
City University of New York (CUNY) City University of New York (CUNY)

CUNY Academic Works CUNY Academic Works

Open Educational Resources Queensborough Community College

2021

Introduction to Computers and Programming using Python: A Introduction to Computers and Programming using Python: A

Project-based Approach Project-based Approach

Esma Yildirim
CUNY Queensborough Community College

Daniel Garbin
CUNY Queensborough Community College

Mathieu Sassolas
CUNY Queensborough Community College

Kwang Hyun Kim
CUNY Queensborough Community College

How does access to this work benefit you? Let us know!

More information about this work at: https://academicworks.cuny.edu/qb_oers/170

Discover additional works at: https://academicworks.cuny.edu

This work is made publicly available by the City University of New York (CUNY).
Contact: AcademicWorks@cuny.edu

https://academicworks.cuny.edu/
https://academicworks.cuny.edu/qb_oers
https://academicworks.cuny.edu/qb
http://ols.cuny.edu/academicworks/?ref=https://academicworks.cuny.edu/qb_oers/170
https://academicworks.cuny.edu/qb_oers/170
https://academicworks.cuny.edu/?
mailto:AcademicWorks@cuny.edu

Introduction to Computers and Programming using Python:

A Project-based Approach

Daniel Garbin Kwang Hyun Kim Mathieu Sassolas Esma Yildirim

2021-01-26

Department of Mathematics and Computer Science

Queensborough Community College

City University of New York

Student version

This Open Education Resource is licensed under the Creative

Commons Attribution-NonCommercial 4.0 International License.

Contents

Foreword iii

I Concept review 1

L1 Variables 3

L2 Input and Ouput 9

L3 Numbers and arithmetic 15

L4 Strings 23

L5 Conditions 35

L6 Loops 45

L7 Lists, Tuples, Dictionaries 53

L8 Functions 67

II Projects 83

P1 The Motion of the Vertical Projectile 85

P2 Linear and Quadratic Equations 89

P3 Image Processing 97

P4 Simple Operations with Fractions 109

P5 Time Measurement and Dates 119

P6 Grade Management with Pandas 129

P7 Descriptive Statistics and Histogram of Frequencies 139

P8 Emotion Analysis 147

P9 Dynamics on Functions 159

Introduction to Computers and Programming using Python i

CONTENTS CONTENTS

P10 The Game of Tic-Tac-Toe 167

P11 A Function-Based Role Playing Game 175

P12 Voting Systems 195

P13 Protein Translation 211

ii Introduction to Computers and Programming using Python

Foreword

0.1 How to use this OER?

This Open Educational Resource has been designed to give freedom to the instructor, both

in format and topics ultimately used throughout the course. While we provide 13 turnkey

projects, it is only expected that 3 or 4 are used over the course of a semester. And all

projects are provided both as textual instructions (the student version of this OER) and

Jupyter Notebooks (one with and one without the solutions). It is up to the instructor

to choose the most efficient platform according to the context of the class and technical

constraints.

0.1.1 The projects

Not all projects are created equal: they all assume some degree of proficiency in certain

aspects of programming, and provide practice in other aspects. A list of all concepts used

in projects is provided in Table 1, and a brief description of each project is given below.

P1: The Motion of the Vertical Projectile. Physics

This project uses the arithmetical and mathematical features of Python to implement

the formulas for the vertically thrown projectile.

P2: Linear and Quadratic Equations. Mathematics

In this project we use Python to solve linear and quadratic equations. Emphasis is

put on the special cases that need to be detected and dealt with using conditionals.

P3: Image Processing. Graphics

In this project we use the PIL library to manipulate images pixel by pixel. We im-

plement changes of color and transparency traversing the 2-dimensional array of the

image. A more advanced topic blurs the image by using a vicinity of the pixels. These

changes can be performed on any image chosen by the students.

P4: Simple Operations with Fractions. Mathematics

The goal of this project is to code basic algebra on rational numbers. It starts with

fraction simplification (using Euclid’s Algorithm for the GCD) and then gets into the

4 basic operations.

P5: Time Measurement and Dates. Computer applications

This project introduces the Time library. We use its basic features to measure elapsed

time, wait some time, then implement a conversion from time as seconds from epoch

into a real date.

P6: Grade Management with Pandas. Statistics

In this project, we use the Pandas library to read and write Excel spreadsheet. We

use it to build a grade management system.

Introduction to Computers and Programming using Python iii

Chapter 0 Foreword

#

Title

Prerequisites

Concepts covered

P1

The Motion of the

Vertical Projectile

Input/output, lists,

conditionals, loops,

functions

Working with math

formulas

P2

Linear and Quadratic

Equations

Input/output,

conditionals

Working with math

formulas

P3

Image Processing

Functions, conditionals

Loops, list and tuple

access

P4

Simple Operations with

Fractions

Input/output, lists,

conditionals, loops

Functions

P5

Time Measurement and

Dates

Input/output, functions,

conditionals

Loops

P6

Grade Management with

Pandas

Input/output, lists,

conditionals, functions

Pandas, vector

operations

P7

Descriptive Statistics and

Histogram of Frequencies

Loops, lists

Statistics library

functions, bar charts

P8

Emotion Analysis

Loops, conditionals,

input/output

Lists, dictionaries, bar

charts, natural language

processing

P9

Dynamics on Functions

Input/output, lists,

conditionals, loops,

functions

Recursion and iteration

P10

The Game of

Tic-Tac-Toe

Input/output, lists,

conditionals, loops,

functions

Basic game design

P11

A Function-Based Role

Playing Game

Variables, input/output

Functions, conditionals,

dictionaries, the

importance of comments

P12

Voting Systems

Lists, basic loops,

conditionals

Dictionaries and looping

on dictionaries

P13

Protein Translation

Lists, loops, functions,

input/output,

conditionals

Dictionaries

Table 1: Programming concepts in the projects.

iv Introduction to Computers and Programming using Python

Foreword Chapter 0

P7: Descriptive Statistics and Histogram of Frequencies. Statistics

In this project, we calculate measures of central tendency and dispersion. We also use

the Matplotlib and Seaborn libraries to create histograms using bar graphs.

P8: Emotion Analysis. Literature

This project uses word dictionaries and dedicated Python libraries to analyze and

compare the emotions conveyed by books. Two books are analyzed in the project but

students are encouraged to choose their own favorite book and extract the emotion

information from it as well.

P9: Dynamics on Functions. Computer Science

This project focuses on composition of functions and applies it to the computational

verification of the Collatz conjecture.

P10: The Game of Tic-Tac-Toe. Games

In this project, we implement the 4-by-4 version of the Tic-Tac-Toe game.

P11: A Function-Based Role Playing Game. Games

In this project, we implement a simple donjon in an RPG. This implementation relies

on function calling (which can be recursive) and does not require to use any loop.

P12: Voting Systems. Political science

This project surveys different mode of elections: first-past-the-post, Borda, Condorcet,

two rounds, instant runoff. For each of these, a list of preferences is provided and the

goal is to find the winner according to the voting systems.

P13: Protein Translation. Biology

In this project, we implement a simulation of the translation from DNA to proteins

that occur in living cells. From a file containing the DNA and a file of RNA amino-acid

codons, we generate a dictionary of proteins.

0.1.2 A typical course sequence

Before getting onto projects, we recommend introducing some basic concepts formally. The

Lectures provide not only an introduction to the various programming constructs, but are

to be used as a reference throughout the project. Whenever a concept is used for the first

time in a project, a pointer to refer to the relevant Lecture is provided so that student get

a refresher on the topic. Like projects, Lectures are provided both in this document and in

Jupyter Notebook format.

To guide the choice of projects, here is a couple of suggestions. These sequences provide

a good coverage of topics with an increasing project difficulty.

• 1. The Motion of the Vertical Projectile

2. Image Processing

3. Descriptive Statistics and Histogram of Frequencies

4. Emotion Analysis

• 1. Linear and Quadratic Equations

2. Grade Management with Pandas

3. Protein Translation

Introduction to Computers and Programming using Python v

Chapter 0 Foreword

4. A Function-Based Role Playing Game

• 1. The Motion of the Vertical Projectile

2. Time Measurement and Dates

3. Dynamics on Functions

4. Voting Systems

• 1. Simple Operations with Fractions

2. The Game of Tic-Tac-Toe

3. Descriptive Statistics and Histogram of Frequencies

4. Protein Translation or Voting Systems

0.2 Acknowledgements

This Open Education Resource was produced with funding from QCC CollegeNow program

and CUNY Tutorcorps.

This work is licensed under the Creative Commons Attribution-NonCommercial 4.0 In-

ternational License. To view a copy of this license, visit http://creativecommons.org/

licenses/by-nc/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain

View, CA 94042, USA.

The authors would like to thank Mary-Ann Meyer and Maria Mercedes Franco for their

ongoing support throughout the elaboration of this document.

vi Introduction to Computers and Programming using Python

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

Part I

Concept review

1

Lecture 1

Variables

Lecture contents

L1.1 Introduction . 3

L1.2 Naming variables . 3

L1.3 Defining and assigning variables . 4

L1.3.1 Examples . 4

L1.4 Using variables . 5

L1.4.1 Examples . 5

L1.5 Types . 5

L1.5.1 An aside: Python’s typing method 6

L1.6 Note on nomenclature: Variable, Name, or Object? 7

L1.1 Introduction

In a program, a variable is like a box to store data. It has a name and a value .

The name of the variable will be used in place of the value when coding. It will be

replaced by its value at execution time. Using variables allows to create programs in an

abstract way: the program concentrates on the operations that are performed on the data,

not on the data itself, which is usually unavailable at the time of coding.

L1.2 Naming variables

The name is case sensitive; so variable X is a different variable than x , and myVariable is

not the same as Myvariable .

The name of the variable can contain lowercase and uppercase characters, digits, as well

as the underscore _ , but it cannot start with a digit. The choice of the name of the variables

is up to the programmer defining them, but one should keep in mind the following guidelines:

• Do not define several variables that only differ in case: it is a recipe for bugs when

using one variable for the other.

• Choose a meaningful name that tells you at a glance what is the value that this variable

contains. For example: counter , firstName , nbWords .

• Variable names cannot be keywords: so if , for , while , return , for example, should

not be used as variable names. The complete list of Python keywords is below:

help("keywords")

Introduction to Computers and Programming using Python 3

Lecture 1 Variables

Here is a list of the Python keywords. Enter any keyword to get more␣

↪ → help.

False def if raise

None del import return

True elif in try

and else is while

as except lambda with

assert finally nonlocal yield

break for not

class from or

continue global pass

The data can be of different kind: a number (with or without decimal point), some text...

Data types will be discussed in Section L1.5.

L1.3 Defining and assigning variables

Assignment means giving a value to a variable. The first time a variable is assigned, it is

also defined: beforehand it did not exist, so trying to use it will raise an error.

The syntax for an assignment is as follows: <variable name> = <value> . The value

can be a calculated expression (this will be developed later).

L1.3.1 Examples

x = 42

X = 26 # Not the same as x

print("x and X:",x,X) # Prints the values of both x and X

myVariable = 10

print("[5] myVariable:",myVariable) # Prints the current value (at line ␣

↪ → 5)

myVariable = 75 # Change of value for myVariable

print("[7] myVariable:",myVariable) # Prints the current value (at line 7)

myvariable = 42 # There is a typo: this defines a new variable instead of ␣

↪ → changing the value of myVariable!

print("[9] myVariable:",myVariable) # Prints the current value (at line 9)

print("y:",y) # Error: "NameError: name ' y ' is not defined"

y = "Hello!"

print("y:",y) # No error

x and X: 42 26

[5] myVariable: 10

[7] myVariable: 75

[9] myVariable: 75

y: Hello!

4 Introduction to Computers and Programming using Python

Variables Lecture 1

Remark for Jupyter

In Jupyter, line 10 of the above block (print("y:",y) "Hello!") will only produce

an error if the block has not yet been executed. Otherwise variable y does exist, from

the definition of line 11 executed in a previous execution of the block.

The kernel can be restarted in order to be able to execute a block “for the first time”.

L1.4 Using variables

Whenever a variable name is used, it will be replaced by its current value. This is actually

what is happening when we call print to see the value: it is first replaced by the values

stored in the variable, and this value is printed out.

L1.4.1 Examples

x = 3

y = 5

z = 3+2*x # Note: PEMDAS applies

print("x, y, z:",x,y,z)

x = y # Now x is 5; z did not change

print("x, y, z:",x,y,z)

y = y+1 # Now y is 6; x did not change

print("x, y, z:",x,y,z)

x, y, z: 3 5 9

x, y, z: 5 5 9

x, y, z: 5 6 9

L1.5 Types

What happens with a variable depends on their type . For example, the number 3 is not the

same as the string "3" . You cannot add number 1 to string "3" : it makes as much sense as

trying to add number 1 to "Hello!" .

message = "3"

number = 3

addingNumber = number+1 # No problem

addingMessage = message+1 # Error: "TypeError: Can ' t convert ' int ' ␣

↪ → object to str implicitly"

TypeError Traceback (most recent call last)

<ipython-input-3-503b622ba663> in <module>

2 number = 3

3 addingNumber = number+1 # No problem

Introduction to Computers and Programming using Python 5

Lecture 1 Variables

->4 addingMessage = message+1 # Error: "TypeError: Can ' t convert ' int ' ␣

↪ → object to str implicitly"

TypeError: Can ' t convert ' int ' object to str implicitly

Note however that + and * can still have a meaning with strings, but not the usual

meaning of addition and multiplication that they have with numbers. See Lecture L4 for

more details.

Python uses a pretty loose typing, so it is possible to have a variable that starts as a

number but then is changed into a string. Just because it is possible does not mean it is

desirable! (And other programming languages don’t have this flexibility.) It is usually best

to keep in mind what type of value the variable contains and use it as such all the time.

randomValue = 42

print(randomValue)

randomValue = randomValue+1 # No problem: it is a number

randomValue = "Goodbye!" # Not a good idea

print(randomValue)

randomValue = randomValue+1 # Exact same line as line 3: TypeError

42

Goodbye!

TypeError Traceback (most recent call last)

<ipython-input-4-7df054832887> in <module>

4 randomValue = "Goodbye!" # Not a good idea

5 print(randomValue)

->6 randomValue = randomValue+1 # Exact same line as line 3: TypeError

TypeError: Can ' t convert ' int ' object to str implicitly

L1.5.1 An aside: Python’s typing method

Python use the Duck typing method, based on the following idea: “If it walks like a duck,

and quacks like a duck, then it must be a duck”.

So if a variable behaves like a number, it can be treated as a number for all useful

purposes. In this context, Python does not actually try to know what is the type of a

variable until it is time to use it. This is particularly important with integers and decimal-

point numbers, which can in most cases be used interchangeably... unless they can’t.

x = 5

x = 2.5 # Works with or without decimal point

y = 2*x+3

y = y*y-x

6 Introduction to Computers and Programming using Python

Variables Lecture 1

print(y)

61.5

x = 5

x = 2.5

for i in range(0,x): # Does not work: only integers are allowed: ␣

↪ → "TypeError: ' float ' object cannot be interpreted as an integer"

print(i)

TypeError Traceback (most recent call last)

<ipython-input-1-c65c3110b7af> in <module>

1 x = 5

2 x = 2.5

->3 for i in range(0,x):# Does not work: only integers are allowed:␣

↪ → "TypeError: ' float ' object cannot be interpreted as an integer"

4 print(i)

TypeError: ' float ' object cannot be interpreted as an integer

L1.6 Note on nomenclature: Variable, Name, or Object?

The term variable is used to denote two different things at the same time: the name of the

variable and the object that is referred by that name, which is stored in the memory where

the data resides.

In Python, the term name is commonly used, for example in the error that appears when

a variable has not been defined: NameError: name ' y ' is not defined .

Note that every value is an object : an integer or a float (these are called primitive types),

a string, a list, or an instance of a class (in so-called object-oriented programming). In

addition, objects need not have a name to exist. For example: a = 5.3 uses the named

object (or variable) a which is of float type and an unnamed or verbatim object 5.3 which

is also of float type.

Introduction to Computers and Programming using Python 7

Lecture 2

Input and Ouput

Lecture contents

L2.1 Introduction . 9

L2.2 The output operation . 10

L2.2.1 Verbatim data . 10

L2.2.2 Variable data . 10

L2.2.3 Printing several values . 11

L2.2.4 The sep and end options . 11

L2.3 The input operation . 12

L2.3.1 Conversion of inputs . 12

L2.3.2 More string manipulation . 13

L2.1 Introduction

The most basic tasks or operations of a programming language are the input and the output

of data. The operation of input involves getting data or information. In the simplest case,

the data will be entered by the user. This task is similar to the actions in the order below

(which is really important):

1. ask someone a question

2. receive and remember the answer.

For example, the teacher asks the student “what day is today?” to which the student

may reply ’Tuesday’. The teacher will then store this information (at least temporarily).

Here are some further question/answer examples:

• Q: How long is this route? A: 230 km.

• Q: How much does the watermelon weigh? A: 3 kg.

The operation of output involves displaying or printing data. This task is similar to the

actions in the order below:

1. display the context of the data (in other words, do not just print a value alone as it

may be confusing);

2. display the data.

In the above, example the teacher may reply ‘Today is Tuesday’. Note that simply

displaying the data ‘Tuesday’ without a proper context may be confusing.

For the sake of simplicity, we start by looking at the output before considering input.

Introduction to Computers and Programming using Python 9

Lecture 2 Input and Ouput

L2.2 The output operation

The output operation involves the display of data in a given context. In Python this oper-

ation is done using the print() function.

Note: In this context, the function print() displays the content on the screen on the

next available line. This is not to be confused with the content being sent for printing to a

printer on paper.

L2.2.1 Verbatim data

The simplest examples consist of printing verbatim data . The data is placed inside a pair of

single quotes e.g. ' Hello, there! ' (or double quotes "Hello, there!").

print(' Hello, world! ')

Hello, world!

print(' Today is Tuesday, our first class. ')

Today is Tuesday, our first class.

Here is a more tedious example of printing a message using “character graphics”.

print(' * * ****** * * **** * * **** * * * ')

print(' * * * * * * * * * * * * * * ')

print(' ****** **** * * * * * * * * * * ')

print(' * * * * * * * * * * * * * ')

print(' * * * * * * * * * * * * ')

print(' * * ****** ****** ****** **** * **** **** * ')

* * ****** * * **** * * **** * * *

* * * * * * * * * * * * * *

****** **** * * * * * * * * * *

* * * * * * * * * * * * *

* * * * * * * * * * * *

* * ****** ****** ****** **** * **** **** *

L2.2.2 Variable data

While some data is verbatim and does not change, other is flexible. To print variable data:

1. set a variable with a value (or datum);

2. print the variable.

s = ' Hello, world! '

print(s)

Hello, world!

The variable s is a string, i.e. an ordered collection of characters (simply put an array

or sequence of characters).

10 Introduction to Computers and Programming using Python

Input and Ouput Lecture 2

L2.2.3 Printing several values

Print can display several values on the same line. These values are separated by a comma.

In the examples below, a comma separates the verbatim data from the variable.

a = 5

print(' a = ' , a)

a = 5

pi = 3.1415

print(' The value of PI is approximately ' , pi, ' . ')

The value of PI is approximately 3.1415 .

weekdays = [' Monday ' , ' Tuesday ' , ' Wednesday ' , ' Thursday ' , ' Friday ' ,␣

↪ → ' Saturday ' , ' Sunday ']

print(' The days of the week are: ' , weekdays, ' . ')

The days of the week are: [' Monday ' , ' Tuesday ' , ' Wednesday ' , ' Thursday ' ,

' Friday ' , ' Saturday ' , ' Sunday '] .

In the last example, the object weekdays is a list of string objects.

L2.2.4 The sep and end options

The print() function can take two optional arguments sep and end . They

are given after the values that are to be printed and using the syntax

print(<values>,sep=<separator>,end=<endmark>)

• sep determines what is to be printed between two comma separated values; by default

it is a space.

• end determines what is to be printed after the last value; by default it is a new line.

print("a","b","c","d", sep="-")

a-b-c-d

print("Hello",end="")

print("Bye")

HelloBye

print(1,2,3,4,sep=",",end= ' ! ')

1,2,3,4!

Introduction to Computers and Programming using Python 11

Lecture 2 Input and Ouput

L2.3 The input operation

The input operation is done by using the input() function. It requires:

• the name of the variable where the data will be stored;

• a context (usually as verbatim data), namely what we are interested to know from the

user.

In the examples below, after each input the data is displayed using the print function.

s = input(' Enter a greeting: ')

print(' You entered: ' , s)

Enter a greeting: Hello Jane!

You entered: Hello Jane!

a = input(' Enter an integer: ')

print(' You entered: ' , a)

Enter an integer: 34

You entered: 34

L2.3.1 Conversion of inputs

The input function sets the variable a with a string object. In this case, the user is asked

for a number because the goal is to do computations with these int objects. This requires

conversion to int . Here is what happens without conversion:

a = input(' Enter an integer: ')

print(' You entered: ' , a)

b = input(' Enter another integer: ')

print(' You entered: ' , b)

print(' The sum of these integers is ' , a+b)

Enter an integer: 3

You entered: 3

Enter another integer: 4

You entered: 4

The sum of these integers is 34

The code still works, but the sum a+b is rather strange. This is merely joining 2 strings

a process also known as concatenation. If we tried a-b or a/b instead of a+b , it would not

work on strings or text objects and produce an error.

The above code can be fixed by converting a and b into int :

a = input(' Enter an integer: ')

a = int(a)

print(' You entered: ' , a)

b = input(' Enter another integer: ')

12 Introduction to Computers and Programming using Python

Input and Ouput Lecture 2

print(' You entered: ' , b)

b = int(b)

print(' The sum of these integers is ' , a+b)

Enter an integer: 3

You entered: 3

Enter another integer: 4

You entered: 4

The sum of these integers is 7

There are 3 data type conversion functions:

• int() : to convert a string object to an int .

• float() : to convert a string object to a float point number (decimal representa-

tion).

• str() : to convert an int or float object to a string .

L2.3.2 More string manipulation

For more details about the operations that can be performed on string s, refer to Lecture L4.

Introduction to Computers and Programming using Python 13

Lecture 3

Numbers and arithmetic

Lecture contents

L3.1 Introduction . 15

L3.2 Integers . 15

L3.3 Floating point numbers . 16

L3.4 Operations on numbers . 16

L3.4.1 Addition, subtraction, multiplication 17

L3.4.2 Division . 17

L3.4.3 Conversion between int and float 18

L3.4.4 Mixing integers and floats . 19

L3.4.5 Other operations . 19

L3.4.6 Precedence (a.k.a PEMDAS) . 19

L3.4.7 Abbreviated operators . 20

L3.1 Introduction

Numbers in Python, like in all computer languages, come in two flavors: integers and

floating point numbers (also known as floats). These two ways of storing numbers are

quite different from one another, and as such one must be careful not to confuse one for the

other when manipulating number variables.

L3.2 Integers

Integers store whole numbers. In mathematical terms, numbers in

Z

can be stored as

integers. Unlike other programming languages, there is no limit in the size of integers,

except the size of the computer’s memory.

Integers are used for counting, which actually happens quite a lot in programming!

a = 42 # a is an integer

b = -5 # b is a negative integer

for i in range(0,a): # count i from 0 to a-1

print(i,"<",a)

0 < 42

1 < 42

2 < 42

3 < 42

4 < 42

Introduction to Computers and Programming using Python 15

Lecture 3 Numbers and arithmetic

5 < 42

...

39 < 42

40 < 42

41 < 42

This long

output was

truncated.

L3.3 Floating point numbers

By contrast, floating point numbers aim to represent real numbers (numbers in

R

):

2 . 3

,

1

3

,

√

2

,

π

. . . Unfortunately, a computer does not have the infinite precision of math, so always

keep in mind the two following principles:

• Any real number will be approximately stored

• Even numbers that seem easy to write, such as

0 . 1

may be approximated.

The exact reason behind that would be too long to explain here. Let us however give an

explanation of the name floating point .

To be able to store very small or very large numbers, computers use a version of the

scientific notation :

• Instead of writing

0 . 000000000042

, write

4 . 2 · 10− 11

• Instead of writing

35784126 . 17

, write

3 . 578412617 · 107

.

In both examples above, the decimal point was moved to have a number between 1

(included) and 10 (excluded); the number of times the decimal point was moved to the left

being the exponent (so it is negative when moving to the right). These movements of the

decimal point are what is denoted by floating .

x = 12.0 # x is a float (despite being a whole number)

y = 0.1 # y is imperfectly stored

z = 123.625 # z is perfectly stored

print(x,y,z)

print("%.50f"%x) # Printing with 50 digits after the decimal point

print("%.50f"%y) # Printing with 50 digits after the decimal point

print("%.50f"%z) # Printing with 50 digits after the decimal point

12.0 0.1 123.625

12.00

0.10000000000000000555111512312578270211815834045410

123.625000

L3.4 Operations on numbers

The usual operations can be performed on both integers and floats. The only operation

that needs attention is division: are we using integral division with quotient and remainder

(Euclidean division), or real division (as in division in the real numbers)?

16 Introduction to Computers and Programming using Python

Numbers and arithmetic Lecture 3

L3.4.1 Addition, subtraction, multiplication

With little surprise, the usual symbols are used:

• + for addition

• - for subtraction

• * for multiplication

i = 3

j = 5

a = i+7

b = j-2

c = a*-3

d = i+j

e = b*d

print(a,b,c,d,e)

x = 2.3

y = -5.2

t = x+8.1

u = y-7.1

v = t*2.4

w = x+u

z = y*w

print(t,u,v,w,z)

10 3 -30 8 24

10.399999999999999 -12.3 24.959999999999997 -10.0 52.0

L3.4.2 Division

Real division , meaning the division of two numbers (integers or floats) whose result is a real

number, is done with the operator / . It always produces floating point numbers, even when

the operands are integers and even when the result could be an integer.

x = 2/3

y = 16/2

z = 3.5/0.5

t = 8.6/0 # Don ' t divide by 0!

print(x,y,z)

0.6666666666666666 8.0 7.0

The Euclidean division of positive integers

a

by

b > 0

produces two results: the quotient

q

and the remainder

r

. Mathematically, they are defined as the numbers such that

a = b × q + r

with

0 ≤ r < b

.

This is extended to negative numbers with quotient being negative if the signs of

a

and

b

differ and the remainder being

b < r ≤ 0

if

b < 0

.

Note that as in real division you cannot divide by 0.

Introduction to Computers and Programming using Python 17

Lecture 3 Numbers and arithmetic

Since there are two results, there are actually two operators: // for the truncated division

(think quotient) and % for the remainder.

a = 56

b = -36

c = 7

d = -5

print(a//c,a%c,a//d,a%d,b//c,b%c,b//d,b%d)

edf = "%d = %d × %d + %d" # Format to print the actual equation

print(edf%(a,c,a//c,a%c))

print(edf%(a,d,a//d,a%d))

print(edf%(b,c,b//c,b%c))

print(edf%(b,d,b//d,b%d))

#print(c//0) # Don ' t divide by 0!

8 0 -12 -4 -6 6 7 -1

56 = 7 × 8 + 0

56 = -5 × -12 + -4

-36 = 7 × -6 + 6

-36 = -5 × 7 + -1

This also works with floats, but producing float remainders and quotients (even though

the quotient is always a whole number.)

x = 3.2//2.5

y = 5//1.5

z = 3.5%4

t = 7%2.25

print(x,y,z,t)

1.0 3.0 3.5 0.25

L3.4.3 Conversion between int and float

Conversion can be performed through the int() and float() functions. The conversion

from float to integer truncates the number, i.e. just removes the fractional part.

a = int(3.85)

b = int(-6.4)

c = int(-8.9)

d = int(12.3)

print(a,b,c,d)

x = float(34)

y = float(-7)

print(x,y)

3 -6 -8 12

34.0 -7.0

18 Introduction to Computers and Programming using Python

Numbers and arithmetic Lecture 3

L3.4.4 Mixing integers and floats

Mixing integers and floats is possible, but the result will end up being a float. Consequently,

conversion from int to float is actually rarely used.

x = 3-0.75

y = 2*1.5

z = 7+1.0

print(x,y,z)

2.25 3.0 8.0

L3.4.5 Other operations

Exponentiation is part of the basic operations in Python, and is performed using the **

operator. It works for both integers and floats.

When the exponent is negative, the result is a float even though the operands are integers,

because negative exponent means the reciprocal is taken.

And when a negative number is taken to a non-whole exponent, complex numbers are

produced (complex numbers will not be covered here).

a = 2**6

b = 3**4

c = (-5)**3

d = 2**(-5) # 2**(-5) = 1/(2**5)

print(a,b,c,d)

x = 2.5**3

y = 3**0.5 # Square root of 3

z = (-2)**(0.5) # Square root of -2: a complex number [note: sqrt(-1) is ␣

↪ → written j instead of i in python]

t = (-0.1)**(-2) # The approximation in 0.1 will show

print(x,y,z,t)

64 81 -125 0.03125

15.625 1.7320508075688772 (8.659560562354934e-17+1.4142135623730951j)

99.99999999999999

L3.4.6 Precedence (a.k.a PEMDAS)

As in mathematics, some operations have precedence over others, meaning they must be

performed before others. The usual example being

3 + 2 × 4 = 3 + 8 = 11

because multipli-

cation has precedence over addition. To bypass the usual precedence and indicate that an

operation must be performed before, parenthesis are used:

(3 + 2) × 4 = 5 × 4 = 20

.

The PEMDAS acronym summarizes these rules. It expands in Parenthesis Exponents

Multiplication Division Addition Subtraction .

It is a useful acronym, although it does not give the full picture. The first thing that is

missing and that becomes relevant when writing numbers on a computer is that the negative

sign (also known as unary minus) actually has more precedence than multiplication and

division (but less than exponentiation).

Introduction to Computers and Programming using Python 19

Lecture 3 Numbers and arithmetic

The second thing that is not shown in the accronym is that multiplication and division

have the same precedence. So in that case the order of writing (left-to-right associativity)

is used. Similarly, addition and subtraction have the same precedence and the order of

writing is used to perform the operations.

As a result, a better acronym would be PEN[MD][AS]; not as catchy, but truer!

When using several exponentiation, which by definition all have the same precedence, the

operations are performed from right-to-left , so using the reverse of the order of writing; this

is called right-to-left associativity . This is in keeping with what happens in mathematics:

23
2

= 2(3
2) = 29 = 512

, while

(
23

)2

= 82 = 64

.

Also remark that here division means both real and Euclidean division.

a1 = -3//2 # negative sign has precedence over division

a2 = -(3//2)

b1 = -3**2 # negative sign does not have precedence over ␣

↪ → exponentiation

b2 = (-3)**2

c1 = 12//3*4 # division is performed first because it appears first

c2 = 12//(3*4)

d1 = 2-3+5 # subtraction is performed first because it appears first

d2 = 2-(3+5)

e1 = 15//2/4

e2 = 15//(2/4)

f1 = 2**3**2 # exponentiations are performed right to left

f2 = (2**3)**2

print(a1,a2,b1,b2,c1,c2,d1,d2,e1,e2,f1,f2)

-2 -1 -9 9 16 1 4 -6 1.75 30.0 512 64

L3.4.7 Abbreviated operators

It is often the case that we want to add a value to a variable. One way to do that is to

simply have the sum of the variable and the value as the right handside of an assignment:

v = 42

print(v)

v = v + 37 # Add 37 to v

print(v)

42

79

Since this kind of operation is very frequent, there is a shortcut additional syntax: +=

n = 42

print(n)

n += 37 # Add 37 to n; same as n = n + 42

print(n)

20 Introduction to Computers and Programming using Python

Numbers and arithmetic Lecture 3

42

79

This shortcut syntax is available for all operators:

p = 42

print("Original:", p)

p **= 2 # p = p**2

print("After ' p **= 2 ' :",p)

p //= 5 # p = p // 5 (quotient)

print("After ' p //= 5 ' :",p)

p += 27 # p = p + 27

print("After ' p += 27 ' :",p)

p *= 4 # p = p * 4

print("After ' p *= 4 ' :",p)

p -= 1234 # p = p - 1234

print("After ' p -= 1234 ' :",p)

p /= 11 # p = p /11 (real division)

print("After ' p /= 11 ' :",p)

Original: 42

After ' p **= 2 ' : 1764

After ' p //= 5 ' : 352

After ' p += 27 ' : 379

After ' p *= 4 ' : 1516

After ' p -= 1234 ' : 282

After ' p /= 11 ' : 25.636363636363637

Introduction to Computers and Programming using Python 21

Lecture 4

Strings

Lecture contents

L4.1 Introduction . 23

L4.2 Writing strings in the code . 23

L4.2.1 The different kinds of strings . 23

L4.2.2 Escaping characters . 24

L4.3 Operations on strings . 25

L4.3.1 Concatenation . 25

L4.3.2 Repetition . 26

L4.3.3 Conversion with other types . 27

L4.3.4 On the dangers of loosely typed variables 28

L4.4 Formatted strings . 28

L4.4.1 “Old format” . 28

L4.4.2 The .format() method . 30

L4.4.3 F-strings . 32

L4.5 Special characters . 33

L4.5.1 The case of the backspace . 33

L4.5.2 Unicode characters . 33

L4.1 Introduction

In programming languages, a string , or more formally a string of characters is the name

given to textual data. Strings can be written directly in the program (a.k.a. verbatim

strings). Another way to create strings is through an input operation.

L4.2 Writing strings in the code

L4.2.1 The different kinds of strings

There are several ways to write verbatim strings, for example to be stored in a variable:

• Single-quoted strings: the text is encased between ' and ' .

• Double-quoted strings: the text is encased between " and " .

• Triple-quoted strings with single quotes: the text is encased between ''' and ''' .

• Triple-quoted strings with double quotes: the text is encased between """ and """ .

sqStr = ' Hello! '

dqStr = "How are you?"

tsqStr = ''' Good bye! '''

Introduction to Computers and Programming using Python 23

Lecture 4 Strings

tdqStr = """It was nice talking."""

print(sqStr,dqStr,tsqStr,tdqStr)

Hello! How are you? Good bye! It was nice talking.

The difference between the several ways of quoting strings lie in the way quotation marks

and new lines are handled. Namely, in a string using single quotes, the single quote character

cannot be used directly: it would be confused for the end of the string. Similarly, the double-

quote character cannot be used directly in double-quoted strings. Triple-quoted version have

the same issue, but for three times the character, which is less frequent.

sqProblem = ' It ' s wonderful!

'

Error: the string ends afer It

dqProblem = "He said "Hello!"" # Error: the string ends after said␣

↪ → (including the space)

tsqProblem = ''' The seldom encountered ''' triple-quoted ''' string in a␣

↪ → string ''' # Error: the string ends after encountered (including the ␣

↪ → space)

File "<ipython-input-2-2f058b069eb6>", line 1

sqProblem = ' It ' s wonderful! ' # Error: the string ends afer It

ˆ

SyntaxError: invalid syntax

L4.2.2 Escaping characters

To be able to enter quotation marks inside a string, they must be escaped by preceding them

with a backslash: \ ' is a quotation mark, \" is a double-quote character.

sqEscaped = ' It\ ' s wonderful! '

dqEscaped = "He said \"Hello!\""

print(sqEscaped,dqEscaped)

It ' s wonderful! He said "Hello!"

Note that a single quote doesn’t have to be escaped in a double-quoted string (though

it may be) and vice versa.

sqEscaped2 = ' He said "It\ ' s wonderful\" ' # First " is not ␣

↪ → escaped, second one is

dqEscaped2 = "Is it \"It\ ' s not\" or \"It isn ' t\"?" # First ' is escaped, ␣

↪ → second one is not

print(sqEscaped2,dqEscaped2)

He said "It ' s wonderful" Is it "It ' s not" or "It isn ' t"?

Escaped characters allows to write special characters. They all start with a backslash,

so the backslash itself now has a special meaning: it also has to be escaped (the list is

non-exhaustive):

24 Introduction to Computers and Programming using Python

Strings Lecture 4

• \ ' : Single quote (apostrophy)

• \" : Double quote

• \n : New line

• \t : Tabulation

• \\ : Backslash

An additional (and arguably the principal) difference between the triple-quoted version

of strings is that they allow newlines and tabulations to be entered directly, without being

escaped. This is why these are sometimes referred to as multiline strings .

specialStr = "Hi,\nI am writing this\tletter\\message to you." # Escaped ␣

↪ → newline, tabulation, and backslash

specialTqStr = """Hello,

You see, I don ' t have to escape tabs\\newlines.""" # Escaped ␣

↪ → backslash only

print(specialStr)

print(specialTqStr)

Hi,

I am writing this letter\message to you.

Hello,

You see, I don ' t have to escape tabs\newlines.

Other than these special characters, the contents of the string are not interpreted. So

they can contain about anything, even things that may lool like code or Python special

characters:

strCode = "Well if you say so #PythonRules" # The ' if ' is just a word, ␣

↪ → the # does not start a comment

L4.3 Operations on strings

Like other values and variables, strings can be used in operations.

L4.3.1 Concatenation

The + operator adds two strings in the sense that it puts them together (this is called

concatenation). The addition between a string and a non-string (say an int or float) results

in an error.

str1 = "Hello"

str2 = "World"

strConcat = str1+str2 # Adding two strings

print(strConcat)

strConcatError = strConcat+42 # Error: "TypeError: Can ' t convert ' int ' ␣

↪ → object to str implicitly"

HelloWorld

Introduction to Computers and Programming using Python 25

Lecture 4 Strings

TypeError Traceback (most recent call last)

<ipython-input-7-a7964ca89db8> in <module>

3 strConcat = str1+str2 # Adding two strings

4 print(strConcat)

->5 strConcatError = strConcat+42 # Error: "TypeError: Can ' t convert ' int ' ␣

↪ → object to str implicitly"

TypeError: Can ' t convert ' int ' object to str implicitly

L4.3.2 Repetition

The * operator multiplies a string by repeating it. So it only makes sense to multiply a

string by an integer. The multiplication of two strings results in an error.

str1 = "Hello "

str2 = "Bye "

strRepeat1 = 3*str1

strRepeat2 = str2*5

strRepeat3 = str1+str2*2 # * has precedence over + (a version of PEMDAS ␣

↪ → still applies)

print(strRepeat1)

print(strRepeat2)

print(strRepeat3)

strRepeatError1 = 4.2*"Hi!" # Error: "TypeError: can ' t multiply sequence ␣

↪ → by non-int of type ' float ' "

strRepeatError2 = "Ok!"*"Hi!" # Error: "TypeError: can ' t multiply ␣

↪ → sequence by non-int of type ' str ' "

Hello Hello Hello

Bye Bye Bye Bye Bye

Hello Bye Bye

TypeError Traceback (most recent call last)

<ipython-input-9-4ae15ced995b> in <module>

7 print(strRepeat2)

8 print(strRepeat3)

->9 strRepeatError1 = 4.2*"Hi!" # Error: "TypeError: can ' t multiply␣

↪ → sequence by non-int of type ' float ' "

10 strRepeatError2 = "Ok!"*"Hi!" # Error: "TypeError: can ' t multiply␣

↪ → sequence by non-int of type ' str ' "

26 Introduction to Computers and Programming using Python

Strings Lecture 4

TypeError: can ' t multiply sequence by non-int of type ' float '

L4.3.3 Conversion with other types

Other types, in particular integers and floating point numbers can be converted into strings.

This is particularly useful when they need to be concatenated with a string.

This is performed by the str() function.

val = 42*3+7

strResponse = "The answer is: " + str(val) + "."

print(strResponse)

The answer is: 133.

Conversion from string to integers or floats is possible: the corresponding functions

are int() and float() . It must be noted, however, that these conversions will raise a

runtime error if the string does not actually represent a number in a Python acceptable

representation. For this to work, the value must be alone in the string; the only thing

allowed are spaces before or after. In the case of integers, there can be no decimal point.

strIntValue = "42" # This is a string, not an int!

intFromStr = int(strIntValue) # OK

strIntValueSpaces = " 35\t" # Spaces only are OK

intFromStrWithSpaces = int(strIntValueSpaces) # OK

strInvalidInt1 = "9.0" # Decimal point

#failedIntFromStr1 = int(strInvalidInt1) # Error: "ValueError: invalid ␣

↪ → literal for int() with base 10: ' 9.0 ' "

strInvalidInt2 = "12in" # Something other than a number

#failedIntFromStr2 = int(strInvalidInt2) # Error: "ValueError: invalid ␣

↪ → literal for int() with base 10: ' 12in ' "

strInvalidInt3 = "5 3" # Two numbers

#failedIntFromStr3 = int(strInvalidInt3) # Error: "ValueError: invalid ␣

↪ → literal for int() with base 10: ' 5 3 ' "

strInvalidInt4 = "Hi!" # No numbers

#failedIntFromStr4 = int(strInvalidInt4) # Error: "ValueError: invalid ␣

↪ → literal for int() with base 10: ' Hi! ' "

strIntValue = "42" # This is a string, not an int!

floatFromStr = float(strIntValue) # OK, is 42.00

strFloatValue = "12.34" # This is a string, not a float!

floatFromStr = float(strIntValue) # OK, is 42.00

strFloatValueSpaces = "\n75.68" # Spaces only are OK

intFromStrWithSpaces = float(strIntValueSpaces) # OK

strInvalidFloat1 = "6.54cm" # Something other than a number

#failedIntFromStr1 = float(strInvalidFloat1) # Error: "ValueError: could ␣

↪ → not convert string to float: ' 6.54cm '

strInvalidFloat2 = "5.1 7.3" # Two numbers

Introduction to Computers and Programming using Python 27

Lecture 4 Strings

#failedIntFromStr2 = float(strInvalidFloat2) # Error: "ValueError: could ␣

↪ → not convert string to float: ' 5.1 7.3 ' "

strInvalidFloat3 = "Bye..." # No numbers

#failedIntFromStr3 = float(strInvalidFloat3) # Error: "ValueError: could ␣

↪ → not convert string to float: ' Bye... ' "

L4.3.4 On the dangers of loosely typed variables

Because the + and * operators can be used for both numbers and strings, albeit with a

different meaning (this is called overloading), some weird things can happen if the type of

variables is unclear. For example, compare the two pieces of code below, where lines 3 and

4 are identical:

Version 1

var = 42 # It ' s an integer

expr = 4*var

print(expr)

168

Version 2

var = "42" # It ' s a string

expr = 4*var

print(expr)

42424242

L4.4 Formatted strings

Conversion of numerical values into strings to be concatenated is a frequent thing that is

done to output values with a label, for example when debugging or output.

x = 42.78

ans = "x="+str(x)

print(ans)

x=42.78

There is an easier way to perform this, which is formatted strings . The idea of formatted

strings is a string with placeholders, to be filled by values given afterwards.

Several ways to enter formatted strings coexist in Python.

L4.4.1 “Old format”

This way of using formatted strings is sometimes referred to as printf -style because it uses

a similar syntax as is used by the printf function in C language.

In the old format , placeholders are marked with a percent followed by a letter, to indicate

the kind of value:

28 Introduction to Computers and Programming using Python

Strings Lecture 4

• %d for an integer

• %f for a float

• %s for a string

Some styling can also be done through the format. For example:

• %03d will print an integer with at least 3 digits, the missing ones being replaced by

zeroes

• %.5f will print a float with 5 digits after the decimal point

For more examples of formats refer to https://pyformat.info/ .

y = 74

f1 = "The value is %d" # It ' s a format (just a string, %d is not ␣

↪ → interpreted in any way here)

print(f1)

s1 = f1 % y # Replaces %d with 74 in format f1

print(s1)

f2 = "The answer is %03d" # Integer with at least 3 digits (padding with ␣

↪ → zeroes)

s2a = f2 % y

s2b = f2 % 147852

print(s2a)

print(s2b)

f3 = "The number is %.5f" # Float with 5 digits after the decimal point

s3a = f3 % (y/3)

s3b = f3 % 1.2

print(s3a)

print(s3b)

The value is %d

The value is 74

The answer is 074

The answer is 147852

The number is 24.66667

The number is 1.20000

Several placeholders can appear in the formatted string. In such cases, there must be a

one-to-one correspondence between placeholders and values, which are gathered in a tuple.

year = 2000

introduction = "My name is %s, I am %d years old." % ("John Doe",␣

↪ → 2020-year)

print(introduction)

My name is John Doe, I am 20 years old.

To use the percent character % verbatimly in a formatted string, it has to be released

from its placeholder role, and be written %% as in the example below.

Introduction to Computers and Programming using Python 29

https://pyformat.info/

Lecture 4 Strings

promotion = "The rebate is %f%%." % (100/3) # %f is for the float, %% is %

print(promotion)

The rebate is 33.333333%.

L4.4.2 The .format() method

The second way to use formatted strings is through the .format() method that can be

applied to every string. In this case, placeholders are marked with {} regardless of their

type (which is the most basic use of the feature). The values corresponding to the {} -style

placeholders are given as arguments of the format function.

fName = "John"

lName = "Doe"

age = 42

s = "My name is {} {}, I am {} year old.".format(fName,lName,age)

print(s)

My name is John Doe, I am 42 year old.

But the format method offers further advantages. The main one being the possibility

to refer to arguments explicitly based on their position in the argument list, or to specify a

name for them. It allows to disregard the order of appearance of placeholders, or even to

repeat a value.

Positional arguments are specified by integers starting from 0. Named arguments, which

must come after any positional arguments, are specified using the syntax <name>=<value>

in the arguments list.

fName = "John"

lName = "Doe"

age = 42

s1 = "My name is {1}, {0} {1}, I am {2} year old.".format(fName,lName,age)

print(s1)

s2 = "My name is {last}, {first} {last}. My first name is {first}, it was␣

↪ → given to me {0} years ago".format(age,first=fName,last=lName)

print(s2)

My name is Doe, John Doe, I am 42 year old.

My name is Doe, John Doe. My first name is John, it was given to me 42␣

↪ → years ago

Styling can also be performed; in that case the type of argument must be specified. The

argument, whether implicit, positional, or named, is separated from the format by a colon

(:).

age=42

sAge1 = "I am {:03d} year old. One year is {:.8f} of my life.".

↪ → format(age,1/age)

30 Introduction to Computers and Programming using Python

Strings Lecture 4

sAge2 = "One year is {1:.8f} of my life because I am {0:+07d} year old.".

↪ → format(age,1/age)

sAge3 = "One year is {reciprocal:08.4f} of my life because I am {age:

↪ → =+5d} year old.".format(age=age,reciprocal=1/age)

print(sAge1)

print(sAge2)

print(sAge3)

name = "Albus Percival Wulfric Brian Dumbledore"

sIntro = "My name is {0}, but you can call me {0:^15.9s} for short.".

↪ → format(name) # Centered in 15 characters, truncated to 9 characters

print(sIntro)

I am 042 year old. One year is 0.02380952 of my life.

One year is 0.02380952 of my life because I am +000042 year old.

One year is 000.0238 of my life because I am + 42 year old.

My name is Albus Percival Wulfric Brian Dumbledore, but you can call me ␣

↪ → Albus Per for short.

Since curly braces are used to denote the placeholders in the format, they have to be

doubled in order to appear as curly braces. On the other hand a percent sign no longer

serves placeholders and can be used without escaping (i.e. % instead of %% .)

val = 42

sSet = "Let N be the set {{0, 1, ..., {}}}.".format(val)

sPercent = "You ' ll get a {}% rebate".format(val)

print(sSet,sPercent)

Let N be the set {0, 1, ..., 42}. You ' ll get a 42% rebate

Lists, dictionaries, and tuples (see Lecture L7) can also be used as a named argument.

Then the actual index or key is accessed as specified in the format. Note that in dictionaries

the key is not enclosed in quotation marks inside the format.

jondo = { ' first ' :"John", ' last ' :"Doe", ' age ' :42}

sDict = "My name is {p[first]} {p[last]}, I am {p[age]} year old.".

↪ → format(p=jondo)

dwarvesL = ["Dopey", "Doc", "Bashful", "Happy", "Grumpy", "Sleepy",␣

↪ → "Sneezy"]

sList = "Snow White met some of the dwarves: {l[2]}, {l[6]}, {l[0]}".

↪ → format(l=dwarvesL)

dwarvesT = ("Dopey", "Doc", "Bashful", "Happy", "Grumpy", "Sleepy",␣

↪ → "Sneezy")

sTuple = "Snow White met some of the dwarves: {t[1]}, {t[3]}, {t[5]}".

↪ → format(t=dwarvesT)

print(sDict)

print(sList)

print(sTuple)

Introduction to Computers and Programming using Python 31

Lecture 4 Strings

My name is John Doe, I am 42 year old.

Snow White met some of the dwarves: Bashful, Sneezy, Dopey

Snow White met some of the dwarves: Doc, Happy, Sleepy

For more example of formats refer to https://pyformat.info/ .

L4.4.3 F-strings

Remark on Python’s version

This method only works with Python 3.6 and over. Older versions of Python will

produce SyntaxError s when trying to run the code below. You can check the version

that is currently running as follows:

import sys

print("The current Python version is",sys.version)

The current Python version is 3.7.6 (default, Feb 3 2020, 16:05:52)

[GCC 7.4.0]

F-strings are a more readable version of formatted strings using the .format() method.

It works as follows:

• The string is preceded by the letter f : f"My String" is an f-string (F also works)

• Placeholders are between curly braces; they use the format {<value>:<style>} . The

styling is the same as in the .format() version. The value can be anything that can

be evaluated: calculation, function call, etc.

def myfun(n):

return n-17

age=42

s1 = f"I am {age} year old."

s2 = f"I am level {age**2:08d}."

s3 = f"I tell everyone I am {myfun(age)} year old."

print(s1,s2,s3)

I am 42 year old. I am level 00001764. I tell everyone I am 25 year old.

When using values from dictionaries, quotation marks must be used, because what is

inside the curly braces is just normal Python code. That is when using different quotation

marks comes in handy.

jondo = { ' first ' :"John", ' last ' :"Doe", ' age ' :42}

fsDict = f"My name is {jondo[' first ']} {jondo[' last ']}, I am␣

↪ → {jondo[' age ']} year old."

print(fsDict)

My name is John Doe, I am 42 year old.

32 Introduction to Computers and Programming using Python

https://pyformat.info/

Strings Lecture 4

One additional caveat is that f-strings cannot include a backslash inside the curly braces,

not even within a string.

fsBslashOk = f"I just want to say:\n\t{ ' Hello ' }" # In the string part: OK

print(fsBslashOk)

#fsBslashKo = f"You replied { ' Good\nBye ' }" # In the expression part: Error

#print(fsBslashKo)

I just want to say:

Hello

L4.5 Special characters

L4.5.1 The case of the backspace

The backspace character, escaped as \b is used to delete content. But it actually behaves a

bit differently in a terminal and in Jupyter:

• In a terminal, the backspace character moves the position of the writing cursor one

character to the left. It does not actually erase anything.

• In Jupyter, it actually erases, but there are bugs when several a
¯
re printed together, so

they have to be printed one by one, and the print should flush the output.

print("Hello","\b",sep="")

print("Goodbye","\b"*5,"|",sep="") # In Jupyter: prints ␣

↪ → "Goodby|". In Terminal: prints "Go|dbye"

print("Goodbye","\b"*5," "*5,"\b"*5,"|",sep="") # In Jupyter: prints ␣

↪ → "Goodby |". In Terminal: prints "Go|"

print("Goodbye",end="")

print("\b",end="",flush=True)

print("\b",end="",flush=True)

print("\b",end="",flush=True)

print("\b",end="",flush=True)

print("\b",end="",flush=True)

print("|") # In Jupyter: prints ␣

↪ → "Go|". In Terminal: prints "Go|dbye"

L4.5.2 Unicode characters

Among special characters are symbols, such as accented letters or non-latin characters, or

even emojis. Recent versions of Python support unicode characters by default, but they are

not always easy to write in the code.

Also note that the symbol must be supported by the reader (browser, terminal, etc) in

order to be actually displayed.

symb = "Let α =2 × x^3"

print(symb)

Introduction to Computers and Programming using Python 33

Lecture 4 Strings

Let α =2 × xˆ3

A way to write them is to use their hexadecimal code directly. For symbols with a code

on only 4 hex-digits, the 16-bit version can be used: \uXXXX where XXXX is the code. When

the 8 hex-digit (32-bit) version is needed, use \Uxxxxxxxx . In both cases you must specify

the 4 or 8 hex-digits, using zeroes if need be.

The code for a specific character can be found on the Unicode Consortium’s website:

https://home.unicode.org/ .

learnDingbats = "Learn Python \u2714" # "Checkmark" dingbat

ilPython = "I \U0001F9E0 Python" # Brain emoji

ilnyDingbats = "I \U00002764 NY" # "Heart" dingbat/emoji, could also ␣

↪ → be coded as \u2764

ilnyEmojis = "I \U0001FAC0 NY" # "Anatomical heart" emoji - New ␣

↪ → addition in 2020, may not show

alphabet = "\u0061\u0062\u0063\u0064" # Normal letters have a code too, ␣

↪ → but that is not very efficient

god = "\u2728\U0001F4DC\u2728 I am the \u03B1 and the \u03C9" # Emojis ␣

↪ → and greek letters

print(learnDingbats,"-",ilPython)

print(ilnyDingbats,"-",ilnyEmojis)

print(alphabet)

print(god)

Learn Python ✓ - I

Python

I ♡ NY - I

NY

abcd

I am the α and the ω

34 Introduction to Computers and Programming using Python

https://home.unicode.org/

Lecture 5

Conditions

Lecture contents

L5.1 Introduction . 35

L5.2 Writing conditions . 35

L5.2.1 Boolean constants . 36

L5.2.2 Arithmetic expressions . 36

L5.2.3 Comparison operators . 36

L5.2.4 Boolean operators . 38

L5.3 Conditional structure: if / else . 40

L5.3.1 Example: Positive or Not positive 40

L5.3.2 Example : Pass or Fail . 41

L5.3.3 Example: Parity . 41

L5.4 Multiple cases: if / elif / else . 41

L5.4.1 Example: Positive, Zero, Negative 42

L5.4.2 Example: Rock, Paper, Scissors 42

L5.1 Introduction

One of the main ability of computer programs is to react differently based on the data it

manipulates, usually a user’s input.

For example, when buying a taxable product in New York City, an extra 8.875% of the

price is added as a sales tax. But in Boston, the sales tax is only 6.25% of the price. So the

total price of a taxable product depends on the location.

These choices are performed using the if keyword in Python.

if condition: # Do not forget the colon (:)!

something # Do not forget the indentation!

When the condition is true, the something part is executed. Otherwise it is skipped.

L5.2 Writing conditions

The condition , is an expression which evaluates to either True or False . It is a called

as a Boolean expression . Simple Boolean expressions can be combined using conditional

operators .

Introduction to Computers and Programming using Python 35

Lecture 5 Conditions

L5.2.1 Boolean constants

The simplest condition that can be written are the constants True and False . Remark that

they start with an uppercase letter.

Note that using these as a condition is not very interesting because:

if True:

something

is equivalent to simply writing

something

and

if False:

something

is equivalent to writing nothing.

L5.2.2 Arithmetic expressions

Arithmetic expressions also carry a truth value: any non-zero value means True and zero

means False . Using arithmetic expressions as conditions confuses integers (or floats) with

boolean values, and should be avoided if possible.

L5.2.3 Comparison operators

One way to write an expression that evaluates to True or False is by using a comparison

operator .

The comparison oerator for equality is == : when a is equal to b , then the value of a==b

is True . Otherwise, it is False .

Example: Is the input 5?

The following code uses == to test whether the input x is equal to 5 . In that case only it

prints 5 is five .

x = int(input(' Type an integer x: '))

if x==5:

print(x, ' is five. ') # Print the value of x followed by ' is five '

Type an integer x: 5

5 is five.

== vs =

The assignment operator = must not be confused with the equality operator == . It is a

common mistake and a frequent typo. In Python, using = in a conditional produces a

syntax error so it is easily catched (this is not always the case in other languages).

x = 1 # Assignment

x == 2 # Equality test (not printed), no assignment performed

print("x =",x)

y = 2

z = 1

print(x==y)

print(x==z)

36 Introduction to Computers and Programming using Python

Conditions Lecture 5

x = 1

False

True

if x=y: # Typo that creates a syntax error

print(' x equals y ')

File "<ipython-input-10-d409dd90c269>", line 1

if x=y: # Typo that creates a syntax error

ˆ

SyntaxError: invalid syntax

Other comparison operators

Comparisons are not restricted to equality. Here is the complete list of comparison operators:

• == : equal

• != : not equal

• < : less

• <= : less or equal to

• > : greater

• >= : greater or equal to

x = 1 # Assignment

print(x>2, x<=1, x==1, x!=2, x>=4.3, x<3)

False True True True False True

In the above code, first x = 1 assigns 1 to x . Then:

• x>2 evaluates the truth value of the statement

1 > 2

, which is False .

• x<=1 evaluates the truth value of the statement

1 ≤ 2

which is True .

• x==1 evaluates the truth value of the statement

1 = 1

which is True .

• x!=2 evaluates the truth value of the statement

1 ̸ = 2

which is True .

• x>=4.3 evaluates the truth value of the statement

1 ≥ 4 . 3

which is False .

• x<3 evaluates the truth value of the statement

1 < 3

which is True .

Comparison of string objects

Strings can also be compared to one another. Equality and non-equality work as expected

(they are case sensitive), but inequality operators use the lexicographic order (the order of

the dictionary) with uppercase letters before lowercase letters, so they should be used with

care.

s1 = "Hello"

s2 = "hello"

s3 = "hello"

s4 = "hell"

s5 = "hi"

Introduction to Computers and Programming using Python 37

Lecture 5 Conditions

s6 = "a"

s7 = "Z"

s8 = "z"

print(s1,"==",s2,":",s1==s2)

print(s1,">=",s2,":",s1>=s2)

print(s2,">",s1,":",s2>s1)

print(s2,"==",s3,":",s2==s3)

print(s2,"<",s4,":",s2<s4)

print(s2,"<",s5,":",s2<s5)

print(s6,">",s7,":",s6>s7)

print(s6,">",s8,":",s6>s8)

Hello == hello : False

Hello >= hello : False

hello > Hello : True

hello == hello : True

hello < hell : False

hello < hi : True

a > Z : True

a > z : False

Comparisons of strings for equality or inequality is however widespread:

word1 = input(' Type something: ')

word2 = input(' Type something else: ')

if word1==word2:

print("You wrote the same thing twice")

Type something: Hello

Type something else: Hello

You wrote the same thing twice

L5.2.4 Boolean operators

Boolean expressions such as the results of comparisons can be connected through Boolean

operators to form compound conditions.

There are three main boolean operators:

• or : Boolean OR (disjunction): true when at least one operand is true

• and : Boolean AND (conjunction): true whan all the operands are true

• not : Boolean NOT (negation): changes true in false and false in true

Example: Compound Boolean expressions

x = 1

print(not x>2, x>0 and x<1, x>0 or x<1, -2<x<=2, -2<x and x<=2) # The ␣

↪ → last two are equivalent

True False True True True

38 Introduction to Computers and Programming using Python

Conditions Lecture 5

P

Q

P or Q

T

T

T

T

F

T

F

T

T

F

F

F

(a) Truth table for the or operator

P

Q

P and Q

T

T

T

T

F

F

F

T

F

F

F

F

(b) Truth table for the and operator

P

not P

T

F

F

T

(c) Truth table for the not

operator

Table L5.1: Truth tables for the or , and , and not Boolean operators.

First, x = 1 assigns 1 to x . Then:

• not operators reverses the result. So not x>2 , first evaluates the truth value of

1 > 2

,

which is False , then evaluates not False , which is True .

•

1 > 0

is True but

1 < 1

is False .

– For x>0 and x<1 , it evaluates the value of True and False , which is False since

the and operator gives True only if both operands are True . Therefore x>0 and

x<1 is False .

– For x>0 or x<1 , it evaluates the value of True or False , which is True since

the or operator gives True when at least one operand is True . Therefore x>0 or

x<1 is True .

• -2<x<=2 is a shorthand for -2<x and x<=2 .

− 2 < 1

and

1 ≤ 2

both evaluate to True ,

so the conjunction is True .

Truth tables

The tables of Table L5.1, called Truth tables , give the truth value (true, T, or false, F) of

the compound condition based on the truth value of the operands.

P or Q is False only when P=False and Q=False . Note that when both P and Q are

true, in computers P or Q is true. It is usually not the case in English where "chicken or

fish" does not mean that "both" is an option.

P and Q is False only when P is True and Q is False .

not P is True when P is False .

Truth tables for complex expressions Using or , and , and not , complex Boolean ex-

pressions can be written. When these are true depending on P and Q can be calculated

using truth tables: calculate the truth value of each sub-expression in a column, combining

columns using the truth table for the operators.

So based on Table L5.2(a), (not P) or Q is False only when P is True but Q is False .

De Morgan’s Laws Comparing the truth tables for (not P) and (not Q) in Ta-

ble L5.2(b) and not(P or Q) in Table L5.2(c) shows that they have the same value for

any combination of truth values of P and Q : they actually represent the same expression.

This particular equality is one of the two De Morgan’s laws which can be stated as:

• (not P) and (not Q) is equivalent to not(P or Q) .

• (not P) or (not Q) is equivalent to not(P and Q) .

Introduction to Computers and Programming using Python 39

https://en.wikipedia.org/wiki/De_Morgan%27s_laws

Lecture 5 Conditions

P

Q

not P

(not P) or Q

T

T

F

T

T

F

F

F

F

T

T

T

F

F

T

T

(a) Truth table for (not P) or Q

P

Q

not P

not Q

(not P) and (not Q)

T

T

F

F

F

T

F

F

T

F

F

T

T

F

F

F

F

T

T

T

(b) Truth table for (not P) or Q

P

Q

P or Q

not(P or Q)

T

T

T

F

T

F

T

F

F

T

T

F

F

F

F

T

(c) Truth table for (not P) or Q

Table L5.2: Truth tables for complex expressions.

L5.3 Conditional structure: if / else

In order to provide a different result based on a condtion , some code should still be executed

when the condition evaluates to False . This is coded with an if / else structure. It is

sometimes called if/then/else , but Python does not use the then keyword. The syntax is as

follows:

if condition: # Colon

something1 # Indentation of the "then" block

else: # Colon

something2 # Indentation of the "else" block

When the condition is True , something1 is executed. Otherwise (when the condition

is False), run something2 code.

L5.3.1 Example: Positive or Not positive

To test whether a number

x

is positive or not, the following procedure (this is English, not

Python) can be used:

Get an integer x from a user.

If x is positive:

print the value of x and "is positive."

else:

print the value of x and "is not positive."

This can be converted into Python:

x = int(input(' Type an integer x: '))

if x>0:

print(x,"is positive.")

else:

print(x,"is not positive.")

40 Introduction to Computers and Programming using Python

Conditions Lecture 5

Type an integer x: 42

42 is positive.

L5.3.2 Example : Pass or Fail

Consider the following grading rule for a test: > If the test score is more than 60 , the grade

is Pass Otherwise, the grade is Fail .

To implement it as a code, first it can be expressed with more details as a procedure:

Get a test score as an integer from a user.

If score is greater than 60:

print ' Pass '

else:

print ' Fail '

It can then be translated into Python:

score = int(input(' Type your score as an integer: '))

if score>60:

print(' Pass ')

else:

print(' Fail ')

Type your score as an integer: 42

Fail

L5.3.3 Example: Parity

To check whether a number is even or odd, it is divided by 2. If the remainder is 0, then

the number was even, otherwise it was odd:

x = int(input(' Type an integer x: '))

if x%2==0:

print(x,"is even")

else:

print(x,"is odd")

Type an integer x: 29

29 is odd

L5.4 Multiple cases: if / elif / else

The if/else structures handles only two possibilities. By using elif (“else if”) multiple

times, we can handle multiple cases.

if condition1:

something1

elif condition2:

something2

Introduction to Computers and Programming using Python 41

Lecture 5 Conditions

elif condition3:

something3

....

else:

something

Notes:

• The else cannot have a condition.

• The else is actually optional if the something is nothing.

L5.4.1 Example: Positive, Zero, Negative

The example above (Section L5.3.1) did not distinguish the special case

x = 0

. Let’s refine

it so that:

• if x is positive, the program prints "Positive"

• else if x is zero, the program prints "Zero"

• otherwise, the program prints "Negative"

An if/elif/else is used to handle all 3 cases: positive, zero and negative.

if x is positive:

print "Positive"

elif x is 0:

print "Zero"

else:

print "Negative"

In Python, it becomes:

x = int(input("Type an integer x: "))

if x>0:

print("Positive")

elif x==0: # Use == for equality!

print("Zero")

else:

print("Negative")

Type an integer x: 0

Zero

L5.4.2 Example: Rock, Paper, Scissors

The following example could be part of a Rock, Paper, Scissors game, namely a part dealing

with interpreting user input:

• If a user types r , print Rock .

42 Introduction to Computers and Programming using Python

Conditions Lecture 5

• If a user types p , print Paper .

• If a user types s , print Scissors .

• Otherwise, print nothing.

Remark that here the input is to be treated as a string type, so there is no conversion

to int or float . Also, r and p are letters, not variables. So they must be enclosed in

quotation marks like ' r ' and ' p ' in Python.

play = input(' Please, type r, p or s: ')

play = play.lower() # convert input to lower case.

if play== ' r ' :

print("Rock")

elif play== ' p ' :

print("Paper")

elif play== ' s ' :

print("Scissors")

No else case needed

Please, type r, p or s: p

Paper

Introduction to Computers and Programming using Python 43

Lecture 6

Loops

Lecture contents

L6.1 Programming Structures for Iteration . 45

L6.2 The while loop . 45

L6.2.1 Syntax of while . 46

L6.2.2 Example: Integral division . 46

L6.2.3 The break and continue keywords 47

L6.2.4 Example: The free-throw challenge 48

L6.3 The for loop . 49

L6.3.1 Syntax of for . 49

L6.3.2 Examples: The range function 50

L6.3.3 Example: The sum of the first n integers 50

L6.4 Example of loop usage . 50

L6.1 Programming Structures for Iteration

We hardly ever do things once. In general mastering various tasks or skills requires several

iterations or repetitions As programming languages are modeled after human behavior, any

programming language has programming structures for iterations. In particular, the Python

language has two types of iteration:

1. the while loop for indefinite repetition

2. the for loop for definite repetition.

L6.2 The while loop

The while loop is used with indefinite repetition. An iteration is called indefinite if it is not

known in advance of the number of iterations. For instance, consider a program that starts

by asking the user for a pair of integers where the second number cannot equal 0. As long

as the user enters 0 for the second number, the code has to repeat asking the user for a pair.

Since it is not known in advance on how many times we need to ask the user for such pair,

such repetition is deemed indefinite.

Another example may involve free-throwing a basketball until 3 consecutive score baskets

are achieved. Once again, one cannot tell in advance how may free-throws are needed to

achieve this goal.

Introduction to Computers and Programming using Python 45

Lecture 6 Loops

L6.2.1 Syntax of while

To code a while loop, a boolean expression and a body are needed. It has the following

format:

while condition: # Do not forget the colon

statement 1

statement 2 # Body of the loop is indented

statement 3

.

.

.

statement n

The condition is a Boolean expression: a logical expression which evaluates to either

True or False . It may involve:

• boolean values True , False ;

• relational operators: < , > , <= , >= , == (is equal), != (is different);

• logical operators: not , and , or ;

• arithmetic expressions: non-zero (in most cases) converts to True , 0 converts to False .

For mode details on conditions see Lecture L5.

The condition ends with colon : . The omission of the colon is an error and the execution

of the code will be interrupted there.

The body of the loop consists of one or more statements, all having an additional level

of indentation from the loop.

When the condition evaluates to True , the loop body is executed. Then the code goes

back to checking the condition, and so on. When the condition evaluates to False , the while

loop is finished and the code that follows is executed.

L6.2.2 Example: Integral division

The code below computes the quotient and remainder for the integer division of a pair of

integers. Since division by 0 cannot be meaningfully defined, it makes sure that the second

integer, the divisor, is different from 0.

a = input(' Enter an integer a = ')

a = int(a)

failedinput = True

while failedinput:

b = input(' Enter a non-zero integer b = ')

b = int(b)

if b != 0:

failedinput = False

q = a//b # Integer divison operator (quotient)

r = a%b # Integer remainder operator

print(' The quotient of {}/{} is {}. ' .format(a,b,q))

46 Introduction to Computers and Programming using Python

Loops Lecture 6

print(' The remainder of {}/{} is {}. ' .format(a,b,r))

print(' The long division algorithm: {}={}*{}+{}. ' .format(a,b,q,r))

Enter an integer a = 34

Enter a non-zero integer b = 0

Enter a non-zero integer b = 0

Enter a non-zero integer b = 0

Enter a non-zero integer b = 7

The quotient of 34/7 is 4.

The remainder of 34/7 is 6.

The long division algorithm: 34=7*4+6.

Note: In this example there is also an if statement which is a single selection program-

ming structure. The syntax is similar to that of the while . The main difference between

these two programming structures is that if executes its body at most once whereas while

may execute its body several times.

L6.2.3 The break and continue keywords

The main way for a while loop to stop is when the condition becomes False . There is

an additonal possibility to break the execution of the loop: the break keyword. When the

break keyword is executed, the loop stops execution the subsequent statements in the body

and does not try to evaluate the condition anymore; it just moves to the next instruction

after the loop.

secretNumber = 42

while True: # This can never evaluate to False

guess = int(input("Guess my secret number: "))

if guess == secretNumber:

break

print("Wrong! Try again.")

print("Congratulations!")

Guess my secret number: 10

Wrong! Try again.

Guess my secret number: -7

Wrong! Try again.

Guess my secret number: 42

Congratulations!

The continue keyword skips the rest of the body of the loop, and goes back directly to

the beginning of the loop, testing the condition again:

x=0

while x<16:

x += 1

if x%2==0:

continue # Skip the rest of the body(the print)

print("x =",x)

Introduction to Computers and Programming using Python 47

Lecture 6 Loops

print("The loop has stopped")

x = 1

x = 3

x = 5

x = 7

x = 9

x = 11

x = 13

x = 15

The loop has stopped

L6.2.4 Example: The free-throw challenge

This example simulates the free-throw challenge. Namely, we want to see how many free-

throws are needed to score 3 consecutive baskets. Scoring a basket is simulated through

probabilities. Suppose that there is a chance of 1 in 10 to score. Using the random integer

function in Python, the program can generate a random number in the range 1 through 10.

If the number is 10, it counts as a score, otherwise it counts as a miss.

import random

def main():

print("Let ' s simulate the 3 score in a row free-throw game")

tcount = 0 # Total number of throws

consecutivecount = 0 # Number of consecutive scores

while consecutivecount < 3:

v = random.randint(1,10) # Random value between 1 and 10

tcount += 1

if v == 10:

consecutivecount += 1

print(' Throw {} success: v = {} ' .format(tcount,v))

else:

print(' Throw {} fail: v = {} ' .format(tcount,v))

consecutivecount = 0 # reset counter

print(' Challenge done in {} throws. ' .format(tcount))

main()

Let ' s simulate the 3 score in a row free-throw game

Throw 1 fail: v = 9

Throw 2 fail: v = 8

Throw 3 fail: v = 6

Throw 4 fail: v = 2

Throw 5 fail: v = 1

Throw 6 fail: v = 7

Throw 7 fail: v = 8

48 Introduction to Computers and Programming using Python

Loops Lecture 6

Throw 8 fail: v = 7

Throw 9 fail: v = 8

Throw 10 fail: v = 7

Throw 11 fail: v = 5

Throw 12 fail: v = 6

Throw 13 fail: v = 2

Throw 14 fail: v = 2

Throw 15 fail: v = 7

Throw 16 fail: v = 7

Throw 17 success: v = 10

...

Throw 2743 fail: v = 6

Throw 2744 success: v = 10

Throw 2745 fail: v = 9

Throw 2746 fail: v = 5

Throw 2747 success: v = 10

Throw 2748 success: v = 10

Throw 2749 success: v = 10

Challenge done in 2749 throws.

This really long

output was

truncated.

Note: Slight adjustments to the above code can be made in case the chances of scoring

are higher or lower. As an exercise, think about how the above code should be modified if,

say, there the chances of scoring a basket are 1 in 5.

L6.3 The for loop

The for loop is used with definite iteration or repetition. An iteration is called definite if the

number of iterations is known in advance. For instance, consider a program that computes

the sum of the first 1000 positive integers. Since it is known in advance how many times the

program needs to add, in this case 1000 times, the iteration is definite.

Another example may involve free-throwing a basketball until 3 consecutive score baskets

are achieved. But this time, there is a cap say of 100 on the number of throws. Once again,

one can tell in advance the maximum number of free-throws, a 100 in this case, so the

iteration is definite.

L6.3.1 Syntax of for

A for loop requires a counter object and a rule for the counter. It has three main formats:

for i in range(a): # i runs from 0 to a-1 in increments of 1

statements

for i in range(a,b): # i runs from a to b-1 in increments of 1

statements

for i in range(a,b,c): # i runs from a to b-1 in increments of c

statements

Introduction to Computers and Programming using Python 49

Lecture 6 Loops

L6.3.2 Examples: The range function

These examples explore the rule for the counter.

for i in range(5):

print(i, end= ' ') # Specify the last character to be printed ␣

↪ → (default is newline)

print() # Print a new line

for i in range(3,7):

print(i, end= ' ')

print()

for i in range(0,100,5):

print(i, end= ' ')

print()

for i in range(100,0,-10):

print(i, end= ' ')

0 1 2 3 4

3 4 5 6

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

100 90 80 70 60 50 40 30 20 10

L6.3.3 Example: The sum of the first n integers

This example computes the sum of the first n positive integers, for example the sum or

1+2+..+50 , or 1+2+3+..+2020 .

def main():

n = input(' Enter a positive integer n = ')

n = int(n)

s = 0

for i in range(1,n+1): # i goes from 1 to n

s += i

print(' 1 + 2 + ... + {} = {}. ' .format(n,s))

main()

Enter a positive integer n = 2020

1 + 2 + ... + 2020 = 2041210.

L6.4 Example of loop usage

This example computes the sum and the average value of a list of numbers. The program

asks the user to enter numbers or ’quit’. To read these numbers however many as they are,

an indefinite while loop is used. As the numbers are read, they are stored into a list object.

Since the list object knows how many items it has, a definite for loop is used to compute

the sum and average.

Note: When working with a list we should keep in mind the following:

• lists are intialized using = [] for empty lists

50 Introduction to Computers and Programming using Python

Loops Lecture 6

• the append() function is used to insert at the end of the list

• the objects in the list may have different types

• the len() function returns the size of the list (the number of objects)

• the bracket operator [] with an index is used to access (read/write) the elements; for

ex num[10] is the 11th element

• items in the list are indexed from 0 to len(list)-1

For a deeper look on lists, see Lecture L7.1.

def main():

num = []

while True:

n = input(' Enter a number or \ ' quit\ ' to finish: ')

if n == ' quit ' :

break # Exit the loop

n = float(n)

num.append(n)

s = 0

for i in range(len(num)):

s += num[i]

av = s/len(num)

print(' The entries of the list are: {} ' .format(num))

print(' The sum of the entries is {}. ' .format(s))

print(' The average of the entries is {}. ' .format(av))

main()

Enter a number or ' quit ' to finish: 2.3

Enter a number or ' quit ' to finish: 1.2

Enter a number or ' quit ' to finish: 5.4

Enter a number or ' quit ' to finish: quit

The entries of the list are: [2.3, 1.2, 5.4]

The sum of the entries is 8.9.

The average of the entries is 2.966666666666667.

Introduction to Computers and Programming using Python 51

Lecture 7

Lists, Tuples, Dictionaries

L7.1 Lists

L7.1.1 What is a list?

A variable can store exactly one given value at a time. A list , on the other hand, is a special

type of variable that can store more than one value:

number = 4

numbers = [] # Empty list

numbers = [1,5,7,9,2]

The list numbers starts with an opening bracket [and ends with a closing bracket] .

The space between the brackets is filled with five numbers separated by commas.

The elements inside a list may have different types. Some of them may be integers,

others floats, and yet others may be lists. The following example shows a heterogeneous list

with elements of different types: integer, float, string and another list

heterogeneous_list = [3, 4.5, "hello", [2, 3.0]]

L7.1.2 List indexing

The elements in a list are numbered starting from zero. This means the element stored at

the beginning of the list has the index number 0 and the last element is assigned the index

number length of the list -1 .

Consider the numbers list above:

• The number at position (index) 0 is 1

• The number at index 1 is 5

• The number at index 2 is 7

• The number at index 3 is 9

• The number at index 4 is 2

L7.1.3 Printing elements of a list

Elements of a list can be printed separately by referring each element by its index.

print(numbers[0], numbers[1], numbers[2], numbers[3], numbers[4])

1 5 7 9 2

Python can print the entire list only by its name as well.

print(numbers)

Introduction to Computers and Programming using Python 53

Lecture 7 Lists, Tuples, Dictionaries

[1, 5, 7, 9, 2]

L7.1.4 Accessing an element

A specific element in a list is referred by the name of the list followed by the index number

in brackets. This is used both to use the value of the element or to change it.

numbers[0] = 3 # Assigns 3 to the value of the element at index ␣

↪ → 0

print(numbers)

numbers[1] = numbers[4] # Assigns the value of the element at index 4 to ␣

↪ → the value at index 1

print(numbers)

[3, 5, 7, 9, 2]

[3, 2, 7, 9, 2]

L7.1.5 Length of a list

A list can grow or shrink during the execution of the program: elements can be added or

deleted. To find the current number of elements of a list, use the len() function with the

name of the list as an argument. It returns the number of elements.

print(len(numbers))

5

L7.1.6 Negative indices

Python allows negative indices. While positive indices starts from 0 (index position of the

first element in the list) and increase as we move towards the end of the list, negative indices

starts from -1 (index position of the last element in the list) and decreases as move towards

the beginning of the list.

For example:

Positive indices:

0

1

2

3

List: [3, 2, 7, 9]

Negative indices:

− 4

− 3

− 2

− 1

Both indices refer to the last element

print(numbers[-1])

print(numbers[len(numbers)-1])

2

2

L7.1.7 Removing an element

Any of the list’s elements may be removed at any time – this is done with an instruction

named del . del is not a function but an instruction.

54 Introduction to Computers and Programming using Python

Lists, Tuples, Dictionaries Lecture 7

print(numbers)

del numbers[4] # Delete the element at index 4

print(numbers)

print("Length:", len(numbers))

[3, 2, 7, 9, 2]

[3, 2, 7, 9]

Length: 4

It is impossible to access an element which does not exist, whether to use its value or

assign it. The following instruction causes a runtime error: index 4 does not exist anymore

since it was in the instruction above.

numbers[4] = 1

IndexError Traceback (most recent call last)

<ipython-input-12-52a8b450472a> in <module>

->1 numbers[4] = 1

IndexError: list assignment index out of range

L7.1.8 Appending an element to a list

To append an element to a list, a special method (not a function) called append() is used. A

method looks like a function but it differs in the way how it is invoked. A method is owned

by the data it works for. This means that invoking a method requires some specification of

the data from which the method is invoked.

In general, a function invocation may look like:

result = function(arg)

The function takes an argument, does something, and returns a result.

A typical method invocation usually looks like:

result = data.method(arg)

Here is how the value 4 can be added to the list numbers:

print(' Before: ' , numbers)

numbers.append(4)

print(' After appending 4: ' , numbers)

Before: [3, 2, 7, 9]

After appending 4: [3, 2, 7, 9, 4]

L7.1.9 Inserting an element into a list

While append() method adds a value to the end of a list, insert() can add the value at a

specific position in the list. It takes two arguments:

Introduction to Computers and Programming using Python 55

Lecture 7 Lists, Tuples, Dictionaries

list.insert(where, what)

The first gives the location of the element to be inserted (index), the second is the

element to be inserted. All the existing elements that occupy locations to the right of the

new element (including the one at the indicated position) are shifted to the right, in order

to make space for the new element

print("Before:", numbers)

numbers.insert(0,232) # Insert 232 at index 0

numbers.insert(-1, 444) # Insert 444 at index -1

print("After:", numbers)

Before: [3, 2, 7, 9, 4]

After: [232, 3, 2, 7, 9, 444, 4]

L7.1.10 Sorting a list

To sort elements in ascending order the sort() method is used:

list = [8, 10, 6, 2, 4]

list.sort()

print(list)

[2, 4, 6, 8, 10]

L7.1.11 Lists and loops

Example: Creating a list from scratch

A list’s life can start as the empty list to which new elements are added as needed with

append() method:

list = []

for i in range(5):

list.append(i+1)

print(list)

[1, 2, 3, 4, 5]

Another way is to use the insert() method:

list = []

for i in range(5):

list.insert(0, i+1)

print(list)

[5, 4, 3, 2, 1]

Example: Calculating the sum of the elements in a list

A variable sum is used to store the sum and initially assigned a value of 0 . Then all the

elements of the list are added to sum using a for loop.

56 Introduction to Computers and Programming using Python

Lists, Tuples, Dictionaries Lecture 7

list = [10, 1, 8, 3, 5]

sum = 0

for i in range(len(list)):

sum += list[i]

print(sum)

27

↬

See

Section L3.4.7

for more

information on

the += operator.

In the above code, list is assigned a sequence of five integer values. The i variable

takes the values 0, 1, 2, 3, and 4, and then it indexes the list, selecting the subsequent

elements: the first, second, third, fourth and fifth. Each of these elements is added together

by the += operator to sum variable, giving the final result at the end of the loop.

Example: Traversing a list using the in keyword

A for loop can do much more with a list. It can hide all the actions connected to the list’s

indexing, and deliver all the list’s elements. This ability of list is called being a sequence

type .

list = [10, 1, 8, 3, 5]

sum = 0

for element in list:

sum += element

print(sum)

27

The for instruction specifies the variable used to browse the list (element here) followed

by the in keyword and the name of the list being processed (list here). The element vari-

able is assigned the values of all the subsequent list’s elements, and the process occurs as

many times as there are elements in the list. This means that the element variable is a copy

of the elements’ values. Indices and the len() function are therefore not needed here.

L7.1.12 Slices

A slice is an element of Python syntax that allows to make a brand new copy of a list, or

parts of a list.

The syntax is as follows:

listname[startindex:endindex]

It resembles indexing, but the colon inside makes a big difference. A slice of this form

makes a new (target) list, taking elements from the source list – the elements of the indices

from startindex to endindex-1 . The element at endindex is not included in the slice.

Using negative values for both start and end is also possible.

list1 = [10,8,6,4,2]

new_list = list1[1:3] # Only elements at index positions 1 and 2 are ␣

↪ → included in the new_list

Introduction to Computers and Programming using Python 57

Lecture 7 Lists, Tuples, Dictionaries

print(new_list)

Negative index example

list1=[10,8,6,4,2]

new_list= list1[1:-1] # Starting index is 1 ending index is -2 (positive ␣

↪ → equivalent is 3).

print(new_list)

[8, 6]

[8, 6, 4]

The starting index, ending index, or both can be omitted in a slice. If this happens

default values are used.

list1 = [10, 8, 6, 4, 2]

newlist1 = list1[:] # Both indices are omitted. So start is 0 and end is ␣

↪ → length of the list -1

print(newlist1)

newlist2 = list1[:3] # Start index is 0.

print(newlist2)

newlist3 = list1[2:] # End index is 5

print(newlist3)

[10, 8, 6, 4, 2]

[10, 8, 6]

[6, 4, 2]

Slices can also be used with del instruction to delete a range of elements at once:

list1 = [10,8,6,4,2]

del list1[1:3]

print(list1)

[10, 4, 2]

L7.1.13 Searching for an element in a list

Python offers two very powerful operators, able to look through the list in order to check

whether a specific value is stored inside the list or not. These operators are in and not in

operators. The syntax is as follows:

element in list

element not in list

The first of them (in) checks if a given element (its left operand) is currently stored

somewhere inside the list (the right operand). In this case the operator returns True .

The second (not in) checks if a given element (its left operand) is absent in a list. In

this case the operator returns True .

58 Introduction to Computers and Programming using Python

Lists, Tuples, Dictionaries Lecture 7

list = [0, 3, 12, 8, 2]

print(5 in list)

print(5 not in list)

print(12 in list)

False

True

True

Example: Lottery

Let’s assume that you’ve chosen the following numbers in the lottery: 3, 7, 11, 42, 34, 49.

The numbers that have been drawn are: 5, 11, 9, 42, 3, 49. How many numbers have you

hit?

drawn = [5,11,9,42,3,49]

bets = [3,7,11,42,34,49]

hits = 0

for number in bets:

if number in drawn:

hits +=1

print(hits)

4

L7.2 Tuples

L7.2.1 What is a tuple?

Like a list, a tuple allows to store several values in a single variable. It usually stores different

types (heterogeneous) of data. It can behave like a list, but it must not be modified at

any time : tuples are immutable . So, the programmer need not worry about any alterations

to the tuple elements during the execution.

The first and the clearest distinction between lists and tuples is the syntax used to create

them: tuples use parenthesis, whereas lists use brackets, although it’s also possible to create

a tuple just from a set of values separated by commas.

list1 = [1, 3, 5, 4, 2] # This is a list

tuple1 = (1, 2, 4, 8) # This is a tuple

tuple2 = 1., .5, .25, .125 # This is also a tuple

print(list1)

print(tuple1)

print(tuple2)

[1, 3, 5, 4, 2]

(1, 2, 4, 8)

(1.0, 0.5, 0.25, 0.125)

Introduction to Computers and Programming using Python 59

Lecture 7 Lists, Tuples, Dictionaries

L7.2.2 Creating empty/one item tuple

Creating an empty tuple requires the parenthesis. When creating a one-element tuple, it

needs to be differentiated from a variable. This is done by using parenthesis and/or a comma:

emptytuple = ()

oneelement1 = (1,)

oneelement2 = 1.,

print(emptytuple)

print(oneelement1)

print(oneelement2)

()

(1,)

(1.0,)

L7.2.3 Reading elements of a tuple

To get the elements of a tuple in order to read them over, use the same conventions as when

using lists:

tuplename[index]

tuple = (1,10,100,1000)

print(tuple[0])

print(tuple[-1])

print(tuple[1:])

print(tuple[:-2])

for element in tuple:

print(element)

1

1000

(10, 100, 1000)

(1, 10)

1

10

100

1000

L7.2.4 Don’t try to modify tuple elements!

Tuples are immutable. So trying to modify them causes a runtime error. The following

snippets show typical mistakes for tuple operations.

tuple = (1, 10,100,100)

tuple.append(10000) # Causes a runtime error

60 Introduction to Computers and Programming using Python

Lists, Tuples, Dictionaries Lecture 7

AttributeError Traceback (most recent call last)

<ipython-input-29-7c2b230be7d7> in <module>

1 tuple = (1, 10,100,100)

->2 tuple.append(10000) # will cause a runtime error

AttributeError: ' tuple ' object has no attribute ' append '

del tuple[0] # Causes a runtime error

TypeError Traceback (most recent call last)

<ipython-input-33-c6c926d64047> in <module>

->1 del tuple[0] # Causes a runtime error

TypeError: ' tuple ' object doesn ' t support item deletion

tuple[1] = -10 # Causes a runtime error

TypeError Traceback (most recent call last)

<ipython-input-34-c33fcab7587e> in <module>

->1 tuple[1] = -10 # Causes a runtime error

TypeError: ' tuple ' object does not support item assignment

L7.2.5 Joining tuples

The + operator, can concatenate (join) two tuples, yielding a new tuple containing all the

elements from its arguments:

tuple1 = (1,10,100,1000)

tuple2 = 0,

print(tuple1 + tuple2)

(1, 10, 100, 1000, 0)

Introduction to Computers and Programming using Python 61

Lecture 7 Lists, Tuples, Dictionaries

L7.2.6 What else can tuples do?

• The len() function accepts tuples, and returns the number of elements it contains.

• The + operator can join tuples together.

• The * operator can multiply a tuple by an integer n by joining n copies of the tuple.

• The in and not in operators work in the same way as in lists.

• A for loop can traverse all the elements of a tuple: it is a sequence type.

tuple = (1, 10,100)

t1 = tuple + (1000, 10000)

t2 = tuple * 3

print(t1)

print(t2)

print(10 in tuple)

print(-10 not in tuple)

for v in t2:

print(v,end="-")

(1, 10, 100, 1000, 10000)

(1, 10, 100, 1, 10, 100, 1, 10, 100)

True

True

1-10-100-1-10-100-1-10-100-

One of the most useful tuple properties is their ability to appear on the left side of the

assignment operator. It is commonly used for swapping values stored by variables. The

following snippet shows two tuples interacting; the values stored in the variables "circu-

late": v1 becomes v2 , v2 becomes v3 , and v3 becomes v1 . The example presents one more

important fact: a tuple’s elements can be variables, not only literals. Moreover, they can be

expressions if they’re on the right side of the assignment operator.

v1 = 1

v2 = 2

v3 = 3

v1, v2, v3 = v2, v3, v1

print(v1, v2, v3)

2 3 1

L7.3 Dictionaries

L7.3.1 What is a dictionary?

A dictionary contains entries in the form of key:value pairs.

dct = { ' cat ' : ' gato ' , ' dog ' : ' perro ' , ' horse ' : ' caballo ' }

phones = { ' boss ' :5551233333, ' Ann ' :5552332123}

empty = {}

print(dct)

62 Introduction to Computers and Programming using Python

Lists, Tuples, Dictionaries Lecture 7

print(phones)

print(empty)

{ ' cat ' : ' gato ' , ' horse ' : ' caballo ' , ' dog ' : ' perro ' }

{ ' Ann ' : 5552332123, ' boss ' : 5551233333}

{}

In the above snippet, for example, ' cat ' represents a key while ' gato ' is the value. In

the first example, the dictionary uses keys and values which are both strings. In the second

one, the keys are strings, but the values are integers. The reverse layout (keys → numbers,

values → strings) is also possible, as well as number → number combination. The list of

pairs is surrounded by curly braces, while the pairs themselves are separated by commas,

and the keys and values by colons.

L7.3.2 Accessing elements in a dictionary

The values are accessed using a valid key.

print(dct[' cat '])

print(phones[' Ann '])

gato

5552332123

Getting a dictionary’s value resembles indexing. If the key is a string, it must be specified

as a string. Also, keys are case-sensitive: ’Ann’ is something different from ’ann’.

Using a non-existent key causes a runtime error:

print(phones[' president '])

KeyError Traceback (most recent call last)

<ipython-input-56-4c8bd66313a2> in <module>

->1 print(phones[' president '])

KeyError: ' president '

Testing existence of a key can be done using the in keyword:

print(' president ' in phones)

print(' Ann ' in phones)

print(5552332123 in phones) # The value 5552332123 exists but it looks ␣

↪ → for keys

False

True

False

Introduction to Computers and Programming using Python 63

Lecture 7 Lists, Tuples, Dictionaries

L7.3.3 Traversing a dictionary with a for loop

A dictionary cannot be traversed directly with a for loop: is not a sequence type like list

and tuple. But there are simple and very effective tools that can adapt any dictionary to

the for loop requirements.

The first of them is a method named keys() , owned by each dictionary. The method

returns a list containing all the keys gathered within the dictionary. Having a list of keys

enables to access the whole dictionary in an easy and handy way.

dct = { ' cat ' : ' gato ' , ' dog ' : ' perro ' , ' horse ' : ' caballo ' }

for key in dct.keys():

print(key, '→' , dct[key])

cat → gato

horse → caballo

dog → perro

Another way is based on using a dictionary’s method named items() . The method

returns a list of tuples where each tuple is a key–value pair.

dct = { ' cat ' : ' gato ' , ' dog ' : ' perro ' , ' horse ' : ' caballo ' }

for en,sp in dct.items(): # Each turn, the tuple (en,sp) is used as the ␣

↪ → left handside of the assignment

print(en, '→' ,sp)

cat → gato

horse → caballo

dog → perro

There is also a method named values() , which works similarly to keys() , but returns

a list of values.

dct = { ' cat ' : ' gato ' , ' dog ' : ' perro ' , ' horse ' : ' caballo ' }

for sp in dct.values():

print(sp)

gato

caballo

perro

L7.3.4 Assigning a new value to an existing key

Assigning a new value to an existing key is simple. There are no obstacles to modifying

dictionaries: dictionaries are fully mutable . For example, to replace the value "gato" with

"minou":

dct = { ' cat ' : ' gato ' , ' dog ' : ' perro ' , ' horse ' : ' caballo ' }

dct[' cat '] = ' minou '

print(dct)

{ ' cat ' : ' minou ' , ' horse ' : ' caballo ' , ' dog ' : ' perro ' }

64 Introduction to Computers and Programming using Python

Lists, Tuples, Dictionaries Lecture 7

L7.3.5 Adding a new key-value pair

Assign a value to a new, previously non-existent key adds a new key-value pair to the

dictionary. This is very different behavior compared to lists, which don’t allow assignment

of values to non-existing indices. For example, to add a new pair of words: lion → leon to

the dictionary:

dct[' lion '] = ' leon '

print(dct)

{ ' lion ' : ' leon ' , ' cat ' : ' minou ' , ' horse ' : ' caballo ' , ' dog ' : ' perro ' }

L7.3.6 Removing a key-value pair

Removing a key causes the removal of the associated value. Values cannot exist without

their keys. This is done with the del instruction.

del dct[' dog ']

print(dct)

{ ' lion ' : ' leon ' , ' cat ' : ' minou ' , ' horse ' : ' caballo ' }

Trying to remove a non-existent key causes a runtime error:

del dct[' bird ']

KeyError Traceback (most recent call last)

<ipython-input-54-963ba9b2e447> in <module>

->1 del dct[' bird ']

KeyError: ' bird '

L7.3.7 Example: Searching for certain words

In the following code, dct is a dictionary of English words to Spanish translations. The

program ask the user to search for some words and provides the translation if the word

exists in the dictionary.

dct = { ' cat ' : ' gato ' , ' dog ' : ' perro ' , ' horse ' : ' caballo ' }

word = input(' Enter an English word (empty string to stop): ')

while word != '' :

if word in dct:

print(word, '→' ,dct[word])

else:

print(' Not in dictionary: ' , word)

Introduction to Computers and Programming using Python 65

Lecture 7 Lists, Tuples, Dictionaries

word = input(' Enter an English word (empty string to stop): ')

Enter an English word (empty string to stop): cat

cat → gato

Enter an English word (empty string to stop): dog

dog → perro

Enter an English word (empty string to stop): house

Not in dictionary: house

Enter an English word (empty string to stop):

L7.4 Sequence data type and mutability

Lists, tuples, and dictionaries are data types in which you can store more than one value.

They differ fundamentally in regard of their sequence type character and mutability . While

tuples and lists are sequence data structures, dictionaries are not. While lists and dictionaries

are mutable, tuples are not.

Let’s recapitulate what these two concepts are.

A sequence type is a type of data in Python which is able to store more than one value.

These values can be sequentially browsed; in other words, a sequence is a data type which

can be scanned by a for loop. List is an example of sequence data.

Mutability is a property of any of Python’s data that describes its readiness to be freely

changed during program execution. There are two kinds of Python data: mutable and

immutable. Mutable data can be freely updated at any time. For example, the following

operation can update a list at any time (it appends 1 to the end of the list):

list.append(1)

Immutable data cannot be modified in this way. For example, tuple data is immutable.

66 Introduction to Computers and Programming using Python

Lecture 8

Functions

Lecture contents

L8.1 Introduction . 67

L8.2 Function definition . 67

L8.3 Calling a function . 68

L8.4 Examples . 69

L8.4.1 Modularity: cleaning the code using functions 69

L8.4.2 Maximum function . 69

L8.4.3 A function with no parameters 70

L8.4.4 A function with no return statement 70

L8.4.5 A main function . 71

L8.5 Variable Scope in Functions . 71

L8.5.1 An illustrated example of variable scoping 73

L8.5.2 Summary of scope concepts . 74

L8.6 Recursion . 74

L8.6.1 An illustrated example of recursion 75

L8.6.2 Example: Factorial . 77

L8.6.3 Example: Triangular numbers . 79

L8.7 Named parameters . 79

L8.8 Functions in math vs Python . 80

L8.8.1 (Non)determinism . 80

L8.8.2 Purity and side-effects . 81

L8.1 Introduction

In order to do the same or a similar task repeatedly one approach would be to copy and paste

blocks code over and over again. But it makes the program more cluttered and the code

difficult to maintain: correcting a bug must be done in all the copies! A better approach

is to split the code into multiple functions dedicated each to a task. That is the informal

definition of a function in Python: a block of code which executes a specific task. Code

written using this method is more compact and manageable.

L8.2 Function definition

Function definition is performed using the following syntax:

Introduction to Computers and Programming using Python 67

Lecture 8 Functions

def function_name(parameters):

Function code (body)

return return_value

It has the following elements:

• All function definition start with the keyword def .

• Then comes the function name: an identifier which will be used to execute the function

code. As for variable names, it is better to choose significant function names that

describe what the code does.

• The parameters are a comma-separated list of variables, used as an input to the

function. Some functions don’t have any parameter.

• The first line, which must end with a colon (:), gives the signature of the function.

• Below, as an indented block is the body of the function: the block of code to be

executed. Inside this block, the parameters are used as variables, assuming they have

a value.

• In the body there can be return statements that terminate the function and return a

value. Some function don’t return anything.

For example, a function which returns the area of a rectangle requires two variables

width and length as parameters (inputs). A good function name can be area , since it is

what the function calculates. So the code starts with def area(width,length): . Then

the body of the code is the actual calculation of the surface area in a variable that can be

returned:

a = width*length

return a

Putting everything together:

def area(width, length):

a = width * length

return a

L8.3 Calling a function

The function area does not do anything until it is called . This is why the code above does

not produce any result.

To call a function, use its name and provide a value for each parameter in the order they

were declared in the function definition. For example:

area(2,3)

6

The above line calls the area function with width = 2 and length = 3 . This expression

is replaced by the value returned by the function, in this case 6.

The result of functions can be stored in variables or used in calculations:

68 Introduction to Computers and Programming using Python

Functions Lecture 8

result = area(2,3)

doubleA = 2*area(2,3)

The line result = area(2,3) assigns the returned value to a variable result . It can

then be printed with print(result) .

result = area(2, 3) # Function call, store the returned value in a ␣

↪ → variable

print(result) # Print the result

6

L8.4 Examples

L8.4.1 Modularity: cleaning the code using functions

In the following code, computing the average of two numbers is done twice.

x = 3

y = 4

avg = (x+y)/2.0

print(avg)

x = 5

y = 7

avg = (x+y)/2.0

print(avg)

3.5

6.0

By defining an avg function, the code can be simplified. Since the average needs two

values to average them, the avg function requires two parameters: x and y .

def avg(x,y):

return (x+y)/2.0

print(avg(3,4)) # Function call

print(avg(5,7)) # Functions are defined once but can be called several ␣

↪ → times. This is the second function call.

3.5

6.0

L8.4.2 Maximum function

The body of the function can take many forms, using all the code structures available in

Python. In this example, the maximum function, which returns the maximum of given two

numbers, x and y , uses a conditional.

↬

See Lecture L5

for more on

conditionals.

It can be designed using the following procedure (in English, not in Python):

Introduction to Computers and Programming using Python 69

Lecture 8 Functions

Define a maximum function with two parameters x and y

If x is greater than y, return x

Otherwise, return y

Which can be translated into Python as follows:

def maximum(x,y): # Define the function ' s signature

if x>y: # "If x is greater than y"

return x

else: # "Otherwise"

return y

print(max(3,2)) # Function call

print(max(2,3)) # Function call

3

3

L8.4.3 A function with no parameters

It is perfectly possible that a function requires no parameters. For example, the function

below manages input from the user and returns it, but takes no parameter:

def getName(): # No parameters, the parentheses are still here

s = ""

while s=="": # Continue until user input is not empty

s = input("Please enter your name: ")

return s

n = getName() # Call the function, store result in variable n

print("Hello,",n)

Please enter your name:

Please enter your name:

Please enter your name: John

Hello, John

L8.4.4 A function with no return statement

Similarly, some functions do not return any value. In this case the function stops when all

the code has been executed. It is also possible to have the return keyword with no value

afterwards.

def sillyFunction(n,k):

if n=="":

print("You have no name")

return # Stops the function here

for i in range(k,0,-1):

print("Let me tell you",i,"more times: Hello",n,"!")

70 Introduction to Computers and Programming using Python

Functions Lecture 8

#return # This could be uncommented without any effect

sillyFunction("Bob",5)

sillyFunction("",42)

Let me tell you 5 more times: Hello Bob !

Let me tell you 4 more times: Hello Bob !

Let me tell you 3 more times: Hello Bob !

Let me tell you 2 more times: Hello Bob !

Let me tell you 1 more times: Hello Bob !

You have no name

L8.4.5 A main function

Functions that neither take parameters nor return anything are quite rare, to the exception

of the main function, which is the name usually given to the main function of the program:

its role is to call other functions.

def getNumber():

i = -1

while i<0:

i = int(input("Please enter a non-negative number: "))

return i

def main():

name = getName() # Get user input

number = getNumber() # Get user input

sillyFunction(name,number) # Do some printing

main() # Launch the whole program

Please enter your name:

Please enter your name: Alan

Please enter a non-negative number: -12

Please enter a non-negative number: 3

Let me tell you 3 more times: Hello Alan !

Let me tell you 2 more times: Hello Alan !

Let me tell you 1 more times: Hello Alan !

L8.5 Variable Scope in Functions

Parameters and variables defined inside functions only exist within the function. This allows

for two different functions to use the same variable name without any issue, but generates

an error if a variable is used outside of its scope .

def myFunction():

localVariable = 100

return

Introduction to Computers and Programming using Python 71

Lecture 8 Functions

print(localVariable) # Does not exist here: "NameError: name ␣

↪ → ' localVariable ' is not defined"

NameError Traceback (most recent call last)

<ipython-input-1-bd6ab172a552> in <module>

2 localVariable = 100

3 return

->4 print(localVariable) # Does not exist here: "NameError: name␣

↪ → ' localVariable ' is not defined"

NameError: name ' localVariable ' is not defined

Global variables are variables defined outside of functions. They can be accessed provided

the function declares that it uses the global version using the global keyword.

x = 42 # Global variable x

def aFunction():

x = 100 # Local variable x; not the same x despite the same name!

print(x)

return

print(x)

aFunction()

print(x) # The local value does not exist anymore, using the global ␣

↪ → variable

42

100

42

x = 42 # Global variable x

def anotherFunction():

global x # Declaring that the x used in this function will be the ␣

↪ → global one

x = 100 # Assigns the global variable

print(x)

return

print(x)

anotherFunction()

print(x) # Using the global variable (which value was changed by the ␣

↪ → function call)

72 Introduction to Computers and Programming using Python

Functions Lecture 8

(a) The global scope

(b) The local scope of f

Figure L8.1: Illustration of variable scoping.

42

100

100

L8.5.1 An illustrated example of variable scoping

Consider the code below. The printed result is 3 5 ; let’s see why. Note: the illustrations of

Figure L8.1 can be viewed dynamically on the Python tutor website.

x = 3

y = 2

def f(w):

x = w+y

return x

y = f(x)

#print(w) # Would produce an error since local w is called outside f.

print(x,y)

3 5

x=3

y=2

First, global variables x and y are defined, so x and y can be accessed everywhere in-

cluding inside of f (see Figure L8.1(a)).

y = f(x)

The y = f(x) calls the function f with w = 3 since x = 3 and assigns the returned value

to y . Let us look at the inside of f carefully.

Introduction to Computers and Programming using Python 73

http://www.pythontutor.com/visualize.html#code=x%3D3%0Ay%3D2%0Adef%20f%28w%29%3A%20%20%20%20%0A%20%20x%3Dw%2By%0A%20%20return%20x%0Ay%3Df%28x%29%20%20%20%20%20%20%20%20%0A%23print%28w%29%20%20%23%23%20it%20will%20make%20an%20error%20since%20local%20w%20is%20called%20outside%20f.%0Aprint%28x,y%29%0A&cumulative=true&heapPrimitives=true&mode=edit&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

Lecture 8 Functions

x = w+y

This calculation uses the local variable w = 3 and the global variable y = 2 ; their sum

w+y is 5 . A new local variable x is defined inside f since f cannot modify the global variable

x ; it is assigned the value 5 .

Eventually, f returns the value of x (local) which is 5 .

So 5 is assigned to y (global). The code is outside f , so local variables x and w (that

were defined inside f) cannot be accessed anymore. So print(w) outside f would result in

an error.

Here, the main point is that the global variable x is still 3 . Therefore, print(x,y) prints

3 5

L8.5.2 Summary of scope concepts

Let us summarize the above findings.

• local variable: a variable defined inside a function.

• global variable: a variable defined outside a function.

• Inside a function, a global variable can be accessed, but it cannot be modified. So,

when it is assigned, a computer assigns it to a newly defined local variable instead.

• Outside a function, a local variable cannot be accessed.

Note: There are other scopes beside local and global , but they are “beyond the scope”

of this course.

L8.6 Recursion

As in previous examples, it is possible to call a function from within a function. Let’s

visualize what happens in that case.

def f(x):

return 3*x

def g(x):

y = f(x)

return y+1

print(g(1))

4

Function g calls function f . So it waits for function f to terminate and replaces the value

f(x) by the value returned by f , as depicted in Figure L8.2.

It is also possible for a function to call not another function, but itself. This is called,

recursion .

74 Introduction to Computers and Programming using Python

https://realpython.com/python-scope-legb-rule/

Functions Lecture 8

Figure L8.2: Illustration of function g calling function f .

L8.6.1 An illustrated example of recursion

def f(x):

if x==1:

y = 1

else:

y = f(x-1)+1

return y

z = f(3)

print(z)

3

Let’s visualize what happens when f(3) is called (Figure L8.3(a)).

Case x = 3

Since

x = 3 ̸ = 1

, the else is taken and the calculation is as follows: f(3) = f(3-1)+1 =

f(2)+1

So in order to compute f(3) , the function calls f(2) (Figure L8.3(b)).

Case x = 2

Since

x = 2 ̸ = 1

, the else is taken and the calculation is as follows: f(2) = f(2-1)+1 =

f(1)+1

So in order to compute f(2) , the function calls f(1) (Figure L8.3(c)).

Case x = 1

Since

x = 1

, the then part of the condition is executed and the function returns 1 (Fig-

ure L8.3(d)).

Introduction to Computers and Programming using Python 75

Lecture 8 Functions

(a) Calling f(3)

(b) f(3) calls f(2)

(c) f(2) calls f(1)

(d) f(1) returns (to f(2))

(e) f(2) returns (to f(3))

(f) f(3) returns

Figure L8.3: Illustration of a recursive call.

76 Introduction to Computers and Programming using Python

Functions Lecture 8

Going back to the original call

After f(1) returns, f(2) can finish its calculation and return 2 (Figure L8.3(e)). Then f(3)

can finish it’s calculation and return 3 (Figure L8.3(f)).

Remarks

• Since the return stops the execution of the function, it is possible to omit the else

part, although it may become less readable:

def f(x):

if x==1:

return 1 # If this line is executed

return f(x-1)+1 # this one will not be

• Each time f is called from within f , it is another copy of the code of f that is executed.

Because of that, here is a limitation on recursion depth that is supported by Python.

It is usually set at 10000 by default.

• This whole sequence can be visualized dynamically on the Python tutor website.

L8.6.2 Example: Factorial

The factorial function is defined by

factorial (n) = 1 · 2 · 3 · . . . · (n − 1) · n

Since for

n > 1

factorial (n − 1) = 1 · 2 · 3 · . . . · (n − 1) ,

the definition can be rewritten as

factorial (n) = n · factorial (n − 1)

when

n > 1

.

This provides a recursive relation for the factorial:

{

factorial (n) = 1 , n ≤ 1

factorial (n) = n · factorial (n − 1) , n > 1

is equivalent to the original definition of factorial.

The above relation translates quite directly into Python code:

def factorial(n):

if n<=1:

return 1

else:

return n*factorial(n-1)

print(factorial(3))

print(factorial(5))

Introduction to Computers and Programming using Python 77

http://www.pythontutor.com/visualize.html#code=def%20f%28x%29%3A%0A%20%20if%20x%3D%3D1%3A%0A%20%20%20%20return%201%0A%20%20else%3A%0A%20%20%20%20return%20f%28x-1%29%2B1%0Aprint%28f%283%29%29&cumulative=true&curInstr=0&heapPrimitives=true&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

Lecture 8 Functions

6

120

The factorial function could also have been coded in Python using loops, in a style which

is called iterative .

To get to the iterative version from the recursive version, consider that factorial is called

first for n , then for n-1 all the way down to 1 , but the calculations themselves are done

in the other direction: factorial(1) returns then factorial(2) returns, all the way to

factorial(n) . Each intermediate result could be stored in a variable, used by the next

step.

For example for factorial(3) :

f1 = 1

i = 2

f2 = f1*2

i = 3

f3 = f2*3

which means

f1 = 1

i = 2

f2 = f1*i

i = 3

f3 = f2*i

Variables f1, f2, f3 can all be replaced by a single variable f . At the end of the

program, f s the value of f3 .

f = 1

i = 2

f = f*i

i = 3

f = f*i

Since the instruction f=f*i is repeated multiple times by increasing i by 1 , this sequence

can be replaced by a loop:

f = 1

for i in range(2,4): # Up to 3

f = f*i

This can be generalized to write an iterative version of factorial(n) . Note that it

resembles the first definition that was given of the factorial function.

def factorial(n):

f = 1

for i in range(2,n+1): # Up to n (included)

f = f*i

78 Introduction to Computers and Programming using Python

Functions Lecture 8

return f

print(factorial(3))

print(factorial(5))

6

120

When programming recursively, no loops are involved, but there is hidden repetition

trough the calling of copies of the function. This repetition can take up a lot of memory.

As a result, although recursive functions are quite elegant, they may not be very efficient.

L8.6.3 Example: Triangular numbers

The

tr iang l e (n)

function is defined by

tr iang l e (n) = 1 + 2 + 3 + 4 + . . . + n

It can also be defined recursively:

{

tr iang l e (n) = 1 , n = 1

tr iang l e (n) = n + tr iang l e (n − 1) , n > 1

The corresponding triangle(n) function can be defined in Python either iteratively

or recursively. (The two functions were given different names in order to distinguish the

programming style used.)

def triangleIter(n):

t = 0

for i in range(1,n+1):

t = t+i

return t

def triangleRec(n):

if n==1:

return 1

else:

return n+triangleRec(n-1)

print(triangleIter(4))

print(triangleRec(4))

10

10

L8.7 Named parameters

When calling a function, all parameters have to be given a value, and passed in the order

parameters were declared. This is not the case for named parameters . The named parameters

Introduction to Computers and Programming using Python 79

Lecture 8 Functions

are defined after the positional parameters (the regular ones, denoted as positional because

what value corresponds to what parameter depends on the position), and are given not only

a variable name but also a default value.

When calling a function with named parameters, they also come at the end but the order

within named parameters can be changed. In addition, if arguments for named parameters

are not given, then the default value is used.

def theaterLine(speaker,text,indentation=1,didascalia=""):

indent = "\t"*indentation

text = text.replace("\n","\n"+indent)

info = ""

if didascalia!="":

didascalia = "\t\t/"+didascalia+"/"

print(speaker+":"+didascalia+"\n"+indent+text)

return

No argument passed to named parameters, using default values

theaterLine("Richard, Duke of Gloster","Now is the winter of our␣

↪ → discontent\nMade glorious summer by this son of York")

print() # New line

Named parameters given in any order

theaterLine("Algernon","I don ' t know that I am much interested in your␣

↪ → family life, Lane.",didascalia="Languidly",indentation=2)

Richard, Duke of Gloster:

Now is the winter of our discontent

Made glorious summer by this son of York

Algernon: /Languidly/

I don ' t know that I am much interested in your family␣

↪ → life, Lane.

L8.8 Functions in math vs Python

L8.8.1 (Non)determinism

In mathematics, the definition of the term function states that

f

is a function if for each

x

,

f

returns a unique

f (x)

.

For example, if

f (x) = 2 · x + 1

, the corresponding Python f function is given below:

def f(x):

return 2*x+1

print(f(1))

print(f(1))

3

3

80 Introduction to Computers and Programming using Python

Functions Lecture 8

Every time

f (1)

is calculated,

f (1) = 3

. This is called determinism .

This restriction is not true for a Python function: it does not need to return the same

value for a given x , because it may rely on data outside the scope of the function.

from random import randint

def g(x):

y = randint(1,10) # y is a random value

return x+y

print(g(1))

print(g(1))

3

6

Here, randint(1,10) returns an integer between 1 and 10, chosen randomly. So

print(g(1)) may return a different number each time.

Example: Nondeterminism through user input

Another source on nondeterminism can be the user input.

def nonDetInput(x):

y = int(input("Type an integer y: "))

return x+y

print(nonDetInput(7))

print(nonDetInput(7))

Type an integer y: 42

49

Type an integer y: -37

-30

The above function is not deterministic since it returns a different value depending on

the user input y . For example, if the user types 42 , f(7) returns 49 . But if the user types

-37 , f(7) returns -30 .

L8.8.2 Purity and side-effects

Another restriction on a mathematical function is that it only calculates . It cannot modify

anything that is outside its internal workings: calculating

f (x)

cannot change

y

or

x

itself.

This restriction again does not apply to functions in programming languages: these can

modify objects outside of their scope. This is called a side-effect .

One relatively benign but widespread side-effect is the printing of some output: it changes

the state of the terminal (or other output stream), and as such is considered a side-effect.

More involved side effects include the modification of a global variable, as is done in

Section L8.5. Since global variables are rarely used, this case is not so widespread.

Introduction to Computers and Programming using Python 81

Lecture 8 Functions

More common is the modification of mutable objects passed as arguments (such as lists

and dictionaries),

↬

More on

mutability in

Section L7.4.

as in the example below. The rotate function takes the first element of

the list and places it at the very end.

def rotate(l):

if len(l)>1:

l.append(l[0])

del l[0]

somelist = [1, 2, 3, 4]

print(somelist)

rotate(somelist)

print(somelist)

rotate(somelist)

print(somelist)

rotate(somelist)

print(somelist)

[1, 2, 3, 4]

[2, 3, 4, 1]

[3, 4, 1, 2]

[4, 1, 2, 3]

In computer science, a function with no side-effect, for example any mathematical func-

tion, is called a pure function . Pure functions are easier to debug because there is only

one way they can influence the rest of the program, which is through the return instruc-

tion. Side-effects of non-pure functions are harder to debug because executing the function

several times may not be equivalent to running it only once, and it may look like it is

non-deterministic!

82 Introduction to Computers and Programming using Python

Part II

Projects

83

Project 1

The Motion of the Vertical

Projectile

Project contents

P1.1 Top height . 85

P1.2 Flight time . 86

P1.3 Possible extensions . 87

Consider the following experiment: Throw a rock vertically. There is an initial height of

the ground (h0 "

h

zero") and initial velocity v0 . The rock climbs up to certain height. As

it does so, its velocity decreases due to the force of attraction (gravity) exerted by Earth.

When the rock reaches its top height, its velocity is zero. Afterwards, the rock falls down

and eventually hits the ground.

The formula for the velocity of the object

t

seconds after being thrown is given by:

v (t) = g t + v0

. (P1.1)

The formula for the height of the object

t

seconds after being thrown is given by:

h (t) =

g

2

t2 + v0

t + h0

. (P1.2)

The time

ttop

after which the object reaches its top height satisfies

v (ttop) = 0

. It can be

calculated as:

ttop

= −

v0

g

. (P1.3)

The top height attained by the object is given by:

htop

= h (ttop) = h0

−

v2

0

2 g

. (P1.4)

P1.1 Top height

This first code computes the top height

htop

reached by a vertically thrown rock:

Introduction to Computers and Programming using Python 85

Project 1 The Motion of the Vertical Projectile

g = -9.81 # the gravity or acceleration -9.81 meters/second squared

def top_height(h0, v0):

return h0-(v0**2)/(2*g)

def main():

print(' Computing the height in meters of an object ' ,

' with initial height h0 and velocity v0: ')

while True:

s = input(' Press q to quit or anything else to continue: ')

if s == ' q ' :

break

h0 = input(' Enter initial height: ')

h0 = float(h0)

v0 = input(' Enter initial velocity: ')

v0 = float(v0)

toph = top_height(h0,v0)

print(' top height = %.2f meters. ' % toph)

main()

Computing the height in meters of an object with initial height h0 and␣

↪ → velocity

v0:

Press q to quit or anything else to continue: w

Enter initial height: 10

Enter initial velocity: 50

top height = 137.42 meters.

Press q to quit or anything else to continue: w

Enter initial height: 1.8

Enter initial velocity: 340

top height = 5893.75 meters.

Press q to quit or anything else to continue: q

P1.2 Flight time

The time

tair

after which the object reaches the ground satisfies

h (tair) = 0

. It can be

calculated to be:

tair

= −

v0

+

√

v2

0

− 2 g h0

g

. (P1.5)

This code computes the time the vertically thrown rock is in air (or the flight time):

g = -9.81 # The gravity or acceleration: -9.81 meters/second squared

import math

def time_in_air(h0, v0):

return -(v0+math.sqrt(v0**2-2*g*h0))/g

86 Introduction to Computers and Programming using Python

The Motion of the Vertical Projectile Project 1

def main():

print(' Computing the height in meters of an object ' ,

' with initial height h0 and velocity v0: ')

while True:

s = input(' Press q to quit or anything else to continue: ')

if s == ' q ' :

break

h0 = input(' Enter initial height: ')

h0 = float(h0)

v0 = input(' Enter initial velocity: ')

v0 = float(v0)

tair = time_in_air(h0,v0)

print(' Time in air is = %.2f seconds. ' % tair)

main()

Computing the height in meters of an object with initial height h0 and␣

↪ → velocity

v0:

Press q to quit or anything else to continue: w

Enter initial height: 1.8

Enter initial velocity: 340

Time in air is = 69.32 seconds.

Press q to quit or anything else to continue: q

P1.3 Possible extensions

The project may be expanded so that all the formulas are implemented in their respective

functions.

Introduction to Computers and Programming using Python 87

Project 2

Linear and Quadratic Equations

Project contents

P2.1 Solving linear equations . 89

P2.1.1 Example: Solve

2 x − 4 = 0

for

x

. 89

P2.1.2 Generalization with parameters

a

and

b

. 89

P2.1.3 Case

a = 0

. 90

P2.1.4 Coding the procedure in Python 90

P2.2 Quadratic equations . 92

P2.2.1 Hints to solve the problem . 92

P2.2.2 Project Code . 95

P2.1 Solving linear equations

A linear equation is an equation of the form

ax + b = 0

to be solved for

x

, where

a

and

b

are real numbers.

P2.1.1 Example: Solve

2 x − 4 = 0

for

x

2 x − 4 = 0

2 x = 4

x =

4

2

x = 2

Here 4 was added to both sides, then they were divided by

2

to find

x

.

P2.1.2 Generalization with parameters

a

and

b

The above computation can be generalized with parameters

a

and

b

.

ax + b = 0

ax = − b

x = −

b

a

Here

b

was added to both sides which were then divided by

a

to find

x

. The problem

here is that

a

may be zero, and division by zero is undefined ! Therefore the division by

a

can only be performed when

a ̸ = 0

: this needs to be tested in a conditional statement.

An English version this procedure can be devised: (It is not Python code!)

if a is not zero:

x is -b/a

print x

else: (that means a is zero)

handle it carefully

Introduction to Computers and Programming using Python 89

https://en.wikipedia.org/wiki/Linear_equation

Project 2 Linear and Quadratic Equations

P2.1.3 Case

a = 0

Now let’s consider the case when

a = 0

. The equation is now

0 x + b = 0

, which is equivalent

to

b = 0

. So

x

does not appear in this equation, and it’s value is not relevant, only the value

of

b

is.

• If

b = 0

, then

ax + b = 0

becomes

0 = 0

which is always True regardless of

x

: all real

numbers are solutions.

• If

b ̸ = 0

, then

ax + b = 0

becomes

b = 0

which is impossible (it is in contradiction with

b ̸ = 0

). So there is no

x

satisfying

ax + b = 0

: there is no solution.

Therefore another condition is needed to handle these two cases.

The procedure can therefore be refined as follows:

if a is not zero:

x is -b/a

else: (that means a is zero)

if b is zero:

x is "All solutions"

else:

x is "No solution"

print x

A graphical view of the 3 possible cases in linear equations is depicted in Figure P2.1.

P2.1.4 Coding the procedure in Python

The goal now is to convert the procedure written in English, also known as an algorithm ,

into Python code that can be executed.

The end result should look like these examples:

• Case with one solution:

Type a real number a: 2

Type a real number b: 3

x = -1.5

• Case with no solution:

Type a real number a: 0

Type a real number b: 2

No solution

• Case with all reals as solutions:

Type a real number a: 0

Type a real number b: 0

All solutions

Note

Since a and b are real numbers , so the user input for these values need to be converted

into a float .

90 Introduction to Computers and Programming using Python

Linear and Quadratic Equations Project 2

(a) One solution (

a ̸ = 0

)

(b) All solutions (

a = 0 , b = 0

)

(c) No solution (

a = 0 , b ̸ = 0

)

Figure P2.1: A graphical view of the 3 possible cases in linear equations

Introduction to Computers and Programming using Python 91

Project 2 Linear and Quadratic Equations

a = float(input("Type a real number a:"))

Now complete the code below:

Linear equation (ax+b=0) solver

a = float(input("Type a real number a: ")) # float: real numbers

b = float(input("Type a real number b: ")) # float: real numbers

Complete the code here

#

P2.2 Quadratic equations

A quadratic equation is an equation of the form

ax2 + bx + c = 0

to be solved for

x

, where

a

,

b

and

c

are real numbers. It is also assumed that

x

is a real number.

Solving such an equation can be done using the quadratic formula.

If

a ̸ = 0

, the quadratic formula gives

x =

− b ±

√

b2 − 4 ac

2 a

If

a = 0

, then the equation becomes

bx + c = 0

. So a similar procedure as in the case of

Section P2.1 above can be used.

The goal is to code a Python program that takes values

a

,

b

,

c

, and prints out the

solutions of the equation.

P2.2.1 Hints to solve the problem

Hint 1:

a = 0

case

When

a = 0

, we have

bx + c = 0

It is a linear equation as in the Section P2.1. Although the idea remains the same, this

time

b

is the coefficient of

x

, instead of

a

, and

c

now has the role that

b

had. The code must

be modified in consequence.

Hint 2: Square root

To compute The quare root, use the sqrt function from math library. For example to

compute

√

2

:

from math import sqrt

sqrt(2)

1.4142135623730951

The sqrt function is only defined for non-negative numbers and produces an error on

negative numbers:

92 Introduction to Computers and Programming using Python

https://en.wikipedia.org/wiki/Quadratic_formula

Linear and Quadratic Equations Project 2

sqrt(-4)

ValueError Traceback (most recent call last)

<ipython-input-4-ee0bfbfc0490> in <module>

->1 sqrt(-4)

ValueError: math domain error

So to have real solution(s),

b2 − 4 ac

must be non-negative. In other words:

• If

b2 − 4 ac ≥ 0

there are real solutions.

• If

b2 − 4 ac < 0

, there is no real solution .

Hint 3: All possible cases from the quadratic formula with

a ̸ = 0

When

a ̸ = 0

, there are actually three possible cases depending on the value of

b2 − 4 ac

.

If

b2 − 4 ac = 0

,

x =

− b ±
√

b2 − 4 ac

2 a

=

− b ± 0

2 a

=

− b

2 a

, so there is only one real solution:

x =

− b

2 a

If

b2 − 4 ac > 0

, there are two real solutions:

x1

=

(

− b +

√

b2 − 4 ac

)

(2 a)

x2

=

(

− b −

√

b2 − 4 ac

)

(2 a)

As stated before, if

b2 − 4 ac < 0

, there is no real solution and the program should print

"No real solution" .

A graphical view of the 3 possible cases in quadratic equations with

a ̸ = 0

is depicted in

Figure P2.2.

Hint 4: Be careful with division and use parentheses.

In mathematics, the fraction bar actually serves as parentheses. The value of

2 x + 8

3 x

with

x = 2

is therefore

2 × 2 + 8

3 × 2

= (2 × 2 + 8) ÷ (3 × 2) = 12 ÷ 6 = 2

In Python, actual parentheses have to be used: (2*x+8)/(3*x) produces the desired

result. Below is an example of what happens when the parentheses are missing

Introduction to Computers and Programming using Python 93

Project 2 Linear and Quadratic Equations

(a) One solution (

b2 − 4 ac = 0

)

(b) Two solutions (

b2 − 4 ac > 0

)

(c) No real solution (

b2 − 4 ac < 0

)

Figure P2.2: A graphical view of the 3 possible cases in quadratic equations with

a ̸ = 0

x=2

e1=2*x+8/3*x # Interpreted as (2*x)+(8/3)*x

e2=(2*x+8)/3*x # Interpreted as (((2*x)+8)/3)*x

e3=(2*x+8)/(3*x) # Interpreted as ((2*x)+8)/(3*x)

print(e1,e2,e3)

9.333333333333332 8.0 2.0

Similarly,

− b +

√

b2 − 4 ac

2 a

is written (-b+sqrt(b*b-4*a*c))/(2*a) in Python.

Hint 5: Sample outputs

Below are examples of the expected output.

• Case with all reals as solutions:

Type a real number a: 0

Type a real number b: 0

Type a real number c: 0

All solutions

94 Introduction to Computers and Programming using Python

Linear and Quadratic Equations Project 2

• Case of linear equation with no solution:

Type a real number a: 0

Type a real number b: 0

Type a real number c: 2

No solution

• Case of linear equation with a single solution:

Type a real number a: 0

Type a real number b: 2

Type a real number c: 3

x = -1.5

• Case of a quadratic equation with two solutions:

Type a real number a: 2

Type a real number b: -5

Type a real number c: -12

x1 = 4.0, x2 = -1.5

• Case of a quadratic equation with a single solution:

Type a real number a: 1

Type a real number b: 4

Type a real number c: 4

x = -2.0

• Case of a quadratic equation with no real solution:

Type a real number a: 1

Type a real number b: 2

Type a real number c: 5

No real solution

P2.2.2 Project Code

Complete the code of the project below:

Quadractic equation (ax^2+bx+c=0) solver

from math import sqrt

a = float(input("Type a real number a: ")) # float: real numbers

b = float(input("Type a real number b: ")) # float: real numbers

c = float(input("Type a real number c: ")) # float: real numbers

Complete the code here

#

Introduction to Computers and Programming using Python 95

Project 3

Image Processing

Project contents

P3.1 Introduction . 97

P3.1.1 Colors and transparency . 97

P3.2 Code preamble and first manipulation: input/output 98

P3.3 Image format . 99

P3.3.1 Pixel organization . 99

P3.3.2 Creating an Alpha channel . 100

P3.3.3 Experiments with resolution and colors 100

P3.4 Changing images pixel by pixel . 101

P3.4.1 Coloring the image by adding light 101

P3.4.2 Coloring the image by removing light 102

P3.4.3 Other color manipulations . 103

P3.5 Global and vicinal manipulation . 104

P3.5.1 Global brightness of an image . 104

P3.5.2 Blurring an image . 105

P3.6 Doing all transformations onto files . 106

P3.6.1 Exercise: The wrap-up function 108

P3.1 Introduction

The objective of this project is to learn about the way images are coded, and apply image

manipulation on them. The image format used here is Portable Network Graphics (PNG),

which supports transparency. The manipulations include change in color and opacity.

P3.1.1 Colors and transparency

An image is made of (many) small squares called pixels (standing for picture cell), each

having an individual color and transparency.

One way colored are coded in computer graphics is called the RGBA model, standing for

Red, Green, Blue, Alpha. The Red, Green, and Blue values give the color, while the alpha

fixes the opacity.

For this project (and actually it is the case of colors on the web), these values are integers

between 0 and 255 . The value of one color represent the quantity of light of that color being

added to the mix; the final color is produced according to additive color mixing. The alpha

represents the opacity: an alpha of 0 means complete transparency, an alpha of 255 means

solid color.

For example:

Introduction to Computers and Programming using Python 97

https://en.wikipedia.org/wiki/Additive_color

Project 3 Image Processing

• A pixel with value (255,255,255,255) has all RGB colors to the max, and is a white

pixel (full light).

• A pixel with value (0,0,0,255) has all RGB colors to 0, and is a black pixel (no light).

• A pixel with value (255,0,0,255) only has its red component to the max and no green

or blue, so it is a red pixel.

• A pixel with value (0,255,0,255) only has its green component to the max and no green

or blue, so it is a green pixel.

• A pixel with value (0,0,255,255) only has its blue component to the max and no green

or blue, so it is a blue pixel.

• A pixel with value (127,127,127,255) has all three components to a middle value, so it

is a gray pixel.

• A pixel with value (255,255,0,255) has both red and green components to the max but

no blue, so it a yellow pixel.

• A pixel with value (255,0,255,255) has both red and blue components to the max but

no green, so it a magenta pixel.

• A pixel with value (0,255,255,255) has both green and blue components to the max

but no red, so it a cyan pixel.

• A pixel with value (127,0,0,255) only has its red component to a middle and no green

or blue, so it is a dark red pixel.

to have a better sense of what these value means, it is possible to experiment using an

HTML color picker.

Note : the alpha is often displayed as a value

α

between 0 and 1, but it is still stored as

a value

A

between 0 and 255. The conversion is as follows:

α =

A

255

and

A = ⌊ 255 × α ⌋

.

P3.2 Code preamble and first manipulation: input/output

The project uses the PIL library (PIL stands for Python Imaging Library), that is found in

the package pillow . It may require installation, either by running

pip3 install -U pillow

in a terminal or the following in Jupyter:

!pip3 install -U pillow

To actually use the package, the first thing to do is to import the Image module from

the PIL library:

from PIL import Image

The open function in the Image module imports an image file. This function requires the

path to the image, which can be relative to the place where this script is stored or absolute

in the filesystem. For example, here, the file Wrench.png located in the subdirectory images

is being imported; this directory is located in the same directory as the script.

wrench = Image.open("images/Wrench.png")

The picture can then be displayed using show() :

98 Introduction to Computers and Programming using Python

https://htmlcolors.com/rgba-color

Image Processing Project 3

wrench.show()

It should open up a window to display this image:

Depending on the system, the transparency of the picture may or may not be adequately

represented (here there is no background). So show() might be good for debugging, but to

see the picture better, it might be better to open it through the file browser. If the picture

has been changed (as will happen throughout the project), it needs to be saved first:

wrench.save("/tmp/WrenchCopy.png")

Here, an absolute path is given as argument: it starts with a / . So the file is being saved

in the /tmp/ folder at the root of the file system (in GNU/Linux).

Note : in Windows, the temporary folder is C:\Users\<username>\AppData\Local\Temp ,

where <username> is the current user logged into the system.

P3.3 Image format

P3.3.1 Pixel organization

The PNG image format used in this project stores images as two-dimensional array of

pixels. The origin

(0 , 0)

is located at the top left corner of the image. The

x

coordinate

grows horizontally from left to right (so the usual). The

y

coordinate grows vertically but

from top to bottom (so not so usual). The size of the image is called the resolution , and is

often written as the product

X × Y

where

X

is the width and

Y

is the height, in pixels.

0 , 0

1 , 0

· · ·

X − 1 , 0

0 , 1

1 , 1

· · ·

X − 1 , 1

0 , 2

1 , 2

· · ·

X − 1 , 2

...

...

. . .

...

0 , Y − 1

1 , Y − 1

· · ·

X − 1 , Y − 1

This array of cells can be reached through the load() command. Then an individual

pixel is reached by its coordinates. But in order to know where these coordinates end, the

resolution of the image must be known, which is conveniently done by the size command.

↬

For a refresher

on the two

forms of

division, see

Section L3.4.2.

xSize,ySize = wrench.size # Get the size in variables ␣

↪ → xSize,ySize

pixWrench = wrench.load() # Get the array of pixels

pixCenter = pixWrench[xSize//2,ySize//2] # Get a pixel in the middle

print("One pixel in the middle:",pixCenter)

Introduction to Computers and Programming using Python 99

Project 3 Image Processing

One pixel in the middle: (67, 79, 93, 255)

Each pixel is a tuple of 4 values that represent the amount of Red, Green, Blue, and

Alpha (RGBA) in the pixel.

Exercise

Uncomment the following line and try to run it.

#pxError = pixWrench[xSize,ySize] # This gives an error

Explain why an error was produced.

P3.3.2 Creating an Alpha channel

Not all images actually come with pixels in 4 dimensions: in some cases the Alpha value is

missing. To make sure that images are in the RGBA mode and can be used in the functions,

right after opening, the following addalpha function should be called on the image.

def addalpha(image):

if image.mode != "RGBA":

image.putalpha(255)

return image

statueLiberty = Image.open("images/Liberty.png") # RGB mode

print a pixel in the middle: only 3 components

print("Before addalpha:",statueLiberty.load()[statueLiberty.size[0]//

↪ → 2,statueLiberty.size[1]//2])

addalpha(statueLiberty) # Now ready to be used

print a pixel in the middle: now there is an alpha component

print("After addalpha: ",statueLiberty.load()[statueLiberty.size[0]//

↪ → 2,statueLiberty.size[1]//2])

Before addalpha: (69, 94, 90)

After addalpha: (69, 94, 90, 255)

P3.3.3 Experiments with resolution and colors

One way to experiment with both resolution and color is by creating new pictures filled with

a given color, using the new() function in the Image module.

The syntax is as follows: res = Image.new("RGBA",(x,y),(red,green,blue,alpha))

RGBA indicates we are using this model for colors, x and y provide the resolution, and

(red,green,blue,alpha) give the value of the color that will be in every pixel.

orange = Image.new("RGBA",(123,45),(255,153,0,255))

orange.show()

100 Introduction to Computers and Programming using Python

Image Processing Project 3

Exercise

Experiment with the new function by creating at least three images of your liking. For

example:

• A pink square of size 130 pixels

• A dark blue rectangle of resolution

256 × 128

• A light-gray rectangle of resolution

512 × 724

Remember that it is easier to find the RGB value of colors using an HTML color picker.

Code here

#

P3.4 Changing images pixel by pixel

In order to change the image, each pixel is accessed individually and modified accordingly.

Note that since the image is being changed, it is wise to copy the image before testing;

otherwise several effects will be applied to the same image. This is done by the copy()

function:

wrench2 = wrench.copy()

P3.4.1 Coloring the image by adding light

The first kind of simple manipulation of this project is to change the color of the image by

accenting one component of each pixel. For example, the function below changes the image

by setting the blue component of all pixels to the maximum value 255.

↬

For a refresher

on loops, see

Lecture L6.

def bluize(image):

px = image.load() # Get the array of pixels

xsize,ysize = image.size # Get the resolution

for x in range(0,xsize):

for y in range(0,ysize): # Go through the whole array

px[x,y] = (px[x,y][0],px[x,y][1],255,px[x,y][3])

Set the blue component to 255, the rest stays the same

return image

Testing

blueWrench = wrench.copy() # Make a copy because the image is being ␣

↪ → modified

bluize(blueWrench)

blueWrench.show()

#wrench.show() # Uncomment to see there was no change done to ␣

↪ → the original picture

Introduction to Computers and Programming using Python 101

https://htmlcolors.com/rgba-color

Project 3 Image Processing

Exercise: Green and red versions

Code and test the functions greenize and redize that color the image in a similar fashion:

greenize makes it greener by boosting the green component, and redize makes it redder

by boosting the red component.

Code here

#

Here are the colored versions of the wrench image:

Original

After bluize

After greenize

After redize

Remark that since light was added to one component, the image seems brighter than the

original.

P3.4.2 Coloring the image by removing light

As the power of a component was increased, it is also possible to decrease it to 0. For

example, if the blue component is removed from a picture, it becomes darker and more

yellow.

def yellowize(image):

px = image.load() # Get the array of pixels

xsize,ysize = image.size # Get the resolution

for x in range(0,xsize):

for y in range(0,ysize): # Go through the whole array

px[x,y] = (px[x,y][0],px[x,y][1],0,px[x,y][3])

Set the blue component to 0, the rest stays the same

return image

Testing

yellowWrench = wrench.copy() # Make a copy because the image is being ␣

↪ → modified

yellowize(yellowWrench)

yellowWrench.show()

Exercise: Magenta and cyan versions

Code and test the functions magentize and cyanize that color the image in a similar fashion:

magentize makes it magenta by removing the green component, and cyanize makes it cyan

by removing the red component.

102 Introduction to Computers and Programming using Python

Image Processing Project 3

Code here

#

Here are the colored versions of the wrench image:

Original

After yellowize

After magentize

After cyanize

P3.4.3 Other color manipulations

Exercise: Negative image

Code and test the function negate that changes the image to its negative image. The

negative image is obtained by changing each color component from

x

to its complement to

255:

255 − x

. Note that the opacity remains the same.

Code here

#

Exercise: Grayscale

Code and test a function grayscale that converts it to a grayscale image. A grayscale

image has only grey pixels: pixels that have all RGB components to the same value. This

value is the average of the RGB components, because it corresponds to the total quantity of

light that this pixel has. For example a pixel that originally has the value (158,66,245,255)

(purple) will become (156,156,156,255), because

⌊
158+66+245

3

⌋

= 156

.

Code here

#

Exercise: Transparency

Code and test a function transparent that halves the alpha value of each pixel in order to

make the image semi-transparent.

Code here

#

Here is an example of the above three manipulations on the wrench image:

Introduction to Computers and Programming using Python 103

Project 3 Image Processing

Original

After negate

After grayscale

After

transparent

P3.5 Global and vicinal manipulation

Up to now, all functions manipulate each pixel by itself, without looking at other pixels in

the image in order to change the pixel value.

P3.5.1 Global brightness of an image

One interesting measure about an image in its globality is how bright or dark it is. This is

done by averaging the brightness of each pixel; a pixel’s brightness being the average of its

RGB components (rounded to the lowest integer).

def brightness(image):

res = 0

px = image.load()

xsize,ysize = image.size # Get the resolution

for x in range(0,xsize):

for y in range(0,ysize): # Go through the whole array

for c in range(0,3): # Go through each RGB component

res = res+px[x,y][c] # Add all values to res

res = res // (3*xsize*ysize) # Divide by the number of ␣

↪ → values we added: 3 per pixel

return res

print("Brightness of the ' Wrench.png ' image:",brightness(wrench))

Brightness of the ' Wrench.png ' image: 150

Exercise: A better brightness measure

Although this is an interesting function, it does not take into account the fact that some

pixels are actually not visible, or just less visible, if their alpha is not 255.

Code and test a function realBrightness that takes that into account by weighing the

luminosity of each pixel by the alpha value of the pixel.

Note : When doing a weighted average, the sum of weighted values must be divided by

the sum of the weights. Mathematically, the average of values

(a1

, a2

, . . . , an)

with respective

weights

(w1

, w2

, . . . , wn)

is

Avg =

∑n

i =1

ai

× wi

∑n

i =1

wi

=

a1

× w1

+ a2

× w2

+ · · · + an

× wn

w1

+ w2

+ · · · + wn

104 Introduction to Computers and Programming using Python

Image Processing Project 3

Code here

#

Real brightness of the ' Wrench.png ' image: 71

Exercise: A black-and-white image based on the brightness

The result of the brightness function can be used to create a black-and-white version of the

image. Do not confuse black and white with grayscale: in a black and white picture the

only two possible RGB values for a pixel are 0,0,0 (black) or 255,255,255 (white). The alpha

value remains the same as before, however.

To determine whether a pixel should be black or white, the brightness is used as a

threshold : if the pixel is brighter than the global image brightness, then the pixel is white,

otherwise it is black.

Code and test the threshold function that makes the image black-and-white according

to the real brightness of the image.

Code here

#

P3.5.2 Blurring an image

To blur an image, the color of a pixel

(x, y)

is determined using the pixels around it (its

"neighbor pixels"). Namely, the color of a pixel is the average of the color of the 9 pixels

surrounding

(x, y)

(including the pixel itself).

x − 2 , y − 2

x − 1 , y − 2

x, y − 2

x + 1 , y − 2

x + 2 , y − 2

x − 2 , y − 1

x − 1 , y − 1

x, y − 1

x + 1 , y − 1

x + 2 , y − 1

x − 2 , y

x − 1 , y

x, y

x + 1 , y

x + 2 , y

x − 2 , y + 1

x − 1 , y + 1

x, y + 1

x + 1 , y + 1

x + 2 , y + 1

x − 2 , y + 2

x − 1 , y + 2

x, y + 2

x + 1 , y + 2

x + 2 , y + 2

Things to consider in both functions below

• The color is averaged component by component, alpha included.

• Near the border and corners, all neighbors may not actually exist, and that must be

checked by the function

• Because the old value of a pixel is also used when calculating the average for his

neighbors, the function must keep a copy of the original image as a source.

Exercise: Blurring with fixed neighborhood

Code and test a function blur that blurs the image using the above method.

Code here

#

Introduction to Computers and Programming using Python 105

Project 3 Image Processing

Exercise: Blurring with variable neighborhood

The blurring of the above function is actually quite hard to see. A stronger blurring effect

can be achieved by using a larger neighborhood.

Code and test a function blurDist that takes two parameters: the image, and a distance.

The distance is used to determine what is the neighborhood being considered, by giving how

many steps left, right, above, and below are in the neighborhood.

For example, if distance=1, it boils down to the previous case. If distance=

k

, the area

to consider is depicted in Figure P3.1.

Code here

#

Here is an example of the above three manipulations on the wrench image:

Original

After threshold

After blur

After blurDist

with distance=10

P3.6 Doing all transformations onto files

In this project, several transformations were programmed (12 in total). It is practical to

generate them all in one go for a given input file. The input file is given as a path to a

picture. For the output files, only a base path and name is given, and an appropriate suffix

(including .png file extension) should be added by the program. The choice of suffix is left

to the programmer.

For example if the path to the picture is images/Wrench.png , and the path to the

basename is images/generated/Wrench_ (the folder has to exist). The “bluized” ver-

sion could use the suffix Blue , so the saving path for this transformed image would be

images/generated/Wrench_Blue.png .

For example consider this function convert2grayscale that takes an input path and an

output basename:

def convert2grayscale(inpath, outbase):

img = Image.open(inpath)

addalpha(img)

Grayscale(img) # uncomment this line when grayscale has been ␣

↪ → defined

img.save(outbase+"Grayscale.png")

return

convert2grayscale("images/Wrench.png","/tmp/Wrench")

106 Introduction to Computers and Programming using Python

Image Processing Project 3

x

−

(k

+

1
) ,

y

−

(k

+

1
)

x

−

k

,
y

−

(k

+

1
)

· ·

·

x

−

1

 ,
y

−

(k

+

1
)

x
,
y

−

(k

+

1
)

x

+

1
 ,
y

−

(k

+

1
)

· ·

·

x

+

k

,
y

−

(k

+

1
)

x

+

(k

+

1
) ,

y

−

(k

+

1
)

x

−

(k

+

1
) ,

y

−

k

x

−

k

,
y

−

k

· ·

·

x

−

1

 ,
y

−

k

x
,
y

−

k

x

+

1
 ,
y

−

k

· ·

·

x

+

k

,
y

−

k

x

+

(k

+

1
) ,

y

−

k

. . .

. . .

.
.
.

· ·

·

· ·

·

· ·

·

.
.
.

. . .

. . .

x

−

(k

+

1
) ,

y

−

1

x

−

k

,
y

−

1

· ·

·

x

−

1

 ,
y

−

1

x
,
y

−

1

x

+

1
 ,
y

−

1

· ·

·

x

+

k

,
y

−

1

x

+

(k

+

1
) ,

y

−

1

x

−

(k

+

1
) ,

y

x

−

k

,
y

· ·

·

x

−

1

 ,
y

x
,
y

x

+

1
 ,
y

· ·

·

x

+

k

,
y

x

+

(k

+

1
) ,

y

x

−

(k

+

1
) ,

y

+

1

x

−

k

,
y

+

1

· ·

·

x

−

1

 ,
y

+

1

x
,
y

+

1

x

+

1
 ,
y

+

1

· ·

·

x

+

k

,
y

+

1

x

+

(k

+

1
) ,

y

+

1

. . .

. . .

.
.
.

· ·

·

· ·

·

· ·

·

.
.
.

. . .

. . .

x

−

(k

+

1
) ,

y

+

k

x

−

k

,
y

+

k

· ·

·

x

−

1

 ,
y

+

k

x
,
y

+

k

x

+

1
 ,
y

+

k

· ·

·

x

+

k

,
y

+

k

x

+

(k

+

1
) ,

y

+

k

x

−

(k

+

1
) ,

y

+

(k

+

1
)

x

−

k

,
y

+

(k

+

1
)

· ·

·

x

−

1

 ,
y

+

(k

+

1
)

x
,
y

+

(k

+

1
)

x

+

1
 ,
y

+

(k

+

1
)

· ·

·

x

+

k

,
y

+

(k

+

1
)

x

+

(k

+

1
) ,

y

+

(k

+

1
)

F
ig

ur
e

P
3.

1:

T

he

re

d
ce

lls

ar

e
no

t
ta

ke
n

in
to

ac

co
un

t
w

he
n

ca
lc

ul
at

in
g

th
e

co
lo

r
of

pi

xe
l

x
, y

w
it

h
di

st
an

ce

k

.

Introduction to Computers and Programming using Python 107

Project 3 Image Processing

P3.6.1 Exercise: The wrap-up function

Code and test a function generateAll that creates the 12 versions of the images and save

them. Recall that these are all the versions:

• blue coloring

• green coloring

• red coloring

• yellow coloring

• magenta coloring

• cyan coloring

• negative

• grayscale

• transparent

• black-and-white

• blurred (fixed neighborhood)

• blurred (parameterized neighborhood)

It can be tried on more PNG images of your choice!

Code here

#

108 Introduction to Computers and Programming using Python

Project 4

Simple Operations with Fractions

Project contents

P4.1 Introduction . 109

P4.1.1 Simplifying or reducing fractions: the procedure 109

P4.2 The Greatest Common Divisor (GCD) 109

P4.2.1 The brute force approach . 110

P4.2.2 Euclid’s Algorithm . 111

P4.3 Reducing fractions . 113

P4.4 Conversion to decimal value . 114

P4.5 The Four Operations with Fractions (Exercise) 116

P4.1 Introduction

The goal of this project is to write a program able to:

• read and write fractions

• simplify fractions

• add, subtract, multiply, and divide fractions

P4.1.1 Simplifying or reducing fractions: the procedure

A fraction of integers

a

b

can be seen as the ordered pair

(a, b)

. For example

6

9

is represented

by

(6 , 9)

.

In order to simplify (or reduce) this fraction, one has to:

1. Find the Greatest Common Divisor (GCD) of

6

and

9

; it is

3

.

2. Divide each number in the pair by the GCD:

6 ÷ 3 = 2

and

9 ÷ 3 = 3

3. The result yields the par

(2 , 3)

which represents the fraction

2

3

.

Now

2

3

is irreducible, while

6

9

is reducible.

P4.2 The Greatest Common Divisor (GCD)

The first step part of the simplification procedure is to find the value of the GCD.

Introduction to Computers and Programming using Python 109

Project 4 Simple Operations with Fractions

P4.2.1 The brute force approach

In the brute force approach , all numbers between

1

and the lowest between

a

and

b

are tried.

A number

k

is a common divisor of

a

and

b

if it divides them both, meaning the remainder

of the division by

k

is

0

.

This procedure can be translated into a gcd function, which takes two parameters: a

and b .

↬

For a more

thorough

introduction on

functions, see

Lecture L8.

To define a function in Python, it needs a name and a list of parameters.

def somefunction(): # No parameters

line 1

line 2

...

def another function(a,b): # This has 2 parameters

line 1

line 2

...

The name of the function cannot be a reserved word such as: if , elif , else , for , while ,

True , False .

def gcd(a,b):

g = 1 # 1 divides all numbers

for k in range(2,min(a,b)+1):

if a%k == 0 and b%k == 0: # Does k divide a? and does k divide b?

g = k # It is a common divisor, update g

return g

def main():

while True: # Continue until ' q ' is entered

ans = input(' Press q to quit or a pair of integers: ')

if ans == ' q ' :

break

ans = ans.split(' ') # Separate the input in two integers

a = int(ans[0])

b = int(ans[1])

g = gcd(a,b) # Call the gcd function

print(' gcd({},{}) = {} ' .format(a,b,g))

main() # Call the main function

Press q to quit or a pair of integers: 42 27

gcd(42,27) = 3

Press q to quit or a pair of integers: 32 8

gcd(32,8) = 8

Press q to quit or a pair of integers: 12 35

gcd(12,35) = 1

Press q to quit or a pair of integers: q

110 Introduction to Computers and Programming using Python

Simple Operations with Fractions Project 4

This is actually very inefficient: there are

2 × (min(a, b) − 1)

divisions performed. So for

example gcd(10000, 10001) requires approximately 20000 divisions. But it can actually

be done using only 3!

P4.2.2 Euclid’s Algorithm

Euclid noticed that gcd(a,b) is gcd(b,a%b) . This can be turned into a program that

requires in far fewer % operations.

def gcd(a,b):

r0 = a

r1 = b

while r1 != 0:

r2 = r0 % r1

r0 = r1

r1 = r2

return r0

def main():

while True: # Continue until ' q ' is entered

ans = input(' Press q to quit or a pair of integers: ')

if ans == ' q ' :

break

ans = ans.split(' ') # Separate the input in two integers

a = int(ans[0])

b = int(ans[1])

g = gcd(a,b) # Call the gcd function

print(' gcd({},{}) = {} ' .format(a,b,g))

main() # Call the main function

Press q to quit or a pair of integers: 6 9

gcd(6,9) = 3

Press q to quit or a pair of integers: 6 6

gcd(6,6) = 6

Press q to quit or a pair of integers: 12 3

gcd(12,3) = 3

Press q to quit or a pair of integers: 47 12

gcd(47,12) = 1

Press q to quit or a pair of integers: q

Evaluating the efficiency

How much more effective is Euclid’s version? This can be tested by counting the number of

divisions performed.

def gcdcount(a,b):

r0 = a

r1 = b

Introduction to Computers and Programming using Python 111

Project 4 Simple Operations with Fractions

k = 0

while r1 != 0:

r2 = r0 % r1

k += 1 # Count the number of times this loop is executed

r0 = r1

r1 = r2

return k # k is returned, not the GCD

def main():

while True:

ans = input(' Press q to quit or a pair of integers: ')

if ans == ' q ' :

break

ans = ans.split(' ') # Separate the input in two integers

a = int(ans[0])

b = int(ans[1])

k = gcdcount(a,b) # Call the gcdcount function

print(' gcd({},{}) takes {} modulo operations ' .format(a,b,k))

main() # Call the main function

Press q to quit or a pair of integers: 6 6

gcd(6,6) takes 1 modulo operations

Press q to quit or a pair of integers: 6 9

gcd(6,9) takes 3 modulo operations

Press q to quit or a pair of integers: 1000 1001

gcd(1000,1001) takes 3 modulo operations

Press q to quit or a pair of integers: 1000000000000 1000000000001

gcd(1000000000000,1000000000001) takes 3 modulo operations

Press q to quit or a pair of integers: 47 12

gcd(47,12) takes 3 modulo operations

Press q to quit or a pair of integers: 1597 987

gcd(1597,987) takes 15 modulo operations

Press q to quit or a pair of integers: q

The efficiency can be evaluated in a more systematic way by trying to calculate the GCD

of all pairs of numbers below a bound.

def gcdcount(a,b):

r0 = a

r1 = b

k = 0

while r1 != 0:

r2 = r0 % r1

k += 1 # Count the number of times this loop is executed

r0 = r1

r1 = r2

return k # k is returned, not the GCD

112 Introduction to Computers and Programming using Python

Simple Operations with Fractions Project 4

def main():

while True:

ans = input(' Press q to quit or a integer: ')

if ans == ' q ' :

break

a = int(ans)

m = 1

for i in range (1,a+1): # Try all pairs of numbers (i,j) with ␣

↪ → 1 ≤ i ≤ j ≤ a

for j in range(i,a+1):

k = gcdcount(i,j)

if m < k:

m = k

print(' The GCD of any pair or numbers in 1..{} takes at most {}␣

↪ → modulo operations. ' .format(a,m))

main() # Call the main function

Press q to quit or a integer: 10

The GCD of any pair or numbers in 1..10 takes at most 5 modulo operations.

Press q to quit or a integer: 100

The GCD of any pair or numbers in 1..100 takes at most 10 modulo␣

↪ → operations.

Press q to quit or a integer: 1000

The GCD of any pair or numbers in 1..1000 takes at most 15 modulo␣

↪ → operations.

Press q to quit or a integer: 10000

The GCD of any pair or numbers in 1..10000 takes at most 19 modulo␣

↪ → operations.

Press q to quit or a integer: q

P4.3 Reducing fractions

Fractions can be simplified using the gcd function that was previously written.

Each fraction is inputted as string in the form a/b . This string can be split into a list of

possibly 2 strings which are separated by the / character. If the input is just an integer a ,

then it is as if the fraction was a/1 , which is already irreducible. The result of the fraction

reduction is also a string.

def reduce(f):

f = f.split(' / ') # Split the input.

num = int(f[0]) # Numerator

if len(f) == 1: # Fraction ' a ' is like a/1, already reduced

return f[0]

den = int(f[1]) # Denominator

g = gcd(num,den) # Use the gcd function

num = num//g # Divide (quotient) both numerator

Introduction to Computers and Programming using Python 113

Project 4 Simple Operations with Fractions

den = den//g # and denominator by the GCD

if den < 0: # No negative sign as the denominator

num *= -1

den *= -1

if den == 1: # Case a/1 (after simplification)

f = str(num)

else:

f = str(num) + ' / ' + str(den)

return f

def main():

while True:

f = input(' Press q to quit or a fraction or integer to continue:␣

↪ → ')

if f == ' q ' :

break

fred = reduce(f)

print(' {} = {} ' .format(f,fred))

main()

Press q to quit or a fraction or integer to continue: 6/9

6/9 = 2/3

Press q to quit or a fraction or integer to continue: -6/-9

-6/-9 = 2/3

Press q to quit or a fraction or integer to continue: -6/9

-6/9 = -2/3

Press q to quit or a fraction or integer to continue: 6/-9

6/-9 = -2/3

Press q to quit or a fraction or integer to continue: -8/-4

-8/-4 = 2

Press q to quit or a fraction or integer to continue: -6/27

-6/27 = -2/9

Press q to quit or a fraction or integer to continue: 6/-27

6/-27 = -2/9

Press q to quit or a fraction or integer to continue: 27/-6

27/-6 = -9/2

Press q to quit or a fraction or integer to continue: -27/6

-27/6 = -9/2

Press q to quit or a fraction or integer to continue: q

P4.4 Conversion to decimal value

As before, each fraction is entered as string a/b or a (which is the case with integers). Real

division is used here to produce a float .

114 Introduction to Computers and Programming using Python

Simple Operations with Fractions Project 4

def decimal(f):

f = f.split(' / ')

if len(f) == 2:

num = int(f[0])

den = int(f[1])

elif len(f) == 1:

num = int(f[0])

den = 1

else:

return ' This is not valid fraction. '

return num/den

def main():

while True:

ans = input(' Press q to quit or a fraction or integer to continue:

↪ → ')

if ans == ' q ' :

break

f = reduce(ans)

fd = decimal(f)

print(' {} = {} = {} ' .format(ans,f,fd))

main()

Press q to quit or a fraction or integer to continue: 4/8

4/8 = 1/2 = 0.5

Press q to quit or a fraction or integer to continue: -5/20

-5/20 = -5/20 = -0.25

Press q to quit or a fraction or integer to continue: 89

89 = 89 = 89.0

Press q to quit or a fraction or integer to continue: 20/5

20/5 = 4 = 4.0

Press q to quit or a fraction or integer to continue: q

Since the numerator and the denominator of fractions are frequently needed, the splitting

code is repeated at several places. Instead, it is cleaner to write two new functions: - a

function num that returns the value of the numerator; - a function den that returns the value

of the denominator.

The reduce and decimal functions can be rewritten using these new functions.

def num(f):

f = f.split(' / ')

return int(f[0])

def den(f):

f = f.split(' / ')

if len(f) == 1:

return 1

Introduction to Computers and Programming using Python 115

Project 4 Simple Operations with Fractions

else:

return int(f[1])

def reduce(f):

n = num(f) # Call to the new function num

d = den(f) # Call to the new function den

Regularization of the fraction (as before)

g = gcd(n,d)

n = n//g

d = d//g

if d < 0:

n *= -1

d *= -1

if d == 1:

return str(n)

else:

return str(n)+ ' / ' +str(d)

def decimal(f):

return num(f)/den(f)

def main():

while True:

ans = input(' Press q to quit or a fraction or integer to continue:

↪ → ')

if ans == ' q ' :

break

f = reduce(ans)

fd = decimal(f)

print(' {} = {} = {} ' .format(ans,f,fd))

main()

Press q to quit or a fraction or integer to continue: 1/3

1/3 = 1/3 = 0.3333333333333333

Press q to quit or a fraction or integer to continue: 2/-6

2/-6 = -1/3 = -0.3333333333333333

Press q to quit or a fraction or integer to continue: -6/-2

-6/-2 = 3 = 3.0

Press q to quit or a fraction or integer to continue: -23

-23 = -23 = -23.0

Press q to quit or a fraction or integer to continue: q

P4.5 The Four Operations with Fractions (Exercise)

Fractions can be added, subtracted, multiplied, and divided.

The addition function add is provided. Based on this, code the subtraction, multiplica-

tion, and division functions below.

116 Introduction to Computers and Programming using Python

Simple Operations with Fractions Project 4

def add(f1,f2):

n1 = num(f1)

d1 = den(f1)

n2 = num(f2)

d2 = den(f2)

n = n1*d2+d1*n2 # Numerator of the sum

d = d1*d2 # Denominator of the sum

f = reduce(str(n) + ' / ' + str(d)) # Reduce the result

return f

Define a function for subtraction here

Define a function for multiplication here

Define a function for division here

def main():

while True:

ans = input(' Press q to quit or a pair of fractions or integers␣

↪ → to continue: ')

if ans == ' q ' :

break

ans = ans.split(' ') # Separate the two operands from the input

f = reduce(ans[0])

g = reduce(ans[1])

Addition

res = add(f,g)

print(' {} + {} = {} ' .format(f,g,res))

fd = decimal(f)

gd = decimal(g)

resd = decimal(res)

print(' {} + {} = {} ' .format(fd,gd,resd))

Subtraction

Complete the code here

Multiplication

Complete the code here

Division

Introduction to Computers and Programming using Python 117

Project 4 Simple Operations with Fractions

Complete the code here

main()

118 Introduction to Computers and Programming using Python

Project 5

Time Measurement and Dates

Project contents

P5.1 Introduction . 119

P5.1.1 Library functions . 119

P5.2 Letting time elapse . 120

P5.2.1 Exercise . 120

P5.3 An aside: erasing characters . 120

P5.3.1 Exercise . 122

P5.4 A cooking timer . 122

P5.4.1 Exercise . 123

P5.5 Current date and time . 123

P5.5.1 Exercise . 126

P5.6 Measuring time . 127

P5.6.1 Exercise . 127

P5.6.2 Exercise . 128

P5.6.3 Exercise . 128

P5.1 Introduction

The goal of this project is to manipulate representations of time in computers. It will be

used to create timers, countdowns, and display the current date and time.

P5.1.1 Library functions

The time library needs to be imported. Only two functions from this library will be used.

• time.time() that gives the current time in seconds (with decimal point); more expla-

nations about what that value is exactly in Section Current date and time .

• time.sleep(x) that pauses the execution of the code for x seconds.

import time

print(time.time()) # current time

time.sleep(5) # wait 5 seconds

print(time.time()) # current time

1595887384.8185391

1595887389.8236763

As can be seen from the above, time.sleep is not 100% accurate, but that will do.

Introduction to Computers and Programming using Python 119

Project 5 Time Measurement and Dates

P5.2 Letting time elapse

By using time.sleep , one can have the computer wait. In the example below, each letter

is printed individually.

def slowtyping(word,wait=1):

n = len(word) # length of the string

for i in range(0,n): # repeat for i in 0, 1, ..., n-1

print(word[i],end="") # print character at position i in the ␣

↪ → string

time.sleep(wait) # wait some time

slowtyping("Hello World!",0.25)

Hello World!

This can also be used to count down:

def countDown(dur,endSentence):

for k in range(dur,0,-1): # repeats for k in dur, dur-1, ..., 2, 1

print(k,end="... ")

time.sleep(1)

print(endSentence)

return

countDown(10,"Happy New Year!")

Throughout

this project, the

code must be

run to see

interactivity!

10... 9... 8... 7... 6... 5... 4... 3... 2... 1... Happy New Year!

P5.2.1 Exercise

Write a function countTo(n) that counts from 1 to n , waiting 1 second between each number

Code here

#

P5.3 An aside: erasing characters

Since there are lots of things to display, it is useful to replace what was written instead of

writing after. In order to do that, the backspace character \b can be used. Note: The

backspace character behaves a bit differently in a terminal and in Jupyter

• In a terminal, the backspace character moves the position of the writing cursor one

character to the left. It does not actually erase anything.

• In Jupyter, it actually erases, but there are bugs when several \b are printed together,

so they have to be printed one by one, and the print should flush the output.

120 Introduction to Computers and Programming using Python

Time Measurement and Dates Project 5

def writeAndErase(msg,wait=1,initialextrawait=3): # This works in Jupyter ␣

↪ → only

n = len(msg)

print(msg,sep="",end="") # prints the message

time.sleep(initialextrawait)

for i in range(0,n):

time.sleep(wait)

print("\b",end="",flush=True)

return

writeAndErase("Hello world!",wait=0.25,initialextrawait=2)

def writeAndErase(msg,wait=1,initialextrawait=3): # This works in terminal

n=len(msg)

backspaces="\b"*n

print(msg,sep="",end="",flush=True) # Print the message

time.sleep(initialextrawait)

for i in range(0,n):

time.sleep(wait)

print("\b \b",sep="",end="",flush=True) # Move cursor back, print ␣

↪ → whitespace, move cursor back again

print()

return

Using this technique, a countdown that always erases the previous number can be coded:

def countDownWithErasing(dur,endSentence): # This works in Jupyter only

print(" ",end="")

prevLength = 0 # Number of characters to erase

for k in range(dur,0,-1):

for j in range(0,prevLength):

print("\b",end="",flush=True) # Erase the characters

msg = str(k) # The number as a string

prevLength = len(msg) # Number of characters we will have to ␣

↪ → erase next time

print(msg,end="") # Print the number

time.sleep(1) # Wait 1 second

for j in range(0,prevLength):

print("\b",end="") # Erase the characters

print(endSentence)

return

countDownWithErasing(10, "Happy New Year!")

def countDownWithErasing(dur,endSentence): # This works in terminal only

prevLength=0 # Number of characters to erase

for k in range(dur,0,-1):

Introduction to Computers and Programming using Python 121

Project 5 Time Measurement and Dates

backspaces="\b"*prevLength # Move the cursor back

whitespaces=" "*prevLength # The same amount of whitespaces

msg = str(k) # The number as a string

prevLength = len(msg) # Number of characters we will have to ␣

↪ → erase next time

␣

↪ → print(backspaces,whitespaces,backspaces,msg,sep="",end="",flush=True)

time.sleep(1)

backspaces+="\b"*prevLength

print(backspaces,endSentence,sep="\t",flush=True)

time.sleep(1)

return

Happy New Year!

P5.3.1 Exercise

Write a countToWithErasing(n) function that counts from 1 to n , erasing the previous

number each time.

Code here

#

P5.4 A cooking timer

To count down 3 minutes, one could simply count down

3 × 60 = 180

seconds. But that is

not very practical, and it gets worse if the user wants to measure 2 hours...

The goal here is to make a better timer, that takes minutes and seconds. The principle

is as follows: once the seconds are down to 0, decrease the minute and set the seconds to 59.

def eggTimer(minutes,seconds):

print(" ",end="")

prevLength = 0 # number of characters to erase

for m in range(minutes,-1,-1):

for s in range(seconds,-1,-1):

for j in range(0,prevLength):

print("\b",end="",flush=True) # Erase the characters

#msg = str(m)+" minutes "+str(s)+" seconds" # With conversion ␣

↪ → to string

msg = "%d minutes %d seconds" %(m,s) # With formatted ␣

↪ → string

prevLength = len(msg)

print(msg,end="")

time.sleep(1)

seconds=59 # reset the seconds to 59 for next minute

for j in range(0,prevLength):

print("\b",end="",flush=True) # Erase the characters

122 Introduction to Computers and Programming using Python

Time Measurement and Dates Project 5

print("It ' s ready!")

return

eggTimer(1,3) # 1 minute and 3 seconds

def eggTimer(minutes,seconds): # Works in terminal only

print(" ",end="")

prevLength = 0 # number of characters to erase

for m in range(minutes,-1,-1):

for s in range(seconds,-1,-1):

print("\b"*prevLength,"␣

↪ → "*prevLength,"\b"*prevLength,sep="",end="",flush=True) # Erase the ␣

↪ → characters

#msg = str(m)+" minutes "+str(s)+" seconds" # With conversion ␣

↪ → to string

msg = "%d minutes %d seconds" %(m,s) # With formatted ␣

↪ → string

prevLength = len(msg)

print(msg,end="",flush=True)

time.sleep(1)

seconds=59 # reset the seconds to 59 for next minute

print("\b"*prevLength,"␣

↪ → "*prevLength,"\b"*prevLength,sep="",end="",flush=True) # Erase the ␣

↪ → characters

print("It ' s ready!")

return

eggTimer(1,3) # 1 minute and 3 seconds

It ' s ready!

P5.4.1 Exercise

Write a cooking timer that takes hours, minutes, and seconds.

Code here

#

It ' s ready!

P5.5 Current date and time

The number of seconds returned by time.time() is actually the number of seconds since

January 1st, 1970 at 00:00 in GMT timezone (this particular time is called epoch).

This number of seconds can be converted to an actual date and time. For the time, the

remainder of the Euclidean division by 60 gives the seconds, the quotient by 60 being the

Introduction to Computers and Programming using Python 123

Project 5 Time Measurement and Dates

number of minutes (since epoch). Taking the remainder of this by 60 gives the minutes,

while the quotient gives the number of hours, etc.

def readableTime(zone):

t = int(time.time()) # t is the number of seconds since epoch (no ␣

↪ → decimal point)

seconds = t%60

t = t//60 # t is now the number of minutes since epoch

minutes = t%60

t = t//60 # t is now the number of hours since epoch

t = t+zone # add the Time Zone difference from GMT

hours = t%24

t = t//24 # t is now the number of days since epoch

res = str(hours)+":"+str(minutes)+":"+str(seconds)

return res

readableTime(-4) # Eastern Summer Time

' 16:33:22 '

To convert the number of days into an actual date, there is no formula that gives the

exact value, mainly because months have different length and there are leap years.

The condition for leap years is as follows: leap years are multiple of 4 except years

multiple of 100 except years multiples of 400. For example: 2019 was not a leap year (not

multiple of 4), 2020 is a leap year (multiple of 4 but not of 100), 2100 will not be (multiple

of 100 but not 400), but 2000 was (multiple of 400).

This can be translated into the following function:

def isLeap(y):

if (y%400==0):

return True

elif (y%100==0):

return False

elif (y%4==0):

return True

else:

return False

print("Is 2019 a leap year?",isLeap(2019))

print("Is 2020 a leap year?",isLeap(2020))

print("Is 2100 a leap year?",isLeap(2100))

print("Is 2000 a leap year?",isLeap(2000))

Is 2019 a leap year? False

Is 2020 a leap year? True

Is 2100 a leap year? False

Is 2000 a leap year? True

124 Introduction to Computers and Programming using Python

Time Measurement and Dates Project 5

The function isLeap can be used to code a function that gives the number of days in a

given month:

def daysInMonth(month,year):

if (month==1 or month==3 or month==5 or month==7 or month==8 or␣

↪ → month==10 or month==12):

return 31

elif (month==4 or month==6 or month==9 or month==11):

return 30

elif (month==2):

if isLeap(year):

return 29

else:

return 28

else:

return 0

print("daysInMonth(2,2020):",daysInMonth(2,2020))

print("daysInMonth(2,2021):",daysInMonth(2,2021))

print("daysInMonth(6,2019):",daysInMonth(6,2019))

print("daysInMonth(3,2020):",daysInMonth(3,2020))

daysInMonth(2,2020): 29

daysInMonth(2,2021): 28

daysInMonth(6,2019): 30

daysInMonth(3,2020): 31

Based on this, the days from January 1st, 1970 can be counted off, until we have fewer

days than the number of days in the month. Because it’s impossible to know in advance

how many months will be traversed, a while loop must be used. The condition of this loop

is based on what we just designed: this condition is the negation of the condition to stop

the loop.

def actualDay(dfe): # only works with dfe>0

y = 1970

m = 1

d = 1

mLen = daysInMonth(m,y)

while dfe>=mLen: # stop when there are fewer days than the ␣

↪ → current month, so continue while there are more

dfe = dfe-mLen # remove the days of this month

m = m+1 # next month

if m>12: # maybe a next year

m = 1

y = y+1

mLen=daysInMonth(m,y)

d = d+dfe # remaining days after the process

return (y,m,d) # return the 3-uple (year,month,day)

Introduction to Computers and Programming using Python 125

Project 5 Time Measurement and Dates

def readableDatetime(zone):

t = int(time.time()) # t is the number of seconds since epoch (no ␣

↪ → decimal point)

seconds = t%60

t = t//60 # t is now the number of minutes since epoch

minutes = t%60

t = t//60 # t is now the number of hours since epoch

t = t+zone # add the Time Zone difference from GMT

hours = t%24

t = t//24 # t is now the number of days since epoch

date = actualDay(t)

With conversion

#res = str(date[0])+"-"+str(date[1])+"-"+str(date[2])+" ␣

↪ → "+str(hours)+":"+str(minutes)+":"+str(seconds)

#With formatted string

res = "%04d-%02d-%02d %02d:%02d:%02d" %␣

↪ → (date[0],date[1],date[2],hours,minutes,seconds)

return res

readableDatetime(-4) # Eastern Summer Time

' 2020-06-09 16:33:28 '

P5.5.1 Exercise

Part 1: checking date validity

Write a function validDate that takes year, month, and day, and returns True or False

based on whether the date is valid. For example:

• validDate(2020,11,6) returns True because November 6th, 2020 is a valid date

• validDate(2020,6,31) returns False because June 31st, 2020 is not a valid date

• validDate(2020,2,29) returns True because February 29th, 2020 is a valid date

• validDate(2021,2,29) returns False because February 29th, 2021 is not a valid date

Code here

#

Part 2: getting a valid date from the user

Write a function inputDate that asks the user for a date, checks its validity, and asks again

until a valid date is entered. It then returns the 3-tuple (year,month,day). For example:

Please enter a date:

Year: 2019

Month: 4

Day: 31

126 Introduction to Computers and Programming using Python

Time Measurement and Dates Project 5

This date does not exists. Please enter a valid date:

Year: 2021

Month: 2

Day: 29

This date does not exists. Please enter a valid date:

Year: 2020

Month: 5

Day: 42

This date does not exists. Please enter a valid date:

Year: 2020

Month: 9

Day: 23

Thank you!

Code here

#

P5.6 Measuring time

To measure time elapsed, the difference between two different time values is used. In the

example below, it is used to measure the performance of a program doing some calculations.

def performance(n):

before = time.time()

power=1

for i in range(0,n): # repeat for i in 0, 1, 2, ..., n-1

power=2*power

x=0

pi=3.141592653589793238462643383279502884197169399375105820974

e=2.718281828459045235360287471352662497757247093699959574966

for i in range(0,power): # repeat for i in 0, 1, 2, ..., 2^n-1

x=(x+pi)/e # calculation

after = time.time()

return after-before

performance(25) # takes about 2~3 seconds on my computer

2.3237216472625732

P5.6.1 Exercise

Write a function timedName that asks the user for his name, and replies with the time it

took. Example output (the first John being the user’s input):

What is your name?

John

Hello John, it took you 3.4763026237487793 seconds to answer.

Introduction to Computers and Programming using Python 127

Project 5 Time Measurement and Dates

Code here

#

P5.6.2 Exercise

Write a function sayWhen that writes out “Tell me when to stop”, and continues going until

the user actually enters the word when . It then outputs the time it took.

For example:

Tell me when to stop

Now

Stop!

when

It took you 12.335185289382935 seconds

Code here

#

P5.6.3 Exercise

Write a function timer that starts a timer when the user presses the enter key, and records

the “lap duration” when the enter key is pressed again, until Stop is entered. For example:

Press enter to start

Enter "Stop" to stop; press enter to record a lap

Lap 1: 6.43984055519104 seconds

Lap 2: 36.080485105514526 seconds

Lap 3: 58.968928813934326 seconds

Stop

Total: 65.79275012016296 seconds

Code here

#

128 Introduction to Computers and Programming using Python

Project 6

Grade Management with Pandas

Project contents

P6.1 Introduction . 129

P6.1.1 Library installation . 129

P6.1.2 Importing data . 130

P6.2 Column operations . 130

P6.2.1 Selecting a column . 130

P6.2.2 Functions on a column . 131

P6.2.3 Exercise: Range of a column . 131

P6.2.4 Creating a derived column from existing columns 132

P6.2.5 Exercise: Regular average . 132

P6.2.6 apply a function on a column . 133

P6.3 Operations on a whole sheet (DataFrame) 134

P6.3.1 Applying a function to all cells 134

P6.3.2 Applying a function to each column (axis=0) 135

P6.3.3 Applying a function to each row (axis=1) 135

P6.4 Filtering . 135

P6.4.1 Example : Counting the number of passing students 136

P6.4.2 Exercise: Counting students who got 75 or higher on both their

test1 and final . 136

P6.5 Saving as an Excel file . 136

P6.6 A grade manager . 137

P6.1 Introduction

This project uses the pandas library which is one of the popular tools for data science. Even

though pandas has lots of functionalities, this project only focuses on these 3 topics:

• Importing data from an Excel xlsx file.

• Updating data

• Saving the updated data into a new Excel file.

P6.1.1 Library installation

To install the required library for this project, execute the following in a terminal:

pip3 install -U xlrd

pip3 install -U numpy

pip3 install -U pandas

Introduction to Computers and Programming using Python 129

Project 6 Grade Management with Pandas

Or in Jupyter:

!pip3 install -U xlrd

!pip3 install -U numpy

!pip3 install -U numexpr

!pip3 install -U pandas

The libraries are then imported in Python:

import numpy as np

import pandas as pd

P6.1.2 Importing data

An excel file named data.xlsx is provided in the project folder. To import it, use the

following command:

df=pd.read_excel(' data.xlsx ').

Alternatively, it can be downloaded from https://qcckkim.github.io/CS100SAMPLE/data.xlsx :

df=pd.read_excel(' https://qcckkim.github.io/CS100SAMPLE/data.xlsx ')

df = pd.read_excel(' data.xlsx ')

print(df) # Print the spreadsheet

name test1 test2 final

0 bob 70 80 90

1 Jane 75 66 78

2 kim 88 44 77

3 happy 78 65 76

4 holiday 85 76 87

P6.2 Column operations

P6.2.1 Selecting a column

A column is accessed by putting the name of the column head in square brackets [] . For

example, to get the ' name ' column:

names = df[' name ']

print(names)

0 bob

1 Jane

2 kim

3 happy

4 holiday

Name: name, dtype: object

130 Introduction to Computers and Programming using Python

https://qcckkim.github.io/CS100SAMPLE/data.xlsx

Grade Management with Pandas Project 6

P6.2.2 Functions on a column

A column (actually called a Series in pandas documentation) has many built-in functions.

For example, the .mean() method computes the average of the column.

test1col = df[' test1 '] # Select a column

avg = test1col.mean() # Compute the average of that column

print(avg)

79.2

A column behaves like a Python list, hence any function that works on list can be used

on a column. For example, the function below computes the average of a list:

def avg(L):

return sum(L)/len(L)

print(avg(test1col)) # Using a list function with a column (Series)

79.2

Other useful functions include finding the maximal value. In this case there is the choice

of using the built-in .max() method or the standard max() function on lists.

For example, to find the maximum score on test2 :

test2col = df[' test2 '] # Selecting the column (Series object)

m1 = test2col.max() # .max() method of the Series object

m2 = max(test2col) # max() function on lists

print(m1,m2)

80 80

For the complete list of built-in functions on columns (Series), see the pandas.Series

documentation.

P6.2.3 Exercise: Range of a column

The range of a list L is defined as the difference between max(L) and min(L) :

max(L)-min(L)

Similarly, the range of a column C is max(C)-min(C) .

In the Excel files there are three columns corresponding to tests; the goal is to determine

the greatest range of the three. This can be broken down as follows:

1. Define the therange(L) function that takes a list L and returns its range.

2. Compute the three ranges of columns test1 , test2 , and final , using therange(L)

function .

3. Store these three ranges in a list named ranges .

4. Find the maximum of the ranges stored in ranges .

Introduction to Computers and Programming using Python 131

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html

Project 6 Grade Management with Pandas

Code here

#

P6.2.4 Creating a derived column from existing columns

A new column can be created from existing columns.

Assuming the grading rule is as follows:

• test1: 25%

• test2: 35%

• final: 40%

Then, for example, bob’s class average is

70 ∗ 0 . 25 + 80 ∗ 0 . 35 + 90 ∗ 0 . 40 = 81 . 5

This average can be calculated for all students and stored in a new avg column.

df[' avg '] = df[' test1 ']*0.25+df[' test2 ']*0.35+df[' final ']*0.40 # Defining ␣

↪ → a new column

print(df[' avg ']) # Print the new colum

df # Return the whole sheet

0 81.50

1 73.05

2 68.20

3 72.65

4 82.65

Name: avg, dtype: float64

name test1 test2 final avg

0 bob 70 80 90 81.50

1 Jane 75 66 78 73.05

2 kim 88 44 77 68.20

3 happy 78 65 76 72.65

4 holiday 85 76 87 82.65

P6.2.5 Exercise: Regular average

A teacher wants to compute a regular average using the following rule for each student.

• test1: 42%

• test2: 58%

Make a new regularavg column which contains the regular average of each student.

Code here

#

132 Introduction to Computers and Programming using Python

Grade Management with Pandas Project 6

P6.2.6 apply a function on a column

The .apply() method of columns takes a function as an argument and applies it to all the

elements of the column. The result is a column , and can therefore be stored in the data as

a new column.

For example here the function f is applied to column1 to create column2 :

df[' column2 ']=df[' column1 '].apply(f)

Example: pass column from avg column

The average column can be used to decide whether a student passed or failed, using the

following pass/fail rule:

• If the average is greater or equal to 70, return True .

• Otherwise, return False .

First, the passfail(avg) function must be defined:

def passfail(avg):

if avg >= 70:

return True

else:

return False

Then the pass column is created by using the .apply() method of the existing avg

column:

df[' pass '] = df[' avg '].apply(passfail) # Function passfail is given as ␣

↪ → argument

print(df[' pass '])

df

0 True

1 True

2 False

3 True

4 True

Name: pass, dtype: bool

name test1 test2 final avg regularavg pass

0 bob 70 80 90 81.50 75.80 True

1 Jane 75 66 78 73.05 69.78 True

2 kim 88 44 77 68.20 62.48 False

3 happy 78 65 76 72.65 70.46 True

4 holiday 85 76 87 82.65 79.78 True

The table shows that kim failed the class.

Introduction to Computers and Programming using Python 133

Project 6 Grade Management with Pandas

Exercise: Letter grade

Create a new grade column from the avg column using the following grade rule:

• If

90 ≤ av g ≤ 100

: A

• If

75 ≤ av g < 90

: B

• If

60 ≤ av g < 75

: C

• Otherwise (

av g < 60

): F

Code here

#

P6.3 Operations on a whole sheet (DataFrame)

A DataFrame is the name given by pandas to the whole spreadsheet. The .apply() method

also exists for DataFrame s, and can be used in three differently ways.

First, let’s create a new DataFrame df2 from a list L :

L=[# L is a list of lists

[1,2], # Each list is a row

[3,4],

[5,6]

]

Create a sheet (DataFrame) with column names ' x ' and ' y '

df2 = pd.DataFrame(L,columns=[' x ' , ' y '])

df2

x y

0 1 2

1 3 4

2 5 6

P6.3.1 Applying a function to all cells

The .apply() method using only a function as argument executes the function on each cell

and returns a new sheet. In the example below the np.square function (that calculates the

square of a number) is applied to df2 .

df2squared = df2.apply(np.square)

print(df2,df2squared,sep="\n")

x y

0 1 2

1 3 4

2 5 6

x y

0 1 4

1 9 16

2 25 36

134 Introduction to Computers and Programming using Python

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.apply.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.apply.html

Grade Management with Pandas Project 6

Any function that is defined can be applied this way:

def sq(x):

return x**2

df2.apply(sq)

x y

0 1 4

1 9 16

2 25 36

P6.3.2 Applying a function to each column (axis=0)

By setting the keyword argument axis to 0 , the apply operation will be performed on

columns: the function given as a parameter must operate on columns (or lists). The values

returned by the successive application of the function on columns are returned into a row.

For example, applying the np.sum function to each column of df2 returns the row with

a value for each column. As the name indicates, the np.sum adds all the values in the list,

so the results are

1 + 3 + 5 = 9

for x and

2 + 4 + 6 = 12

for y .

df2.apply(np.sum,axis=0)

x 9

y 12

dtype: int64

P6.3.3 Applying a function to each row (axis=1)

This is similar to the above, but using a function operating on rows to create a column. In

that case the axis argument must be set to 1 .

Below np.sum function is applied to each row of df2 and the column of results is returned.

df2.apply(np.sum,axis=1)

0 3

1 7

2 11

dtype: int64

P6.4 Filtering

Filtering is the selection of some rows from a DataFrame based on the values it contains.

Filtering is used to collect a meaningful sample from existing data.

The syntax is as follows:

df[column condition]

Introduction to Computers and Programming using Python 135

Project 6 Grade Management with Pandas

P6.4.1 Example : Counting the number of passing students

We filter the class by only selecting students who passed. The condition, here pertaining to

the ' pass ' column, is contained within df[] .

dfpass = df[df[' pass ']==True]

dfpass

name test1 test2 final avg regularavg pass grade

0 bob 70 80 90 81.50 75.80 True B

1 Jane 75 66 78 73.05 69.78 True C

3 happy 78 65 76 72.65 70.46 True C

4 holiday 85 76 87 82.65 79.78 True B

The .count() method on Series returns the number of rows for this column. Applying

it to the filtered DataFrame allows to compute the number of passing students.

dfpass[' pass '].count()

4

P6.4.2 Exercise: Counting students who got 75 or higher on both their

test1 and final

Count students who get 75 or higher on their test1 and final.

1. Filter df using the above conditions.

2. Choose any column from the filtered df and count using count() .

Note: If there are two conditions to filter, they can be combined using & for and , | for or .

df[column cond1 & column cond2] # cond1 and cond2

df[column cond1 | column cond2] # cond1 or cond2

Code here

#

P6.5 Saving as an Excel file

A DataFrame can be saved as a sheet of an Excel document. In the example below, the

resulting sheet is saved into Sheet1 of file result.xlsx .

writer = pd.ExcelWriter(' result.xlsx ') # Open the file for writing

df.to_excel(writer, ' Sheet1 ') # Write df into Sheet1

writer.save() # Save

136 Introduction to Computers and Programming using Python

Grade Management with Pandas Project 6

P6.6 A grade manager

1. Import the data from file PROJECT.xlsx , provided in the project folder or online at

https://qcckkim.github.io/CS100SAMPLE/PROJECT.xlsx .

2. Create ' avg ' column which contains the class average using the following grading rule.

• hw : 10%

• test1: 15%

• test2: 15%

• test3: 15%

• test4: 15%

• final: 30%

3. Create ’grade’ column with letter grade using avg column from the following grading

rule.

•

avg ≥ 90

: A

•

avg ≥ 80

: B

•

avg ≥ 70

: C

•

avg ≥ 60

: D

•

avg < 60

: F

4. Count the number of A grade, B grade, C grade, D grade and F grade students using

the count function.

5. Count the number of students who obtained both an average

> 70

and

> 80

for the

final.

Code here

#

Introduction to Computers and Programming using Python 137

https://qcckkim.github.io/CS100SAMPLE/PROJECT.xlsx

Project 7

Descriptive Statistics and

Histogram of Frequencies

P7.1 Introduction

The main objective of this project is to explain concepts about descriptive statistics and teach

how to calculate measures of central tendency and variability/dispersion using Python.

P7.1.1 Central Tendency

Central Tendency is a way of producing a single value which represents a central value in a

set of values.

Mean, Median and Mode are the most commonly used three measures of central tendency.

They are different kinds of averages .

Mean: The mean is a measure which is most commonly used to describe the average

value and calculated by dividing the sum of values by the number of values in a list of data

values.

Mean =

∑

x

N

Here,

∑

represents summation,

N

represents number of values and

x

represents the

values.

Example:

Using the sum() and len() functions from standard library to calculate the mean:

Grades = [34, 65, 23, 89, 59]

Mean = sum(Grades)/len(Grades)

print("Mean =", Mean)

Mean = 54.0

Median: The median is the middle value in a sorted list of data values. If the number

of values in the list is even, then the average of the two middle values is used as the median.

If the total number of values is odd:

Median =

(

n + 1

2

)th

ter m

If the total number of values is even:

Median =

(

n

2

)th

ter m +

(

n

2

+ 1
)th

ter m

2

Introduction to Computers and Programming using Python 139

Project 7 Descriptive Statistics and Histogram of Frequencies

Example:

Using the sorted() and len() functions from standard library to calculate the median:

grades = [43, 65, 26, 45, 12, 67]

sortedgrades = sorted(grades)

print("Sorted grades =", sortedgrades)

if(len(sortedgrades) % 2):

median = sortedgrades[len(sortedgrades)//2]

else:

median = (sortedgrades[len(sortedgrades)//2] +␣

↪ → sortedgrades[len(sortedgrades)//2 -1])/2

print("Median =", median)

Sorted grades = [12, 26, 43, 45, 65, 67]

Median = 44.0

Mode: The mode is the most frequently occurring value in a list of data values. There

can be multiple modes or no mode in a list of values.

Python’s statistics module has functions that calculates mean, median and mode.

Example:

Using statistics module to calculate mean, median and mode:

import statistics

grades = [1, 3, 5, 7, 2, 4, 7, 2, 9, 3, 7, 6, 5]

mymean = statistics.mean(grades)

mymedian = statistics.median(grades)

mymode = statistics.mode(grades)

print("Mean =", mymean,"\t", "Median =", mymedian, "\t","Mode =", mymode)

Mean = 4.6923076923076925 Median = 5 Mode = 7

P7.1.2 Dispersion/Variability

Dispersion or Variability are measures that help understand how spread out the values are

in a data set.

Variance and Standard deviation are two measures of dispersion .

The Variance is sometimes described as “the mean of distance to the mean”. It is

calculated using the following steps:

• Calculate the mean of the dataset

• Subtract the mean from every data value

• Get the squares of the difference

• Calculate the mean of the squares

Formula:

σ2 =

N∑

i =1

(xi

− µ)2

N

140 Introduction to Computers and Programming using Python

Descriptive Statistics and Histogram of Frequencies Project 7

In the above equation,

σ2

is variance,

xi

is ith value,

N

is the number of values and

µ

is

the mean value of the dataset.

Standard Deviation is the square root of variance.

σ =

√√√√√√

N∑

i =1

(xi

− µ)2

N

The smaller the variance and standard deviation are, the closer the data values are to

the mean and the less overall dispersion.

Example:

Calculating variance and standard deviation with statistics module:

from statistics import pvariance, pstdev

grades = [1, 3, 5, 7, 2, 4, 7, 2, 9, 3, 7, 6, 5]

myvariance = pvariance(grades)

mystdev = pstdev(grades)

print(' Variance = {:2.3} StDev = {:2.3} ' .format(myvariance, mystdev))

Variance = 5.44 StDev = 2.33

P7.2 Creating Bar Graphs with matplotlib and seaborn mod-

ules

A single column bar graph consists of the following elements, as depicted in Figure P7.1.

In Python the matplotlib and seaborn modules can create such graphs. First, these

libraries may not be installed by default so, the following command can be run in a terminal

to install the modules:

pip3 install -U matplotlib

pip3 install -U seaborn

Or use the following in Jupyter:

!pip3 install -U matplotlib

!pip3 install -U seaborn

Include the necessary modules

import statistics as st

import seaborn as sns

import matplotlib.pyplot as plt

First create a list of values

votes = [1, 2, 5, 4, 3, 5, 2, 1, 3, 3, 1, 4, 3, 3, 3, 2, 3, 3, 2, 5]

Introduction to Computers and Programming using Python 141

Project 7 Descriptive Statistics and Histogram of Frequencies

Figure P7.1: The elements of a bar graph.

Using the statistics module, calculate mean, median, mode, variance and ␣

↪ → standard deviation

mean = st.mean(votes)

median = st.median(votes)

mode = st.mode(votes)

var = st.pvariance(votes)

std = st.pstdev(votes)

Create the lists for x values and y values

yvalues = [mean, median, mode, var, std]

xvalues = [' mean ' , ' median ' , ' mode ' , ' variance ' , ' standard deviation ']

Set the graph properties

title = ' Statistics '

sns.set_style(' whitegrid ')

Set the x and y values

axes = sns.barplot(x = xvalues, y=yvalues, palette= ' bright ')

axes.set_title(title) # Set the title of the graph

axes.set(xlabel= ' stats ' , ylabel= ' #votes ') # Set the x and y labels

axes.set_ylim(top=max(yvalues)*1.10) # Set the maximum y value in ␣

↪ → the graph

plt.show() # Display the graph

142 Introduction to Computers and Programming using Python

Descriptive Statistics and Histogram of Frequencies Project 7

P7.3 Exercise: Creating the Histogram of a Dataset

P7.3.1 Importing the modules

In this exercise, random , statistics , matplotlib.pyplot and seaborn libraries are to be

used to create a histogram graph in Python.

Include the necessary modules.

Code here

#

What is a histogram? A histogram is a frequency graph. The values in the x axis

represent the unique values in a dataset. Each corresponding y value represents how many

times this particular data value occurs in the dataset.

For example with the dataset: [1, 3, 5, 6, 2, 3, 4, 6, 2, 2, 1, 3]

The X values is the set of unique values: [1, 2, 3, 4, 5, 6]

The Y values are the frequency of each value: [2, 3, 3, 1, 1, 2] (1 appears 2 times,

2 appears 3 times, ...)

The histogram for the above set of values looks like the one on Figure P7.2.

P7.3.2 Creating a random dataset

Create a dataset of 50 integer values. The dataset is to be stored in a list named votes .

You may create them randomly within a range of [1:10] using the randint(left,

right) function from the random module. Note that in computers, "random numbers" are

not really random, but generated from a seed. Changing the seed value below will change

the generated random values.

rd.seed(0) # Change the value here

Code here

#

Introduction to Computers and Programming using Python 143

Project 7 Descriptive Statistics and Histogram of Frequencies

Figure P7.2: A histogram representing frequencies of the dataset

[1,3,5,6,2,3,4,6,2,2,1,3] .

P7.3.3 Calculating central tendency and dispersion

1. Calculate the mean, median, mode, variance and standard deviation using the

statistics module.

2. Create a bar graph to display the results. Use matplotlib.pyplot and seaborn

modules.

Code here

#

P7.3.4 Removing outliers

An outlier is a data value that is out of the ordinary and possibly way out of the ordinary.

They are sometimes called noise or bad data and can distort the results. Usually, values

that are 3 standard deviations away from the mean of the data are considered outliers.

For example, if the mean of the dataset is 20 and standard deviation is 4, values that

are below

20 − 3 × 4 = 8

or above

20 + 3 × 4 = 32

are considered outliers. In this case the

value of 1 could be an outlier since it is less than 8.

1. Define a function that finds the outliers.

2. Print the outliers in the votes data set.

Code here

#

P7.3.5 Calculating the frequencies

Calculate the frequencies of unique values in your dataset. Create a bar histogram to display

your results. In order to do that:

144 Introduction to Computers and Programming using Python

Descriptive Statistics and Histogram of Frequencies Project 7

Figure P7.3: A histogram representing frequencies of a random sample.

1. Write a function unique() that that takes a list as a parameter and returns unique

values in the list as a new list. Use the in keyword to search and remove duplicates

and store them in a new list.

2. Write a second function frequencies() that takes this unique list and your original

dataset as parameters and returns the frequency list as a result.

3. Use the returned list values to create your bar graph as x values and y values.

The resulting bar graph may look like the one on Figure P7.3.

Code here

#

Introduction to Computers and Programming using Python 145

Project 8

Emotion Analysis

Project contents

P8.1 Introduction . 147

P8.1.1 Installing the libraries . 147

P8.2 Cleaning Text Data . 148

P8.2.1 Reading a file into a string variable 148

P8.2.2 Tokenizing a string into words . 149

P8.2.3 Identifying punctuation . 149

P8.2.4 Identifying stopwords . 150

P8.2.5 Converting to lowercase . 150

P8.2.6 Stemming the words . 150

P8.3 Measuring Polarity and Subjectivity . 151

P8.4 Exercise . 151

P8.4.1 Step 1: Cleaning the data . 152

P8.4.2 Step 2: Finding the word count of the books 153

P8.4.3 Step 3: Finding the number of occurrences of the emotion words

in the books . 153

P8.4.4 Step 4: Creating a graph that compares the number of occurrences

of emotion words . 155

P8.4.5 Step 5: Creating a bar graph comparing the polarity and subjectivity156

P8.1 Introduction

The objective of this project is to analyze text from Project Gutenberg Library and compare

them. Do they mostly convey positive or negative emotions? Are they subjective? How

about the feelings of anger, happiness, satisfaction, confusion, urgency and helplessness?

How do they compare to each other based on these emotions? The answers to these questions

will be given using the natural language processing libraries of Python.

P8.1.1 Installing the libraries

In this project, Python’s nltk , textblob , and pandas modules will be used. The nltk

module has several functions which can be used for cleaning the data. The textblob module

provides some text analysis tools. The pandas and matplotlib modules are used to draw

charts.

They might not be installed by default so, the following command can be run in a

terminal to install the modules:

Introduction to Computers and Programming using Python 147

Project 8 Emotion Analysis

pip3 install -U nltk

pip3 install -U textblob

pip3 install -U pandas

pip3 install -U matplotlib

Or use the following in Jupyter:

!pip3 install -U nltk

!pip3 install -U textblob

!pip3 install -U pandas

!pip3 install -U matplotlib

After that, the stopwords and punkt packages need to be downloaded using the following

script:

import nltk

import ssl

try:

_create_unverified_https_context = ssl._create_unverified_context

except AttributeError:

pass

else:

ssl._create_default_https_context = _create_unverified_https_context

nltk.download("stopwords")

nltk.download("punkt")

[nltk_data] Downloading package stopwords to

[nltk_data] /Users/esmayildirim/nltk_data...

[nltk_data] Package stopwords is already up-to-date!

[nltk_data] Downloading package punkt to

[nltk_data] /Users/esmayildirim/nltk_data...

[nltk_data] Package punkt is already up-to-date!

True

P8.2 Cleaning Text Data

P8.2.1 Reading a file into a string variable

open() function can be used to create a handle to a file before reading it. It requires two

parameters: 1) file path 2) read/write purposes.

The following example reads a file in the working directory where the Python scripts is

running. Assume that myfile.txt already exists in this path.

file_handle = open(' myfile.txt ' , ' rt ')

148 Introduction to Computers and Programming using Python

Emotion Analysis Project 8

In the above snippet, rt stands for opening the file myfile.txt to read

text . Only filename is sent as an argument rather than a full path such

as /home/ey/projects/myfile.txt . The path naming convention changes from

Unix/Linux to Windows systems. In Windows, the path can be something like:

C:\Users\ey\projects\myfile.txt . To give a correct path, one should know where the

file is located in the system.

After opening the file, it can be read with the read() method of the file handle. In the

following snippet, myvar string variable contains the entire contents of the file:

myvar = file_handle.read()

Don ' t forget to close the file once it has been read

file_handle.close()

print(myvar)

Here are the contents of my shopping list: milk, eggs, flour, apples,␣

↪ → oranges.

P8.2.2 Tokenizing a string into words

↬

For a refresher

on lists see

Lecture L7.1.

To split the string into words, word_tokenize() function from the nltk module is used.

The function accepts a string variable as a parameter and returns a list of words.

from nltk import word_tokenize

tokens = word_tokenize(myvar)

print(tokens)

[' Here ' , ' are ' , ' the ' , ' contents ' , ' of ' , ' my ' , ' shopping ' , ' list ' , ' : ' ,␣

↪ → ' milk ' , ' , ' , ' eggs ' , ' , ' , ' flour ' , ' , ' , ' apples ' , ' , ' , ' oranges ' , ' . ']

P8.2.3 Identifying punctuation

In the previous step, the tokenizer considers punctuation marks as words. But they should be

removed. A string variable has a method called isalpha() to check whether the characters

in the string are alphabets. If so, the method returns True, otherwise it returns False. The

returned value can be used to remove these tokens from the list.

for token in tokens:

print(token, ":", token.isalpha())

Here : True

are : True

the : True

contents : True

of : True

my : True

shopping : True

list : True

: : False

milk : True

Introduction to Computers and Programming using Python 149

Project 8 Emotion Analysis

, : False

eggs : True

, : False

flour : True

, : False

apples : True

, : False

oranges : True

. : False

P8.2.4 Identifying stopwords

Stopwords are commonly used words in a language such as subjects like I , you , we or

question words like when , how , or auxilary verbs like am , is , are and so on... These words

are generally removed before any text processing algorithm is applied.

nltk module has a package called corpus that contains stopwords in the English lan-

guage. This list can be compared to the words in the list obtained from the tokenized

text:

from nltk.corpus import stopwords

my_stop_words = stopwords.words(' english ')

for token in tokens:

if token in my_stop_words:

print(token, ' is a stopword. ')

are is a stopword.

the is a stopword.

of is a stopword.

my is a stopword.

P8.2.5 Converting to lowercase

To make sure that same word in uppercase letters and lowercase letters are treated as the

same, it is common to convert all characters in a word to lowercase. The lower() method

of a string variable returns the lowercase version of the string.

word = ' HelLo '

print(word.lower())

hello

P8.2.6 Stemming the words

Two words with different structures may come from the same stem. For example, the words

identifying and identified come from the same stem: identifi . Stemming makes sure

that these two words are treated as the same word. The nltk.stem.porter package has

a class named PortStemmer that has a method named stem() to be used to stem words.

First, an object of the class need to be created. Then the method can be called on the

object.

150 Introduction to Computers and Programming using Python

Emotion Analysis Project 8

from nltk.stem.porter import PorterStemmer

porter = PorterStemmer() # object is created

word_list = [' identifying ' , ' identified ']

for word in word_list:

print(porter.stem(word)) #stem() method is called

identifi

identifi

P8.3 Measuring Polarity and Subjectivity

Python’s textblob module has objects that can measure polarity and subjectivity in a

text. Polarity is a number between

− 1

and

1

. If the measure gives a positive number then

the sentiment of the text is mostly positive. Otherwise, it is negative. A value of

0

shows

neutral sentiment. Subjectivity is a number between

0

and

1

.

0

refers to being objective

while

1

refers to being subjective.

To use the methods, a TextBlob object has to be created. Its data members

sentiment.polarity and sentiment.subjectivity provide these measures.

from textblob import TextBlob

text = ' I am so happy that you found your favorite book. ' # A positive ␣

↪ → and subjective sentence

blob_object = TextBlob(text)

print("Polarity:", blob_object.sentiment.polarity)

print("Subjectivity:", blob_object.sentiment.subjectivity)

text = ' People hate tardiness. So, stop behaving like that. ' # A negative ␣

↪ → and less subjective sentence

blob_object = TextBlob(text)

print("Polarity:", blob_object.sentiment.polarity)

print("Subjectivity:", blob_object.sentiment.subjectivity)

Polarity: 0.65

Subjectivity: 1.0

Polarity: -0.8

Subjectivity: 0.9

P8.4 Exercise

Before starting to analyze your favorite books, the text version of the books must be down-

loaded from Project Gutenberg site. Go to: https://www.gutenberg.org and download

Plain Text UTF-8 version of the two/or more books from two of your favorite authors.

Introduction to Computers and Programming using Python 151

https://www.gutenberg.org

Project 8 Emotion Analysis

P8.4.1 Step 1: Cleaning the data

Step 1.1: Defining the function

Write a function clean_text() that will accept a filepath string variable as a parameter

and return a list of words that will have gone through tokenizing, removal of punctuation,

removal of stopwords, conversion to lowercase and stemming processes.

def clean_text(filepath):

Open file by using its path and read the contents into a string ␣

↪ → variable

Complete the code here

Convert the string variable into tokens

Complete the code here

Remove punctuation from the tokens

Complete the code here

Convert words to lowercase

Complete the code here

Remove stopwords

Complete the code here

Stem the words

Complete the code here

Return the words as a list

return words

Step 1.2: Using the function on the book

Use the above function to clean text data for the books: Call the clean_text function once

for each book text data file, assigning the returned lists into variables of your choosing.

Code here

#

Step 1.3: Using the function on the emotion words

Inside the project folder, there is another folder named emotion_word_data which contains

text files which also contain words for different emotions. Table P8.1 shows excerpts from

152 Introduction to Computers and Programming using Python

Emotion Analysis Project 8

the contents of these text files.

Use clean_text() function to clean them as well. Assign the returned lists into variables

that represents the emotions in the title of the text files.

P8.4.2 Step 2: Finding the word count of the books

1. Code the function find_word_count() that computes the word counts of the books

by using a dictionary.

↬

For a refresher

on dictionaries

see

Lecture L7.3.

The key->value pair of each dictionary must refer to

word->number of occurrences in the books. The cleaned word lists may be used

to do that. The find_word_count() function accepts a word list as an argument and

returns a dictionary of word count.

def find_word_count(words):

words is the list of cleaned words

Code the function here

return dct_book

2. Call the function once for all the books. Assign the returned dictionaries proper names.

P8.4.3 Step 3: Finding the number of occurrences of the emotion words

in the books

Write a function to create the emotion index which is basically the total number of oc-

currences of words of each emotion lists in the books. The function takes two parameters:

index_name is the name of the emotion (e.g. "Anger"), index_words is a list which contains

the cleaned emotion word list (e.g. list for the anger.txt words), dictionary is the word

count dictionary of a book created in the previous step.

def emotion_index(index_name, index_words, dictionary):

index_words is a list which contains the cleaned emotion words,

dictionary contains the word-> number of occurrences pairs of the ␣

↪ → book

Code the function here

return total # The total number of occurrences of the emotion words ␣

↪ → in the book words

Use emotion_index() function to find the number of occurrences for each emotion by

using the cleaned emotion words lists for the two books you would like to compare. You

should be creating 14 emotion indices (7 emotions per 2 books). Append the returned

numbers to a list for each book. Example names for the lists could be pap_list and

atotc_list .

Add the results to a list to be used in graphing

print("Emotion Indices for ' Pride and Prejudice ' ")

#

Introduction to Computers and Programming using Python 153

Project 8 Emotion Analysis

anger.txt

confusion_helplessness.txt

happy_alive.txt

inspired.txt

O
rdeal

O
utrageousness

P
rovoke

R
epulsive

Scandal

Severe

Sham
eful

Shocking

T
errible

T
ragic

...

doubtful

uncertain

indecisive

perplexed

em
barrassed

hesitant

disillusioned

distrustful

m
isgiving

unsure

...

blissful

joyous

delighted

overjoyed

gleeful

thankful

festive

ecstatic

satisfied

cheerful

...

m
otivated

eager

keen

earnest

inspired

enthusiastic

bold

brave

daring

hopeful

...

relaxed_peaceful.txt

safe_satisfied.txt

urgency.txt

calm

at
 ease

com
fortable

content

quiet

certain

relaxed

serene

bright

blessed

...

A
ccurate

instantly

A
dvantage

A
lw

ays

B
argain

C
ertain

C
ertainly

C
onfident

C
onvenient

D
efinitely

...

M
agical

Instantly

M
agnificent

M
iracle

Im
portant

P
rofitable

P
roven

Q
uick

R
em

arkable

R
esults

...

T
able

 P
8.1:

 E
xcerpts

 from
 the

 em
otion

 w
ords

 files.

154 Introduction to Computers and Programming using Python

Emotion Analysis Project 8

Figure P8.1: Graph bar showing emotion analysis of Pride and Prejudice (PAP) and A Tale

of Two Cities (ATOTC).

Code here

Repeat similar operations for the other novel

print("\nEmotion Indices for ' A Tale of Two Cities ' ")

Code here

#

P8.4.4 Step 4: Creating a graph that compares the number of occurrences

of emotion words

↬

The pandas

and

matplotlib

libraries were

used in

Project P7.

Create a multi-column bar graph to compare the two books by the emotions using pandas

and matplotlib.pyplot modules of Python. An example graph is given on Figure P8.1.

In this graph, the books Pride and Prejudice by Jane Austen and A Tale of Two Cities

by Charles Dickens are compared. The X-axis of the graph shows the emotions while the

Y-Axis shows the number of occurrences of emotion words in the books.

Complete the code below to create a Pandas dataframe and plot the graph of emotion

analysis.

import pandas as pd

import matplotlib.pyplot as plt

Here emotions is a list that contains the emotion names such as anger

Introduction to Computers and Programming using Python 155

Project 8 Emotion Analysis

Figure P8.2: Polarity and subjectivity analysis of Pride and Prejudice (PAP) and A Tale of

Two Cities (ATOTC).

You may use any name you wish for your lists

emotions = [' Anger ' , ' Confusion&helplessness ' , ' Happy&Alive ' ,␣

↪ → ' Inspired ' , ' Relaxed&Peaceful ' , ' Safe&Satisfied ' , ' Urgency ']

plotdata = pd.DataFrame({"PAP":pap_list, "ATOTC":atotc_list}, index =␣

↪ → emotions)

Code here

#

Write your observations about the books and authors. For example, based on the

graph in Figure P8.1, Pride and Prejudice(PAP) contains more words of Anger, Con-

fusion&Helplessness, Happy, Inspired, Safe&Satisfied and Urgency while A Tale of Two

Cities(ATOTC) contains more words for relaxed and peaceful. Of course, these results

could be normalized by dividing each count by the total number of words in each book. Try

this approach and see if there is a change in the results. Both authors are British and the

books are from similar eras(published in 1813 and 1859 respectively). While PAP is about

relationships between men and women, ATOTC is more about war years. One would expect

ATOTC to include more words of anger and less words of relaxed&peaceful . Other than

that it looks like PAP has more positivity in it then ATOTC. Write your own conclusions

about your books.

P8.4.5 Step 5: Creating a bar graph comparing the polarity and subjec-

tivity

Use the textblob module to find the polarity and subjectivity of your books and create a

bar graph like the one depicted on Figure P8.2.

Write your observations. For example, in the graph of Figure P8.2, PAP is listed as

156 Introduction to Computers and Programming using Python

Emotion Analysis Project 8

a more positive and subjective book compared to ATOTC which also proves our previous

findings from the emotion words. But polarity is close to 0, so they are close to neutral as

well. How about your books? Are they positive, negative, subjective or objective?

Code here

#

Introduction to Computers and Programming using Python 157

Project 9

Dynamics on Functions

Project contents

P9.1 The mathematical setting . 159

P9.1.1 Self composition . 159

P9.1.2 The

n

-th iterated function . 160

P9.2 Orbit of

x

. 160

P9.2.1 Example:

n

-th Orbit of

1

for

f (x) = 2 x + 1

. 160

P9.2.2 Exercise . 162

P9.3 The Collatz Conjecture . 162

P9.3.1 Total Stopping Time . 163

P9.3.2 Exercise: Defining

h (x)

. 163

P9.3.3 Exercise: Defining totalstoppingtime(x) 163

P9.3.4 A scatter plot from a list of points 164

P9.3.5 Exercise: A scatter plot for the Total Stopping Time 164

P9.1 The mathematical setting

Let

f

be a mathematical function. Even though

f

can accept any numbers and returns

any numbers, it is assumed that

f

is defined on the set of positive integer,

Z> 0

and returns

positive integers.

Therefore

f

is a function from

Z> 0

to

Z> 0

:

f : Z> 0

→ Z> 0

P9.1.1 Self composition

f

can be composed with

f

itself. Namely, the

2

-th iterated function of

f

is defined as follow:

f2(x) = f (f (x))

Be aware that

f2(x)

is not

f (x) · f (x)

.

For example, if

f (x) = 2 x + 1

, then

f2(x) = f (f (x)) = 2(f (x)) + 1 = 2(x + 1) + 1 = 4 x + 2 + 1 = 4 x + 3

But

f (x) · f (x) = (2 x + 1)(2 x + 1) = 4 x2 + 4 x + 1

Introduction to Computers and Programming using Python 159

https://en.wikipedia.org/wiki/Function_composition

Project 9 Dynamics on Functions

P9.1.2 The

n

-th iterated function

In general, we define

n

-th iterated function,

f

n

recursively.

f

n(x) =

{

id, for n = 0

f

n − 1(f (x)) , for n > 0

where

id

is the identity function :

id (x) = x

.

For example, for

f (x) = 2 x + 1

,

f3(x) = f2(f (x)) = 4(f (x)) + 3 = 4(2 x + 1) + 3 = 4 x + 7

Exercise

Let

g

be the function from

Z> 0

to

Z> 0

and defined by

g (x) = 2 x

Compute

g2(x)

and

g3(x)

.

P9.2 Orbit of

x

For

x ∈ Z> 0

, the sequence of values

f

n(x)

is called the orbit of

x

.

{ x, f (x) , f2(x) , f3(x) , . . . }

We define

xi

= f

i(x)

, so:

x0

= x

,

x1

= f1(x)

,

x2

= f2(x)

, ...,

xn

= f

n(x)

.

Then the orbit of

x

is given by the sequence

{ xi

}i ≥ 0

,

x0

= x, x1

= f (x0) , x2

= f (x1) , x3

= f (x2) , . . .

We also define the

n

-th orbit of

x

for

f

as the finite sequence

x0

, x1

, . . . , xn

P9.2.1 Example:

n

-th Orbit of

1

for

f (x) = 2 x + 1

The orbit of

1

for

f (x) = 2 x + 1

is

{ 1 , f (1) = 2(1) + 1 = 3 , f (2) = 2(3) + 1 = 7 , f (3) = 2(7) + 1 = 15 . . . } = { 1 , 3 , 7 , 15 , . . . }

The

3

rd orbit of

1

for

f (x) = 2 x + 1

can be computed using Python.

1. Define a Python function for f .

def f(x):

return 2*x+1

2. Compute

x0

,

x1

, . . . , xn

when

x0

= 1

and

n = 3

.

160 Introduction to Computers and Programming using Python

https://en.wikipedia.org/wiki/Iterated_function

Dynamics on Functions Project 9

x0 = 1

x1 = f(x0)

x2 = f(x1)

x3 = f(x2)

print(x0,x1,x2,x3)

1 3 7 15

3. Gather the

xi

into a Python list X .

X = [1] # Initialize the list with element 1

X.append(f(X[0])) # Add x1=f(1)=f(x0) to the end of the list

X.append(f(X[1])) # Add x2=f(f(1))=f(x1) to the end of the list

X.append(f(X[2])) # Add x3=f(f(f(1)))=f(x2) to the end of the list

4. Make the code cleaner.

• Indexes of X can be replaced with a variable i .

X = [1]

i = 0

X.append(f(X[i]))

i = 1

X.append(f(X[i]))

i = 2

X.append(f(X[i]))

• The line X.append(f(X[i])) is repeated several times, only the value of i changes.

This is better done using a loop.

Version using a while loop

X = [1]

i = 0

while i<3:

X.append(f(X[i]))

i = i+1

print(X)

[1, 3, 7, 15]

Version using a for loop

X = [1]

for i in range(0,3):

X.append(f(X[i]))

print(X)

[1, 3, 7, 15]

Introduction to Computers and Programming using Python 161

Project 9 Dynamics on Functions

P9.2.2 Exercise

Write a python function orbit(f,x,n) which returns the

n

-th orbit of x for f . Note that a

function can be given as an argument of a function.

For example: computing the

7

-th orbit of 3 for

f (x) = 3 x + 2

.

def f(x): # define f

return 3*x+2

R = orbit(f,3,7) # use f as the argument of the orbit function

print(R)

The output is

[3, 11, 35, 107, 323, 971, 2915, 8747]

Define the orbit function here

def f(x):

return 3*x+2

R = orbit(f,3,7)

print(R)

P9.3 The Collatz Conjecture

Let

h

be the function from

Z> 0

to

Z> 0

as follows:

h (x) =

{

x

2

, if x is even

3 x + 1 , if x is odd

Consider the corresponding orbit of

x

for

h

,

x0

= x, x1

= h (x0) , x2

= h (x1) , . . .

For example, the orbit of

3

for

h

can be computed as follows:

x0

= 3 x1

= 3(3) + 1 = 10 x2

=

10

2

= 5 x3

= 3(5) + 1 = 16

x4

=

16

2

= 8 x5

=

8

2

= 4 x6

=

4

2

= 2 x7

=

2

2

= 1

x8

= 3(1) + 1 = 4 x9

=

4

2

= 2 x10

=

2

2

= 1 . . .

The orbit of

3

for

h

is therefore

3 , 10 , 5 , 16 , 8 , 4 , 2 , 1 , 4 , 2 , 1 , 4 , 2 , 1 , . . .

Once

xi

= 1

for some

i ≥ 0

, the orbit repeats with the pattern

4 , 2 , 1

. The question is:

does that always happen at some point regardless of the value of

x

? This is formalized as

follows by the Collatz Conjecture .

162 Introduction to Computers and Programming using Python

Dynamics on Functions Project 9

Collatz Conjecture

For any positive integer

x

, there is

i ≥ 0

such that

xi

= 1

.

The above conjecture is still open, which means there is no proof of it’s validity. But it

has been verified for

x

up to

1020

.

P9.3.1 Total Stopping Time

The total stopping time of

x

is the number of iterations needed to reach

1

; it if formally

defined as follows:

The total stopping time of

x

is the smallest

i

such that

xi

= 1

.

For example, since the orbit of

3

for

h

is

3 , 10 , 5 , 16 , 8 , 4 , 2 , 1 , . . .

the total stopping time of

3

is

7

.

If the Collatz Conjecture is true, then the total stopping time is always a finite number.

P9.3.2 Exercise: Defining

h (x)

Define a python h(x) returns

h (x)

for a positive integer x .

Example of a call to h :

print(h(11))

This should output:

34

Code here

#

P9.3.3 Exercise: Defining totalstoppingtime(x)

Assume that the positive integer

x

is less than

1020

. Then the Collatz Conjecture is true for

x

and the total stopping time of

x

is well-defined.

Define a python function totalstoppingtime(x) which returns the total stopping time

of x .

Example of a call to totalstoppingtime :

print(totalstoppingtime(3))

This should output:

7

Introduction to Computers and Programming using Python 163

Project 9 Dynamics on Functions

Code here

#

P9.3.4 A scatter plot from a list of points

The matplotlib module can be used to plot graphs. Let us first install and import

matplotlib first. Installation can be done in a terminal using the command

pip3 install -U matplotlib

Or in Jupyter by executing:

!pip3 install -U matplotlib

It can then be imported in the code:

import matplotlib.pyplot as plt

A scatter plot is the depiction of a set of points. These points are given in a list of tuples,

for example [(1,2),(3,4),(5,6),(6,3),(4,1)] .

For these points to be plotted by matplotlib , they need to be separated into the

x

-

coordinates and the

y

-coordinates. In the following code X is the list of

x

-coordinates and Y

is the list of

y

-coordinates. The call plt.plot(X,Y, ' . ') defines the plot and plt.show()

displays it.

import matplotlib.pyplot as plt

L=[(1,2),(3,4),(5,6),(6,3),(4,1)]

X=[x for x,y in L]

Y=[y for x,y in L]

plt.plot(X,Y, ' . ')

plt.show()

P9.3.5 Exercise: A scatter plot for the Total Stopping Time

For a positive x , the point (x,totalstoppingtime(x)) is the stopping point at x .

For example, the list of all stopping points of x where

1 ≤ x ≤ 8

is

164 Introduction to Computers and Programming using Python

Dynamics on Functions Project 9

[(1, 0), (2, 1), (3, 7), (4, 2), (5, 5), (6, 8), (7, 16), (8, 3)]

Write a program that:

1. Computes the list S of all stopping points of x where

1 ≤ x ≤ 100000

.

2. Plots a scatter plot of S using matplotlib .

3. Find all stopping point(s) in S which give(s) the maximum total stopping time. Note

that there is a max function that returns the maximal element of the list given as

argument:

max([12,3,24,-9,7,-31,6])

24

import matplotlib.pyplot as plt

Defining S

Code here

Plotting S using matplotlib

Code here

Find the maximum in Y, use it to select values that have this maximum ␣

↪ → stopping time

Code here

#

Introduction to Computers and Programming using Python 165

Project 10

The Game of Tic-Tac-Toe

Project contents

P10.1The rules of the game . 167

P10.2Creating the board . 167

P10.3The winning condition . 168

P10.4Playing the game . 170

P10.1 The rules of the game

The goal of this project is to implement the game of Tic-Tac-Toe.

The game uses a board and 2 players. The board consists of 9 squares aligned in 3

rows and 3 columns. The squares are initially emtpy. The players alternate in filling in the

squares with X s and O s respectively. With each turn, a player fills only one empty square.

To win the game each player must fill either a row, a column, or a digonal with his or her

letter. The player that accomplishes this first wins the game. It is possible that the game

ends in draw if no player has won when there is no more square to fill.

P10.2 Creating the board

The board is stored in a list of size 9. Each element of the list contains one of the following

characters:

• . a dot if the square is available.

• X if player X occupies it.

• O if player O occupies it.

Each game starts with an empty board: it must be initialized, namely fill with dots.

Here is how this may be done:

↬

This function

can modify the

list given as

argument

because it is a

mutable object,

see Section L7.4

for more

information on

this notion.

def initialize(board):

for i in range(9):

board += ' . ' # Add the 9 ' . ' to the list

This function modifies the board but does not return anything

def show(board):

for i in range(len(board)):

print(' %s ' % board[i], end = ' ')

if i > 0 and (i+1) % 3 == 0:

Introduction to Computers and Programming using Python 167

Project 10 The Game of Tic-Tac-Toe

print(' \n ' ,end= '') # Print a new line every 3 squares

def main():

board = []

initialize(board)

show(board)

main()

. . .

. . .

. . .

P10.3 The winning condition

After each turn, the program needs to check the status of the board to determine if there is

a winner, a draw, or not finished. The checkwin function analyzes the board and returns

one of the following strings:

• return ' X ' if player X wins;

• return ' O ' is player O wins;

• return ' D ' in case of a draw;

• return ' NF ' in case the game has not finished yet.

To do so:

1. Check the board to see if there is a winner. This is detected as follows:

• check if any of the 3 rows contains only X or O ;

• check if any of the 3 columns contains only X or O ;

• check if any of the 2 diagonals contains only X or O .

If any of the above cases applies, then this player has won.

2. Check if the board has empty squares.

• If that is the case, the game is not finished.

• Otherwise, the game is a draw.

To test the checkwin function, the program asks the user to enter an entire board,

namely a string of 9 characters with each character being either . , X , or O . For example:

XOX...X.X

def checkwin(board):

Returns ' X ' if X wins

Returns ' O ' if O wins

Returns ' D ' for draw

Returns ' NF ' for not finished yet

Check winning by rows: 0,1,2; then 3,4,5; then 6,7,8;

for i in range(3): # i is {0, 1, 2}, so 3*i is {0, 3, 6}

168 Introduction to Computers and Programming using Python

The Game of Tic-Tac-Toe Project 10

if (board[3*i] == board[3*i+1] and board[3*i+1] == board[3*i+2]␣

↪ → and board[3*i] != ' . '):

Squares in the row are identical and not ' . '

return board[3*i]

Check winning by columns: 0,3,6; then 1,4,7; then 2,5,8

for i in range(3): # i is {0, 1, 2}

if (board[i] == board[i+3] and board[i+3] == board[i+6] and␣

↪ → board[i] != ' . '):

Squares in the column are identical and not ' . '

return board[i]

Check winning by the first diagonal: 0,4,8

if (board[0] == board[4] and board[4] == board[8] and board[0] != ' .

↪ → '):

Squares in the diagonal are identical and not ' . '

return board[0]

Check winning by the second diagonal: 2,4,6

if (board[2] == board[4] and board[4] == board[6] and board[2] != ' .

↪ → '):

Squares in the diagonal are identical and not ' . '

return board[2]

Check for dots (empty squares), i.e. not finished

for i in range(9):

if board[i] == ' . ' :

return ' NF '

If the code reached this far without returning, then it is a draw

return ' D '

def main():

while True:

board = []

initialize(board)

s = input(' Press q to quit or a 9 character string (use only␣

↪ → ̀ X ̀ , ̀ O ̀ , ̀ . ̀) : ')

if s == ' q ' :

break

for i in range(min(len(s),9)):

board[i] = s[i] # Set the board status from the string

show(board)

result = checkwin(board)

if result == ' D ' :

print(' The game ends in a draw. ')

elif result == ' NF ' :

print(' The game has not finished. ')

else:

print(' Player {} wins the game. ' .format(result))

print(' --------------------------- ')

Introduction to Computers and Programming using Python 169

Project 10 The Game of Tic-Tac-Toe

main()

Press q to quit or a 9 character string (use only ` X ̀ , ̀ O ̀ , ̀ . ̀) : ...

. . .

. . .

. . .

The game has not finished.

Press q to quit or a 9 character string (use only ` X ̀ , ̀ O ̀ , ̀ . ̀) : ...XO..OX

. . .

. X O

. . O

The game has not finished.

Press q to quit or a 9 character string (use only ` X ̀ , ̀ O ̀ , ̀ . ̀) : OX..OX..O

O X .

. O X

. . O

Player O wins the game.

Press q to quit or a 9 character string (use only ` X ̀ , ̀ O ̀ , ̀ . ̀) : XOXOXOOXO

X O X

O X O

O X O

The game ends in a draw.

Press q to quit or a 9 character string (use only ` X ̀ , ̀ O ̀ , ̀ . ̀) : q

P10.4 Playing the game

The function that plays the game consists of an indeterminate while loop. Each iteration

consists of the following steps:

1. Player X is asked to enter a board square as a number 0 .. 8; this process is repeated

until the player enters a valid number representing an empty square.

2. The square is filled with ' X ' .

3. The board is shown and the checkwin function is called; in case of a winner, the

function returns the either ' X ' or ' O ' .

4. Player O is asked to enter a board square as a number 0 .. 8; this process is repeated

until the player enters a valid number representing an empty square.

5. The square is filled with ' O ' .

6. The board is shown and the checkwin function is called; in case of a winner, the

function returns the either ' X ' or ' O ' .

The main function allows players to play the several rounds of the game. It consists of

a while loop as follows:

1. Initialize the board (empty the squares)

170 Introduction to Computers and Programming using Python

The Game of Tic-Tac-Toe Project 10

2. Ask the user to either quit or play the game

3. The game is played and the result is printed

def playgame(board):

while True:

Ask player X for a board spot

while True:

i = input(' Player X: enter a board spot between 0 and 8: ')

if i.isdigit() == False: # Input is not a number

print(' Invalid input. Try again. ')

continue

i = int(i)

if i < 0 or 8 < i: # Input is not between 0 and 8

print(' Invalid input. Try again. ')

continue

if board[i] != ' . ' :

print(' Board occupied. Try again. ')

continue

else:

board[i] = ' X ' # Set this square to ' X '

break # Stop the loop

Check board status

show(board)

if checkwin(board) != ' NF ' :

return checkwin(board)

Ask player O for a board spot

while True:

i = input(' Player O: enter a board spot between 0 and 8: ')

if i.isdigit() == False: # Input is not a number

print(' Invalid input. Try again. ')

continue

i = int(i)

if i < 0 or 8 < i: # Input is not between 0 and 8

print(' Invalid input. Try again. ')

continue

if board[i] != ' . ' :

print(' Board occupied. Try again. ')

continue

else:

board[i] = ' 0 ' # Set this square to ' O '

break # Stop the loop

Check board status

show(board)

if checkwin(board) != ' NF ' :

return checkwin(board)

def main():

Introduction to Computers and Programming using Python 171

Project 10 The Game of Tic-Tac-Toe

while True:

board = []

initialize(board)

show(board)

s = input(' Press q to quit or anything else to play TIC-TAC-TOE:␣

↪ → ')

if s == ' q ' :

break

result = playgame(board)

if result == ' D ' :

print(' The game ends in a draw. ')

else:

print(' Player {} wins the game. ' .format(result))

main()

. . .

. . .

. . .

Press q to quit or anything else to play TIC-TAC-TOE: Ok

Player X: enter a board spot between 0 and 8: 2

. . X

. . .

. . .

Player O: enter a board spot between 0 and 8: 3

. . X

0 . .

. . .

Player X: enter a board spot between 0 and 8: 1

. X X

0 . .

. . .

Player O: enter a board spot between 0 and 8: 4

. X X

0 0 .

. . .

Player X: enter a board spot between 0 and 8: 5

. X X

0 0 X

. . .

Player O: enter a board spot between 0 and 8: 6

. X X

0 0 X

0 . .

Player X: enter a board spot between 0 and 8: 9

Invalid input. Try again.

Player X: enter a board spot between 0 and 8: 8

. X X

172 Introduction to Computers and Programming using Python

The Game of Tic-Tac-Toe Project 10

0 0 X

0 . X

Player X wins the game.

. . .

. . .

. . .

Press q to quit or anything else to play TIC-TAC-TOE: Ok

Player X: enter a board spot between 0 and 8: 4

. . .

. X .

. . .

Player O: enter a board spot between 0 and 8: 0

0 . .

. X .

. . .

Player X: enter a board spot between 0 and 8: 1

0 X .

. X .

. . .

Player O: enter a board spot between 0 and 8: 7

0 X .

. X .

. 0 .

Player X: enter a board spot between 0 and 8: 3

0 X .

X X .

. 0 .

Player O: enter a board spot between 0 and 8: 5

0 X .

X X 0

. 0 .

Player X: enter a board spot between 0 and 8: 5

Board occupied. Try again.

Player X: enter a board spot between 0 and 8: 2

0 X X

X X 0

. 0 .

Player O: enter a board spot between 0 and 8: 6

0 X X

X X 0

0 0 .

Player X: enter a board spot between 0 and 8: 8

0 X X

X X 0

0 0 X

The game ends in a draw.

. . .

. . .

Introduction to Computers and Programming using Python 173

Project 10 The Game of Tic-Tac-Toe

. . .

Press q to quit or anything else to play TIC-TAC-TOE: q

174 Introduction to Computers and Programming using Python

Project 11

A Function-Based

Role Playing Game

Project contents

P11.1Introduction . 175

P11.2Program structure . 175

P11.2.1 User choices . 175

P11.2.2 One room = one function . 176

P11.2.3 The hero status . 177

P11.2.4 A complete mini-donjon . 177

P11.3Let’s build a game! . 179

P11.3.1 The donjon map . 179

P11.3.2 Coding phase 1: The donjon structure 179

P11.3.3 Coding phase 2: The room functions 182

P11.3.4 Possible extensions . 192

P11.1 Introduction

The goal of this project is to implement a small Role Playing Game (RPG), where the user

plays a hero visiting a donjon.

A donjon is made of several rooms, and different things happen whenever the hero enters

the room: fight a monster, find a treasure, etc.

Throughout the game, the program must remember some information about the hero:

his name, his number of points of life, his number of coins. This status information could

be extended to add more features to the game.

P11.2 Program structure

P11.2.1 User choices

The player is given the opportunity to make choices by inputting some text. It is a good idea

for these games to be case-insensitive, so to convert the input to lowercase before testing

it against other lowercase value. So in the example below, it does not matter if the player

enters "right", "Right", "RIGHT", "rIgHt", or any variation of letter case, they would all

be converted to "right" before comparison.

↬

For a refresher

on conditions,

see Lecture L5.

This test is done in a conditional: does the input

value match the choices that were offered? Since there may be more that one possibility,

the elif (else-if) construct is used.

Introduction to Computers and Programming using Python 175

Project 11 A Function-Based Role Playing Game

print("Do you want to go left, right, or straight? (Enter \"left\",␣

↪ → \"right\", or \"straight\")")

userIn=input().lower() # lowercase of input so case does not matter

if userIn=="left": # compare to lowercase version; remark the == ␣

↪ → (double equal)

print("Let ' s go to the left.")

elif userIn=="right":

print("Right it is, then.")

elif userIn=="straight":

print("Straight ahead!")

else:

print("Invalid input. You lose, game over!")

Do you want to go left, right, or straight? (Enter "left", "right", or␣

↪ → "straight")

RIGHT

Right it is, then.

P11.2.2 One room = one function

The code of this project will be divided into several functions,

↬

For a refresher

on functions,

see Lecture L8.

following the principle that one

donjon room is coded by one function . Whatever happens inside this room is coded in that

function, and moving to another room is performed by calling the function corresponding

to that room.

That means all functions have to be defined before a call can actually happen. While

coding, it is possible to just define the function but leave the body empty.

For example, see this incomplete 2-room donjon:

def entranceRoom():

print("You enter the room... Nothing happens.")

print("There is a door to the right. Do you want to enter it?")

print("(Enter \"yes\" to enter and anything else to exit)")

userIn=input().lower() # lowercase of input so case does not matter

if userIn=="yes":

print("You leave by the door to the right...")

rightRoom()

else:

print("You leave the donjon, it is the end of the adventure!")

def rightRoom():

TO DO!

return

entranceRoom()

You enter the room... Nothing happens.

There is a door to the right. Do you want to enter it?

(Enter "yes" to enter and anything else to exit)

176 Introduction to Computers and Programming using Python

A Function-Based Role Playing Game Project 11

stop

You leave the donjon, it is the end of the adventure!

To be able to remember the status as the hero goes through the donjon rooms, the hero

status is passed as an argument to the next room.

P11.2.3 The hero status

↬

For a more

thorough

introduction to

dictionaries, see

Lecture L7.3.

The hero status is a dictionary . It is a list that is indexed by words instead of numbers from

0 to size-1. It is possible to add new values to the dictionary simply by setting the value at

a new index. Indices will be added to this dictionary as is necessary to code the game.

hero = { ' name ' :"Sigsegv", ' life ' :100, ' gold ' :0} # Original hero

print(hero)

print(' magic ' in hero.keys())

hero[' gold '] = hero[' gold ']+10 # Add 10 gold

hero[' magic '] = 42 # New field: ' magic ' , with ␣

↪ → value 42

print(hero)

{ ' name ' : ' Sigsegv ' , ' life ' : 100, ' gold ' : 0}

False

{ ' name ' : ' Sigsegv ' , ' life ' : 100, ' magic ' : 42, ' gold ' : 10}

P11.2.4 A complete mini-donjon

def entranceRoom(h):

print("You enter the room... There is a goblin!")

print("Do you use your sword or punch him?")

print("(Enter \"Sword\" to use the sword and \"Punch\" to punch the␣

↪ → goblin)")

userIn = input().lower() # lowercase of input so case does not matter

inputOk = False

if userIn=="sword":

inputOk = True

print("You killed the goblin with minor injuries. You lose 5 life␣

↪ → points and gain 20 coins.")

h[' life '] = h[' life ']-5

h[' gold '] = h[' gold ']+20

elif userIn=="punch":

inputOk = True

print("You killed the goblin, but it got you badly! You lose 50␣

↪ → life points and gain 20 coins.")

h[' life '] = h[' life ']-50

h[' gold '] = h[' gold ']+20

else: # invalid input

print("The input was invalid. Let ' s try again")

entranceRoom(h) # re-enter the same room

Introduction to Computers and Programming using Python 177

Project 11 A Function-Based Role Playing Game

if inputOk: # In case the input was incorrect, reenter the same room

if h[' life ']<=0: # No more life points

dead(h)

else:

print("There is a door to the right. Do you want to enter it?

↪ → ")

print("(Enter \"Yes\" to enter and anything else to exit)")

userIn = input().lower() # lowercase of input so case does ␣

↪ → not matter

if userIn=="yes":

print("You leave by the door to the right...")

rightRoom(h)

else:

print("You leave the donjon, it is the end of the␣

↪ → adventure!")

printStats(h)

def rightRoom(h):

print("There is a treasure. You gain 100 coins")

h[' gold '] = h[' gold ']+100

print("There is nothing else, so you can only go back from where you␣

↪ → came.")

entranceRoom(h)

return

def dead(h):

print("You died, game over!")

printStats(h)

def printStats(hero):

print("Your name was %s, you had %d life points and owned %d gold␣

↪ → coins." % (hero[' name '],hero[' life '],hero[' gold ']))

def game():

hero = { ' name ' :"Sigint", ' life ' :100, ' gold ' :0}

entranceRoom(hero)

game()

You enter the room... There is a goblin!

Do you use your sword or punch him?

(Enter "Sword" to use the sword and "Punch" to punch the goblin)

Punch

You killed the goblin, but it got you badly! You lose 50 life points and␣

↪ → gain 20 coins.

There is a door to the right. Do you want to enter it?

(Enter "Yes" to enter and anything else to exit)

stop

178 Introduction to Computers and Programming using Python

A Function-Based Role Playing Game Project 11

You leave the donjon, it is the end of the adventure!

Your name was Sigint, you had 50 life points and owned 20 gold coins.

P11.3 Let’s build a game!

P11.3.1 The donjon map

It is important to make a plan in advance: decide how rooms communicate with another,

and maybe write down what’s going to happen in each room.

In Figure P11.1 is a map of the suggested donjon. Both the corridor and the cellar can

be removed to simplify the game. Doors have different colors (wooden, metal, gilded) so

that the player can distinguish them.

Let’s briefly describe what will happen in each room.

• Entrance: nothing happens (could be added later); exit is possible, but means death

(game over)

• Guards room: a goblin is there, choice of sword (-5L,+20G) or punch (-50L,+20G)

• Corridor (optional): encounter an orc, must do punch-sword sequence to kill them:

otherwise -10L per turn and back to entrance after 2 turns ; killing the orc brings

+15L

• Cellar (optional): an old man is hidden in there; you can play a riddle game for 5G, if

answer is correct you earn 20G.

• Ball room: nothing happens (left to the imagination of the individual programmer)

• Kitchen: can eat some food to replenish life points up to max:

• ham: +15L

• cheese: +10L

• bread: +5L

• beer: +20L, -5G (coins dropped out of drunkenness)

• Throne room: the final boss arrives (-10L) to protect the Crown of Fame. Must do

sword-punch-sword sequence to kill the boss, while getting hurt (-15L) each turn; after

4 turns, back to the kitchen. When the boss is dead, gets the Crown of Fame and wins

the game.

P11.3.2 Coding phase 1: The donjon structure

First, all the functions for all the rooms must be defined, leaving their body empty for now.

Comments can describe what should happen and what are the connecting rooms to facilitate

the coding of the body of the function. A function for game over must also be defined, with

a boolean argument to determine whether the hero finished the game or died.

Once all functions exist, the game can be "played" through a testing function that

initializes the hero dictionary and have him enter the donjon.

After phase 1

def entrance(hero):

Entrance

Scenario TBD

Introduction to Computers and Programming using Python 179

Project 11 A Function-Based Role Playing Game

Entrance

Goblin

Guards
room

Cellar

Old man
asking
riddles

Ball room

Kitchen

Food (heal)

Corridor

Orc

Throne room

Final boss

Crown of Fame
(win the game)

Figure P11.1: Map of the suggested donjon

180 Introduction to Computers and Programming using Python

A Function-Based Role Playing Game Project 11

Door to the left, metal: guards room (function call ␣

↪ → guardsRoom(hero))

Door to the right, wood: corridor (function call corridor(hero))

Exit is possible, but means death

return # one instruction is mandatory for correct syntax

def guardsRoom(hero):

Guards room

A goblin is there, choice of sword (-5L,+20G) or punch (-50L,+20G)

Door to the front, wooden: cellar (function call cellar(hero))

Door to the back, metal: entrance (function call entrance(hero))

Door to the right, gilded: ball room (function call ballroom(hero))

return

def corridor(hero):

Corridor

Encounter an orc, must do punch-sword sequence to kill them: ␣

↪ → otherwise -10L per turn and back to entrance after 2 turns.

Killing the orc brings +15L

Door at the start: entrance (function call entrance(hero))

Door at the end: kitchen (function call kitchen(hero))

return

def cellar(hero):

Cellar

An old man is hidden in there. You can play a riddle game for 5G. ␣

↪ → If answer is correct, earn 20G.

Door at the back, wood: guards room (function call guardsRoom(hero))

return

def ballroom(hero):

Ball room

Scenario TBD

Door to the back, gilded: guards room (function call ␣

↪ → guardsRoom(hero))

Door to the front, wood: kitchen (function call kitchen(hero))

return

def kitchen(hero):

Kitchen

Can eat some food to replenish life points up to max

* ham: +15L

* cheese: +10L

* bread: +5L

* beer: +20L, -5G (coins dropped out of drunkenness)

Door to the back, wood: ball room (function call ballroom(hero))

Door to the front, metal: corridor (function call corridor(hero))

Introduction to Computers and Programming using Python 181

Project 11 A Function-Based Role Playing Game

Door to the right, gilded: throne room (function call throne(hero))

return

def throne(hero):

Throne room

The final boss arrives (-10L) to protect the Crown of Fame.

Must do sword-punch-sword sequence to kill the boss.

Each turn -15L, after 4 turns, back to the kitchen.

When the boss is dead, gets the Crown of Fame and wins the game.

return

def gameOver(hero,win=False):

Simple function, will revisit later

if win:

print("You won!")

else:

print("You died!")

return

def testing():

h = { ' name ' :"Sigsys", ' life ' :100, ' gold ' :0, ' max ' :100} # We need max to ␣

↪ → know how much life he can have

print("Testing of the game, initial hero:",h)

entrance(h)

testing() # So far, only prints the hero dictionary.

Testing of the game, initial hero: { ' name ' : ' Sigsys ' , ' max ' : 100, ' life ' :␣

↪ → 100, ' gold ' : 0}

P11.3.3 Coding phase 2: The room functions

All the room functions can now be filled with actual code to incorporate what happens in

the room.

Auxiliary functions

Some tasks that are performed often can be put in a function. That function will be called

instead of repeating the code. This is the case of gaining (or losing) life points and gold

coins.

Both these functions check that the values respect certain bounds.

def life(hero,v):

if v<0:

if (hero[' life ']+v<0): # No negative life points.

hero[' life '] = 0

else:

hero[' life '] = hero[' life ']+v

182 Introduction to Computers and Programming using Python

A Function-Based Role Playing Game Project 11

print(" \U0001FA78 You lose %d life points\t\t[%d/%d]" %␣

↪ → (-v,hero[' life '],hero[' max '])) # Blood emoji

else:

if (hero[' life ']+v>hero[' max ']): # Not higher than max.

hero[' life '] = hero[' max ']

else:

hero[' life '] = hero[' life ']+v

print(" \U00002695 You gain %d life points\t\t[%d/%d]" %␣

↪ → (v,hero[' life '],hero[' max '])) # Medecine emoji

return hero

def gold(hero,v):

if v<0:

if (hero[' gold ']+v<0): # No negative money. This should be tested ␣

↪ → before calling this function.

hero[' gold '] = 0

else:

hero[' gold '] = hero[' gold ']+v

print(" \U0001FA99 You lose %d gold coins\t\t[%d]" %␣

↪ → (-v,hero[' gold '])) # Coin emoji

else:

hero[' gold '] = hero[' gold ']+v

print(" \U0001F4B0 You gain %d gold coins\t\t[%d]" %␣

↪ → (v,hero[' gold '])) # Bag of money emoji

return hero

About Emojis

Emojis may not

show on the

terminal or

browser you are

using.

↬

For more

information

about emojis in

Python, see

Section L4.5.2.

The entrance

This function will take some input from the player in order to know which room to be visited

next. If he exits, he dies a ridiculous death (for example a stone falls on his head). For any

invalid input, the user can try again by calling the very same entrance function.

Exercise The function has been partially written; complete the code so that the function

reacts accordingly to user input.

def entrance(hero):

Entrance

Scenario TBD

Door to the left, metal: guards room (function call ␣

↪ → guardsRoom(hero))

Door to the right, wood: corridor (function call corridor(hero))

Exit is possible, but means death

print("You are in the entrance hall.")

So far nothing really happens in here, just a choice of doors.

print("There is a wooden door and a metal door.")

Introduction to Computers and Programming using Python 183

Project 11 A Function-Based Role Playing Game

print("[Enter \"Wooden\" or \"Metal\" to choose a door, or \"Exit\"␣

↪ → to leave the donjon (and the game)]")

Complete the code here so that the function reacts accordingly to ␣

↪ → user input

return

The guards room

In this function, user input will be first used to decide how the hero will fight. When the

fight is over (and if the hero is not dead) the hero gains 20 pieces of gold and the player is

asked to choose a door.

The code below only contains the first phase of the action in this room (the fight). Note

that the second phase should only happen if the input was valid, which is kept in the boolean

variable inputOk .

Exercise Complete the second phase of the function. It is assumed than an invalid choice

of door makes the hero reenter the same room (by calling the guardsRoom function).

def guardsRoom(hero):

Guards room

A goblin is there, choice of sword (-5L,+20G) or punch (-50L,+20G)

Door to the front, wooden: cellar (function call cellar(hero))

Door to the back, metal: entrance (function call entrance(hero))

Door to the right, gilded: ball room (function call ballroom(hero))

print("You are in the guards room. A goblin appears!")

print("Do you use your sword or punch him?")

print("[Enter \"Sword\" to use the sword and \"Punch\" to punch the␣

↪ → goblin]")

i = input().lower() # lowercase of input so case does not matter

inputOk=False

if i=="sword":

inputOk = True

print("\U0001F5E1 You take your sword out. The goblin jumps at␣

↪ → you with claws out and impales himself on your blade.")

Sword emoji

print("You killed the goblin with only some scratches.")

hero=life(hero,-5)

elif i=="punch":

inputOk=True

print("\U0001F44A The goblin jumps at you with claws out teeth␣

↪ → bare. You punch at him until it finally dies, but you are badly hurt.")

Punch emoji

hero = life(hero,-50)

else: # invalid input

print("The input was invalid. Let ' s try again")

184 Introduction to Computers and Programming using Python

A Function-Based Role Playing Game Project 11

guardsRoom(hero) # re-enter the same room

if inputOk: # In case the input was incorrect we don ' t want to ␣

↪ → continue, but we reenter the same room

Complete the second phase of the function here

return

The corridor

In this, the hero has to punch then use his sword. This can be implemented by nested if

conditionals. Any invalid input or the wrong decision and he is sent back to the entrance

hall having lost 10 life points (if the hero is not dead).

Exercise Complete the corridor function.

def corridor(hero):

Corridor

Encounter an orc, must do punch-sword sequence to kill them: ␣

↪ → otherwise -10L per turn and back to entrance after 2 turns.

Killing the orc brings +15L

Door at the start, wood: entrance (function call entrance(hero))

Door at the end, metal: kitchen (function call kitchen(hero))

return

The cellar

In this function, nested if conditionals once again code the successive choices of the player:

• Chooses to play:

• Not enough money: is sent back to the guards room

• Enough money:

– Correct answer: gets 20 pieces of gold, is sent back to the guards room

– Incorrect answer: reenters the cellar (try again)

• Chooses not to play: is sent back to the guards room

• Invalid input: reenter the cellar (try again)

Exercise

1. Devise a riddle, preferably with an answer that is a single word.

2. Complete the cellar function defined in Section P11.3.2 to incorporate all the user

choices, using the riddle you wrote.

The Ball room

In this room nothing happens; that could be changed later on. The basic version below only

has ways to move out of it.

Introduction to Computers and Programming using Python 185

Project 11 A Function-Based Role Playing Game

def ballroom(hero):

Ball room

Scenario TBD

Door to the back, gilded: guards room (function call ␣

↪ → guardsRoom(hero))

Door to the front, wood: kitchen (function call kitchen(hero))

print("You are in a nice ballroom. There is a gilded door and a door␣

↪ → wooden door.")

print("[Enter \"Gilded\" or \"Wooden\"]")

i = input().lower()

if i=="gilded":

guardsRoom(hero)

elif i=="wooden":

kitchen(hero)

else:

print("You take a tour of the room.")

ballroom(hero)

return

The kitchen

The kitchen offers several options that heal the hero in preparation for the final boss. This

function is in two phases:

• First a choice of food; invalid input meaning no food at all.

• Then a choice of door; invalid input meaning staying reentering the same room (for

example having a pot fall on the hero’s head, incurring a loss of 1 life point before

waking up again).

def kitchen(hero):

Kitchen

Can eat some food to replenish life points up to max

* ham: +15L

* cheese: +10L

* bread: +5L

* beer: +20L, -5G (coins dropped out of drunkenness)

Door to the back, wood: ball room (function call ballroom(hero))

Door to the front, metal: corridor (function call corridor(hero))

Door to the right, gilded: throne room (function call throne(hero))

print("You are in a kitchen. Food smells good, there is ham, bread,␣

↪ → cheese, and beer; which do you choose?")

print("[Enter \"Ham\", \"Bread\", \"Cheese\", or \"Beer\"]")

i = input().lower()

if i=="ham":

print("\U0001F356 \"Humm, what a delicious ham!\"")

hero = life(hero,15)

elif i=="bread":

186 Introduction to Computers and Programming using Python

A Function-Based Role Playing Game Project 11

print("\U0001F35E \"A crispy loaf of bread!\"")

hero = life(hero,5)

elif i=="cheese":

print("\U0001F9C0 \"What a nice piece of cheese!\"")

hero = life(hero,10)

elif i=="beer":

print("\U0001F37A \"Nice fresh beer... I do feel tipsy, though...

↪ → \"")

hero = life(hero,20)

hero = gold(hero,-5)

else: # invalid input

print(" \"Nah, I ' m good\"")

print("After this little snack, you take a look around.")

print("There are three doors: one wooden, one gilded, and one in␣

↪ → metal.")

print("[Enter \"Wooden\", \"Gilded\" or \"Metal\" to choose a door]")

i = input().lower()

if i=="wooden":

ballroom(hero)

elif i=="metal":

corridor(hero)

elif i=="gilded":

throne(hero)

else:

print("You rummage through the food stores. A pot falls on your␣

↪ → head.")

hero = life(hero,-1)

if hero[' life ']<=0:

gameOver(hero,win=False)

else:

print("You wake up.")

kitchen(hero)

return

The throne room: the final boss

In this room, it is possible to have nested conditionals to simulate the 4 turns of battle,

but that means at least 16 cases! It may be difficult to keep track of them. Since all that

matters is the input at previous turns, one function per turn will be used, using the inputs

of previous turns as arguments.

A function to be called when the boss has been defeated is also needed. This is because

in 4 turns, there are two ways to produce the sequence sword-punch-sword that kills the

boss: sword-punch-sword- or punch-sword-punch-sword.

def turn1(hero):

return

Introduction to Computers and Programming using Python 187

Project 11 A Function-Based Role Playing Game

def turn2(hero,t1):

Gets the choice of turn 1: 1 for sword, -1 for punch, 0 otherwise

return

def turn3(hero,t1,t2):

Gets the choices for turns 1 and 2: 1 for sword, -1 for punch, 0 ␣

↪ → otherwise

return

def turn4(hero,t1,t2,t3):

Gets the choices for turns 1, 2, and 3: 1 for sword, -1 for punch, ␣

↪ → 0 otherwise

return

def victory(hero):

The boss has been killed

Get the Crown of Fame and win the game.

return

def throne(hero):

Throne room

The final boss arrives (-10L) to protect the Crown of Fame.

Must do sword-punch-sword sequence to kill the boss.

Each turn -15L, after 4 turns, back to the kitchen.

When the boss is dead, gets the Crown of Fame and wins the game.

print("You enter the throne room. You see the Crown of Fame glowing␣

↪ → on a cushion next to the throne.")

print("As you walk to grab it, a deep voice resonates through the␣

↪ → room.")

print("\"I have been expecting you, %s. You are not the first␣

↪ → adventurer who tries to steal my Crown." % hero[' name '])

print("And you won ' t be the last. You will be just another pile of␣

↪ → bones!\"")

print("Suddenly, a knight in black armour falls from the ceiling and␣

↪ → slashes at you with his flail.")

hero = life(hero,-10)

if hero[' life ']>0:

turn1(hero)

else:

gameOver(hero,win=False)

return

The functions for the 4 turns of combat need to be completed. Any invalid choice of

weapon means the hero does nothing and suffers the boss’ strike.

Exercise Complete the functions for turns 2 and 4 below.

188 Introduction to Computers and Programming using Python

A Function-Based Role Playing Game Project 11

def turn1(hero):

print("Do you use your sword or punch him?")

print("[Enter \"Sword\" to use the sword and \"Punch\" to punch the␣

↪ → dark knight]")

i = input().lower()

choice = 0

if i=="sword": # Correct choice here

choice = 1

print("\U0001F5E1 You slash at the knight ' s side. He blocks with␣

↪ → his shield and sends a kick from below it.")

elif i=="punch":

choice = -1

print("\U0001F44A You try to punch the knight. He blocks with his␣

↪ → shield. The shield is of steel, your hand is of flesh. Guess who wins...

↪ → ")

else:

print("You are stunned by the knight ' s apparition. He takes␣

↪ → advantage of that to give you a second dose of flail.")

hero = life(hero,-15)

if hero[' life ']>0:

turn2(hero,choice)

else:

gameOver(hero,win=False)

return

def turn2(hero,t1):

Gets the choice for turn 1: 1 for sword, -1 for punch, 0 otherwise

Complete the second combat turn here

return

def turn3(hero,t1,t2):

Gets the choices for turns 1, and 2: 1 for sword, -1 for punch, 0 ␣

↪ → otherwise

print("Do you use your sword or punch him?")

print("[Enter \"Sword\" to use the sword and \"Punch\" to punch the␣

↪ → dark knight]")

i = input().lower()

choice = 0

if i=="sword":

choice = 1

if (t1==1 and t2==-1): #Correct sequence

print("\U0001F5E1 You slash at the knight ' s head and your␣

↪ → blade gets right between breastplate and helmet. The head rolls to the␣

↪ → floor.")

Introduction to Computers and Programming using Python 189

Project 11 A Function-Based Role Playing Game

victory(hero)

else:

print("\U0001F5E1 You slash at the knight ' s head, but the␣

↪ → dark knight ducks and shoves his shield in your belly.")

hero = life(hero,-15)

if hero[' life ']>0:

turn4(hero,t1,t2,choice)

else:

gameOver(hero,win=False)

elif i=="punch":

choice = -1

print("\U0001F44A You punch the knight. He spins around but␣

↪ → extends his leg in the process to land a roundhouse kick to your chest.

↪ → ")

hero = life(hero,-15)

if hero[' life ']>0:

turn4(hero,t1,t2,choice)

else:

gameOver(hero,win=False)

else:

print("You are overwhelmed by the knight ' s attacks and can ' t␣

↪ → decide. Your defense is wide open for another dose of flail.")

hero = life(hero,-15)

if hero[' life ']>0:

turn4(hero,t1,t2,choice)

else:

gameOver(hero,win=False)

return

def turn4(hero,t1,t2,t3):

Gets the choices for turns 1, 2, and 3: 1 for sword, -1 for punch, ␣

↪ → 0 otherwise

Complete the fourth combat turn here

return

Now for the victory function:

def victory(hero):

The boss has been killed

Get the Crown of Fame and win the game.

print("The dark knight is dead. You catch your breath as you walk␣

↪ → slowly to the Crown of Fame.")

print("You take the Crown in your fingertips and place it on your␣

↪ → head.\n \U0001F451 You made it, you are famous!")

190 Introduction to Computers and Programming using Python

A Function-Based Role Playing Game Project 11

print("There will be song sung in your glory for the centuries ahead.␣

↪ → Unless an adventurer manages to steal the Crown from you!")

gameOver(hero,win=True)

return

A fancier version of the end of game function

def gameOver(hero,win=False):

if win:

print("\t\tCongratulations, you finished the game!")

else:

print("\t\tYou died! Game Over!")

print("\t\U0001F3B6 O %s, mighty adventurer, you had %d life points␣

↪ → and owned %d gold coins... \U0001F3B5" %␣

↪ → (hero[' name '],hero[' life '],hero[' gold ']))

\U0001F3B6 and \U0001F3B5 are music notes emojis.

return

Testing function

To call directly the function of the room to be tested, it is easier to have a testing function:

def testing():

h = { ' name ' :"Sigsys", ' life ' :100, ' gold ' :0, ' max ' :100} # max is used to ␣

↪ → know how much life the hero can have

print("Testing of the game, initial hero:",h)

#entrance(h)

#guardsRoom(h)

#cellar(h)

#ballroom(h)

#kitchen(h)

#throne(h)

return

testing()

Testing of the game, initial hero: { ' name ' : ' Sigsys ' , ' max ' : 100, ' life ' :␣

↪ → 100, ' gold ' : 0}

The main function for the game

This function creates the initial hero dictionary using a user-provided hero name and have

the hero enter the donjon.

def donjonGame():

print("\t\t*** Welcome to this RPG ***\n\t(Real Python Game or Role␣

↪ → Playing Game)")

print("Please enter the name of your hero: ")

Introduction to Computers and Programming using Python 191

Project 11 A Function-Based Role Playing Game

name = input().title() # Capitalize every word

h = { ' name ' :name, ' life ' :100, ' gold ' :0, ' max ' :100}

print("Good day, %s!" % name)

print("You seem ready to go on an adventure. You have your sword and␣

↪ → a strong fist.\nI suggest you use these in alternance, it usually works␣

↪ → best against ennemies.")

print("This mysterious donjon is rumoured to harbour the Crown of␣

↪ → Fame, which makes his bearer famous.\nIsn ' t that the goal of any␣

↪ → adventurer?")

print("Let ' s go!")

entrance(h)

return

donjonGame()

*** Welcome to this RPG ***

(Real Python Game or Role Playing Game)

Please enter the name of your hero:

Link

Good day, Link!

You seem ready to go on an adventure. You have your sword and a strong␣

↪ → fist.

I suggest you use these in alternance, it usually works best against␣

↪ → ennemies.

This mysterious donjon is rumoured to harbour the Crown of Fame, which␣

↪ → makes his bearer famous.

Isn ' t that the goal of any adventurer?

Let ' s go!

You are in the entrance hall.

There is a wooden door and a metal door.

[Enter "Wooden" or "Metal" to choose a door, or "Exit" to leave the donjon␣

↪ → (and the game)]

Exit

As you cowardly exit the donjon, a stone that was dislodged by the years␣

↪ → falls onto your head.

You lose 100 life points [0/100]

You died! Game Over!

O Link, mighty adventurer, you had 0 life points and owned 0 gold

coins...

P11.3.4 Possible extensions

This small game can be easily extended to be fancier. Some simple ideas include:

• Adding some progress indicators in the hero’s dictionary to track what happened

before. For example it could be used to prevent playing the riddle game after having

won it once.

192 Introduction to Computers and Programming using Python

A Function-Based Role Playing Game Project 11

• Using while loops to ensure only valid input is entered (and asking for new input

while incorrect)

• Using timers to have text appear after a certain number of seconds instead of all at

once.

Introduction to Computers and Programming using Python 193

Project 12

Voting Systems

Project contents

P12.1Introduction . 195

P12.2The setting, formally . 196

P12.2.1 A note on factorial . 196

P12.3The Python setting . 197

P12.3.1 int2char . 197

P12.3.2 genAllPreferences and genAllPreferencesFromList 198

P12.3.3 genRandomPreferences . 198

P12.3.4 print and prettyPrintPreferences 199

P12.3.5 Other vote results for testing . 200

P12.4Voting systems . 200

P12.4.1 Preferred ordering . 200

P12.4.2 First past the post . 203

P12.4.3 The Borda count method . 205

P12.4.4 The Condorcet method . 205

P12.4.5 Two round voting . 207

P12.4.6 Exercise . 207

P12.4.7 Elimination voting . 208

P12.4.8 Comparison of the voting methods (Exercise) 210

P12.1 Introduction

Voting is a process for a group of individuals to make decision that reflect the choice of

the majority . Whether it is a group of people trying to decide where they will have dinner

or a whole country electing its leader, individuals each have their preferences (for example:

”I prefer Chinese to Italian to Mexican to Indian”). When there are more than two options,

there are actually several ways to chose the proposition “preferred by the majority” based

on each individual preferences.

All these methods aim at preserving some fairness in the process. Said fairness takes

several forms, for example: can voters have an interest in lying about their preference? This

is called strategic voting , and is seen as a negative trait of the system because it encourages

dishonesty. Since there is no mathematically perfect system (one that satisfies all aspects of

fairness), the question of which system is best or most fair is often more philosophical than

mathematical.

This project is an overview of voting methods. The goal is, for several such systems, to

create a program that computes the winner based on individual preferences. The vote is

assumed to be performed as follows:

Introduction to Computers and Programming using Python 195

Project 12 Voting Systems

• Each individual has an order of preferences between the options offered.

• There can be no equality in an individual preference (“I like Chinese and Indian equally”

is not allowed).

• All options have to be sorted (“I don’t even want to consider Italian or Indian” is not

allowed).

• There is at most one winner (only one position to be filled).

In some cases the voting system will not be able to discriminate between several options,

but that’s OK (in country-wide elections, that is very unlikely; in smaller assemblies there

might be rules to break such equalities, for example declaring the winner based on seniority).

Many more voting systems exist, especially when the above restrictions are lifted.

P12.2 The setting, formally

There are

k

candidates to the election (presidents or restaurants, it does not matter). Each

is represented by a letter A , B , C ...

Each voter has a preference order which is a string made of

k

letters in the order they

prefer: CABD means C is the preferred choice, A is second-most preferred, then B , and D is

the least preferred choice. Note that there are

k !

(factorial of

k

, see note P12.2.1 below)

possible orderings when there are

k

candidates.

The result of the election is, for each of these ordering, the number of voters that have

this particular ordering as their preference relation.

In mathematical terms, an ordering containing all the options is called a permutation .

P12.2.1 A note on factorial

The factorial of

k

, written

k !

, is defined as

k ! =

k∏

i =1

i = 1 × 2 × · · · × (k − 1) × k = k × (k − 1) × (k − 2) × · · · × 2 × 1 =

{

1 if k ≤ 1

k × (k − 1)! if k > 1

This function grows very fast as

k

grows. For example we have:

0! = 1

1! = 1

2! = 2

3! = 6

4! = 24

5! = 120

6! = 720

7! = 5040

8! = 40320

9! = 362880

10! = 3628800

Factorial and permutations

For

k

many options that need to be ordered, there are

k

options for the first choice,

k − 1

for

the second choice, and so on until the last (

k

-th position) is the only option remaining, so

196 Introduction to Computers and Programming using Python

Voting Systems Project 12

there is only one choice for this one. As a result, there are

k × (k − 1) × (k − 2) × · · · × 2 × 1 = k !

ways to order

k

options.

P12.3 The Python setting

To facilitate this project, some functions are provided in the PreferencePermutations.py

file. It is not necessary to read and understand the code of these functions to be able to

complete this project. The only thing that must be done is import it:

from PreferencePermutations import *

Let’s take a look at the functions thus imported (only the ones that might be used, the

auxiliary functions will not be described).

P12.3.1 int2char

The int2char function allows to convert a number into the corresponding letter. That

allows a preference to be a string even when there are more than 10 candidates. Admittedly,

that means there is a limit in the number of candidates, but using uppercase latin, lowercase

greek, and lowercase latin, that allows for up to 76 candidates, which is already a lot of

permutations given that

76!

is about1

10111

.

When the argument is 0 or lower, the letter produced is ? , which we can use to denote

that the election did not produce a winner (for example in case of ties). It also produces

a ? (along with a warning) when the argument is above 76. Below is a table of the letter

corresponding to the argument.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

?

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

T

U

V

W

X

Y

Z

α

β

γ

δ

ε

ζ

η

θ

ι

κ

λ

µ

ν

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

ξ

o

π

ρ

σ

τ

υ

φ

χ

ψ

ω

a

b

c

d

e

f

g

h

i

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

j

k

l

m

n

o

p

q

r

s

t

u

v

w

x

y

z

?

This function can be used, for example, to generate the list of candidates knowing how

many there are.

print(int2char(0))

print(int2char(13))

print(int2char(42))

1To be exact:

76! = 1885494701666050254987932260861146558230394535379329335672487982961844043495537923117729972224000000000000000000

Introduction to Computers and Programming using Python 197

Project 12 Voting Systems

print(int2char(174))

?

M

π

?

[int2char] Warning: Could not convert number 174 to character. ' ? ' will be␣

↪ → used.

P12.3.2 genAllPreferences and genAllPreferencesFromList

These functions are used to generate a list of all possible permutations. The first one,

genAllPreferences takes an integer

k

and returns the list of all permutations for

k

candi-

dates A , B , C ...

The genAllPreferencesFromList function takes a list of strings and will use it to create

the list of permutations of these strings. So genAllPreferencesFromList([' A ' , ' B ' , ' C '])

is the same as genAllPreferences(3) .

The intended use of genAllPreferencesFromList is to be able to generate all permuta-

tions for a subset of candidates. Other uses, such as using strings with more than one letter

should be avoided in the context of this project.

print("genAllPreferences(3):",genAllPreferences(3))

print("genAllPreferences(4):",genAllPreferences(4))

print("genAllPreferencesFromList([' A ' , ' B ' , ' D ']):

↪ → ",genAllPreferencesFromList([' A ' , ' B ' , ' D '])) # Intended use

print("genAllPreferencesFromList([' Hello ' , ' Good bye ' , ' Hi! ']):

↪ → ",genAllPreferencesFromList([' Hello ' , ' Good bye ' , ' Hi! '])) # Not advised

genAllPreferences(3): [' ABC ' , ' ACB ' , ' BAC ' , ' CAB ' , ' BCA ' , ' CBA ']

genAllPreferences(4): [' ABCD ' , ' ABDC ' , ' ACBD ' , ' ADBC ' , ' ACDB ' , ' ADCB ' ,␣

↪ → ' BACD ' , ' BADC ' , ' CABD ' , ' DABC ' , ' CADB ' , ' DACB ' , ' BCAD ' , ' BDAC ' , ' CBAD ' ,␣

↪ → ' DBAC ' , ' CDAB ' , ' DCAB ' , ' BCDA ' , ' BDCA ' , ' CBDA ' , ' DBCA ' , ' CDBA ' , ' DCBA ']

genAllPreferencesFromList([' A ' , ' B ' , ' D ']): [' ABD ' , ' ADB ' , ' BAD ' , ' DAB ' ,␣

↪ → ' BDA ' , ' DBA ']

genAllPreferencesFromList([' Hello ' , ' Good bye ' , ' Hi! ']): [' HelloGood byeHi!

↪ → ' , ' HelloHi!Good bye ' , ' Good byeHelloHi! ' , ' Hi!HelloGood bye ' , ' Good␣

↪ → byeHi!Hello ' , ' Hi!Good byeHello ']

P12.3.3 genRandomPreferences

The genRandomPreferences function takes two arguments:

n

, the number of voters, and

k

,

the number of candidates.

It runs a randomized election where each of the

n

voter selects a permutation. The

result of the election is given as a dictionary

↬

See

Lecture L7.3 for

a refresher on

dictionaries.

where keys are the orderings and values are

the number of people who have this particular preference relation.

For example, the result of genRandomPreferences(10000,4) could be:

198 Introduction to Computers and Programming using Python

Voting Systems Project 12

{ ' ABDC ' : 406, ' DABC ' : 414, ' CBDA ' : 431, ' BADC ' : 436, ' ABCD ' : 467, ' CABD ' : 419,

' CBAD ' : 398, ' BDCA ' : 433, ' BCDA ' : 395, ' BDAC ' : 407, ' DCBA ' : 400, ' DACB ' : 447,

' BACD ' : 412, ' ACDB ' : 455, ' DCAB ' : 447, ' CDAB ' : 392, ' ACBD ' : 401, ' CADB ' : 396,

' DBAC ' : 438, ' ADBC ' : 389, ' ADCB ' : 385, ' CDBA ' : 427, ' DBCA ' : 425, ' BCAD ' : 380}

Meaning 406 people have the preference, A is better than B , which is better than C , which

is better than D ; and 414 prefer D to anything, then A , then B , then C ; and so on for the

other 22 orderings.

This function is intended to generate some results in order to test the voting system

functions.

print(genRandomPreferences(50000,3))

{ ' CAB ' : 8260, ' BCA ' : 8408, ' CBA ' : 8346, ' ABC ' : 8283, ' ACB ' : 8328, ' BAC ' :␣

↪ → 8375}

P12.3.4 print and prettyPrintPreferences

The result of a vote can simply be printed with the built-in print function; it is actually

possible to copy-paste the result to store in a variable. But it might not be so easy to read

when debugging, especially if there are a lot of permutations that got 0 votes. This is why

the prettyPrintPreferences is provided. The optional argument printZero (False by

default) allows to control whether permutations without any votes will be displayed. It also

tries to align values in a nice way.

someVote = { ' CBDA ' : 0, ' CADB ' : 0, ' ACDB ' : 404, ' DABC ' : 442, ' CDBA ' : 426,␣

↪ → ' DCBA ' : 425, ' BCDA ' : 0, ' CDAB ' : 398, ' DBAC ' : 0, ' DBCA ' : 428, ' BDAC ' :␣

↪ → 426, ' CBAD ' : 428, ' ACBD ' : 414, ' DACB ' : 434, ' BDCA ' : 0, ' BACD ' : 410,␣

↪ → ' ABDC ' : 0, ' ADBC ' : 0, ' ABCD ' : 446, ' CABD ' : 467, ' BADC ' : 0, ' DCAB ' : 386,␣

↪ → ' BCAD ' : 0, ' ADCB ' : 392}

print(someVote)

prettyPrintPreferences(someVote,printZero=True)

prettyPrintPreferences(someVote,printZero=False) # Equivalent to ␣

↪ → prettyPrintPreferences(someVote)

{ ' CBDA ' : 0, ' DABC ' : 442, ' DCAB ' : 386, ' CDAB ' : 398, ' CABD ' : 467, ' DBAC ' : 0,␣

↪ → ' ADBC ' : 0, ' DBCA ' : 428, ' CADB ' : 0, ' BDCA ' : 0, ' CDBA ' : 426, ' ABCD ' : 446,␣

↪ → ' ABDC ' : 0, ' BCDA ' : 0, ' BADC ' : 0, ' ADCB ' : 392, ' DCBA ' : 425, ' BACD ' : 410,␣

↪ → ' DACB ' : 434, ' CBAD ' : 428, ' BCAD ' : 0, ' BDAC ' : 426, ' ACDB ' : 404, ' ACBD ' :␣

↪ → 414}

{

CBDA: 0 ; DABC: 442 ; DCAB: 386 ; CDAB: 398 ;

CABD: 467 ; DBAC: 0 ; ADBC: 0 ; DBCA: 428 ;

CADB: 0 ; BDCA: 0 ; CDBA: 426 ; ABCD: 446 ;

ABDC: 0 ; BCDA: 0 ; BADC: 0 ; ADCB: 392 ;

DCBA: 425 ; BACD: 410 ; DACB: 434 ; CBAD: 428 ;

BCAD: 0 ; BDAC: 426 ; ACDB: 404 ; ACBD: 414 ;

}

Introduction to Computers and Programming using Python 199

Project 12 Voting Systems

{

DABC: 442 ; DCAB: 386 ; CDAB: 398 ; CABD: 467 ; DBCA: 428 ;

CDBA: 426 ; ABCD: 446 ; ADCB: 392 ; DCBA: 425 ; BACD: 410 ;

DACB: 434 ; CBAD: 428 ; BDAC: 426 ; ACDB: 404 ; ACBD: 414 ;

}

P12.3.5 Other vote results for testing

Randomized votes tend to be quite uniform (because the random vote is chosen uniformly),

so it may not be suited to testing some aspects of the voting system.

As a result, a result of a vote can be created by hand for tests. But if only a couple of

permutations are actually used, it can be tedious to write them all. Therefore it is easier to

generate a dictionary with all permutations with 0 votes each then change only the relevant

values in the dictionary:

vote4tedious = { ' DBCA ' : 0, ' CBAD ' : 0, ' DACB ' : 0, ' BDAC ' : 0, ' CDBA ' : 0,␣

↪ → ' CBDA ' : 0, ' ACDB ' : 51, ' ACBD ' : 0, ' BACD ' : 0, ' ABCD ' : 42, ' DCAB ' : 0,␣

↪ → ' BCDA ' : 0, ' DBAC ' : 0, ' CADB ' : 0, ' ABDC ' : 0, ' ADCB ' : 0, ' BADC ' : 0,␣

↪ → ' DCBA ' : 0, ' CDAB ' : 0, ' CABD ' : 0, ' BDCA ' : 107, ' DABC ' : 0, ' BCAD ' : 0,␣

↪ → ' ADBC ' : 0}

vote4 = {p: 0 for p in genAllPreferences(4)} # Creates a dictionary with ␣

↪ → keys taken in all permutations of 4 candidates, with value 0 for each

vote4[' ABCD '] = 42

vote4[' BDCA '] = 107

vote4[' ACDB '] = 51

print("vote4tedious:")

prettyPrintPreferences(vote4tedious)

print("vote4:")

prettyPrintPreferences(vote4)

vote4tedious:

{

BDCA: 107 ; ABCD: 42 ; ACDB: 51 ;

}

vote4:

{

BDCA: 107 ; ABCD: 42 ; ACDB: 51 ;

}

P12.4 Voting systems

P12.4.1 Preferred ordering

In this voting system, the permutation with the most votes wins and the first choice of this

permutation is chosen. This voting system is not really used anywhere because it is not fair

200 Introduction to Computers and Programming using Python

Voting Systems Project 12

at all by any measure. It is however a very simple system so it is easy to program; and more

importantly the ideas behind the program will be reused throughout the project.

Let’s be more precise in what is expected:

• The function must take in a dictionary where the keys are the permutations and the

value is the number of votes it obtained.

• It must return the winning candidate (one letter)

• In case of equality between two or more permutations with the highest number of

votes, return ? (using int2char(0))

• Optionally: add an optional argument verbose initially False that switches the print-

ing of debugging information.

The problem can be broken down in two phases. The function needs to: 1. Find the

permutation with the most number of votes, if there is one 2. Take the first letter of this

permutation

To find the "winning permutation", the following idea can be used:

• Keep in a variable the champion permutation , and in another variable the votes it

obtained.

• Initially, there is "no champion"; that must be coded in some way, for example the

empty string.

• For each permutation, compare the votes obtained by this permutation to the votes

obtained by the champion.

• If the permutation obtained strictly more than the champion, then it becomes cham-

pion (and the votes obtained by the champion are also updated).

• If the permutation obtained as many votes as the champion, there is equality, so the

current champion is "no champion"; the number of votes of the champion remains the

same, however.

• If the permutation obtained fewer votes than the champion, nothing happens.

This idea can be turned into code:

def bestOrdering(votes,verbose=False):

winner = '' # Initialize the champion to "no ␣

↪ → champion"

winCount = -1 # And the number of votes the ␣

↪ → champion has

for p in votes:

if votes[p] > winCount: # We have a new champion

winner = p # Update champion

winCount = votes[p] # Update number of votes for champion

elif votes[p] == winCount: # Equality: there is no champion ␣

↪ → anymore

winner = ''

if verbose: # Printing more info (if needed)

if winner == '' :

print("Equality, no winner")

else:

print(winner,"is the preferred ordering␣

↪ → with",winCount,"votes")

Introduction to Computers and Programming using Python 201

Project 12 Voting Systems

if winner == '' :

winner = int2char(0) # No winner, return ' ? '

else:

winner = winner[0] # First letter of the wining ␣

↪ → permutation wins the election

return winner

The function can be tested on custom and random voting results.

rndVotes = genRandomPreferences(50000,4)

customNoEqual = {p:0 for p in genAllPreferences(3)}

customNoEqual[' ABC '] = 429

customNoEqual[' CAB '] = 574

customNoEqual[' BCA '] = 429

customNoEqual[' BAC '] = 314

customNoEqual[' CBA '] = 73

customChampEqual = {p:0 for p in genAllPreferences(3)}

customChampEqual[' ABC '] = 712

customChampEqual[' CAB '] = 324

customChampEqual[' BCA '] = 214

customChampEqual[' BAC '] = 712

customChampEqual[' CBA '] = 67

prettyPrintPreferences(rndVotes)

print(bestOrdering(rndVotes,verbose=True))

print("---")

prettyPrintPreferences(customNoEqual)

print(bestOrdering(customNoEqual,verbose=True))

print("---")

prettyPrintPreferences(customChampEqual)

print(bestOrdering(customChampEqual,verbose=True))

{

CBDA: 2080 ; DABC: 2049 ; DCAB: 2051 ; CDAB: 2120 ;

CABD: 2081 ; DBAC: 2047 ; ADBC: 2124 ; DBCA: 2130 ;

ADCB: 2094 ; BDCA: 2113 ; CDBA: 2107 ; ABCD: 2075 ;

ABDC: 2071 ; BCDA: 2104 ; BADC: 2140 ; CADB: 2022 ;

DACB: 2107 ; BACD: 2045 ; DCBA: 2055 ; CBAD: 2105 ;

BCAD: 2095 ; BDAC: 2124 ; ACDB: 2020 ; ACBD: 2041 ;

}

BADC is the preferred ordering with 2140 votes

B

{

CAB: 574 ; BCA: 429 ; CBA: 73 ; ABC: 429 ; ␣

↪ → BAC: 314

;

}

CAB is the preferred ordering with 574 votes

202 Introduction to Computers and Programming using Python

Voting Systems Project 12

C

{

CAB: 324 ; BCA: 214 ; CBA: 67 ; ABC: 712 ; ␣

↪ → BAC: 712

;

}

Equality, no winner

?

P12.4.2 First past the post

In this system, the candidate which is placed as first preference by most voters is elected.

This system is used in chamber elections in the US, Great-Britain, Canada, India, Pakistan,

and many other countries. In most US states, the electoral college (that elects the President)

is also chosen this way.

More precisely:

• The function must take in a dictionary where the keys are the permutations and the

value is the number of votes it obtained.

• It must return the winning candidate (one letter)

• In case of equality between two or more candidates with the highest number of votes,

return ? (using int2char(0))

• Optionally: add an optional argument verbose initially False that switches the print-

ing of debugging information.

The problem can be broken down in two phases. The function needs to: 1. Tally the

votes for each candidate into a dictionary where keys are the candidates. 2. Find the

candidates with the most number of votes, if there is one.

Before discussing the procedure for the first point, let’s remark that the second point is

very similar to what was just performed for the Preferred ordering , except the dictionary

used will contain votes for a candidate instead of a permutation.

Addressing the first point, the tallying of the votes: - First, create a dictionary with

candidates as keys, and value 0 for each of them - Note that the number of candidates can

be found by the length of the keys of the dictionary of votes - Then for each permutation, add

the number of votes it obtained to the tally of the first letter, i.e . the preferred candidate.

Exercise

1. Complete the code below to produce the winner of first past the post election:

def oneRound(votes,verbose=False):

k = len(list(votes.keys())[0]) # Length of one preference ␣

↪ → string.

candidates = [] # List of candidates

for c in range(1,k+1): # Filled based on their number

candidates.append(int2char(c))

firstChoice = {c:0 for c in candidates} # Initialize count of how ␣

↪ → many voters placed each candidate as first choice

Introduction to Computers and Programming using Python 203

Project 12 Voting Systems

for p in votes.keys():

firstChoice[p[0]] += votes[p] # The first letter of the ␣

↪ → permutation is the preferred candidate

if verbose: # Printing the tally (if ␣

↪ → needed)

print("Votes obtained by each candidate (as first choice):")

for c in candidates:

print("\t",c,": ",firstChoice[c],sep="")

Now that the votes have been tallied, code the part that finds ␣

↪ → the winner of the election

2. Test this function on custom and randomized votes. Note that for a proper testing,

some weird cases, for example cases where there is equality, should be tried.

Code here

#

{

CBDA: 2026 ; DABC: 2099 ; DCAB: 2099 ; CDAB: 2036 ;

CABD: 2158 ; DBAC: 2009 ; ADBC: 2072 ; DBCA: 2039 ;

ADCB: 2061 ; BDCA: 2048 ; CDBA: 2153 ; ABCD: 2081 ;

ABDC: 2069 ; BCDA: 2096 ; BADC: 2043 ; CADB: 2134 ;

DACB: 2093 ; BACD: 2158 ; DCBA: 2091 ; CBAD: 2088 ;

BCAD: 2102 ; BDAC: 2061 ; ACDB: 2143 ; ACBD: 2041 ;

}

Votes obtained by each candidate (as first choice):

A: 12467

B: 12508

C: 12595

D: 12430

C wins with 12595 votes

C

{

CAB: 574 ; BCA: 429 ; CBA: 73 ; ABC: 429 ; ␣

↪ → BAC: 314

;

}

Votes obtained by each candidate (as first choice):

A: 429

B: 743

C: 647

B wins with 743 votes

B

{

CAB: 324 ; BCA: 214 ; CBA: 67 ; ABC: 712 ; ␣

↪ → BAC: 498

204 Introduction to Computers and Programming using Python

Voting Systems Project 12

;

}

Votes obtained by each candidate (as first choice):

A: 712

B: 712

C: 391

Equality, no winner

?

P12.4.3 The Borda count method

This method was invented by Jean-Charles de Borda in the 18th century. Some modified

versions of it are used to elect Members of the Parliament of Nauru and the President of

the Kiribati.

It relies on the following principle: for each vote of a permutation with

k

candidates, the

first choice gets

k

points, the second one gets

k − 1

, and so on until the last choice gets

1

point. The candidate with the most points wins the election.

For example, if ACB has 37 votes, BCA gets 12 votes, and CBA gets 23 votes (and 0 votes

for other permutations), the tally is as follows: - A gets

37 × 3 = 111

points from the 37 ACB

permutations,

12 × 1 = 12

points from the 12 BCA permutations, and

23 × 1 = 23

points from

the 23 CBA permutations. That is a total of

146

points. - B gets

37 × 1 = 37

points from the

37 ACB permutations,

12 × 3 = 36

points from the 12 BCA permutations, and

23 × 2 = 46

points from the 23 CBA permutations. That is a total of

119

points. - C gets

37 × 2 = 74

points from the 37 ACB permutations,

12 × 2 = 24

points from the 12 BCA permutations, and

23 × 3 = 69

points from the 23 CBA permutations. That is a total of

167

points.

So C is the winner here.

Exercise

Write the function borda that takes the vote result (a dictionary with the number of votes

for each permutation) and an optional verbose argument defaulting to False (for debug

purposes) and returns the winner according to the Borda count method. Remark that,

similarly to the previous case, the function works in two phases: tally the points, then find

the winner. In case of equality of points, return ? .

Code here

#

P12.4.4 The Condorcet method

The Condorcet method, named after its inventor Nicolas de Condorcet, is based on the

following principle: the winner should be the candidate that is preferred to others in a duel.

That criterion is not met by first past the post or two-round elections that were mostly used

at the time, motivating Condorcet to invent this method that ensures it by construction. It

can however very often produce ties, so lots of variants have been designed to split these

situations, collectively referred to as “Condorcet methods”. Only work on the simplest form

is considered here.

Introduction to Computers and Programming using Python 205

Project 12 Voting Systems

Since the Condorcet method relies on duels , the code needs to be able to determine the

winner of a duel from the results of a

k

-candidate vote. The principle is easy: candidate

c1

is preferred to candidate

c2

if in more votes

c1

is before

c2

.

For example, in permutations ABC , ACB , and CAB candidate A is preferred to candidate B .

So votes for all these permutations count as votes for A ; votes for the oher three permutations

(BAC , BCA , CBA) would count as votes for B .

More precisely, for a given permutation, if the letter

c1

appears first, the votes are tallied

to

c1

. If the letter

c2

appears first, the votes are tallied to

c2

. The winner is the one with

more votes at the end.

Exercise

Code the duel function that takes the vote result (a dictionary with the number of votes

for each permutation), candidates c1 and c2 and an optional verbose argument defaulting

to False (for debug purposes) and returns the winner of the duel between c1 and c2 (or ?

in case of equality).

Code here

#

This duel function can be used to determine the winner according to Condorcet’s

method. Each candidate need to be confronted with the others in duels, and the func-

tion counts how many of these are won by each candidate (if there is equality in a duel, no

one wins). At the end, the candidate that wins the most duels is the winner.

Exercise

1. Code the condorcet function that takes the vote result (a dictionary with the number

of votes for each permutation), and an optional verbose argument defaulting to False

(for debug purposes) and returns the winner of the vote according to the Condorcet

method (or ? in case of equality).

2. Test the function on the two examples below: noCondorcetWin produces an equality

while with condorcetBwins B is the winner.

noCondorcetWin = { ' CBDA ' : 6, ' BDAC ' : 3, ' BCAD ' : 7, ' CBAD ' : 2, ' ACDB ' : 5,␣

↪ → ' CDBA ' : 5, ' DACB ' : 4, ' CDAB ' : 3, ' BACD ' : 9, ' CABD ' : 6, ' ABDC ' : 2,␣

↪ → ' ADBC ' : 2, ' ACBD ' : 5, ' CADB ' : 6, ' BDCA ' : 6, ' DCAB ' : 1, ' ABCD ' : 1,␣

↪ → ' DABC ' : 6, ' DCBA ' : 3, ' BCDA ' : 6, ' DBCA ' : 0, ' BADC ' : 4, ' DBAC ' : 4,␣

↪ → ' ADCB ' : 4}

condorcetBwins = { ' BDAC ' : 9, ' CDBA ' : 3, ' BCDA ' : 7, ' ADBC ' : 5, ' DBAC ' : 2,␣

↪ → ' CABD ' : 4, ' ABDC ' : 6, ' BACD ' : 0, ' BCAD ' : 4, ' DABC ' : 4, ' DBCA ' : 8,␣

↪ → ' ACDB ' : 3, ' ADCB ' : 1, ' ABCD ' : 2, ' CBDA ' : 3, ' DACB ' : 6, ' CBAD ' : 3,␣

↪ → ' BDCA ' : 3, ' CDAB ' : 4, ' ACBD ' : 6, ' BADC ' : 8, ' DCAB ' : 6, ' CADB ' : 1,␣

↪ → ' DCBA ' : 6}

Code here

#

206 Introduction to Computers and Programming using Python

Voting Systems Project 12

P12.4.5 Two round voting

This system is an extension of first-past the post, in which if a candidate did not gather

strictly more than half the votes (absolute majority), a second round is organized with the

two higher-ranking candidates.

In order to create a function that determines the winner in this system, let’s compare it

with some systems we have seen before.

First thing to remark is that finding the two preferred candidates is similar to finding the

candidates with the most votes, except that variables to store the runner-up and its number

of votes also need to be kept. There are quite many cases that need to be considered when

going through the candidates to determine the two that will take part in the second round.

Let’s call

C

the challenger, that is to say the candidate being considered when going

through the list of candidates. Let

F

be the current front-runner and

R

be the current

runner-up. Let

v (x)

be the number of votes (as preferred candidate) candidate

x

obtained.

The situation might depend on how

F

and

R

compare before the challenge: if

v (F) = v (R)

,

meaning equality, things will be different.

• Assume

v (F) > v (R)

(front runner have more votes than runner-up)

• If

v (C) > v (F)

(challenger is better than everyone seen so far), then

F

becomes

R

and

C

becomes

F

• If

v (F) = v (C)

(challenger equals front runner), then

C

becomes

R

• If

v (F) > v (C) > v (R)

(challenger is between front-runner and runner-up), then

C

becomes

R

• If

v (F) > v (C) = v (R)

(challenger equals runner-up), then there is equality for runner

up and

R

becomes "nobody" (? or int2char(0) in the code)

• If

v (F) > v (R) > v (C)

(challenger is lower than runner up), nothing changes

• Assume

v (F) = v (R)

(equality between current two leaders)

• If

v (C) > v (F) = v (R)

(challenger above the equal leaders), then

C

becomes

F

and

"nobody" becomes the runner-up.

• If

v (C) = v (F) = v (R)

(challenger same as equal leaders), then "nobody" becomes

F

and

R

(triple equality)

• If

v (F) = v (R) > v (C)

(challenger is lower than runner up) nothing changes

While these cases can be grouped in a bunch of different ways in the code, in the end all

must have been considered and treated accordingly.

Then the second round is a duel, the corresponding function written for the Condorcet

method can be used (i.e. called) .

P12.4.6 Exercise

1. Code the twoRounds function that takes the vote result (a dictionary with the number

of votes for each permutation), and an optional verbose argument defaulting to False

(for debug purposes) and returns the winner of the vote according to the two-round

voting method (or ? in case of equality).

Code here

#

Introduction to Computers and Programming using Python 207

Project 12 Voting Systems

2. Test your function on randomized and custom tests. The following cases should be

part of the tests:

• a candidate wins in the first round

• there is equality in the second round

• there is equality between two (but not three) leaders in the first round

• there is equality between three leaders in the first round

• there is a front runner but two equal runner-ups in the first round

• there is no equality ("normal" case)

Code here

#

P12.4.7 Elimination voting

Officially known as instant runoff , this voting system works by eliminating the candidate

with the least amount of votes as a first choice until there remains only a single candidate.

Of course, the votes that placed an eliminated candidate first do count in the subsequent

rounds with their second choice as their "new first choice".

For example, if there are 4 candidates A , B , C , D and votes as follows:

• BCDA gets 1241 votes

• ABCD gets 1074 votes

• CDAB gets 914 votes

• CADB gets 789 votes

• ACBD gets 702 votes

• DACB gets 598 votes

• ADCB gets 349 votes

In the first round, A is ranked first by 2125 voters, B by 1241 voters, C by 1703 voters, and

D by 598 voters. So D is eliminated. The above preferences can be rewritten without D :

• BCA gets 1241 votes

• ABC gets 1074 votes

• CAB gets 914 votes

• CAB gets 789 votes

• ACB gets 702 votes

• ACB gets 598 votes

• ACB gets 349 votes

Of course some preferences that differed only by the position of D are now the same and

should be summed:

• BCA gets 1241 votes

• ABC gets 1074 votes

• CAB gets 914+789=1703 votes

• ACB gets 702+598+349=1649 votes

So in the second round, A is ranked first by 2723 voters, B by 1241 voters, C by 1703 voters.

So B is eliminated, which allows to rewrite the preferences as:

208 Introduction to Computers and Programming using Python

Voting Systems Project 12

• CA gets 1241 votes

• AC gets 1074 votes

• CA gets 1703 votes

• AC gets 1649 votes

Gathering the preferences that appear twice:

• CA gets 1241+1703=2944 votes

• AC gets 1074+1649=2723 votes

So in the third round A is eliminated and C wins. (This example is provided as exElim

below, in order to test the elimination function.)

The tallying of votes as first choice is similar to what was performed before. The main

changes here are that:

• The loser is being sought out, instead of the winner.

– The number of votes for the loser should be initialized to a number higher than

any candidate obtained. For example, the total number of voters

+1

.

• The list of candidates and the votes themselves will change when eliminating a candi-

date.

– To remove an element from a list, use the del operation on the element in the

list; but for that the index of the element must be provided.

– To find the index of an element in the list, use the index method. For example

l = ["Hello","Bye","Hi"]

l.index("Hi") # returns 2

del l[2] # deletes "Hi"

– To delete a candidate, which is a single character, from a permutation, which is

a string, the replace method can be used. This method takes two strings and

replaces every occurrence of the first string by the second one:

s = "Hello world!"

s1 = s.replace(' o ' , ' 0 ') # s1 is "Hell0 w0rld!" (every o turned to 0)

s2 = s.replace(' l ' , '') # s2 is "Heo word!" (every l removed)

s3 = s.replace(' ll ' , ' X ') # s3 is "HeXo world!"

(every double l turned to X, single l not changed)

– To generate the list of possible permutations use the provided function

genAllPreferencesFromList from the list of candidates still in play.

– A new dictionary of votes gathers the votes after elimination of the loser. This

will become the new votes.

Exercise

Code the elimination function that takes the vote result (a dictionary with the number

of votes for each permutation), and an optional verbose argument defaulting to False (for

debug purposes) and returns the winner of the vote according to the elimination voting

method (or ? in case of equality).

Introduction to Computers and Programming using Python 209

Project 12 Voting Systems

Code here

#

exElim = {p: 0 for p in genAllPreferences(4)}

exElim[' BCDA '] = 1241

exElim[' ABCD '] = 1074

exElim[' CDAB '] = 914

exElim[' CADB '] = 789

exElim[' ACBD '] = 702

exElim[' DACB '] = 598

exElim[' ADCB '] = 349

prettyPrintPreferences(exElim)

print(elimination(exElim,verbose=True)) # Uncomment when elimination ␣

↪ → has been defined

P12.4.8 Comparison of the voting methods (Exercise)

Execute all the voting methods we have coded on the vote5 vote results below. What can

you conclude?

vote5 = {p: 0 for p in genAllPreferences(5)}

vote5[' ADECB '] = 3273

vote5[' BEDCA '] = 2182

vote5[' CBEDA '] = 1818

vote5[' DCEBA '] = 1636

vote5[' EBDCA '] = 727

vote5[' ECDBA '] = 364

210 Introduction to Computers and Programming using Python

Project 13

Protein Translation

Project contents

P13.1The protein translation process . 211

P13.2Step 1 - DNA to mRNA Transcription 212

P13.2.1 Reading the file (Exercise) . 212

P13.2.2 DNA to mRNA transcription (Exercise) 213

P13.3Step 2 - mRNA to Protein Translation 213

P13.3.1 A codon dictionary (Exercise) . 214

P13.3.2 Translating using the codon dictionary (Exercise) 214

P13.4Step 3: A main function to connect the processes (Exercise) 215

P13.1 The protein translation process

How do living organisms produce proteins which are structures responsible from all the

major functions of a cell? In this project, you will be learning about the entire process of

protein translation and creating different protein structures of a strand of E.coli bacteria.

For extensive information, the following article is suggested as a good reading:

How does the cell convert DNA into working proteins? by Clancy et al.

The protein translation process starts with DNA to mRNA transcription:

“A DNA sequence has a double helix structure that looks like a staircase consist-

ing of base pairs. There are four types of bases (nucleotides) in a DNA molecule:

Adenine (A), Thymine (T), Guanine (G) and Cytosine (C). The bases are paired

on a sugar-phosphate backbone structure. Adenine base is always paired with

Thymine and Guanine base is always paired with Cytosine.”

(From notes of E. Yildirim

Designing Computational Biology Workflows with Perl - Part 2)

mRNA molecules are created from a single strand of DNA, through base pair matching

with one exception. Instead of Tyhmine, mRNA has a base called Urasil (U).

For example: If the DNA strand has the following bases ATGCCCGTTA, its correspond-

ing mRNA is UACGGGCAAU. A is paired with U, T is paired with A, C is paired with G

and G is paired with C.

After mRNA is transcribed, it is translated into codons which are triplets of bases. Each

codon has a special meaning and corresponds to a specific aminoacid. Then, aminoacids are

sequenced to create a protein.

How do we indicate the start and end of an aminoacid sequence? As it turns out, some

codons are reserved to indicate this. For example, AUG codon indicates the start of the

protein synthesis, while three other codons indicate the end: UAG , UGA , UAA .

Introduction to Computers and Programming using Python 211

https://www.nature.com/scitable/topicpage/translation-dna-to-mrna-to-protein-393/

Project 13 Protein Translation

Figure P13.1: DNA double helix structure (From notes of E. Yildirim Designing Computa-

tional Biology Workflows with Perl - Part 2)

P13.2 Step 1 - DNA to mRNA Transcription

In the project folder, there are two files that need to be used for the protein translation of

E.coli bacteria. The first file ecoli.fa is a FASTA file which contains the DNA sequence

data. Here is an excerpt from the file:

>Chromosome dna_rm:chromosome chromosome:ASM584v2:Chromosome:1:4641652:1 REF

AGCTTTTCATTCTGACTGCAACGGGCAATATGTCTCTGTGTGGATTAAAAAAAGAGTGTC

TGATAGCAGCTTCTGAACTGGTTACCTGCCGTGAGTAAATTAAAATTTTATTGACTTAGG

TCACTAAATACTTTAACCAATATAGGCATAGCGCACAGACAGATAAAAATTACAGAGTAC

ACAACATCCATGAAACGCATTAGCACCACCATTACCACCACCATCACCATTACCACAGGT

AACGGTGCGGGCTGACGCGTACAGGAAACACAGAAAAAAGCCCGCACCTGACAGTGCGGG

CTTTTTTTTTCGACCAAAGGTAACGAGGTAACAACCATGCGAGTGTTGAAGTTCGGCGGT

ACATCAGTGGCAAATGCAGAACGTTTTCTGCGTGTTGCCGATATTCTGGAAAGCAATGCC

AGGCAGGGGCAGGTGGCCACCGTCCTCTCTGCCCCCGCCAAAATCACCAACCACCTGGTG

GCGATGATTGAAAAAACCATTAGCGGCCAGGATGCTTTACCCAATATCAGCGATGCCGAA

CGTATTTTTGCCGAACTTTTGACGGGACTCGCCGCCGCCCAGCCGGGGTTCCCGCTGGCG

CAATTGAAAACTTTCGTCGATCAGGAATTTGCCCAAATAAAACATGTCCTGCATGGCATT

AGTTTGTTGGGGCAGTGCCCGGATAGCATCAACGCTGCGCTGATTTGCCGTGGCGAGAAA

ATGTCGATCGCCATTATGGCCGGCGTATTAGAAGCGCGCGGTCACAACGTTACTGTTATC

GATCCGGTCGAAAAACTGCTGGCAGTGGGGCATTACCTCGAATCTACCGTCGATATTGCT

GAGTCCACCCGCCGTATTGCGGCAAGCCGCATTCCGGCTGATCACATGGTGCTGATGGCA

GGTTTCACCGCCGGTAATGAAAAAGGCGAACTGGTGGTGCTTGGACGCAACGGTTCCGAC

TACTCTGCTGCGGTGCTGGCTGCCTGTTTACGCGCCGATTGTTGCGAGATTTGGACGGAC

GTTGACGGGGTCTATACCTGCGACCCGCGTCAGGTGCCCGATGCGAGGTTGTTGAAGTCG

ATGTCCTACCAGGAAGCGATGGAGCTTTCCTACTTCGGCGCTAAAGTTCTTCACCCCCGC

P13.2.1 Reading the file (Exercise)

The first line of the file is information about the file. The rest is the actual DNA sequence

data. Write a function read_file that reads the entire file into a string variable and returns

it:

212 Introduction to Computers and Programming using Python

Protein Translation Project 13

def read_file(file_path): # file_path holds the path of the ecoli.fa ␣

↪ → file

To exclude the first line, read the file line by line

fp = open(file_path,"r") # Opens a file to read and creates a file ␣

↪ → handle fp

line = fp.readline() # Reads a line from the file and stores it ␣

↪ → in line variable

Create a loop and read the file line by line until you read an ␣

↪ → empty string

in each iteration clean the string from any whitespace characters ␣

↪ → at the beginning and

at the end. line.strip() will return the stripped string

then concatenate into dna_string variable.

Complete the code here

return dna_string

P13.2.2 DNA to mRNA transcription (Exercise)

Write a function transcribe(dna_string) that creates the mRNA string from the DNA

string. Each base in dna_string must be matched to its corresponding mRNA base. There

might be strange characters in the DNA string other than A, T, C, G. They should be

ignored: A → U, T → A, G → C, C → G matchings are the only valid ones.

Code here

#

P13.3 Step 2 - mRNA to Protein Translation

The second file in the project folder is a CSV file named codon_table.csv which contains

the codon list. Here is an excerpt from the file:

Codon

AA.Abv

AA.Code

AA.Name

UUU

Phe

F

Phenylalanine

UUC

Phe

F

Phenylalanine

UUA

Leu

L

Leucine

UUG

Leu

L

Leucine

CUU

Leu

L

Leucine

In the above table, AA.Abv represents the abbreviation of the aminoacid, AA.Code repre-

sents the code for the aminoacid and AA.Name represents the actual name of the aminoacid.

There are 64 codons in the file. One aminoacid can be represented with multiple codons,

they all create the same aminoacid. For example, both UUU and UUC codons are translated

as phenylalanine .

Introduction to Computers and Programming using Python 213

Project 13 Protein Translation

P13.3.1 A codon dictionary (Exercise)

Write a function read_csv(file_path) that accepts the path of the codon list file and

creates and returns a dictionary where key is codon and value is its corresponding AA.Code .

The csv module must be imported before the csv.reader function can be used.

import csv

def read_csv(file_path):

with open(file_path, ' r ' , newline= '') as file_handle:

reader = csv.reader(file_handle, delimiter = ' , ')

Everything from this point on must be indented under ' with '

codon_dict = {}

counter = 0 # Use this for the first row which includes the ␣

↪ → headers of the columns

Create a for loop to read the reader list that consists of row ␣

↪ → tuples

for row in reader:

row[0] represents Codon, row[2] represents AA.Code

Complete the code here

pass # Delete this when your code has been written

return codon_dict # The codon dictionary

P13.3.2 Translating using the codon dictionary (Exercise)

Write a function translate which accepts the mRNA string and codon dictionary as pa-

rameters and creates a dictionary of proteins. The key of the dictionary could be a number

starting from 0,1,2, ... and continues to increase as new protein aminoacid strings are added.

The value part of the dictionary must hold the AA.Code string of the protein. The function

should return the dictionary as a result.

Each protein’s aminoacid sequence starts with M (Methionine) which is the starting

aminoacid and ends with a Stop aminoacid. So the function should:

• look for mRNA sequences that starts with AUG codon;

• detect the end (UAG, UGA, or UAA codon);

• in between, identify the corresponding aminoacids for the codons to construct the

protein;

• save the protein in the dictionary.

def translate(mrna_string, codon_dict):

Starting codon : AUG

Ending codon : UAG UAA UGA

Each Aminoacid sequence start with AUG codon that translate to ␣

↪ → Methionine(M) aminoacid

The sequence might end with one of the stop codons UAG, UAA, or UGA.

Complete the code here

#

214 Introduction to Computers and Programming using Python

Protein Translation Project 13

return dct_proteins

P13.4 Step 3: A main function to connect the processes (Ex-

ercise)

Write the main function that ties all these steps together:

1. Read the ecoli.fa file

2. Call the transcribe function

3. Read the codon_list.csv file

4. Call the translate function

5. Print the resulting dictionary

The first few lines of the output should look like this:

0 -> MDGTHLILKStop

1 -> MKLVISVSRVCLFLMSHVLStop

2 -> MVVVVVMVSIATPDCACPLCLFSGVDCHARKKKLVSIAPLLVRSQLQAAMStop

3 -> MGYSRYGLHKNGLKTALSGGGSAPRATALTFESSStop

4 -> MTIARPAFStop

5 -> MELRWQLStop

6 -> MRRRHDRRTNARLTTLStop

7 -> MDAGRSPRATLQQLQLQDGPSLPRKDEAAISRSGGVVMGVAGQGLGNGLIFMAFRSSWSMRVTTVGTTSAStop

8 -> MRStop

9 -> MSStop

10 -> MDLDFLPNDLGDRHCLADRStop

11 -> MSSLRQVMASPIASQTLTAATATATRRPRStop

12 -> MHRRHNGStop

....

Code here

#

Introduction to Computers and Programming using Python 215

	Introduction to Computers and Programming using Python: A Project-based Approach
	How does access to this work benefit you? Let us know!

	Foreword
	How to use this OER?
	The projects
	A typical course sequence

	Acknowledgements

	I Concept review
	Variables
	Introduction
	Naming variables
	Defining and assigning variables
	Examples

	Using variables
	Examples

	Types
	An aside: Python's typing method

	Note on nomenclature: Variable, Name, or Object?

	Input and Ouput
	Introduction
	The output operation
	Verbatim data
	Variable data
	Printing several values
	The sep and end options

	The input operation
	Conversion of inputs
	More string manipulation

	Numbers and arithmetic
	Introduction
	Integers
	Floating point numbers
	Operations on numbers
	Addition, subtraction, multiplication
	Division
	Conversion between int and float
	Mixing integers and floats
	Other operations
	Precedence (a.k.a PEMDAS)
	Abbreviated operators

	Strings
	Introduction
	Writing strings in the code
	The different kinds of strings
	Escaping characters

	Operations on strings
	Concatenation
	Repetition
	Conversion with other types
	On the dangers of loosely typed variables

	Formatted strings
	``Old format''
	The .format() method
	F-strings

	Special characters
	The case of the backspace
	Unicode characters

	Conditions
	Introduction
	Writing conditions
	Boolean constants
	Arithmetic expressions
	Comparison operators
	Example: Is the input 5?
	== vs =
	Other comparison operators
	Comparison of string objects

	Boolean operators
	Example: Compound Boolean expressions
	Truth tables

	Conditional structure: if/else
	Example: Positive or Not positive
	Example : Pass or Fail
	Example: Parity

	Multiple cases: if/elif/else
	Example: Positive, Zero, Negative
	Example: Rock, Paper, Scissors

	Loops
	Programming Structures for Iteration
	The while loop
	Syntax of while
	Example: Integral division
	The break and continue keywords
	Example: The free-throw challenge

	The for loop
	Syntax of for
	Examples: The range function
	Example: The sum of the first n integers

	Example of loop usage

	Lists, Tuples, Dictionaries
	Lists
	What is a list?
	List indexing
	Printing elements of a list
	Accessing an element
	Length of a list
	Negative indices
	Removing an element
	Appending an element to a list
	Inserting an element into a list
	Sorting a list
	Lists and loops
	Example: Creating a list from scratch
	Example: Calculating the sum of the elements in a list
	Example: Traversing a list using the in keyword

	Slices
	Searching for an element in a list
	Example: Lottery

	Tuples
	What is a tuple?
	Creating empty/one item tuple
	Reading elements of a tuple
	Don't try to modify tuple elements!
	Joining tuples
	What else can tuples do?

	Dictionaries
	What is a dictionary?
	Accessing elements in a dictionary
	Traversing a dictionary with a for loop
	Assigning a new value to an existing key
	Adding a new key-value pair
	Removing a key-value pair
	Example: Searching for certain words

	Sequence data type and mutability

	Functions
	Introduction
	Function definition
	Calling a function
	Examples
	Modularity: cleaning the code using functions
	Maximum function
	A function with no parameters
	A function with no return statement
	A main function

	Variable Scope in Functions
	An illustrated example of variable scoping
	Summary of scope concepts

	Recursion
	An illustrated example of recursion
	Case x = 3
	Case x = 2
	Case x = 1
	Going back to the original call
	Remarks

	Example: Factorial
	Example: Triangular numbers

	Named parameters
	Functions in math vs Python
	(Non)determinism
	Example: Nondeterminism through user input

	Purity and side-effects

	II Projects
	The Motion of the Vertical Projectile
	Top height
	Flight time
	Possible extensions

	Linear and Quadratic Equations
	Solving linear equations
	Example: Solve 2x-4=0 for x
	Generalization with parameters a and b
	Case a=0
	Coding the procedure in Python
	Note

	Quadratic equations
	Hints to solve the problem
	Hint 1: a=0 case
	Hint 2: Square root
	Hint 3: All possible cases from the quadratic formula with a\neq 0
	Hint 4: Be careful with division and use parentheses.
	Hint 5: Sample outputs

	Project Code

	Image Processing
	Introduction
	Colors and transparency

	Code preamble and first manipulation: input/output
	Image format
	Pixel organization
	Exercise

	Creating an Alpha channel
	Experiments with resolution and colors
	Exercise

	Changing images pixel by pixel
	Coloring the image by adding light
	Exercise: Green and red versions

	Coloring the image by removing light
	Exercise: Magenta and cyan versions

	Other color manipulations
	Exercise: Negative image
	Exercise: Grayscale
	Exercise: Transparency

	Global and vicinal manipulation
	Global brightness of an image
	Exercise: A better brightness measure
	Exercise: A black-and-white image based on the brightness

	Blurring an image
	Things to consider in both functions below
	Exercise: Blurring with fixed neighborhood
	Exercise: Blurring with variable neighborhood

	Doing all transformations onto files
	Exercise: The wrap-up function

	Simple Operations with Fractions
	Introduction
	Simplifying or reducing fractions: the procedure

	The Greatest Common Divisor (GCD)
	The brute force approach
	Euclid's Algorithm
	Evaluating the efficiency

	Reducing fractions
	Conversion to decimal value
	The Four Operations with Fractions (Exercise)

	Time Measurement and Dates
	Introduction
	Library functions

	Letting time elapse
	Exercise

	An aside: erasing characters
	Exercise

	A cooking timer
	Exercise

	Current date and time
	Exercise
	Part 1: checking date validity
	Part 2: getting a valid date from the user

	Measuring time
	Exercise
	Exercise
	Exercise

	Grade Management with Pandas
	Introduction
	Library installation
	Importing data

	Column operations
	Selecting a column
	Functions on a column
	Exercise: Range of a column
	Creating a derived column from existing columns
	Exercise: Regular average
	apply a function on a column
	Example: pass column from avg column
	Exercise: Letter grade

	Operations on a whole sheet (DataFrame)
	Applying a function to all cells
	Applying a function to each column (axis=0)
	Applying a function to each row (axis=1)

	Filtering
	Example : Counting the number of passing students
	Exercise: Counting students who got 75 or higher on both their test1 and final

	Saving as an Excel file
	A grade manager

	Descriptive Statistics and Histogram of Frequencies
	Introduction
	Central Tendency
	Example:
	Example:
	Example:

	Dispersion/Variability
	Example:

	Creating Bar Graphs with matplotlib and seaborn modules
	Exercise: Creating the Histogram of a Dataset
	Importing the modules
	Creating a random dataset
	Calculating central tendency and dispersion
	Removing outliers
	Calculating the frequencies

	Emotion Analysis
	Introduction
	Installing the libraries

	Cleaning Text Data
	Reading a file into a string variable
	Tokenizing a string into words
	Identifying punctuation
	Identifying stopwords
	Converting to lowercase
	Stemming the words

	Measuring Polarity and Subjectivity
	Exercise
	Step 1: Cleaning the data
	Step 1.1: Defining the function
	Step 1.2: Using the function on the book
	Step 1.3: Using the function on the emotion words

	Step 2: Finding the word count of the books
	Step 3: Finding the number of occurrences of the emotion words in the books
	Step 4: Creating a graph that compares the number of occurrences of emotion words
	Step 5: Creating a bar graph comparing the polarity and subjectivity

	Dynamics on Functions
	The mathematical setting
	Self composition
	The n-th iterated function
	Exercise

	Orbit of x
	Example: n-th Orbit of 1 for f(x)=2x+1
	Exercise

	The Collatz Conjecture
	Total Stopping Time
	Exercise: Defining h(x)
	Exercise: Defining totalstoppingtime(x)
	A scatter plot from a list of points
	Exercise: A scatter plot for the Total Stopping Time

	The Game of Tic-Tac-Toe
	The rules of the game
	Creating the board
	The winning condition
	Playing the game

	A Function-Based Role Playing Game
	Introduction
	Program structure
	User choices
	One room = one function
	The hero status
	A complete mini-donjon

	Let's build a game!
	The donjon map
	Coding phase 1: The donjon structure
	Coding phase 2: The room functions
	Auxiliary functions
	The entrance
	The guards room
	The corridor
	The cellar
	The Ball room
	The kitchen
	The throne room: the final boss
	A fancier version of the end of game function
	Testing function
	The main function for the game

	Possible extensions

	Voting Systems
	Introduction
	The setting, formally
	A note on factorial
	Factorial and permutations

	The Python setting
	int2char
	genAllPreferences and genAllPreferencesFromList
	genRandomPreferences
	print and prettyPrintPreferences
	Other vote results for testing

	Voting systems
	Preferred ordering
	First past the post
	Exercise

	The Borda count method
	Exercise

	The Condorcet method
	Exercise
	Exercise

	Two round voting
	Exercise
	Elimination voting
	Exercise

	Comparison of the voting methods (Exercise)

	Protein Translation
	The protein translation process
	Step 1 - DNA to mRNA Transcription
	Reading the file (Exercise)
	DNA to mRNA transcription (Exercise)

	Step 2 - mRNA to Protein Translation
	A codon dictionary (Exercise)
	Translating using the codon dictionary (Exercise)

	Step 3: A main function to connect the processes (Exercise)

