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SUMMARY

The Lg wave quality factor (QLg) in Britain has been modelled using data from the UK Seis-

mic Network, operated by the British Geological Survey. The dataset consists of 631 vertical,

mostly short-period recordings of Lg waves from 64 earthquakes (2.7-4.7 ML) and 93 sta-

tions. We have inverted for both regional average QLg and tomographic images of QLg, and

simultaneously a source term for each event and a site term for each station for 22 frequencies

in the band 0.9-10.0 Hz. The regional average model is 266f���� between 1.0 and 10.0 Hz and

indicates that attenuation in Britain is slightly higher than in France, and significantly higher

than in eastern North America and Scandinavia. Tomographic inversions at each frequency

indicate that QLg varies spatially. Broadly speaking, south-eastern England, the Lake District

and parts of the East Irish Sea Basin, and a small region between the Highland Boundary Fault

and the Southern Uplands Fault are characterised by higher than average attenuation. South-

western England, eastern central England and north-western Scotland are regions of relatively

low attenuation. To some extent, these regions correlate with what is known about the tectonics

and structure of the crust in the UK.
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1 INTRODUCTION

Material and physical properties of the Earth’s interior can be inferred from measurements of at-

tenuation (Aki, 1980). Lg waves (multiply reflected shear waves) are almost routinely used to

study the crustal quality factor, QLg, which is a direct measure of attenuation. The attenuation of

Lg and its correlation with large scale crustal features has been described by numerous authors

including Kennett (1986), Mitchell and Hwang (1987), Bowman and Kennett (1991), Campillo

and Plantet (1991), Mitchell et al. (1998) and Baumgardt (2001). These studies demonstrate that

Lg wave attenuation is strongly correlated with the age of the crust, variations in crustal thickness,

the nature of the crust-mantle transition, sediment thickness and crustal complexity.

There are few published studies of seismic wave attenuation in Britain and none that investigate

attenuation of Lg waves. MacBeth and Burton (1987) determined Q� along single source-station

paths using data from small underground and underwater explosions in Scotland recorded at epi-

central distances of up to 85 km. They found no noticeable correlation between the variation in

the single station values and surface geology. Scheirer and Hobbs (1990) studied crustal attenu-

ation off the south-west coast of England using deep seismic reflection data. They observed that

the thick granite plutons present in this region are associated with relatively low attenuation. The

most recent attenuation model is presented by Edwards et al. (2008). In this study, source, path and

site effects were determined from S wave recordings of small to moderate magnitude earthquakes

in the UK. The data were also inverted for geometrical spreading using a multiple segment geo-

metrical spreading function. Edwards et al. (2008) found that a frequency independent and depth

dependent Q in the range of about 920 at the top of the crust and 5700 in the deeper crust best

explains the data. Site amplification and kappa were found to correlate with site geology.

In contrast to Britain, neighbouring areas of north-western Europe are comparatively well stud-

ied in terms of Lg wave attenuation. In France, investigations include Campillo et al. (1985),

Campillo (1987) and Campillo and Plantet (1991). In Scandinavia, QLg has been examined by

Kvamme et al. (1995). Lg wave propagation in the North Sea has received much attention and

the Central and Viking grabens are known to be major barriers to efficient Lg wave propagation

(Kennett and Mykkeltveit, 1984; Gregersen and Vaccari, 1993; Furumura and Kennett, 1997).
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Our primary objective in this study is to increase the understanding of Lg wave propagation and

how it relates to crustal structure in Britain. In doing so, we seek to provide information on atten-

uation, which is needed for reliable prediction of ground motion from future British earthquakes.

To this end, regional average QLg was determined and tomographic inversions in the frequency

range 1.0-10.0 Hz were performed to map the lateral variations in QLg. This is the first study to

present a regional average frequency-dependent Q model and to describe the spatial variations in

Lg wave attenuation across Britain.

There are inadequacies in the way in which local magnitude (ML) is computed, particularly for

poorly recorded small earthquakes or larger earthquakes with limited numbers of on-scale records.

As pointed out by Deichmann (2006), there is a requirement for more robust methods for quanti-

fying earthquake size, such as spectral measurements of moment magnitude (MW ). Furthermore,

ground motion relations are increasingly given in terms of MW . This adds to the need for MW to

be routinely determined rather than estimated via some empirical relation that relates potentially

unreliable estimates of ML to MW and will contain its own uncertainties (Deichmann, 2006).

Therefore a secondary objective of this study is to use the obtained QLg and determine MW for

the earthquakes in the dataset to investigate the relationship between ML and MW .

2 TECTONICS

The crust of Britain and Ireland can be divided into three main blocks (Figure 1): (1) the Lauren-

tian crustal block which underlies most of northern Scotland; (2) the Avalonian/Gondwana crustal

block of southern Britain; and (3) an intervening zone of accreted terranes, forming a complex

collision zone which separates the remains of the Laurentian and Avalonian/Gondwana continen-

tal masses. The assemblage of these crustal blocks can be related to the closure of the Iapetus

Ocean during the Ordovician to late Silurian (460 to 420 Ma). The main boundary between these

two continental masses, the Iapetus Suture, runs through the Solway Firth (Figure 1), essentially

along the border between Scotland and England. This is arguably the most fundamental structural

lineament in Britain and Ireland (Beamish and Smythe, 1986). The suture is nowhere exposed but

can be clearly seen on seismic profiles, and is associated with a short wavelength increase in Moho

depth of about 5 km relative to the area outside the suture zone (Chadwick and Pharaoh, 1998).
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The Laurentian crustal block of northern Scotland consists of the metamorphosed Precambrian

rocks of the Hebridean, Northern Highlands and Central Highlands terranes (Figure 1). The He-

bridean terrane includes the oldest rocks exposed in the British Isles. The southern margin of the

Laurentian crustal block is formed by the Highland Boundary Fault. This fault has had a pro-

longed and complex history of movement and is interpreted as a major terrane boundary. Small

earthquakes in this fault system indicate that, at present, it accommodates only minor local stress

adjustments (Ottemöller and Thomas, 2006).

The complex collision zone that underlies much of southern Scotland and northern England con-

sists of a number of broadly NE-SW-trending elongate terranes, which were accreted to the south-

ern Laurentian continental margin during the closure of Iapetus Ocean (Cocks, 2005). The most

northerly of these terranes is the Midland Valley, which comprises a complex assemblage of ophi-

olitic, sedimentary and volcanic rocks. South of the Midland Valley is the Southern Uplands ter-

rane (SUT) (Figure 1), which is made up of rocks deposited in either a trench associated with

NW-directed subduction (e.g., Leggett et al. , 1979), or back-arc to foreland thrust basin (e.g.,

Stone et al. , 1987). The SUT is bounded to the south by the Iapetus Suture.

The Avalonian crust south of the suture is characterised by lower velocities than the Laurentian

block (Clegg and England, 2003). The Leinster-Lakesman terrane consists of sedimentary and

volcanic rocks that record the development of volcanic arc and fault-controlled marginal basins

along the northern margin of eastern Avalonia, during subduction along the southern margin of

the Iapetus Ocean (Clegg and Holdsworth, 2005). In central and eastern England, the Caledonian

metamorphic basement is largely concealed by late Palaeozoic, Mesozoic and Cenozoic strata

(Pharaoh et al. , 1995; Green et al. , 2001). Southern England is dominated by the allochthonous

fold-thrust belt of the Variscan Rhenohercynian Zone which formed during the closure of the Rheic

Ocean in the Carboniferous (Chadwick and Pharaoh, 1998).
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3 DATA

The data used in this study were from the seismic network operated by the British Geological Sur-

vey (BGS) and restricted to events recorded between January 1984 and April 2007. The greatest

concentration of stations is in western Britain where levels of seismicity are highest. The data are

mostly from Willmore Mk III sensors but there are also several records from broadband instru-

ments. Clipping is a problem for the short-period data as it is recorded on low dynamic range sys-

tems and we excluded all saturated recordings after visual inspection. Station locations are shown

in Figure 2 a. Crustal earthquakes were selected for the area -7.5 to 2.5 �E and 48 to 59 �N. This

region encloses much of Britain and the Irish Sea. We required that earthquakes were recorded at a

minimum of four stations and at distances between 170 km and 600 km. Furthermore, we required

a minimum of four earthquakes recorded at each station. The minimum distance is set to twice the

critical distance for SmS. In the UK, where the crust is 30-35 km thick (Chadwick and Pharaoh,

1998), this is 170 km. Sn coda contamination can have a marked effect on determinations of QLg,

particularly at long distances and high frequencies (Shin and Herrmann, 1987; Adams and Had-

don, 1998). To investigate whether this was important for the UK data, seismograms were filtered

in various frequency ranges to gauge whether Lg was visible above the coda of Sn. The analysis

showed that Lg is the largest amplitude arrival at all frequencies for distances less than 600 km but

is not visible in the Sn coda at higher frequencies (� 7 Hz) and longer distances. Consequently,

a maximum distance of 600 km was specified for all frequencies. The conditions above were met

by 64 events in the range 2.7 to 4.7 ML recorded on 93 stations (see Figure 2 a).

The final dataset consisted of 631 vertical mostly short-period records of Lg. The Lg group ve-

locity range to window the data was selected between 3.7 and 3.0 km/s. The distribution of ob-

servations with distance (Figure 2 b) reflects the magnitude content of the dataset: most paths

are relatively short (88% are less than 450 km long). The greatest concentration of travel paths

is achieved in western and central Britain. In comparison, north-eastern Scotland and the English

Channel are relatively poorly sampled.
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4 METHOD

QLg was derived from the decay of spectral displacement amplitudes with distance for a range of

individual frequencies following the method described by Ottemöller et al. (2002). This approach

has been successfully applied in southern Mexico (Ottemöller et al. , 2002), Central America

(Ottemöller, 2002) and Colombia (Ojeda and Ottemöller, 2002). Regional average QLg was deter-

mined for 22 frequencies between 0.9 Hz and 10.0 Hz. We simultaneously inverted for the seismic

moment for each earthquake and site terms at each station, along with QLg. The Lg-wave dis-

placement spectral amplitude Akl�f� for the event k, at the recording site l, after removal of the

instrument response, is given by

Akl�f� � Sk�f�Ll�f�G�R�exp���fRQ
��

Lg�v� (1)

where Sk�f� is the source term, Ll�f� is the local site term, R is the hypocentral distance, v is

the average Lg-peak velocity (3.35 km/s), QLg is the quality factor, and G�R� is the geometrical

spreading (G�R� � �RxR�
���� for R � 100 km, Rx � ��� km, Hermann and Kijko (1983)).

Taking the logarithm of equation (1) gives

logAkl�f� � ���log�RxR� �

logSk�f� � logLl�f�� ��fR log�e��v�Q��

Lg (2)

As a constraint for the site terms we required that

X
l

logLl�f� � � (3)

In the tomograpic inversion, QLg is integrated along the travel path and equation 2 becomes

logAkl�f� R� � ���log�RxR� � ��
X

Ri�flog�e�v
��Q��

Lg apriori �

logSk�f� � logLl�f�� ��flog�e�v���
X

��Q��

Lg iRi� (4)

where �QLg i is the variation from the average QLg apriori in grid cell i.
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To study lateral variations in QLg, the region of interest was divided into evenly spaced grid cells.

We determined an optimum grid cell size of 89 km in the north-south and east-west directions,

which reflected the quality and quantity of the data available. At this grid size, most of onshore

Britain is well resolved with the exception of northernmost Scotland. The function to be min-

imised in the inversion includes a matrix to regularise the mixed-determined problem (Barmin

et al. , 2001). The constants in this matrix add spatial smoothness to the QLg model and con-

strain the result to the starting model (the regional average) where ray path coverage is low. We

performed a series of checkerboard tests using different combinations of constants in order to de-

termine a suitable combination. That is, the combination that produced models without unrealistic,

sharp changes in QLg between adjacent cells, and anchored the result to the starting model only in

poorly determined grid cells. The optimum constants (following the nomenclature of Ottemöller

et al. (2002)) were � = 500, � = 62.5, 	 =1500 and 
 = 0.001 (Figure 3).

Shifting the grid boundaries in various ways, slightly different tomographic images are obtained.

By overlaying and averaging several of these images, it is possible to obtain more complex images

with higher nominal resolution, without introducing inversion ambiguities and instabilities (Ves-

naver and Böhm, 2000). Here, by overlaying and averaging three grids, it is possible to achieve 45

km grid spacing without compromising the reliability of the results.

While Figure 3 suggests that the inversion can resolve variations in QLg, equation 4 shows that

there is a trade-off between attenuation, the site terms and the source terms. Menke (2006) pro-

vided a practical method to investigate the nonuniqueness between attenuation and the source

terms, which allows unresolvable attenuation patterns to be determined. Menke (2006) suggests

that the null solutions are computed by applying a perturbation to the source terms individually

and then inverting for the attenuation pattern without inverting for the source terms. These null

solutions could be added to solutions of equation 4 without changing the equation. We computed

the set of inversions for all sources for a constant Q model by perturbing one source at a time by

the equivalent of 0.1 and 0.2 moment magnitude units. An example is shown in Figure 4, which

shows that an increase to one of the source terms gets mapped into higher Q in grid cells with path

coverage. We also see lower Q adjacent grid cells without path coverage. Obviously, the effect is

stronger for a larger source size perturbation.
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A potential error can be introduced from the measurements of the spectral levels. We tested the

effect of this error by adding Gaussian noise amounting to a maximum of 0.1 moment magnitude

units. The comparison of results is shown in Figure 5 a and b. The added noise leads to variation

in both Q and site term. Another potential error stems from the nonuniqueness involving the site

terms. To investigate the significance of the site terms, we performed the tomographic inversion

without inverting for the site terms. An example of this inversion for f =4 Hz is shown in Fig-

ure 5 c. When not inverting for the site terms we find that grid cells with previously negative site

terms and high Q show up with a lower Q when not inverting for the site term and vice versa. This

is expected and demonstrates the nonuniqueness between Q and the site terms. However, both the

inversion without site term and the noise test show that the inversion is reasonably stable. Later,

we determine the site terms using spectral ratio technique to evaluate the site terms independently.

5 RESULTS

5.1 Regional Average QLg

The spatial coverage of the data is such that an estimate of regional average QLg will be repre-

sentative of most of onshore Britain. Figure 6 shows Q��

Lg obtained for frequencies between 0.9

Hz and 10.0 Hz. The results are associated with relatively large uncertainties at lower frequencies

where the signal strength is poorer for small earthquakes. QLg is often related to frequency via the

power law of Fedotov and Boldyrev (1969) and Aki (1980):

QLg�f� � Q��f�f��
� (5)

It is conventional to take f� to be 1 Hz and Q� to be equal to Q at 1 Hz (Shi et al. , 1996). Q��

Lg

is clearly frequency dependent but the onset of frequency dependence is not clear. Therefore, it is

assumed to occur at 1 Hz. Under this assumption, QLg � 	

f ���� between 1.0 Hz and 10.0 Hz.

This model is also shown in Figure 6.
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The inverted site terms vary smoothly with frequency, as shown for the three-component stations

in Figure 7 (and labelled on the map in Figure 2). These are the stations for which noise data were

available for the additional analysis described below. The results are broadly consistent with the

geological information on the station foundation with hard rock sites (EDI, ESK, BBO, MCH,

CR2, HPK and CWF) showing little amplification. At stations founded on softer geology (MCD,

BHH, SWN and TFO), the effect of the site conditions appears to be stronger. We used the Naka-

mura or H/V spectral ratio technique (Noghoshi and Igarashi, 1970, 1971; Nakamura, 1989) to

empirically estimate the site response at these stations as an independent check of the validity of

the results. The technique involves computation of the horizontal to vertical (H/V) spectral ratio

from microtremor recordings. The peaks in the H/V ratio are related to sharp impedance con-

trasts below the recording site. This technique is expected to reveal the fundamental frequencies at

which amplification occurs, but not necessarily with the correct amplitudes (e.g., SESAME, 2004;

Atakan et al. , 2004). While there are limitations to this method, a great number of field studies

suggest that it works (e.g., Konno and Ohmachi, 1998; Sørensen et al. , 2006). The results of the

H/V spectral ratio analysis are also shown in Figure 7. The results generally compare well to the

inverted site terms for stations founded on hard bedrock. There is a greater deviation, particularly

in terms of absolute amplitude, between the H/V spectral ratios and the inverted site terms at sta-

tions located on softer deposits like top soil and glacial till. Overall, the results of the H/V spectral

ratio technique give us confidence in the inverted site terms.

5.2 QLg Tomography

We used the average QLg�f� model as the a priori information for independent tomographic inver-

sions at the same frequencies. Figure 8 presents the results for 1.0, 1.6, 2.5, 4.0, 6.3 and 10.0 Hz,

which show consistent and significant large-scale variations in Q��

Lg in the British Isles. The spatial

resolution is of the order of 100-200 km. The best resolved area coincides with the region where

ray path coverage is most dense, that is, western Britain. In northernmost Scotland where coverage

is sparse, the result is anchored to the starting model. The corresponding site terms recovered from

the inversion are shown in Figure 7.

The tomographic images are difficult to interpret. Broadly speaking, six regions can be identified
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from the tomographic images. Zone 1: south-eastern England - this is a region of slightly higher

than average attenuation (475-500 at 4 Hz). It is bounded by regions of lower than average at-

tenuation to the north and west. Zone 2: south-western England - this is an area of lower than

average attenuation. At 4 Hz, QLg is of the order of 625. Zone 3 is a region of relatively low at-

tenuation, north of Zone 1 and extending as far west as the Pennines. It is a prominent feature at

all frequencies. Both positive site terms and high Q are consistent with low attenuation. This is a

system of major basin-controlling normal faults. To the west of this is a region of slightly higher

than average attenuation (Zone 4) that covers the Lake District and East Irish Sea Basin. The at-

tenuation characteristics for this region vary with frequency. Zone 5 is a small area of relatively

high attenuation. Zone 6 is characterised by lower than average attenuation and covers central and

northern Scotland. One might suppose that north-eastern Scotland would also be an area of lower

than average attenuation since the crust here is also Laurentian.

5.3 Moment Magnitudes for British Earthquakes (1996-2007)

Using the averageQLg�f� to correct for attenuation,MW was determined fromLg-wave displace-

ment spectra for each of the earthquakes in the dataset using a converging grid search method (Ot-

temöller and Havskov, 2003). The source term S�f� in equation 1 for a simple �� model is given

by Aki (1967) and Brune (1970, 1971)

S�f� �
M�

��k�v�

�
� �

f �

f �
c

�
��

(6)

where M� is the seismic moment, k � ��� (this factor corrects for free-surface reflection and the

radiation pattern), � is density, v is the S-wave speed at the source, and fc is the corner frequency.

Since for f  fc the source spectrum is flat and proportional to M�, seismic moment can be easily

determined from the long period part of the source spectrum. Near surface attenuation, represented

by �, depends on the quality factor in the near surface layers at each station (e.g., Anderson and

Hough, 1984). This was not modelled explicitly because near surface attenuation in the UK is

not well understood. Furthermore, the inclusion of � for the average QLg model does not modify
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the diminution function by a significant amount at the distances and frequencies considered here

(generally greater than 100 km). Typical results from the spectral modelling are shown in Figure 9.

The results are shown in Table 1. Calculating MW at individual stations acts as an independent

check on the regional average quality factor since it allows us to check for distance dependence,

which would imply a deficiency in the attenuation model. Figure 10a shows that when plotted

against distance, individual estimates are evenly distributed above and below the average value

and are not distance-dependent. Furthermore, MW for the largest earthquake in the dataset (22

September 2002, 4.7 ML, 4.2 � 0.1 MW ) is in agreement with MW determined by ETH Zürich

(4.3 MW ) from the regional moment tensor.

Figure 10b shows MW plotted against local magnitude (ML) for the earthquakes in our dataset.

ML, as calculated by the BGS, is determined from the logarithm of the maximum amplitude

recorded on each of two orthogonal horizontal seismometers, correcting for distance (using the

correction of Hutton and Boore (1987) for southern California), and taking the mean of the two

component magnitudes (Booth, 2007). We obtain the following relationship between ML and

MW (Figure 10 b):

MW � ����ML� ���� (7)

This is almost the same as the relationship determined by Edwards et al. (2008) (MW � ����ML�

����). Further comparison between Edwards et al. (2008) and our results is made in the next sec-

tion.

6 DISCUSSION

We have determined a regional average frequency-dependent QLg model for Britain, which can be

used routinely to determine MW from displacement spectra. Comparisons can be made between

our attenuation model and models determined for other stable continental regions. Using data from

earthquakes in and around Norway, Kvamme et al. (1995) found Q�f� � ���f��� for Scandinavia
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(see Figure 6). Benz et al. (1997) determined Q�f� � ���	�f��������� for eastern North America.

Both models point to significantly lower attenuation in these regions than in Britain. Campillo and

Plantet (1991) proposed QLg � 	�f ��� for France (see Figure 6). The frequency dependence is

similar to what we have found for Britain but the model for France indicates slightly higher Q�.

For comparison, Q�f� � ���f���� for southern California (Benz et al., 1997).

Our results show that attenuation varies spatially across the British Isles and there are distinct

regions of relatively high and low Q. We assume that the differences are real, despite the inher-

ent non-uniqueness problem between Q and the source terms. We had expected there to be some

degree of correlation between the tomographic results and the configuration of the tectonic ter-

rains. For example, for the ancient Laurentian terrains north of the Highland Boundary Fault to be

characterised by relatively high Q, in line with estimates for eastern North America. Furthermore,

our hypothesis was that the accreted terrains of the Midland Valley and the Southern Uplands

would be regions of relatively low Q due to the complex structure of this region. Campillo and

Plantet (1991) show that QLg correlates with the heterogeneity of the lower crust in the Central

Armorican Zone of Brittany, which is part of the Variscan Belt. The 1974 Lithospheric Seismic

Profile of Britain (LISPB) includes a 700 km-long seismic reflection profile extending from off the

north coast of Scotland to central England. It indicates strong variations in crustal structure in the

Midland Valley/Southern Uplands region. While attenuation does increase south of the Highland

Boundary Fault, the change is perhaps not as clear as expected but possibly not resolved by the

data.

There is an indication from our results that the Laurentian terrains are associated with relatively

low attenuation, as one would expect. The north-easternmost portion of the model is not well-

resolved and it is not possible to assess the full extent of this zone. The collision zone region of

the British Isles, defined here as extending from the Highland Boundary Fault in the north to the

Flamborough Head Fault Zone in the south, is associated with relatively low Q at high frequencies

(f � 3 Hz) but below 2.5 Hz, much of this region is characterised by relatively high Q. Zone 3,

which is a region of relatively high Q observed at all frequencies does not correlate with any major

structural feature or terrain. The massifs of Wales and South-western England are characterised

by close to average attenuation at all frequencies. These parts of the study area are well sampled

by the data so this is not due to the result being anchored to the starting model as it is in poorly
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determined grid cells. The situation in the Irish Sea region (Zone 4) is also complex and high

attenuation may be due to the presence of significant sedimentary deposits in this area. Further

work is required to investigate the underlying mechanisms for the variation in crustal attenuation

in Britain.

For earthquakes in Britain, including the offshore region, the method used to calculate ML is that

of Hutton and Boore (1987) and uses their distance correction, which was developed for southern

California. The results in Table 1 show that MW determined here is generally smaller than ML

(by up to 0.9 magnitude units). Furthermore, the difference between ML and MW systematically

increases with ML (Figure 10 c). Theoretically, ML should equal MW over the entire range

for which ML can be determined (Deichmann, 2006). Differences between ML and MW are

variously attributed to deficiencies in the path correction (e.g., Ristau et al. , 2003), changes in

stress drop or rupture speed, or errors in the determination of ML for poorly recorded small

earthquakes (Deichmann, 2006). Small earthquakes are more likely to have on-scale recordings

at close distances compared with larger events on the low-gain networks that were in previously

in operation in the UK. Therefore, it seems likely that the difference between ML and MW for

British earthquakes is attributable to the distance correction used in the computation of ML.

We have done a number of tests to investigate the non-uniqueness between Q, the site and the

source size term. The tomographic results remain very similar even when not inverting for site

terms. We have also shown that a reasonable amount of noise can be added to the data without

changing the results. A more serious issue as pointed out by (Menke, 2006) is the non-uniqueness

between source term and Q. We computed null solutions for a constant synthetic Q model and

the real data coverage by applying a perturbation to the source term, and then performing the

tomographic inversion without source term. For a source term change of 0.1 moment magnitude

units, which is similar to the standard deviation in our MW �ML relation, the observed changes

are of the order of �Q�� � ������ and thus less than the differences in the model obtained from

the data, which is �Q�� � ������. If the non-uniqueness would equate to 0.2 magnitude units,

the effect would be more severe. Overall, however, we conclude that the main features in the

tomographic image are real as they are not easily seen in the results from the perturbation tests.

Despite using a very different model to Edwards et al. (2008), we obtain a very similar relationship
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between MW and ML. This indicates that the shear-wave displacement spectra can be modelled

either with a relatively simple frequency-dependent Q model and assuming spherical spreading to

100 km and cylindrical spreading beyond that, as in this study or using a more complex model

as in Edwards et al. (2008). The model of Edwards et al. (2008) employs depth-dependent,

frequency-independent Q and a multi-segment geometrical spreading function. This highlights

the non-uniqueness problem surrounding the formulation of the attenuation model itself. We prefer

our simpler but possibly more physically realistic model, which gives very similar results.

7 CONCLUSIONS

Our study of Lg wave attenuation in Britain leads to the following conclusions:

(i) Average regional QLg can be modelled as 	

f����.

(ii) QLg varies spatially, with regions of lower than average attenuation in north-western Scot-

land, eastern central England, and south-western England. South-eastern England, the East Irish

Sea Basin region and an area of eastern Scotland between the Southern Uplands Fault and the

Highland Boundary Fault are characterised by higher than average attenuation.

(iii) The relationship between these regions and the gross tectonic structure of Britain does not

seem to be straightforward and requires further investigation.

(iv) MW determined for 64 events using the regional average model is systematically lower

than ML and the difference between MW and ML increases with ML.
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Ottemöller, L. & Thomas, C., 2006. Highland Boundary Fault Zone: tectonic implications of the

Aberfoyle earthquake sequence of 2003, submitted.

Pharaoh, T., England, P. & Lee, M., 1995. The concealed Caledonide basement of eastern Eng-

land and the southern North Sea - a review, Studia geoph. et geod., 39, 330–346.

Phillips, E. R., Smith, R. A. & Carroll, S., 1998. Strike-slip, terrane accretion and the pre-

Carboniferous evolution of the Midland Valley of Scotland, Trans. R. Soc. Edin. Earth Sci.,

89, 209–224.

Richter, C. F., 1935. An instrumental earthquake magnitude scale, Bull. Seism. Soc. Am., 25,

Page 18 of 32Geophysical Journal International

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

QLg in Britain 19

1–32.

Ristau, J., Rogers, G. C. & Cassidy, J. F., 2003. Moment magnitude - local magnitude calibration

for earthquakes off Canada’s west coast, Bull. seism. Soc. Am., 93, 2296–2300.

Scheirer, D. S. & Hobbs, R. W., 1990. Seismic attenuation in the continental crust SW of England,

Geophys. J. Int., 103, 533–540.

SESAME, 2004. Guidelines for the implementation of the H/V spectral ratio technique on am-

bient vibrations - measurements, processing and interpretation, SESAME European research

project WP12 Deliverable D23.12. Tech. rep., European Commission Research General Direc-

torate Project No. EVG1-CT-2000-00026 SESAME.

Shi, J., Young, K.-W. & Richards, P. G., 1996. Variability of crustal attenuation in the northeastern

United States from Lg waves, Geophys. J. Int., 101, 23231–25242.

Shin, T.-C. & Herrmann, R. B., 1987. Lg attenuation and source studies using 1982 Miramichi

data, Bull. seism. Soc. Am., 77, 384–397.

Soper, N. J., Gibbons, W. & McKerrow, W. S., 1989. Displaced terranes in Britain and Ireland, J.

geol. Soc. Lond., 146, 365–367.

Sørensen, M. B., Oprsal, I., Bonnefoy-Claudet, S., Atakan, K., Mai, P. M., Pulido, N., Yalciner,
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Year Month Day Lat (� N) Lon (� E) Depth (km) ML MW � N

1981 10 27 54.15 0.3 23.7 3.7 2.9 0 1

1984 4 15 52.42 -3.23 10.6 3.3 3 0.1 8

1984 7 29 52.98 -4.44 21.2 4 3.5 0.1 12

1984 7 30 52.97 -4.38 20 2.8 2.5 0.1 3

1984 8 4 52.97 -4.4 24.1 2.7 2.9 0.1 4

1984 8 6 52.95 -4.33 24.7 3.6 3.3 0.2 3

1984 8 18 52.96 -4.38 21 4.3 3.8 0.1 7

1985 12 1 57.03 -5.77 4.2 3.7 3.1 0.2 7

1986 9 29 56.45 -5.65 23.3 4.1 3.4 0.2 14

1986 12 26 51.9 -1.34 23.5 2.9 2.7 0.1 3

1987 10 4 57.98 -5.2 0.4 3 3 0.2 14

1987 10 4 57.97 -5.19 0.5 3 2.9 0.1 8

1987 10 17 57.93 -5.14 2 2.9 2.9 0.2 3

1990 1 26 56 -6.57 9.2 3 2.6 0.1 8

1990 2 8 53.52 -1.16 17.9 3 2.9 0.1 5

1991 12 14 50.65 1.86 0.4 3.6 3.1 0.1 7

1992 1 27 50.66 1.88 7.3 3 2.6 0.1 3

1992 2 17 52.5 -0.19 11.1 3.3 2.9 0.1 20

1992 7 26 57.49 -5.66 15.1 2.8 2.7 0.2 11

1992 7 29 53.13 -4.4 11.3 3.5 2.9 0.1 20

1993 6 26 54.21 -2.86 8.3 3 3 0.1 29

1993 7 12 53.74 1.37 7.4 2.9 2.8 0.1 13

1993 9 4 57.03 -5.78 2.6 2.7 2.5 0.1 14

1994 1 1 51.36 -3.57 14.7 2.8 2.9 0.2 18

1994 2 10 53.21 -4.14 14 2.9 2.7 0.1 17

1994 2 15 52.56 0.91 7.3 4 3.4 0.1 18

1994 2 15 52.56 0.93 2.5 2.8 2.5 0.1 11

1994 3 17 52.54 -3.44 21.6 3.1 3 0.2 8

1994 5 12 52.15 -1.74 15.9 3 3 0.1 20

1994 8 17 57.19 -5.73 3 3.1 2.8 0.2 16
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Year Month Day Lat (� N) Lon (� E) Depth (km) ML MW � N

1994 9 15 51.8 1.8 8 3.2 3 0.1 10

1995 8 17 49.88 -4.26 11.1 3.1 2.7 0.1 10

1996 3 7 52.8 -2.74 10.4 3.2 3 0.2 22

1996 9 20 52.32 -3.33 14.4 2.9 2.5 0.1 7

1996 11 10 50 -5.58 8.3 3.6 3.2 0.2 24

1998 5 3 56.06 -6.05 12.9 3.1 3.1 0.1 27

1998 5 16 53.02 2.16 0.2 3.8 3.4 0.2 26

1999 1 21 53.09 0.07 16.9 2.8 2.7 0.1 5

1999 3 4 55.4 -5.24 19 4 3.2 0.1 25

1999 9 1 53.2 -4.35 16.3 3.2 2.9 0.2 24

1999 10 25 51.97 -3.57 14.1 3.6 3.3 0.2 20

2000 9 23 52.28 -1.61 14.4 4.2 3.3 0.1 20

2000 12 21 53.52 1.85 8.6 3.3 3.3 0.3 10

2001 5 13 55.1 -3.64 11.5 3 2.9 0.1 33

2001 5 31 50.98 -4.53 26.4 3.6 3.2 0.1 17

2001 10 10 51.7 -3.26 6.5 3.1 2.8 0.2 20

2001 10 28 52.85 -0.86 11.6 4.1 3.4 0.1 19

2002 2 12 51.7 -3.26 5.2 3 2.6 0.2 17

2002 6 20 51.57 -3.08 14.3 2.9 2.8 0 6

2002 9 22 52.53 -2.16 14 4.7 4.2 0.1 12

2002 9 30 48.08 -3.23 21.7 4.5 4.2 0.2 13

2002 10 21 53.48 -2.2 5 3.2 2.9 0.2 28

2002 10 22 53.47 -2.15 4.2 2.9 2.9 0.2 24

2002 10 24 53.49 -2.18 3.7 3.1 3 0.2 27

2003 6 20 56.17 -4.43 5.2 3.2 2.8 0.2 15

2003 8 19 53.48 -1.01 13.2 3.1 2.6 0.2 13

2004 1 29 51.09 -2.98 6.5 3.1 2.8 0.2 8

2004 2 29 53.57 -2 12.4 3.1 2.7 0.2 22

2005 12 14 53 -5.64 10 2.8 2.7 0.1 7

2005 12 23 56.68 -5.69 6.7 2.7 2.5 0.2 9
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Year Month Day Lat (� N) Lon (� E) Depth (km) ML MW � N

2006 6 8 57.53 -5.64 8.3 2.9 2.6 0.1 5

2006 12 26 55.09 -3.63 7.5 3.5 3.2 0.1 12

2007 1 23 51.66 2.1 15 3.5 3.3 0.1 6

2007 4 28 51.08 1.17 2 4.3 3.7 0.1 14
Table 1Earthquakes in the dataset (including moment magnitudes determined from spectral mod-

elling. � is the standard deviation on MW and N is the number of observations used. ML is the

local magnitude published by BGS.
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Figure 1. Basic tectonic map of the British Isles showing the main terrains (in italics), and other key struc-

tures (after British Geological Survey, 1996).
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[p]
a) b)

Figure 2. a) Source-station pairs used to determineQ��

Lg . Triangles are seismological stations. Circles denote

earthquake epicentral locations. Three-component stations for which H/V spectral ratios were investigated

(see Figure 7) are labelled, b) Distribution of observations with distance.

Page 24 of 32Geophysical Journal International

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

QLg in Britain 25

[p]

Figure 3. Results from the checkerboard test at 3.6 Hz using the parameters discussed in Section 4.
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Figure 4. Results from source size perturbation test. One of the earthquake source terms is changed by 0.1

(a, b, c) or 0.2 (d, e, f) moment magnitude units and the inversion for Q��

Lg is done for a synthetic model

with constant Q based on the real data path distribution. The same earthquake is perturbed in plots a and d,

b and e, and c and f.
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Figure 5. Results from tomographic inversion for a frequency of 4 Hz: a) Inversion for Q�� and site terms,

b) inversion for Q�� and site terms after adding Gaussian noise to the data equivalent to 0.1 moment

magnitude units and c) Inversion for Q�� without site terms.
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[p]

Figure 6. Regional average Q��Lg model for Britain as a function of frequency. The circles represent average

Q��

Lg values obtained in the inversion. The solid line is the model based on these observations. For com-

parison, the relations for France (dashed line) proposed by Campillo and Plantet (1991) and Scandinavia

(dotted line) presented by Kvamme et al. (1995) are also shown.
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Figure 7. Site terms obtained in the average (crosses) and tomography (circles) inversions. Results from

the H/V spectral ratio technique are also shown: solid line is the mean, dashed lines correspond to plus and

minus one standard deviation from the mean. The shallow geology at site is also given (bottom left). The

stations are labelled in Figure 2.
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Figure 8. Tomographic inversion results for Q��

Lg at a) 1.0 Hz, b) 1.6 Hz, c) 2.5 Hz, d) 4.0 Hz, e) 6.3 Hz and

f) 10.0 Hz.
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Figure 9. Typical spectral modelling results for the Mw 3.3 event of 6 August 1984. The grey lines show

the observed source spectra, the black solid lines show the theoretical spectra based on the results of the

modelling (note that the theoretical spectra are only shown for the frequency range used in the grid search).

The dashed lines show the noise spectrum taken from before the P arrival.
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a) b)

Figure 10. a) Difference between MW calculated for single station spectra and average MW determined

for each event (Table 1) plotted against distance. b)MW vs. ML where MW was determined using the

average Q��Lg model found here. Solid line -MW computed using equation 7, dashed line -MW computed

using Edwards et al. (2008).
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