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Abstract 
 
Meeting the challenges of sustainable development and regeneration to support city 

growth requires the provision of attributed, 3D geological and geotechnical data, 

information and process understanding in the urban subsurface. This provides a 

framework for the characterisation of the spatial variability of the properties and 

processes within the shallow subsurface to aid sustainable land use planning and 

regeneration. The subsurface has to provide the resources and ecosystem services to 

sustain and create economic growth and meet societal needs, now and in the future 

while minimising the environmental impact of development. 

 

The 3D variability of the ground results from anthropogenic (man-made) processes as 

well as geological. Human exploitation of the subsurface and rapid land use change in 

response to population growth and urbanisation results in temporal and spatial 

modification of the ground. The integration of 3D geological and anthropogenic 
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deposits models is therefore essential for the characterisation of urban ‘zone of human 

interaction’ and its response to anthropogenic environmental change. Model 

integration to aid land use planning has been applied in the formerly heavily 

industrialised cities of NW England and Northern Ireland to provide a basis for linear 

transport assessment, urban planning and the assessment of aquifer vulnerability.  
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Introduction  
 
This paper was written following a presentation given at the 6th European Congress on 

Regional Geoscientific Cartography and Information Systems (EUREGEO) in Munich, 

Germany in June 2009. The original paper presented the results of applied 3D geological 

modelling between the major urban areas of Manchester and Liverpool in NW England (Price 

et al., 2008a; Terrington et al., 2008; Burke et al., 2009a; Burke et al., 2009b), Figures 1 and 

2. The paper presented the application of 3D geological modelling to underpin sustainable 

urban regeneration and environmental decision making in one of the major population centres 

of the UK. The paper and presentation focused on the application of 3D geological models of 

superficial deposits to the assessment of urban aquifer vulnerability overlying the Sherwood 

Sandstone aquifer (Lelliott et al., 2006; Price et al., 2008b) This paper expands the scope of 

the original to illustrate applications of 3D geological models to management of the 

geological and anthropogenic subsurface in UK urban environments. It aims to illustrate how 

applied, 3D geoscientific data is being used to manage and visualise the shallow (generally 

less than 100 m below ground level) urban subsurface and its properties in support of spatial 

planning, sustainable development and regeneration.  

 

The Zone of Human Interaction and the Anthropocene 



 

Over half of the world’s population lives in urban areas. The interaction of people with the 

subsurface creates a complex anthropogenic and natural shallow earth system. The shallow 

geological subsurface provides a physical environment that provides people with the natural 

resources to extract (minerals, groundwater and ground source heat for example) and with 

which to deposit wastes. It also provides a medium to support the construction of engineered 

structures and the installation of below ground utilities and underground developments. This 

subsurface zone of human interaction is the focus for both temporal and spatial environmental 

changes as a result of anthropogenic activity, especially in urban environments.  

 

The legacy of anthropogenic processes and their impacts on the environment are a direct 

result of rapid population expansion and the exploitation of the earth’s resources to support 

that growth. Anthropogenic processes result in significant modification to the urban 

subsurface and the resulting landforms are a critical factor in urban landscape evolution and 

global environmental change. Phases of anthropogenic activity take places at different rates 

and have different scales of impact. For example, large scale industrial activity during the 18th 

and 19th Centuries resulted in widespread exploitation and contamination of the ground during 

industrial growth, commercial and residential land use change and urban expansion associated 

with the Industrial Revolution. However, landscape modification as a result of human activity 

pre-dates this with the earliest archaeological evidence of anthropogenic constructional 

landforms and excavations as early human populations began to exploit their environment.  

 

These landforms, deposits, excavations and their associated sediment fluxes, therefore 

provide a record of the environmental impacts of past and present human processes and their 

impacts within the subsurface. Defining their spatial extent and properties is important for 

two reasons. Firstly, anthropogenic processes and their deposits represent latest Holocene 

geological processes and form the constituent ‘geological’ units of the proposed 

Anthropocene Epoch (Steffen et al., 2007; Zalasiewicz et al., 2008). These deposits are a 



physical record of how humans have influenced the landscape including its subsurface 

through time and represent a form of modern geological processes acting on the Earth today. 

Secondly, the spatial variability in thickness, composition and consolidation of the deposits 

(and depth of voids) creates a potential hazard to future sustainable urban development and 

regeneration initiatives. 

 

The physical evidence of human activity left in the subsurface is represented by material 

classified by the British Geological Survey (BGS) as ‘Artificial Deposits’ (Powell et al., 

1999; Price et al., 2004; Ford et al., 2006).  These deposits have been included on 1:10 000 

scale geological maps and are identified through field survey, historical map and aerial 

photography interpretation and borehole analysis. Culshaw (2005) identified the need for 

improved methods of characterisation of artificial ground (voids as well as deposits) for better 

risk and urban planning assessments.  The widespread development and uptake of 3D 

geological modelling within the BGS using GSI3D software and methods (Hinze et al., 1999; 

Sobisch and Bombien, 2003; Kessler et al., 2008; Kessler et al., 2009) has enabled 3D 

geological models to be visualised and interrogated. These models include bedrock, and 

superficial deposits.  

 

The development of methodologies to model the shallow subsurface in urban environments in 

3D has provided a means to enhance geological models by including high resolution soils and 

artificial deposits. However, the characterisation of the shallow subsurface underground 

environment also includes infrastructure and utilities, foundations and archaeological features 

(the anthropogenic subsurface).  This presents a significant challenge for the production of 

meaningful 3D models of urban underground environment (Rosenbaum, 2003).  

 

Projects within the British Geological Survey in key urban areas including Manchester, 

Liverpool, Warrington, Glasgow (Merritt et al., 2007) and the Thames Gateway 

Redevelopment Zone (Royse et al., 2009) amongst others, have developed new methods for 



the 3D characterisation of artificial deposits within GSI3D. 3D models of anthropogenic 

deposits have been integrated with models of natural superficial deposits and bedrock, to 

characterise the complex variability within the anthropogenic and natural geological earth 

system (the zone of human interaction) to support planning and sustainable development.  

 

Geoenvironmental ground conditions in urban environments and the application of 3D 

models to the development of an integrated subsurface management system 

 

The management of the subsurface and provision of high quality geo-environmental 

information in support of urban development has two main aims. Firstly, to ensure that 

potentially difficult ground conditions are identified and mitigated against in engineering 

design and construction. Difficult ground conditions may include the presence of 

contaminated soils, voids and variable geotechnical properties that may result in ground 

instability hazards. Applied, 3D geological modelling aims to provide ground information to 

reduce uncertainty during ground investigation and subsequent above or below ground 

development. Secondly, ground information is required to quantify the potential 

environmental impacts of large scale development. The latter includes the assessment of 

potentially contaminating processes, sterilisation of ground based resources and the impacts 

of the introduction of utilities and engineered structures into the ground and its surrounding 

ecosystem.   

 

The use and application of geo-environmental data and information to support urban 

development and regeneration in response to legislation is described by (Ellison et al., 1998; 

Smith and Ellison, 1999; Hough et al., 2003; Culshaw, 2005) amongst others. Rapid advances 

in the development and application of 3D geological models have provided novel ways of 

visualising and applying geo-environmental data for use in land use planning.  Importantly, 

3D communication tools such as the Subsurface Viewer (Terrington et al., 2009)  allows non-

specialist users to query and visualise 3D ground models on-the-fly. 



 

The spatial variability within the underground environment can be analysed by visualising the 

3D ground model or by deriving further 3D or 2D spatial outputs through the use of 

geospatial queries. This can be achieved as geological units within the 3D models take the 

form of volumes represented by their top and base boundaries. These volumes model and 

predict the distribution, thickness and geometry of geological deposits. The variability of the 

physical and chemical properties of each of the modelled geological units can be achieved 

through their classification based on the range of geotechnical, hydrogeological and 

geochemical property values. Examples of the application of hydrogeological attribution of 

3D models and their application to the assessment of aquifer vulnerability are given in Lelliott 

et al. (2006)  and Royse et al. (2009). The integration of geotechnical property data to 

attribute 3D geological models can be applied as a predictive decision-support tool to provide 

solutions to specific ground engineering problems prior to development. Geotechnical 

property attribution of 3D models to predict variability in ground conditions to assess their 

suitability for foundations has been applied in the Thames Gateway Redevelopment Zone 

Royse et al. (2009) for example.  

 

Attributed, 3D models of the shallow geological subsurface can therefore provide the 

framework for the characterisation and sustainable use and exploitation of subsurface 

environment. However, the shallow geological underground environment should be 

recognised as not only comprising geological (including artificial deposits) material but also 

other anthropogenic structures including infrastructure, utilities, basements and foundations 

(the zone of human interaction). It should also be recognised that in the deeper subsurface, 

mining activity, groundwater abstraction and even petroleum exploration should be included 

within the zone of human interaction, where man has interacted with the natural earth system. 

The use of the underground environment, its resources and the processes that operate within 

it, need to be used in a sustainable way. Integration of subsurface infrastructure, utilities and 

archaeological deposits with 3D geological, hydrogeological and geotechnical models 



provides a basis from which to manage the subsurface through land use planning. Selected 

examples of the application of some these techniques are given in this paper. 

 

3D Geological modelling of artificial deposits and the anthropogenic shallow 

subsurface in NW England 

 

In north-west England, artificial ground research has focused on the urban areas of 

Manchester, Warrington and Liverpool, forming a major urban regeneration area 

referred to as the ‘Mersey Corridor’ (Figure 2). These areas are all linked by the 

Manchester Ship Canal constructed in the late 19th century. The region is now the 

focus of major urban redevelopment. Major redevelopment initiatives include the 

creation of MediaCityUK in Salford, the new Mersey Crossing between Runcorn and 

Widnes and major regeneration of the Kings Dock as part of the ‘Wirral Waterfront’ 

development in Liverpool. Manchester city centre was the focus of major regeneration 

in response to the Commonwealth Games in 2002 and the destruction of parts of the 

city centre through terrorist bombing in 1996. The Mersey Corridor area was the 

focus for rapid industrialisation and urban growth during the 17th and 18th Centuries. 

The industrial activity of the area centered around coal mining, petrochemicals, 

docklands and textiles (including bleaching and dyeing). The focus of 3D modelling 

and ground characterisation in the area was to develop new methods of 3D modelling 

using GSI3D and Geographic Information Systems (GIS) to characterise the legacy of 

artificial deposits left behind as a result of industrialisation and land use change and 

integrate them with models of natural superficial deposits and bedrock. 

 

Classification of artificial ground 



An enhanced artificial ground classification scheme based on the genetic origin of the 

feature and its morphology was devised by Ford et al. (2006) following the 

classification scheme of Rosenbaum (2003) and McMillan and Powell (1999). The 

artificial ground classification scheme consists of five primary subdivisions, each 

represented on 1:10 000 and 1:50 000 scale geological maps its own unique legend 

(Figure 3). These are: Made Ground (e.g. road and railway embankments); Worked 

Ground (e.g. canals, quarries and pits); Infilled Ground (Worked and Made Ground, 

e.g. backfilled gravel pits); Landscaped Ground (e.g. golf courses) and Disturbed 

Ground (such as old bell pits for coal extraction), Table 1.  

 

Ford et al (2006) devised a new artificial ground classification scheme, where the five 

primary classes of artificial ground were subdivided and coded to provide a higher 

level of detail (for example, Table 2). This addressed a client-driven need for more 

accurate artificial ground representation on BGS maps. Using engineered 

embankments as an example, a road embankment (MBRO) can be distinguished from 

a flood (MBFL) or railway embankment (MBRA), which allows each subclass to be 

viewed independently.  

 

Artificial Ground characterisation in 3D: Warrington and Liverpool  

The artificial ground represented in the Warrington and Liverpool 3D models was 

captured at 1:10 000 scale in a 2D GIS, linked to a variety of archival material. The 

primary source for artificial ground information is 1:10 560 scale historic Ordnance 

Survey maps, which date back to around 1850. This is the primary data source for 

artificial ground information, with approximately 90% of the artificial ground data 

derived from them. This procedure follows a similar approach to that applied for 



artificial deposits characterisation in the Swansea-Neath-Port-Talbot urban area of 

South Wales, UK by Waters et al. (2005). These maps give valuable insight into 

anthropogenic impacts on the urban landscape through time and provide an 

approximate date for changes in land use.  

 

The historic maps were examined in chronological order in a GIS, beginning with the 

oldest. Where several versions of the same map existed, the map that was most 

accurately geo-rectified was used. The historical Ordnance Survey maps for the area 

range from around 1849 through to 1951, usually with one map per decade. Each 

historic map was superimposed upon the modern topographic map for direct 

comparison and areas of artificial ground were digitised in a polygon feature class 

within a geodatabase. An example of the GIS polygon data capture of an area of 

Worked Ground is shown in Figure 4.  

 

Each polygon was attributed with its primary artificial ground class (Made, Worked 

Ground etc), and subclass (WECA, for example, for canals), and a comments field. 

Data source information was recorded for traceability. This was taken from the 

publication date of the map the artificial ground first appeared on and the map on 

which it last appeared to give an approximate age range. A code to highlight the 

potential pollution hazard associated past land use was also applied (Anon, 2000).  

 

Difficulties in capturing artificial ground in a 2D system arose where two types of 

made ground from different eras overlapped one another, such as a railway cutting 

exploiting an older sandstone quarry. In these instances, the quarry outline and 

railway cutting were captured as a single polygon and attributed as a railway cutting, 



with the disused quarry being noted in the comments field of the attribute table. Pits 

that were extended through extracting material over several decades were captured as 

their maximum overall extent. Instances of Made Ground that appeared on the historic 

map but not the modern topographic map were ignored as it was unknown if the 

material had been reused on site or removed. Areas of Infilled Ground were identified 

where a pit or quarry was present on one map, but not on a later map, or where a more 

recent map showed a landfill site, or appeared as a level or raised area on the Digital 

Terrain Model (DTM) of the project area.  

 

Finally, the modern topographic maps themselves were examined for more recent 

road embankments and motorways etc. that post-date the historic maps. Other datasets 

were also examined in the GIS, including landfill site records held by the BGS, dating 

up to 1975; a DTM of the region and geologists’ field slips.  

 

For the Warrington artificial ground study within the Mersey Corridor area, 80 

1:10 560 scale historic maps were examined and 767 instances of artificial ground 

were recorded within the project area of approximately 70 km2. The Mersey Corridor 

project in Liverpool is still in progress and at the time of writing, 2000 artificial 

ground polygons have been digitised. The thickness of Artificial Deposits is generally 

less than 5 m but is occasionally up to 13 m thick. 

 

Incorporating artificial ground into the 3D model 

Geological modelling of artificial deposits in the project area was carried out using 

GSI3D modelling software (Kessler et al., 2008) The software and its workflow allow 

the user to create 3D geological models by combining interpreted digital borehole 



data, Digital Terrain Models (DTMs) and digital geological maps to construct an 

intersecting grid of cross-sections. From the series of intersecting 

cross-sections, the surface and subsurface distribution of each geological deposit is 

then defined and the geological model is calculated to derive the 3D distribution, 

geometry and elevation of each geological deposit.  

 

Modelling artificial deposits in 3D required modifications to the GSI3D methodology. 

There were two reasons for this. Firstly, artificial deposits (especially areas of Worked 

Ground and Infilled Ground) have generally regular geometries. Definition of these 

geometries in GSI3D requires the user to digitise ‘helper’ sections to constrain them. 

This is often time consuming and not practical for city-scale 3D modelling. Secondly, 

artificial deposits proved in boreholes that did not lie along the length of a cross-

section used to constrain the 3D model, would not be included in the 3D model 

algorithm. 

 

The derived outputs of the artificial ground data capture in 2D were used to define the 

distribution of artificial deposits within the 3D model. This data was then combined 

with the thickness of artificial deposits proved in all boreholes. Where boreholes 

proving Made Ground, Infilled Ground or Landscaped Ground coincided with cross-

sections used to define the model, they were correlated using the GSI3D 

methodology. Borehole points located off lines of section were included and the 

thickness of artificial deposits was calculated and integrated with the 3D model 

(Figure 5). In the Warrington area for example, 559 boreholes and excavations in the 

recorded 1 m or more of Made Ground. 

 



Worked Ground was modelled in a similar way, except that in areas devoid of 

borehole information, an average depth of excavation was calculated and applied to 

the 3D model. This procedure could be further improved by the inclusion of observed 

or recorded depths of excavations from other historic records. This was beyond the 

scope of this study however. No areas of Disturbed Ground were modelled. 

 

Case studies 

Historic topographic maps show how the River Mersey in Warrington has been 

diverted through anthropogenic activity with the construction of the Manchester Ship 

Canal. To aid navigation, meander loops have been cut off and the river has been 

diverted to a more direct route.  Figure 6 shows that the original course of the River 

Mersey has been diverted and completely back-filled in places, where it is often 

obscured by developments such as housing. Furthermore, the Mersey and Irwell 

Canal has been constructed and later back-filled when it fell into disuse. These 

examples of artificial ground are completely absent on the modern Ordnance Survey 

map, yet they have implications for modern redevelopment, such as potentially 

unstable fill material in the canal and meander loop and possible contaminants in the 

canal-bed sediments. 

 

Historic maps of the Liverpool docks area show that the docks have been built out 

approximately 700 m from the original foreshore (Figure 7). The original shoreline is 

represented on 1:10 560 scale maps published in 1850. The 1894 map of the area 

shows the docks as they are depicted on the modern 1:10 000 scale topographical 

map. This represents a large -scale urban expansion of Liverpool during those 50 

years and its establishment as a major port. The docks have been captured as Made 



Ground as they have been built out from the original foreshore. Without detailed 

documentation and at this scale of modelling it is impossible to represent areas which 

were actually excavated. 

 

The historic maps also show that the docks themselves have been extensively altered. 

Figure 8 shows the extent of the docks around the Liverpool Kingsway Tunnel 

entrance in 1851 in comparison to the present day. For the purposes of this study, only 

the modern outline was captured due to the complexity of representing multiple 

generations of excavation work and backfilling in detail at 1:10 000 scale. One way to 

address this would be to capture artificial ground information as a series of layers, 

with each layer representing a different time period. This could include much older 

archaeological information, but could also be updated with up-to-date information as 

and when it becomes available. 

 

The Woolston Eyes Deposit Grounds, located between the River Mersey and the 

Manchester Ship Canal in Warrington, have been used as a disposal area for dredged 

material from the Manchester Ship Canal since the 1920s. Figure 9 shows that the 

spoil heaps are clearly visible on the NextMap  DTM sub-sampled to 25 m resolution. 

A meander loop of the River Mersey has been cut off by the Manchester Ship Canal 

and its fill level is regulated. The area has become an important area for wildlife, 

particularly bird species, and has been assigned SSSI status.  

 

Future work 

Artificial deposits using an integrated GIS – GSI3D methodology provides a 3D 

framework for modelling the anthropogenic landscape evolution of NW England and 



its impact on the spatial variability on subsurface ground conditions (Figure 10). This 

artificial ground study has given valuable insight into the history of Liverpool and 

Warrington, particularly with respect to the diversion of the River Mersey when the 

Manchester Ship Canal was constructed. However, as the artificial ground 

information was captured in a 2D system, the 3D model shows a single layer of 

artificial ground. This could be more accurately represented in three dimensions if the 

artificial ground data was captured from the historic maps as a series of layers relating 

to specific time periods. These multiple generations of artificial ground would build 

up a picture of the industrial legacy of Warrington and Liverpool and reflect temporal 

changes in land use through subsequent redevelopment in these urban landscapes. 

Coupled with the borehole information, the artificial ground could then be attributed 

with composition and displayed in the 3D model accordingly. This can be added as 

new information becomes available and incorporated into the 3D model. 

 

 

  



 

High resolution 3D geological modelling of soils in peri-urban environments 

 

Modelling of artificial deposits in urban environments enhances the resolution of 3D 

ground models for the characterisation of variability in the subsurface to support 

sustainable land use planning. Modelling of the shallow subsurface in peri-urban and 

rural areas can support sustainable agricultural and heritage land use planning. Recent 

work undertaken within the BGS has developed the GSI3D modelling methodology to 

resolve high resolution (often centimetres) soil layers in the shallow subsurface. 

Combined with modelling of artificial deposits, the enhanced GSI3D methodology 

and the resulting models provide a powerful visualisation and land management tool 

across the urban-rural divide.  

 

Modelling soils in Shelford, Nottinghamshire, UK 

 

The village of Shelford is located approximately 8 km to the east of Nottingham 

(Figure 1). An integrated 3D  pedogenic – geological (parent material) model was 

developed by adapting the GSI3D modelling methodology. The principles of soil 

classification are very similar to how geological units are described and classified. 

Mapped soil units are described as soil series or groups, depending on scale, and 

represent the top 1 - 1.5 m of the subsurface. Vertically, soils are divided into 

horizons, which differ in properties such as texture, organic matter and colour. Each 

soil series has its characteristic sequence of vertical horizons and a certain parent 

material from which it is derived. This sequence enables the soil model and the 

geological model to be integrated Scheib and Williams (2008).  



 

To correlate soil information in GSI3D two sets of data were used; digital soil series 

maps and vertical augerhole information. The augerhole data contained the thickness 

of horizons along with horizon codes and information on texture, Munsell colour, 

organic and carbonate content and stoniness. This information was used to attribute 

the calculated soil units. Two different approaches of building a 3D soil-geology 

model for the Shelford study site were investigated: 

 

1) Using soil series map only. In Shelford, 15 soil series were mapped ranging from 

groundwater gley soils across the floodplain to brown soils and pelosols along and up 

the slope. Each soil series represent an average depth of investigation of 1.2 m. In this 

approach the DTM was reduced by this amount and used to calculate a “soil series 

volume” model, or a 3D soil series map. Descriptions of clay content and 

permeability of soil series were used to attribute the 15 modelled units (Figure 11 a, 

b). 

 

2) Combination of augerhole data and soil series map to construct a 3D soil-horizon 

model. A sequence of soil horizons is similar to geological stratigraphy. Hence, auger 

logs were used in the same way as borehole logs. Horizon codes and their attributes 

such as colour were digitally interpreted and coded. The soil horizon model was 

constructed in the same way as conventional geological models in GSI3D (Kessler et 

al., 2008) but using augerhole sticks and soil series maps instead to correlate sections 

and envelopes of horizons. The upper most and most dominant horizon across 

Shelford is the Ap (ploughed topsoil ~30 cm) horizon. The thickness (30-80 cm) and 

property of the B (subsoil) horizons varied depending on, for example, their texture 



and if they were groundwater influenced. A total of nine different horizons were 

correlated. 

 

Approach 1 is overall the simplest way to include a soil layer in a 3D geological 

model; although it results in the information of the soil within the top 1.2 m being 

generalised. The second approach is much more time consuming, but will result in a 

much more detailed representation of the soil layers shown in Figure 11c. However, 

there are limitations in the visualisation of soil layers, especially if the model area is 

larger than 1 km2. The calculated soil units and especially horizons will only appear 

as very thin blankets even when the 3D model is viewed with a large vertical 

exaggeration (Figure 11). Nevertheless, soil layers should be integrated with 

geological models for environmental or hydrological studies where soils play a vital 

role in decision making and impact assessments. 

 
 
Geotechnical characterisation of 3D ground models for linear transport route 
assessment 
 
 

The sustainable use of the shallow subsurface should meet two key requirements. 

Firstly, that above ground development takes place so that below ground resources are 

not sterilised. Secondly, geological factors that have the potential to cause ground 

stability problems (geohazards) are identified through effective ground investigation 

prior to the development taking place. If not considered and effectively planned for, 

both factors have the potential to reduce the long-term performance of above ground 

developments. Above ground development includes commercial, residential and 

industrial buildings and transport infrastructure. The suitability of the ground to 

support rail and road infrastructure development is a critical factor in the effective 



planning of the location and construction of linear routes. Attributed 3D models of the 

shallow subsurface have the capacity to predict the variability in geotechnical ground 

conditions for example to anticipate and plan for difficult ground conditions. If 

accounted for at an early stage in ground investigation and planning, subsequent 

maintenance costs associated with ground stability problems can be avoided. 

 

In the Manchester area of the Mersey Corridor (Figure 2) an engineering geological 

appraisal of the 3D geological model produced in GSI3D was undertaken (Reeves et 

al., 2005). This process included the assessment of geotechnical data including 

standard penetration tests, moisture content and particle size analysis to quantify the 

variability inherent in the ground. This assessment was undertaken according to 

British Standards Institution BS 5930 (1999) to determine the grain size of the 

material and its strength and density. Data was derived from the BGS’s National 

Geotechnical Database. This enabled geological deposits within the 3D model to be 

classified according to their predicted engineering behaviour (Figure 12a and b). The 

variability in ground conditions along existing or proposed linear transport routes can 

then be predicted by producing synthetic cross-sections through the geological model 

(Figure 12a). In this example, the geological and interpreted engineering geological 

behaviour can be predicted along the route of the Manchester – Liverpool railway. A 

spatial inspection of the synthetic section can aid the identification of potentially 

difficult ground conditions that may impact on the performance of railway subgrade. 

For example, to the east of the cross-section (Figure 12c) an area of Engineering Unit 

1 (Table 3 - Artificial Ground – Infilled Ground) can be identified at the surface with 

Engineering Unit 2 (Table 3 – Alluvium-River Channel Deposits or Glaciofluvial Ice-

Contact Deposits) below. This area could have problems with variable ground 



conditions or contamination due to the Artificial Ground at the surface and possible 

differential settlement because there is a mixture of soft clayey and dense gravely 

Alluvial deposits 

 

A similar approach was taken using a 3D geological model developed for the Belfast 

area of Northern Ireland (Figure 1). In 2006 the Geological Survey of Northern 

Ireland, in collaboration with British Geological Survey produced a basic 3D 

geological model of Belfast City centre. The modelling consulted a database of over 

700 coded boreholes, 300 of which were used to draw 25 cross-sections spaced at 

500 m. The modelling focused on complex geometries of the superficial deposits that 

infill the Lagan Valley.  

 

The geological units were attributed with applied geological information using a 

themed approach similar to those described by Culshaw (2005), Reeves et al. (2005) 

and Royse et al. (2009). The applied themes incorporated into the model include 

stratigraphic name, formation name, lithology, generalised engineering description of 

soils and rocks, ground compressibility, permeability, excavation method, deep and 

shallow foundation conditions.     

 

In Belfast the presence of a soft, post glacial estuarine clay deposit locally known as 

‘sleech’ provides ground engineers a significant challenge. Sleech generally has high 

moisture contents, is highly compressible and has a low bearing capacity and 

undrained shear strength, causing potential instability in deep excavations, poor 

trafficability, poor placement properties and high settlements (Gregory and Bell, 

1989). The modelled top and basal surface of the estuarine clay deposit were exported 



and contoured to produce isopleths maps to show the predicted depth to competent 

founding strata and thickness of compressible material (Figure 13). 

 

A linear route assessment was conducted using a synthetic section along the route of 

the MI motorway east of Belfast City, to identify potentially problematic ground 

conditions. The expected ground conditions along the M1 motorway route east of 

Belfast City can be visualised and assessed to display applied information such as 

Stratigraphy, likely compressibility, permeability, and excavatability (Figure 14).  

 
 
Integration of 3D geological and buried asset models: subsurface management 
and the use of underground space 
 

The 3D integration of underground utilities and infrastructure models is increasingly 

important for two reasons. One is that the full variability of the shallow subsurface 

and the zone of human interaction would not be complete without consideration of the 

existing use of underground space to support urban development. Secondly, 

integration of geological models with planned subsurface developments such as 

tunnels will provide a decision support tool with which to predict the 3D variability in 

engineering ground conditions along proposed routes. Geological models are not a 

replacement for ground investigation however and they are one of a number of tools 

that can be used for subsurface planning purposes. By characterising the full 

geological and anthropogenic spatial variability in the subsurface, a 3D framework 

can be established that could allow the potential changes in ground conditions and 

their impacts on subsurface infrastructure to be quantified. This is the basis of 

sustainable subsurface management. 

 



Integration of geological and buried utilities models can be used to visualise the urban 

subsurface, but importantly can be applied to aid environmental vulnerability 

assessments. In an area surrounding Knowsley Industrial Park, 6 km NW of 

Liverpool, a geological model of superficial deposits was developed by the BGS in 

collaboration with the UK’s environmental regulator; the Environment Agency (Price 

et al., 2008b). The 3D geological model was used to assess the vulnerability of the 

underlying Sherwood Sandstone aquifer to potential pollution from the buried utility 

network. Weakly permeable superficial deposits may provide a barrier to the 

downward migration of potential pollutants and reduce the vulnerability of the 

underlying aquifer. 

 

To assess the vulnerability of the aquifer, the 3D relationship of weakly permeable 

geological deposits to the buried sewerage network was assessed. Spatial GIS utilities 

data provided by United Utilities contained attributes allowing the spatial distribution 

and elevation of over 4000 pipeline segments to be determined (Figure 15). A 3D 

geospatial analysis was carried out to identify those parts of the sewerage network 

that were above the inferred highest vulnerability parts of the aquifer. These areas 

coincided with parts of the sewerage network that were sited either directly within the 

aquifer or where there were thin (less than 2.5 m) weakly permeable deposits between 

it and the aquifer. 

 

Integrating the geological and buried asset models provided a basis on which to 

develop a hazard and prioritisation scheme to protect potentially vulnerable 

groundwater resources. The location and characterisation of buried utilities and 



infrastructure will define the future land use characteristics and use of underground 

space (Rogers et al., 2009). 

 

Conclusions 

3D geological modelling using software and methods such as GSI3D, provides a 

means of characterising the geological and engineering variability in the shallow 

subsurface. Geoenvironmental characterisation of the shallow subsurface and its 

properties in urban areas is crucial to support above and below ground sustainable 

development and regeneration initiatives. 3D modelling methodologies have been 

adapted to enable characterisation of the anthropogenic subsurface and high resolution 

subdivision of soils in peri-urban areas. The integration and application of artificial 

deposits and subsurface utilities and infrastructure forms the basis for the 

characterisation of the zone of human interaction. The zone of human interaction 

recognises that the variability of the subsurface and its properties are the result of a 

complex interaction of natural and anthropogenic processes. Anthropogenic processes 

and their impacts in the subsurface occur in direct response to population growth, 

urbanisation and socioeconomic development. The exploitation of the ground and its 

resources to support that development has often been unsustainable leaving a legacy 

of sterilised resources, contaminated land and coastal and water side towns and cities 

susceptible to future environmental change. 

 

The 3D applied geological framework has already been applied to support land use 

planning and environmental decision making in the UK. Applications range from 

linear route assessment and foundation condition assessment with associated 

geotechnical attribution to aquifer vulnerability. Space for above ground development 



to support populations and urban growth in the future is likely to be competitive as 

land is used and reused. The subsurface may increasingly be used for development. 

Knowledge of the resource and geohazard properties of the ground can provide the 

evidence base to support future sustainable development. Through integration of 

knowledge about existing use of underground space (utilities, infrastructure etc), the 

suitability of the ground to be used for future developments can be assessed. The 

further integration of temporal earth system process (including anthropogenic) models 

will establish a robust framework from which the susceptibility of future towns and 

cities to future changes in climate, can be assessed. This approach will form the basis 

of a fully integrated subsurface management system. 
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Figures  

 
 
Figure 1. UK location map showing locations of places referred to in the text 
 
 
  



 
Figure 2. Location of places in NW England mentioned in the text comprising the ‘Mersey Corridor’ 
Development Zone. NextMap elevation data from Intermap Technologies Inc 
 
  



 
 
 

 
 
Figure 3. Examples of the main types of Artificial Ground and how they are shown on British 
Geological Survey maps (modified after McMillan, and Powell, 1999) 
  



 
 
 
 
 
 
 
 
 
 
Figure 4. 1:10 000 scale modern Ordnance Survey topographic map overlain by 1:10 560 scale map 
Lancashire 109SW 1908 (shown in red) in Warrington. The brick pit is represented by a pond on the 
modern topographic map and was therefore captured as Worked Ground (blue hatched area). OS 
topography © Crown Copyright. All rights reserved. 100017897/2009 

 
  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Example of a borehole record coincident with an area of Infilled Ground. OS topography © 
Crown Copyright. All rights reserved. 100017897/2009  



 
 
 

  
 
Figure 6. Anthropogenic alteration of the River Mersey and construction of the Irwell Canal. Modern 
1:10 000 scale topographic map (grey) overlain by 1:10,560 scale map Lancashire 116, 1849 (brown). 
Artificial ground polygons are shown in red. OS topography © Crown Copyright. All rights reserved. 
100017897/2009 
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Figure 7. Artificial deposits (red hatching) and former position of the coast in the Liverpool docks area 
illustrating spatial extent of land reclamation. OS topography © Crown Copyright. All rights reserved. 
100017897/2009 
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Figure 8. Extent of docks in 1851 represented in red, underlain by modern topographic map. OS 
topography © Crown Copyright. All rights reserved. 100017897/2009 

  



 

 
 
 
Figure 9. Extent Woolston Eyes dredge deposit grounds represented in the Warrington 3D model. 
NextMap Britain DTM data from Intermap Technologies Inc. OS topography © Crown Copyright. All 
rights reserved. 100017897/2009 
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Figure 10. Artificial deposits in 3D within the Warrington 3D ground model. Manchester Ship Canal is 
approximately 12 km in length.  
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Figure 11. a) top left and 1b) top right display the soil-geology model based on approach 1 using the 
soil series map whilst and Figure 1c) beneath shows the soil-geology model based on approach 2 
correlating 9 individual soil horizons. The models are of the Shelford area in the Trent Valley northeast 
of Nottingham and cover about 2 km2; the views have a VE of x10. The bedrock geology comprises 
Triassic mudstone (pink) with hard siltstone bands in green (skerries) overlain by sandstone (red) and 
mudstones (pale grey). The superficial deposits are Quaternary river terrace deposits (pale yellow) of 
sand and gravel within the valley with thicknesses between 3 and 5 m.  
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Figure 12. Prediction of engineering geological behaviour for railway subgrade assessment derived 
from the Manchester-Salford 3D geological model (after Reeves et al., 2005) 
  



 
Figure 13. Contour map showing modelled depth to base of estuarine clay deposit beneath Belfast City. 
Red contours represent greater depths. OS topography © Crown Copyright. All rights reserved. 
100017897/2009 

  



 

 
Figure 14. Linear route assessment along section of the M1 motorway in Belfast City. OS topography 
© Crown Copyright. All rights reserved. 100017897/2009 



 
 

 
Figure 15. Synthetic cross-sections derived from the Knowsely 3D geological model intersected by 
buried sewerage network (pink lines). Sherwood Sandstone (orange), Till (blue) Sand (brown) and sand 
and gravel (green). Model presented in the Subsurface Viewer. OS topography © Crown Copyright. 
All rights reserved. 100017897/2009 
 
  



 
Tables 
 

Made Ground Areas where material is known to have been placed by man on the pre-existing land surface 
(including engineered fill) 

Worked Ground Areas where the pre-existing land surface is known to have been excavated by man 
Infilled Ground Areas where the pre-existing land surface has been excavated (Worked Ground) and subsequently 

partially or wholly backfilled (Made Ground) 
Disturbed Ground Areas of surface or near-surface mineral workings where ill-defined excavations (Worked 

Ground), areas of subsidence caused by the workings and spoil (Made Ground) are completely 
associated with each other 

Landscaped Ground Areas where the pre-existing land surface has been extensively remodelled, but where it is 
impracticable to delineate separate areas of Made Ground, Worked Ground or Disturbed Ground 

 
Table 1. The pre-existing Artificial Ground Classification scheme (after McMillan & Powell, 1999) 
  



 
 

Class Type Unit 
Made Ground (undivided) MBU 

Engineered Embankment (Undivided) 
MBRO 
Road Embankment 
MBRA 
Rail Embankment 
MBFL 
Flood Embankment 
MBCA 
Canal Embankment 

MRU  
Raised Fill (Undivided) 

MRIT 
Land Raising Inert Fill 

 
Table 2. The pre-existing Artificial Ground Classification scheme (after Ford et al., 2006) 
 
 
  



 
Table 3. Engineering geological classification in the Manchester area 
 

FOUNDATIONS EXCAVATION ENGINEERING 
FILL SITE INVESTIGATION

Alluvium - River Channel deposits
River Terrace deposits

Glaciofluvial Sheet deposits

Medium dense to dense SAND & 
GRAVEL with some buried channels 

and lenses of clay, silt & peat.

Generally good. Variable thickness of 
deposit. Thick deposits in buried 
channels may be significant in 

foundation design due to differential 
settlement.

Diggable. Support may be required. 
May be water bearing. Suitable as granular fill.

Important to identify the presence and 
dimension of buried channels and 
characteristic of infilling deposits. 

Geophysical methods may be 
appliciable.

Glaciofluvial Ice-contact deposits
Loose to medium dense fine to medium 

SAND. Poor foundation. 

Easily diggable. Generally poor 
stability. Running sand conditions 

possible below the water table and in 
pockets at perched water tables.

Unsuitable as granular fill .
Determine the presence, depth and 
extent of deposit and depth to sound 

strata.

Till
Firm to very stiff sandy, gravelly CLAY 

with some channels and lenses of 
medium dense to dense sand and gravel

Generally good foundation, although 
sand lenses may cause differential 

settlement. Possibility of pre-existing 
slips can also cause a strength 

reduction.

Diggable. Support may be required if 
sand lenses or pre-existing slips 

encountered. Ponding of water may 
cause problems when working.

Generally suitable if care 
taken in selection and 

extraction. Moisture content 
must be suitable.

Determine the depth and extent of 
deposit, especially the frequency and 

extent of lenses and channels. 
Investigate whether any pre-existing 
slips and shear planes are present.

Alluvium - Overbank deposits Soft to firm CLAY occasional sand, 
gravel and peat lenses.

Poor foundation. Soft highly 
compressible zones may be present; 

risk of differential settlement.

Easily diggable. Moderate stability, 
decreasing with increasing moisture 
content. Running sand conditions 

possible below the water table and in 
pockets with perched water tables. 

Risk of flooding.

Generally unsuitable.
Determine the presence, depth and 

extent of soft compressible zones and 
depth to sound strata.

Glaciolacustrine deposits
Soft to stiff laminated CLAY with 

occasional lenses of sand.

Generally poor foundation as long term 
consolidation and differential 

settlement possible.

Easily diggable. Support may be 
required if sand lenses encountered in 
deep excavations. Ponding of water or 
exposure to rain may cause softening 

of formation.

Generally suitable if care 
taken in selection and 

extraction. Moisture content 
must be suitable.

Determine the depth and extent of 
deposit, especially the frequency and 

extent of lenses.

ENGINEERING 
GEOLOGICAL UNITS GEOLOGICAL UNITS

ENGINEERING 

ENGINEERING CONSIDERATIONSDESCRIPTION/
CHARACTERISTICS

Highly variable. Some 
material may be suitable. 

Essential to determine depth, extent, 
condition and type of fill. Care needs to 
be taken as presence of pollution and 
contaminated ground likely. Essential 

to follow published guidelines for 
current best practice.

Highly variable. May be unevenly and 
highly compressible. Hazardous waste 
may be present causing leachate and 

methane production.

Usually diggable. Hazardous waste 
may be present at some sites.

ENGINEERING UNIT 3
(FINE SOILS - FIRM)

ENGINEERING UNIT 4
(FINE SOILS - SOFT)

Highly variable composition, thickness 
and geotechnical properties.

ENGINEERING UNIT 2
(COARSE SOILS)

Disturbed Ground
Landscaped Ground

Made Ground
Worked Ground
Infilled Ground 

ENGINEERING UNIT 1
(HIGHLY VARIABLE ARTIFICAL 

DEPOSITS)


