bph)(4,4’-
(NH2)2bpy) 

Pt(bph)(4,4’-
Me2bpy) 

Pt(bph)(bpy) Pt(bph)(4,4’-
Ph2bpy) 

Pt(bph)(4,4’-
Br2bpy) 

Pt(bph)(4,4’-
(COOC2H5)2
bpy)  

Figure 2.  Geometries of the Complexes Optimized Using the B3PBE/TZVP-QZV-P/CPCM 
Method Highlighting the bph-bpy Torsion Angle Characteristic of the X-configuration.   

Table 4.  Platinum-ligand Bond Lengths (Å), Ligand Bite Angles (°) and bph-bpy Torsion 
Angles (°) optimized for Isolated Complexes in Singlet Ground State (SGS) and Lowest-lying 
Triplet State (LLTS) in Acetonitrile Solvent Using the B3PBE/TZVP-QZV-P/CPCM Method.  
The Mulliken atomic charges (|e|) of the Pt atoms and bpy and bph ligand moieties are listed as q 
(Pt), q (bpy) and q (bph), respectively. 

 The optimized geometries of the LLTS also have X-configurations with bph-bpy torsion 

angles ~6° shorter than in the SGS, except the Pt(bph)(4,4’-(NH2)2bpy) that undergoes an 

Optimiz
ed  

Pt(bph)(4,4’-
(NH2)2bpy) 

Pt(bph)(4,4
’-Me2bpy) 

Pt(bph)
(bpy) 

Pt(bph)(4,4’
-Ph2bpy) 

Pt(bph)(4,4’
-Br2bpy) 

Pt(bph)(4,4’-
(COOC2H5)2bpy) 

   SGS    
Pt-C 2.004 2.005 2.006 2.004 2.005 2.005 
Pt-N 2.145 2.142 2.141 2.139 2.145 2.135 
C-Pt-C 80.5 80.5 80.5 80.5 80.5 80.5 
N-Pt-N 76.0 76.2 76.4 76.4 76.2 76.6 
bph-bpy 37.3 37.7 36.1 37.3 37.3 38.2 
q (Pt) 0.56 0.60 0.60 0.62 0.62 0.65 
q (bpy) 0.47 0.41 0.39 0.39 0.36 0.33 
q (bph) -1.03 -1.01 -0.99 -1.01 -0.98 -0.99 
   LLTS    
Pt-C 2.004, 2.018 1.975 1.975 1.975 1.973 1.973 
Pt-N 2.108, 2.070 2.105 2.108 2.111 2.117 2.118 
C-Pt-C 80.8 81.3 81.2 81.2 81.3 81.2 
N-Pt-N 78.0 77.9 78.0 77.6 77.7 77.5 
bph-bpy 45.3 31.0 31.2 31.0 31.1 31.8 
q (Pt) 1.10 0.86 0.84 0.85 0.86 0.86 
q (bpy) -0.13 -0.26 -0.28 -0.29 -0.33 -0.35 
q (bph) -0.97 -0.60 -0.56 -0.56 -0.53 -0.51 
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extensive distortion to a bph-bpy angle of 45° (Table 4).  In the LLTS, the Pt-N and Pt-C bonds 

are shorter by ~0.03-0.04 Å than those in the respective SGS, except the Pt(bph)(4,4’-

(NH2)2bpy) complex.  In the latter, one of the Pt-N bonds is shorter than the other by ~0.04 Å, 

which shows this geometry is the only one in the series that deviates from pseudo C2 symmetry.  

We also optimized the geometry of the triplet T1 state of the Pt(bph)(4,4’-(NH2)2bpy) complex 

by constraining it to the C2 point group and found that the energy of this symmetrical state is 

0.12 eV higher than the broken-symmetry LLTS, the latter effectively being the T0 state.  In the 

T1 state, the Pt-C and Pt-N bond lengths are 1.981 Å and 2.104 Å, respectively.  The bph-bpy 

torsion is 30.8°. Considering the values for the T1 state of Pt(bph)(4,4’-(NH2)2bpy) and the LLTS 

of the rest of the complexes, the Pt-N bond lengths increase and the Pt-C bond lengths decrease 

as the electron-donating strength of the functional group is increased.   

 The Mulliken atomic charges show that in the SGS to LLTS transition electron density is 

transferred from the biphenyl ligand and Pt to the bipyridine ligand.  Thus, electron-withdrawing 

groups that facilitate the acceptance of electron density stabilize the LLTS, as manifested in the 

decreasing LLTS energy (Table 5).  Moreover, the electron-donating amine groups destabilize 

the triplet state and yields a broken symmetry LLTS. The charge on Pt in the LLTS are higher by 

~0.2 |e| than those in the SGS and do not correlate well with the electron-withdrawing substituent 

trends, in particular, as the complex inclosing the strongest electron-donating group (NH2) has 

the largest positive charge on the Pt atom.  For Pt(bph)(4,4’-(NH2)2bpy), the Pt atom charge in 

the LLTS is higher by 0.54 |e| than that in the respective SGS due to a very extensive charge 

transfer from Pt to the bpy ligand as a result of the breaking of the pseudo C2 symmetry.  In the 

T1 state of Pt(bph)(4,4’-(NH2)2bpy), the charges on Pt, bpy and bph are 0.85 |e|, -0.21 |e| and -

0.64 |e|, respectively.  Considering the latter T1 state and the LLTS of the rest of the complexes, 
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the 2,2’-bipyridine ligand charges become less negative and the biphenyl ligand charges  become 

more negative, as the electron-donating strength of the functional group is increased. This is 

correlated with the bonding of NH2 groups with the bpy moiety and the character of the LLTS, as 

discussed below. 

 The electronic character of the LLTS is assigned based on the spin density distributions37 

presented in Figure 3.  The spin densities are localized mainly on the Pt(bph)(bpy), away from 

the electron-withdrawing and donating substituents.  In all complexes except Pt(bph)(4,4’-

(NH2)2bpy), the spin density is evenly distributed over the entire Pt(bph)(bpy) moieties.  In the 

Pt(bph)(4,4’-(NH2)2bpy) complex, the spin density is localized mostly on the Pt atom and the 

2,2-bipyridine ligand.  This Pt-localized LLTS is distinct from the rest of the complexes studied 

and could be a cause for the distinct emission spectrum of Pt(bph)(4,4’-(NH2)2bpy).  The spin 

density of the T1 state of the Pt(bph)(4,4’-(NH2)2bpy) shown in Supporting Information Figure 

S2  is analogous to those of the LLTS of the rest of the complexes. 

Pt(bph)(4,4’-(NH2)2bpy) Pt(bph)(4,4’-Me2bpy) Pt(bph)(bpy) 
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Pt(bph)(4,4’-Ph2bpy) 

 

 
Pt(bph)(4,4’-Br2bpy) 

 

Pt(bph)(4,4’-(COOC2H5)2bpy) 

Figure 3. Electron Spin Density Distributions Around the Complexes Plotted at Isovalue of 0.003 
e/Å3 for the LLTS of Isolated Molecules in Acetonitrile Solvent Computed Using the 
B3PBE/TZVP-QZV-P/CPCM Method.  The α and β spin densities are shown as tan and green 
meshes, respectively.  The percent contributions of major moieties are listed in Table 3.  

 In Table 5, we list the energies and assignments of the LLTS that according to Kasha’s 

rule20 would be the emitting states.  The LLTS energies decrease in the order from electron-

donating to electron-withdrawing substituents in the 2,2’-bipyridine ligand.  For all complexes, 

there is substantial spin density ρs on the Pt atom and the ρs on the 2,2’-bipyridine ligand is larger 

than on the biphenyl ligand.  The spin density of Pt(bph)(4,4’-(NH2)2bpy) in the LLTS is 

distributed differently from the rest, as the ρs on the Pt atom is about twice as large as that in the 

rest of the complexes and the ρs on the (NH2)2bpy moiety is increased, all to the account of the 

biphenyl ligand.  Thus, only the LLTS of Pt(bph)(4,4’-(NH2)2bpy) is assigned as 3MLCT, 

whereas the rest are predominantly 3LCbpy-bph with significant 3MLCT character.  In the T1 state 

of Pt(bph)(4,4’-(NH2)2bpy), the spin densities on Pt, bpy and bph are 0.36 |e|, 0.99 |e| and 0.65 

|e|, respectively.  Considering this T1 state and the LLTS of the rest of the complexes, the Pt atom 

spin densities increase as the electron-donating strength of the functional group is increased. 

Table 5.  Lowest-lying Triplet States (LLTS) (in eV and in parentheses in nm) of Isolated 
Molecules Fully Optimized in Acetonitrile Solvent Using the TD-DFT/B3PBE/TZVP-QZV-
P/CPCM Method. The LLTS type is assigned based on the distribution of the 2 unpaired 
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electrons, labeled as spin densities (ρs, in |e|) among the Pt atom and the bpy and bph ligand 
moieties. The spin density distributions are presented in Figure 3. 

Complex LLTS  Type ρs (Pt)  ρs (bpy)  ρs (bph) 
Pt(bph)(4,4’-(NH2)2bpy) 2.12 (584)  3MLCT 0.61 1.12 0.19 
Pt(bph)(4,4’-Me2bpy) 1.99 (624)  3LCbpy-bph/3MLCT 0.34 0.94 0.72 
Pt(bph)(bpy) 1.93 (642)  3LCbpy-bph/3MLCT 0.33 0.94 0.74 
Pt(bph)(4,4’-Ph2bpy) 1.88 (660)  3LCbpy-bph/3MLCT 0.32 0.94 0.74 
Pt(bph)(4.4’-Br2bpy) 1.74 (712) 3LCbpy-bph/3MLCT 0.31 0.96 0.74 
Pt(bph)(4,4’-(COOC2H5)2bpy) 1.57 (788)  3LCbpy-bph/3MLCT 0.30 0.94 0.76 

Singlet excited electronic states 

Singlet excited states (SES) of the complexes were calculated relative to the SGS using the TD-

DFT method in acetonitrile solvent. In Table 6, we listed the SES with oscillator strength higher 

than 0.09 along with assignments of the major contributing electronic transitions. The 

assignments were made based on the molecular orbital spatial distributions presented in the 

Supporting Information Figure S3. The normalized percent contributions of the major electronic 

transitions contributing to the SES were given in parentheses.  The lowest-energy SES were 

found to be associated with the 1MLLCT transition. Higher-lying excited states had large 

contributions from π→π* transitions involving biphenyl and bipyridine ligands.  Ligand-centered 

transitions from the phenyl substituent to the bipyridine moiety were noted for the Pt(bph)(4,4’-

Ph2bpy) complex due to the close electronic coupling of these aromatic groups in the ligand. 

 

Table 6.  Singlet Excited States (SES) (in eV and in parentheses in nm) with Oscillator Strength 
(f) Higher Than 0.09 of Isolated Molecules in Acetonitrile Solvent Calculated as Vertical 
Electronic Transitions Using the TD-DFT/B3PBE/TZVP-QZV-P/CPCM Method.  The transition 
types are assigned based on the major contributing electronic transitions with percentages listed 
in parentheses.  The spatial distributions of the molecular orbitals participating in these 
transitions are shown in Supporting Information Figure S3.  MLCT = metal-to-ligand charge 
transfer; LC= ligand-centered; MLLCT = metal-and-ligand-1-to-ligand-2 charge transfer (see 
subscripts for ligand 1 and ligand 2); Subscripts denote the major contributing moiety. 
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Complex SES  f Type Transition 
Pt(bph)(4,4’-(NH2)2bpy) 3.04 (408) 0.19 MLbphLbpyCT H-1→L (100%) 
 3.82 (324) 0.16 LbphLbpyCT, π→π*bph H-1→L+1 (90%) 
 4.42 (280) 0.10 MLbpyCT, MLbphCT H-2→L+1 (77%) 
 4.66 (266) 0.23 MLbphLbpyCT 

LbphMCT, d→d 
H-9→L (30%) 
H→L+7 (32%) 

 4.69 (264) 0.11 π→π*bpy, MLbpyCT 
MLbpyCT 

H-9→L (30%) 
H→L+7 (32%) 

 4.73 (262)  0.18 MLbpyCT 
π→π*bph, d→d 

H-2→L+3 (44%) 
H→L+6 (28%) 

Pt(bph)(4,4’-Me2bpy) 2.92 (425)  0.21 MLbphLbpyCT H-1→L (100%) 
 3.77 (329)  0.10 MLbpyCT H-2→L (100%) 
 4.43 (280) 0.49 π→π*bpy, MLbpyCT H-6→L (72%) 
 4.66 (266) 

 
0.11 
 

MLbpyCT 
MLbphLbpyCT 

H-4→L+1 (45%) 
H-9→L (31%) 

 4.80 (258) 0.25 MLbphLbpyCT 
MLbphCT 

H-3→L+2 (42%) 
H-2→L+3 (44%) 

Pt(bph)(bpy) 2.84 (436)  0.19 π→π*bpy  H-6→L (100%) 
 4.37 (284) 0.45 MLbphLbpyCT H-7→L (75%) 
 4.80 (258) 0.34 π→π*bph, MLbphLbpyCT H-3→L+3 (60%) 
 5.07 (244) 0.10 MLbphLbpyCT, π→π*bph H-4→L+3 (86%) 
 5.27 (235) 

 
0.12 
 

π→π*bph, dxz→dyz 

π→π*bpy 
H-1→L+7 (39%)  
H-6→L+2 (20%) 

 5.58 (222) 0.20 π→π*bph, dxz→dyz H-1→L+6 (96%) 
Pt(bph)(4,4’-Ph2bpy) 2.75 (451) 0.29 MLbphLbpyCT H-1→L (97%) 
 3.98 (311)  

 
0.14 LCPh→bpy, d→d 

MLbphLbpyC 
H-6→L (50%)  
H-3→L+2 (33%) 

 4.03 (308) 0.17 
 

MLbphLbpyCT 
LCPh→bpy, d→d 

H-3→L+2 (63%) 
H-6→L (31%)  

 4.07 (305) 0.11 LCPh→bpy H-5→L (91%) 
 4.17 (297) 

 
0.11 
 

LCbph, Ph→bpy 
π→π*bph 

H-7→L (41%) 
H-1→L+3 (31%)  

 4.39 (282) 0.13 MLbphLbpyCT H-4→L+1 (97%) 
 4.46 (278) 0.13 MLbphLbpyCT H-4→L+2 (91%)  
 4.67 (265) 0.12 π→π*bpy  

MLbph-PhCT 
H-5→L+1 (43%)  
H-2→L+6 (22%) 

 4.77 (260) 0.16 MLbph-PhCT 
π→π*bpy  

H-2→L+6 (50%)  
H-5→L+1 (13%)  

 4.78 (260)  0.21 π→π*bpy 
π→π*bph, d→d 

H-5→L+1 (24%)  
H-3→L+3 (15%) 
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 4.79 (258) 
 

0.26 
 

LCPh→bpy 
LCPh→bpy 

H-5→L+2 (33%)  
H-5→L+1 (16%)  

 4.87 (256)  0.13 MLbpyCT, π→π*bpy H-6→L+2 (67%) 
 5.52 (224) 0.17 MLbphLbpyCT, π→π*bph H-1→L+9 (63%) 
 5.59 (221) 0.12 LCbpy→bph  

MLbphLbpyCT 
H-5→L+3 (29%) 
H→L+10 (12%) 

Pt(bph)(4.4’-Br2bpy) 2.67 (464)  0.21 MLbphLbpyCT H-1→L (100%) 
 3.50 (354) 0.10 MLbphLbpyCT H-1→L+1 (100%) 
 4.32 (287) 

 
0.13 
 

MLbphLbpyCT 
π→π*bpy 

H-4→L+1 (54%) 
H-7→L (33%) 

 4.44 (279)  
 

0.36 
 

MLbphLbpyCT 
π→π*bpy, dyz→dxz 

H-4→L+1 (43%) 
H-7→L (35%) 

 4.73 (262) 0.20 
 

π→π*bph, d→d 
MLbphLbpyCT 

H-3→L+3 (32%) 
H→L+9 (32%) 

 4.81 (258) 0.19 π→π*bph, d→d 
MLbphCT 

H-3→L+3 (38%) 
H-2→L+6 (29%) 

Pt(bph)(4,4’-(COOC2H5)2bpy) 2.51 (493)  0.14 MLbphLbpyCT H-1→L (70%) 
 2.67 (464) 0.18 MLbphLbpyCT H→L+1 (70%) 
 4.02 (308)  0.26 π→π*bpy, dyz→dxz H-7→L (84%) 
 4.69 (265) 0.14 π→π*bph, d→d 

MLbphLbpyCT 
H-3→L+3 (36%) 
H-1→L+4 (43%) 

 4.82 (257) 0.26 
 

π→π*bph, d→d 
MLbphLbpyCT 

H-3→L+3 (45%) 
H-1→L+4 (23%) 

 The spatial distributions of the HOMO, HOMO-1, and LUMO of the complexes are 

presented in Figure 4.  The HOMO and HOMO-1 are localized on the biphenyl ligand and Pt 

moieties, and the LUMO was localized on the bipyridine ligand.  These results confirm that 

spatial distributions of the HOMO and HOMO-1 were similar.  The localization of the LUMOs 

on electron-donating and electron-withdrawing substituents is insignificant. The electronic 

transition from HOMO-1 to LUMO is found to be the main contributor to the 1MLLCT states 

associated with the lowest-energy band we observed in the absorption spectra of the complexes.     
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Figure 4. Spatial Distributions of the HOMO, HOMO-1, and LUMO of the Complexes Plotted at 
an Isovalue of 0.03 au for the SGS of Isolated Molecules in Acetonitrile Solvent Computed 
Using the B3PBE/TZVP-QZV-P/CPCM Method. The percent contributions of major transitions 
are listed in Table 6.  Red and green isosurface colors denote + and – nodes, respectively. 

UV/Visible Absorption and Emission Spectra 

The lowest-energy bands of the experimental adsorption spectra of the complexes are presented 

in Figure 5a.  These bands, attributed to the characteristic MLCT transition, undergo 

bathochromic and hypsochromic shifts relative to the parent Pt(bph)(bpy) complex in the 

presence of electron-withdrawing and electron-donating substituents, respectively.  The emission 

spectra, presented in Figure 5b, are broad with discernible vibronic coupling of approximately 

~1156 – 1173 cm-1 as reported earlier for Pt(bph)(bpy).1  The emission spectrum of Pt(bph)(4,4’-
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(NH2)2bpy) is distinct from the rest, as presented in Supporting Information Figure S4.  

Excitation spectra were also collected and corresponded to the absorption profiles.   
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Figure 5. Experimental Absorption (a) and Emission spectra (b) of Pt(bph)(4,4'-X2bpy).  Spectra 
were obtained in butyronitrile at room temperature for absorption and at 77 K for emission. 
 

 Experimental values of the major absorption peak maxima and molar extinction 

coefficients (in parentheses) for the complexes are listed in Table 7 along with calculated SES 

energies (from Table 6).  Experimental emission peak maxima and emission lifetimes for the 

complexes in a butyronitrile glass 77 K are also presented in Table 7 along with calculated LLTS 

energies and assignments.  The largest emission lifetime of 2.25 µs is measured for Pt(bph)(4,4'-

(NH2)2bpy) that features a distinctly more structured emission spectrum compared to the rest of 

the series.  The calculated and experimental results are in a very good agreement.   

 

Table 7. Experimental and Calculated Electronic Absorption and Emission Results. MLCT = 
metal-to-ligand charge transfer; LC= ligand-centered; MLLCT = metal-and-ligand-1-to-ligand-2 
charge transfer. Subscripts denote the major contributing moiety. 
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 Complex λabs
a (ε, M-1cm-1) λSES,b  TypeSES λem

c, nm 
(77K)d 

τ, µs 
(77K)d 

λLLTS,e 
nm 

TypeLLTS 

Pt(bph)(4,4'-
(NH2)2bpy) 

257 (2.8 x 104)         
 

262, 264, 266 
 

π→π*bpy 
 

503 2.25 584 3MLCT 

 323 (5.9 x 103) 324 MLLCT     
 405 (3.6 x 103) 408 MLLCT     
Pt(bph)(4,4'-
Me2bpy) 

259 (2.9 x 104)         258 MLLCT 566 0.83 624 3LC, 
3MLCT 

 286 (1.9 x 104) 280 π→π*bpy     
 304 (1.5 x 104) 329 MLCT     
 420 (6.1 x 103) 425 MLLCT     
Pt(bph)(bpy) 226 (2.7x104)         222 π→π*bph 584 0.69 642 3LC, 

3MLCT 
 258 (2.6x104)   258 π→π*bph     
 289 (1.7 x 104) 284 π→π*bph     
 440 (5.6x 103) 436 MLCT     
Pt(bph)(4,4'-
Ph2bpy) 

221 (2.1 x 104)         
 

221, 224 
 

π→π*bph 
 

600 1.00 660 3LC, 
3MLCT 

 252 (2.6 x 104) 256 π→π*bph     
 264 (2.4 x 104) 259, 260 π→π*bph     
 456 (4.6 x 103) 451 MLCT     
Pt(bph)(4,4'-
Br2bpy) 

294 (2.0 x 104)         
 

279, 287 
 

π→π*bph 620 0.37 712 3LC, 
3MLCT 

 340 (1.0 x 104)                  354 π→π*bph     
 470 (6.0 x 103) 464 MLCT     
Pt(bph)(4,4'-
(COOC2H5)2bpy) 

252 (3.2 x 104)         
 

257 
 

π→π*bph 670 0.17 788 3LC, 
3MLCT 

 320 (1.9 x 104)  308 π→π*bph     
 500 (8.2 x 103) 493 MLCT     
a in acetonitrile (experiment) 
b in acetonitrile (TD-DFT) 
c λex at MLCT maxima 
d in butyronitrile (experiment) 
e in acetonitrile (DFT) 

Electrochemistry 

Table 8 lists the half-wave reduction potentials E1/2red determined for the complexes over the 

range of 0.0 V to -2.0 V vs. the AgNO3 reference electrode.  Within this range, ∆EP, where ∆EP is 

the difference between the reduction and oxidation peak of the redox active couple determined 

by cyclic voltammetry, varied from 75 to 100 mV consistent with other reports found for one 
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electron transfer processes in non-aqueous solvents.72   Irreversible electrochemical behavior was 

found in the range of 0 V to +2.0 V vs. the AgNO3 reference electrode for the compounds and 

was not examined further.  The solubility of Pt(bph)(4,4'-(NH2)2bpy) in dichloromethane was too 

low to study its electrochemical behavior.  Figure 6 presents the differential pulse 

voltammograms of the complexes.  The E1/2red values and voltammograms shift to lower and 

higher voltages relative to Pt(bph)(bpy) in the presence of electron-withdrawing and electron-

donating substituents, respectively, following the trends of the absorption and emission spectra. 

Table 8. Electrochemical Reduction Potentials E1/2 of Pt(bph)(4,4'-X2bpy). 
 
 Complex E1/2red(V)a 

Pt(bph)(4,4'-(NH2)2bpy) 
Pt(bph)(4,4'-Me2bpy) 
Pt(bph)(bpy) 
Pt(bph)(4,4'-Ph2bpy) 
Pt(bph)(4,4'-Br2bpy) 
Pt(bph)(4,4'-(COOC2H5)2bpy) 

NAb 

-1.500 
-1.410 
-1.316 
-1.209 
-1.010 

a: 0.1 M TBAH in dichloromethane 
b: Not available due to low solubility in dichloromethane 
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Figure 6.  Differential Pulse Voltammograms of Pt(bph)(4,4'-X2bpy). 
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Discussion 

Structures  

As noted from the results in Table 3, bond distances and bond angles from XRD in solid state 

show little dependence on substituent electron-donating and electron-withdrawal effects. 

However, these substituent effects are evident in the 1H NMR spectra of the complexes.  For 

Pt(bph)(4,4'-(NH2)2bpy), the bipyridyl 1H chemical shifts appear mostly upfield at 7.24-8.68 

ppm, while those of Pt(bph)(4,4'-(COOC2H5)2bpy) are found downfield at 7.83-9.40 ppm.    

  It is important to examine the effect of substituents on bonding within the bipyridine 

ligand.  The Mayer bond order between the N of the amine group and the C atom bonded to it 

was calculated to be 1.25 in the ground state of the complex and 1.18 in the LLTS, indicating a 

stronger bonding (exhibited as a partial double bond) compared to that in methylamine with a C-

N bond order of 0.95 in singlet and 0.99 in the LLTS.  Such extended conjugation of the 

bipyridine ligand π-system is not obtained in other complexes. For example, in Pt(bph)(4,4'-

(COOC2H5)2bpy) the Mayer bond order of the C-C bond at the substitution site of bipyridine was 

calculated to be 0.96 in the ground state and 0.98 in the LLTS.  Also, in Pt(bph)(4,4'-Ph2bpy) the 

Mayer bond order of the C-C bond at the substitution site was calculated as 0.88 for both the 

singlet ground and lowest-lying triplet states.  

Free Energy Correlations   

In order to assess the effects of substituents on properties of the complexes in the series, linear 

correlations between experimental and computational results are examined with respect to 

Hammett sigma constants, σ, and in some cases with respect to each other.  For consistency, only 

di-substituents that are para- with respect to the bipyridyl N atoms have been investigated (σp). 
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Absorption and Emission The correlations of experimental lowest-energy transition and 

calculated 1MLLCT SES (singlet excited states) for the complexes with σp presented in Figure 

7(a) highlight the impressive agreement between theory and experiment.  The energy of lowest-

lying electronic transitions determined from both experiment and calculation increases in the 

order Pt(bph)(4,4'-(COOC2H5)2bpy) < Pt(bph)(4,4'-Br2bpy) < Pt(bph)(4,4'-Ph2bpy) < 

Pt(bph)(bpy) < Pt(bph)(4,4'-Me2bpy) < Pt(bph)(4,4'-(NH2)2bpy).  The linear fitting results listed 

in Supporting Information Table S3 indicate that experiment and theory substantiate each other. 
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Figure 7.  Experimental UV-Vis Absorption and Calculated 1MLLCT State Energies vs σp (a), 
Experimental Emission and Calculated LLTS Energies vs σp (b), Experimental Emission 
Lifetime vs σp (c), and Electrochemical Reduction Potential E1/2red and ELUMO vs σp (d) for the 
Pt(bph)(4,4'-X2bpy) Complexes.  The linear fitting analysis results are listed in Supporting 
Information Table S3.   

 The correlations of the experimental emission and calculated LLTS energies with σp are 

presented in Figure 7(b). These results show that the LLTS energies are systematically lower 

than the emission energies by 0.2 eV, which falls within the underestimation of 0.25 eV reported 

in the literature.37,43  The linear fitting analysis results for absorption and emission (Figures 7(a) 

and 7(b)) yield slopes in the relatively narrow range from -0.22 to -0.27.  The intercepts for 

experimental emission and LLTS are lower than those for adsorption by 0.7 eV and 0.9 eV, 

respectively, representing estimates of the sum of the non-radiative relaxation energies for 

internal conversion and intersystem crossing.  The emission lifetimes also correlate linearly with 

the Hammett constant, as shown in Figure 7(c), in agreement with an earlier report for para-

substituted tetraphenyl porphyrin carbonyl complexes of ruthenium(II).73   Complete linear fitting 

results are available in Supporting Information Table S3.  The emission spectrum of Pt(bph)(4,4'-

(NH2)2bpy) features a shoulder at 584 nm (2.12 eV) and peaks at about 541 nm (2.29 eV) and 

503 nm (2.47 eV), as shown in Supporting Information Figure S3.  The spacing between the 

peaks is ~ 1400 cm-1 in the range previously attributed to ring breathing modes in transition 

metal complexes containing bipyridine ligands.74 

Electrochemistry Linear correlations of the electrochemical reduction potentials E1/2red with σp 

as shown in Figure 7(d) yield an impressive R2 value of 0.99.  Calculated absolute LUMO 

energies for complexes in acetonitrile solvent are also plotted vs σp in Figure 7(d) and give an R2 

value of 0.90.  Electron-withdrawing substituents make the reduction of the complexes more 

thermodynamically favorable (have less negative E1/2red) and correlate with lower ELUMO.  The 
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opposite dependence holds for the electron-donating methyl substituent.  Electron affinity, a 

more physical descriptor of a reduction potential that unlike the LUMO energy accounts for 

orbital relaxation, was also examined. The electron affinity, calculated as the total energy of the 

anion minus the total energy of the neutral complex, was found to correlate linearly with the 

Hammett σp, as shown in Supporting Information Figure S5.    

Energy Gap Control The HOMO-LUMO energy gap is a very important electronic structure 

characteristic of these complexes, as it is related to their photochemical and redox properties.  

The correlation of the HOMO-LUMO gap calculated using DFT with σp presented in Figure 8 

indicates that by using electron-withdrawing and electron-donating substituents the properties of 

Pt(II) diimine complexes can be controlled to a large extent by using functional groups, as 

demonstrated by the R2 value of 0.92.   
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Figure 8.  Calculated ELUMO – EHOMO energy gap vs σp for Pt(bph)(4,4'-X2bpy).  The linear fitting 
analysis results are listed in Supporting Information Table S3. 

 The HOMO-LUMO energy gap calculated using DFT gives a reasonable approximation 

of the lowest excitation energy without taking into account orbital relaxation.75  The main source 

of error in energy gap calculations using DFT is the inaccuracy in the calculation of the LUMO 
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energy.   The TD-DFT calculations yield vertical electronic energies of the SES and allow direct 

calculation of the HOMO-LUMO gap as the energy of the lowest-lying SES.  The correlation of 

the HOMO-LUMO gap calculated as the lowest-lying SES presented in Supporting Information 

Figure S6.  However, lowest-lying excited states could be forbidden and not observed 

experimentally. The oscillator strength of an excited state computed using TD-DFT is related 

with molar absorptivity coefficient and allows identification of the lowest-energy transitions 

observable experimentally, e.g., using absorption UV-Vis spectroscopy. The 1MLLCT SES listed 

in Table 6 and correlated with σp in Figure 7(a) represents the lowest-lying SES with oscillator 

strength higher than 0.09 that are observable as the lowest-energy transitions in the absorption 

spectra.       

Predictions for Pt(bph)(4,4'-(X)2bpy, X=CN, NO2 and Me2N These impressive correlations 

are employed to predict the experimental spectroscopic properties of the complexes Pt(bph)(4,4'-

(CN)2bpy), Pt(bph)(4,4'-(NO2)2bpy) and Pt(bph)(4,4'-(Me2N)2bpy) that have not yet been 

synthesized. The σp values for two CN, NO2 and (CH3)2N substituents are 1.32, 1.56 and -1.66 

respectively. These σp values indicate that the CN and NO2 functional groups are stronger 

electron-withdrawers than those in the series we explore experimentally, whereas the Me2N is a 

stronger electron-donor than those in the series.  The geometries of these complexes are 

optimized in the SGS and LLTS, and the singlet excited states are calculated as described above.  

The results are presented in Supporting Information Tables S4-S6 and Figures S7 and S8.  The 

main distinctions of the complexes containing CN and NO2 from the series of 6 complexes 

presented above are the larger Pt atom charges in the SGS, lower-lying LLTS, and smaller 

changes in Pt-C and Pt-N bond lengths in the LLTS compared to SGS.  In particular, the energy 

of the LLTS of Pt(bph)(4,4'-(NO2)2bpy) is about half that of Pt(bph)(4,4'-(NH2)2bpy).   
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 Similar to Pt(bph)(4,4'-(NH2)2bpy), the Pt(bph)(4,4'-(Me2N)2bpy) complex has a broken-

symmetry LLTS and a T1 state with C2 symmetry 0.13 eV above the LLTS, according to our 

computational studies.  Also, the Mulliken charge and spin density distributions in the SGS, 

LLTS and T1 states of these two complexes are very similar.  The Mayer bond orders for the 

C(bpy)-N(Me2N) bond are 1.33 and 1.29 in the SGS and LLTS, respectively, indicating stronger 

bonding compared to the respective values of 1.25 and 1.18 for Pt(bph)(4,4'-(NH2)2bpy).    

 The properties of Pt(bph)(4,4'-(CN)2bpy), Pt(bph)(4,4'-(NO2)2bpy) and Pt(bph)(4,4'-

(Me2N)2bpy) are predicted based on the linear fitting analysis results listed in Table S1 and listed 

in Table 9.  The EMLLCT, ELLTS, ELUMO and energy gap predictions for Pt(bph)(4,4'-(CN)2bpy) 

compare favorably with the respective calculated values.  For the Pt(bph)(4,4'-(NO2)2bpy) 

complex, the deviations of the predicted values from the respective calculated values are 

significant.  This  may be due in part to the strong influence of the nitro group as reported by 

others for heterocyclic platinum(II) complexes.76,77  For the Pt(bph)(4,4'-(Me2N)2bpy) complex, 

the agreement between predicted and actual values is intermediate.  These predictions represent 

extensive extrapolation as the σp values of the CN and NO2 groups are significantly larger and 

those of Me2N are smaller than those of the linear fitting series.  Nevertheless, these predictions 

demonstrate an important approach for preliminary evaluation or in silico screening of unknown 

compounds. 

 

 

Table 9.  Predicted and Actual Properties of Pt(bph)(4,4'-(X)2bpy), X=CN, NO2 and Me2N.  The 
predicted values are calculated from the σp values of the CN, NO2 and (CH3)2N groups as well as 
the slope and intercept values calculated for Figures 7 and 8 and listed in Supporting Information 
Table S3.  The actual values are calculated using the B3PBE/TZVP-QZV-P/CPCM Method. 
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 Complex ESES-MLLCT
 EAbs-MLLCT ELLTS EEm E1/2 ELUMO E gap 

   Pt(bph)(4,4'-(CN)2bpy)    
Predicted 2.48 2.41 1.56 1.80 -0.85 -3.19 2.40 
Actual  2.53 - 1.41 - - -3.30 2.31 
   Pt(bph)(4,4'-(NO2)2bpy)    
Predicted 2.42 2.35 1.51 1.75 -0.76 -3.30 2.32 
Actual 2.13 - 1.07 - - -3.76 1.89 
   Pt(bph)(4,4'-(Me2N)2bpy)   
Predicted 3.22 3.16 2.46 2.28 -2.04 -1.87 3.41 
Actual 3.03 - 2.17 - - -2.00 3.31 
 

Conclusion 

Derivatives of Pt(bph)(bpy) with varying electron-withdrawing and donor substituents attached 

to the 4,4' positions of bipyridine have been synthesized and characterized.  The XRD results and 

geometry optimization using DFT showed that all the complexes in the series have an X-

configuration with torsion angles of 28-30° in single crystals and 37° in acetonitrile solution.  

Molecular orbital diagrams show that the HOMOs have Pt-biphenyl character and the LUMOs 

are localized on the bipyridyl group.  Electron-donating and withdrawing effects were analyzed 

using Pt atom charge and spin density analyses.  The lowest-lying triplet states were also 

optimized and assigned based on the localization of the electron spin density.  The TD-DFT 

method was employed to predict the singlet excited states in acetonitrile that were found to be in 

a very good agreement with the electronic absorption spectral peaks in the same solvent.  

 Correlations of calculated and experimental results with the Hammett constants for para-

substitution position were established in order to analyze the electron-withdrawing and donating 

effects on the coordination sphere of the complexes in the series.  The correlations of calculated 

1MLLCT and UV-Vis spectra lowest-energy bands with the Hammett σp constants highlighted 

these charge transfer effects.  The calculated LUMO energies as well as measured reduction half-
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wave potentials and emission lifetimes were also correlated with σp values. Moreover, the 

experimental emission and calculated LLTS energies indicated that the calculated values are 

systematically lower that those measured, in agreement with previous reports.    

 The most important correlation established was between the HOMO-LUMO energy gap, 

a very important characteristic that determines the applicability of compounds in photo- and 

electrochemical devices, and the σp values for the ligand substituents.  Predictions of 

spectroscopic and electrochemical properties for three compounds that have not been synthesized 

are also presented as guidelines for further research effort.  In light-harvesting devices, the 

energy gap must overlap with the conduction band and the ELUMO must be within or above the 

conduction band of a semiconductor, such as TiO2.  Our results demonstrate that by varying the 

substituents attached to the bipyridyl ring, the HOMO-LUMO gap and LUMO energy can be 

tuned up.  The correlations and insights presented here could help screen molecular candidates 

and rationally design improved optoelectronic, photochemical and photocatalytic devices. 
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