
Supporting the Design of Network-
Spanning Applications

Abstract

In this case study, we describe our use of ECT, a tool

intended to simplify the design and development of

network-spanning applications. We have used ECT

throughout the course of a two-year collaboration,

which has involved individuals with expertise in a

variety of fields, including interaction design and

computer systems engineering. We describe our

experiences with this tool, with a particular focus on its

emerging role in helping us to structure our

collaboration. We conclude by presenting lessons that

we have learned, and by suggesting future directions

for the development of tools to support the design of

network-spanning applications.

Keywords

Interaction design, network-spanning applications,

toolkit, component-orientation.

ACM Classification Keywords

H5.m. Information interfaces and presentation (e.g.,

HCI): Miscellaneous.

Introduction

Recent years have seen a rapid increase in the

capability of computational devices that are used in the

home. In the developed world at least, many

Copyright is held by the author/owner(s).

CHI 2009, April 4–9, 2009, Boston, Massachusetts, USA

ACM 978-1-60558-247-4/09/04.

Stefan Rennick Egglestone

Mixed Reality Laboratory

School of Computer Science

University of Nottingham

Nottingham, NG8 1BB, UK

sre@cs.nott.ac.uk

Andy Boucher

Interaction Research Studio

Department of Design

Goldsmiths College

London, SE14 6NW, UK

dts02ab@gold.ac.uk

Tom Rodden

Mixed Reality Laboratory

School of Computer Science

University of Nottingham

Nottingham, NG8 1BB, UK

tar@cs.nott.ac.uk

Andy Law

Edinburgh College of Art

Edinburgh, EH3 9DF, UK

a.law@eca.ac.uk

Jan Humble

jan.c.humble@googlemail.com

Chris Greenhalgh

Mixed Reality Laboratory

School of Computer Science

University of Nottingham

Nottingham, NG8 1BB, UK

cmg@cs.nott.ac.uk



residences now contain multiple personal computers,

and many of these are either periodically or

permanently connected to each other, and to the global

internet, through wireless and broadband networking

technologies. At the same time, a wider range of

devices than ever before are capable of providing

general-purpose computational facilities to users.

Mobile phones are a prime example here. Once limited

to just making calls and sending texts, devices such as

Apple’s iPhone are now network-enabled, end-user

programmable devices in their own right. “Even my

toaster has a microprocessor” comments Perlman [3],

who argues that “computing is not just for computers

any more”. And as the technological infrastructure in

our homes becomes ever smarter and better

connected, the potential for creating applications that

are both interesting and that span multiple homes,

whilst making innovative uses of the devices and

networks that are deployed in them, seems likely to

increase. Examples of a number of these applications

can be found in published literature ( for an interesting

example, see [4]). Furthermore, this is a growing

research field, and as time progresses, it seems likely

that new examples of these types of applications will

emerge.

However, technological and organizational issues mean

that the design and deployment of such network-

spanning applications can be a difficult process. Even

working with individual devices, especially those that

are still not fully-featured computers in their own right,

can require substantial expertise in electronics,

software and hardware engineering. Integrating such

devices into the home, and studying their use, requires

a broader set of skills. Historically, design teams have

addressed such difficulties through multi-disciplinary

collaboration, often combining the skills of interaction

designers with those of “engineers, who know about

hardware, software and electronics” [3], and

anthropologists, who know about studying the

behaviour of humans “in the wild” [3]. Yet, faced with a

complex design space, and with a rapidly-changing

technology base, the assembly of such teams is not a

“cure-all” for the creation of networking-spanning

applications. Tools and methodologies are still required

to support the work of these teams, and the design of

these technologies is still an open research question. A

number of authors have described tools that have been

specifically designed to support the development of

network-spanning applications, with many of these

papers focusing on either technological aspects of the

implementation of these tools, or on systems that have

been constructed using them. However, a review of

existing research papers has revealed that there is little

published research that describes these tools in use.

We believe that this is a significant omission, and that

the study of the use of tools provides an important

source of information for their future improvement. We

are therefore attempting to make a contribution to this

area of research by providing a case study of a

particular tool in use. We hope that this will be of

interest to both the design and computing

communities.

More specifically, we present a case-study illustrating

the adoption of an existing tool, known as the Equator

Component Toolkit (ECT), into a multi-disciplinary

design team which was composed of the authors of this

paper. ECT is a tool which is designed to support a

well-understood development methodology called

component-orientation, an overview of which is

provided below. Collectively, we have been using ECT



to design, implement and deploy a number of

innovative network-spanning applications, through a

collaboration involving individuals with a background in

interaction design, industrial design, human-computer

interaction and computer systems engineering. We

used ECT throughout the course of our collaboration,

which took place over a two-year period, and we made

modifications to it where necessary.

Our aim in publishing this case-study is to provide

specific information about the use of ECT in developing

network-spanning applications, and at the same time to

more generally address the utility of component-

orientation as a supporting methodology in this

context. We feel that both of these aspects have played

an important role in the process of our collaboration,

and want to publicly comment on our experiences for

the benefit of others. Hopefully, through publishing

both our positive and negative experiences in adopting

this approach, we can contribute to a debate about

determining the best methods for supporting the design

of this emerging category of systems. Additionally, we

hope to inform the next generation of tools that will be

built to support this kind of design. The paper begins by

introducing componentization as a concept. It then

discusses its relevance to our particular design context.

Existing component-orientated tools are reviewed, and

the specific tool that we have chosen to use is then

introduced. After presenting the core of our case study,

the paper then concludes by discussing lessons that we

have learnt, and future requirements for tools that we

have identified.

Overview of componentization

Componentization as a methodology is built around a

very old idea within the field of computing; that the

efficient construction of computer systems should

involve, as much as possible, pre-fabricated software

and hardware components, much as modern-day civil

engineering makes use of standard items with well-

understood properties such as bolts or reinforced

girders. In an early paper on this topic, Randell and

Naur [2] suggest that certain organizations would focus

on producing components, whilst others would focus on

using them. He also introduces the idea of the

component as a “black-box”, in which users of

components are not required to understand their inner

working, but instead only the interface that they

present. In another analogy with civil engineering, we

might note that a user of a bolt does not have to

understand the method by which it has been produced,

but only the properties that such a method has created

– for example, weight, hardness and durability.

Componentization as a methodology has found a

substantial number of applications in computer

software design and development, and is still in use

today. As an example, consider the various widgets

that are provided with modern programming

languages, and which are intended to support the

construction of graphical user interfaces. Widgets are

general purpose software components that can be used

to construct specific software interfaces, and examples

include windows, pop-up menus and buttons. In

component-orientated terms, one of the key points

here is that such widgets have been designed and

developed by a small number of expert users (who may

work for large software houses such as Microsoft). The

widgets are often then assembled into toolkits, which

are constructed with the intention of supporting

software development by a much larger (and often

less-expert) group of individuals. Such use may



incorporate additional tools, such as graphical editors,

which allow for the construction of interfaces by

dragging and dropping widgets into a variety of

interface devices such as forms. Such tools simplify the

development of complex applications by less expert

users.

Componentization in the construction of

network-spanning applications

A prominent example of a component-orientated toolkit

that has the capability of supporting network-spanning

applications are Phidgets [5]. These are a family of

sensing, display and actuation devices, which can be

connected into a standard PC. Phidgets sit alongside a

supporting software infrastructure, and are intended to

be used as simple hardware building blocks, which can

be integrated into more complex applications. Examples

of Phidgets include small LCD displays (figure 1 below),

interface kits (see figure 2) and RFID readers (see

figure 3), with the interface kit being a device which

allows for the attachment of a wide variety of different

sensors. Each Phidget device is provided with a

software component that is capable of connecting with,

or controlling the device; such components can be

either accessed directly (i.e. from code running on the

same computer that the Phidget is plugged into), or

over the network. Phidgets have been used in a wide

variety of prototype and finished systems, with one

example being SHIFD (http://www.shifd.com), a

system which supports the transference of notes,

addresses and links between mobile phones and

computers. Phidgets are a commercial product, but

have been widely used in academic research.

Figure 1 Phidget LCD

Figure 2 Phidget interface kit

Figure 3 Phidget RFID reader



A second example of a component-orientated system

that supports the development of network-spanning

applications is provided by iStuff, a product of the HCI

research group at Stanford University. Like Phidgets,

iStuff also consists of a set of devices and a controlling,

component-orientated software infrastructure, but a

difference between the two is that iStuff is more

focused on providing access to devices for non-

programmers.

In general, therefore, these previous efforts have

demonstrated that component-orientation does have

some relevance to the design of network-spanning

applications, and many of the ideas generated by these

efforts have been integrated into our collaboration. This

case-study does not, therefore, provide a contribution

by being the first to suggest this idea. Where we hope

to provide a contribution is in providing a detailed study

of the use of a component-orientated approach and

toolkit in the course of a real design process. Through

our work, we have developed a substantial body of

expertise in making use of such a methodology. As

researchers, we believe that studying the real use of

technologies can provide substantial benefits to the

future development of such technologies, and it is this

that we focus on in this case-study. Firstly, however,

we provide a brief overview of ECT, the tool that we

have chosen to adopt in our collaboration.

Overview of ECT

Throughout our collaboration, we have chosen to make

use of the Equator Component Toolkit (ECT), a pre-

existing software solution which, at the start of our

collaboration, was already in use by a number of

groups worldwide. ECT seemed likely to suit our

purposes, as it provides a set of components which can

be used to control a wide variety of electronic devices,

including the Phidgets which were introduced above. It

also provides a graphical editor, which can be used to

coordinate these components into more complex

systems. Most importantly for us, however, ECT also

provides facilities to support the construction of

systems that span networks; it can be used to search

for components hosted on any network-enabled device,

to examine the functionality that they provide, and to

request that they perform operations on behalf of the

user. It is easy to use ECT, for example, to display

information on small screens located around the home

using information transmitted over a network; as long

as a required set of display and networking hardware is

available, such behaviour should work “out of the box”.

Figures 4 and 5 show screenshots of interfaces

provided by ECT. Figure 4 shows the capability

browser, used to search for components on networked-

enabled devices, whilst figure 5 shows the graph editor,

used to assemble components into systems. There is no

space in this paper to provide a complete overview of

the process by which systems are constructed in ECT;

instead, examples presented in the case studies below

will illustrate particularly important features (and the

interested reader can refer to [1]). However, one

further feature is important to note; this is an open

system, into which new components can be added by

individuals with sufficient expertise. This is a facility

which we used substantially throughout our

collaboration, as our understanding of the kinds of

systems and components that we wanted to work with

progressed. However, we made a number of

modifications to increase the flexibility of ECT in this

respect, which are outlined in the first section of our

case study.



Figure 4 Capability browser

Figure 5 Graph editor

Studying our collaboration

We now move onto the core of our case study, which

focuses on a broadly chronological description of our

experiences in using ECT as part of a component-

orientated methodology to develop network-spanning

applications. We have selected three episodes from our

collaboration, each of which we describe in detail, and

each of which illustrates an important stage in our

design process. Throughout our collaboration, we have

made modifications to this tool, informed by our design

practice, and such modifications have then been used

in later design stages. Our exploration therefore sits on

the boundary between the design and technical

development process, and examines how both have

shaped each other during the process of our

collaboration. It should be noted that, in developing

this account of our experiences, we have made use of a

variety of sources of information, including our archives

of email records, sketchbooks, progress reports and the

debriefing of the designers and developers involved.

These sources of information have provided us with a

detailed record of our collaboration over the two years

of the project, and we hope that they have allowed us

to accurately report on our experiences in this period.

Episode one – prototyping of an ambient

communication channel between two homes

Our earliest experiments with designing and developing

network-spanning systems focused on the use of ECT in

the domestic environment. In order to gain experience

with the various technologies we wished to use, we

decided to use the existing components and facilities

provided by ECT to quickly put together an installation

that facilitated communication between two homes. In

doing so, we gained a significant amount of experience

in working with existing domestic infrastructures, such



as wireless networks and the AC power grid. We also

learnt more about the challenge of integrating

component-orientation into our existing design and

development methodologies. In light of this experience,

we chose to make a number of modifications to ECT

that streamlined its use in our design practice, and

these modifications are described later in this section.

However we first describe the experiences that

informed these modifications, which were orientated

around an existing ECT component called X10

Controller, which provided us with the ability to control

domestic lighting installations.

Our first experiments with this component involved a

simple system that allowed a user to use a computer to

control a desk lamp in their home through X10. We

extended this installation with a facility to control the

lamp through a hacked wireless keyboard, and then

moved on to an installation that allowed a user to

control a lamp in another home, for which we made use

of networking facilities that were already built into ECT,

alongside a pair of standard domestic broadband

connections. Finally, we spent some time

experimenting with techniques to turn these

technologies into a communication channel, and settled

on an installation that created the illusion of a pair of

lamps, one in each home, that appeared to be sharing

a standard AC power source. Figure 6 below shows the

equipment that was used in this deployment, whilst

figure 7 shows the installation in the context in which it

was installed. Each lamp was provided with a dimmer

switch (the unit with two coloured buttons), which was

monitored by a component, and which could be used to

request more or less virtual power from the shared

source. This meant that, if a user in one home

requested more power for their lamp, then the lamp in

the other home would automatically dim. This

installation was deployed into a number of homes, and

was used by the residences of these homes for some

time.

Figure 6 Equipment

Figure 7 Installation in home

In putting together this installation, we confirmed the

utility of ECT in putting together home and network-



spanning applications. However, we also substantially

modified our ideas of how to adopt component-

orientated development into our design process.

Initially, we had decided to adopt a model in which the

designers in our collaboration experimented with

components, and passed on any requirements for

change to the developers, who would make these

changes, and then distribute new versions of

components to the designers. This method was chosen

due to the nature of components in ECT; modifying

existing components, or adding new components,

requires the ability to develop code in a compiled

programming language, a task which requires a

substantial amount of technical computing knowledge

(and one with which our designers were not familiar).

However, in practice, this approach raised a number of

issues that caused us difficulties. Firstly, such a

dependency upon the developers to make any changes

to components slowed down our iterative design

process. Secondly, the designers in our collaboration

often struggled to learn how to use any components

that were provided by the developers, since they had

no knowledge of their internal workings. As such, we

decided to make a number of adaptations to ECT, which

have proved successful throughout the rest of our

collaboration.

Our primary adaptation was to integrate the Processing

[6] scripting language, in order to allow our interaction

designers to develop components themselves.

Processing is widely used for prototyping within the

interaction design community, and it is one with which

our designers were familiar. We have termed

components which have been developed through

Processing as lightweight components, and this

terminology is used throughout the rest of this paper.

At the same time, however, we continued to make use

of more traditional compiled components where

necessary, as these still provided a number of benefits,

including increased flexibility and performance. In the

rest of the paper, these are referred to as heavyweight

components.

In terms of the power-sharing installation, the two

main uses of lightweight components were in

developing an interface to the hacked wireless

keyboard, and in expressing and prototyping the

control logic at the heart of our installation. We also

developed lightweight components that allowed the

monitoring of the system by third-parties; this facility

proved useful as we moved towards trialling our design

in real homes. We were aided in the development of

these components by the extensive library of scripts

that have already been written by those working with

Processing. In addition, the development of new

features was simplified by the familiarity of the

designers in our collaboration with development

provided by Processing (see figure 8 for a screenshot of

this).



Figure 8 Processing IDE

Episode two – prototyping of components to

control small displays

After experimenting with the ambient communication

channel described above, the designers in our

collaboration became interested in using small displays

as a means of communication with domestic residents.

However, at the time, there were no components

distributed within ECT which were capable of

communicating with any small display technologies. As

a team, therefore, we decided to develop a new

component for this task, and this involved

investigations into a variety of different technologies.

This episode therefore illustrates a period of

collaborative technology design between the members

of the team, from which we have learned a number of

lessons.

The first technology chosen for investigation as part of

this process were LCDs provided as part of the Particle

family of technologies. Particle LCDs are text-only, with

each being capable of displaying three lines of twelve

characters. They are controlled by a Particle base-

board, a wireless device which runs an embedded

operating system (OS). Communication with this device

is by radio transmission, using a packet-based,

proprietary protocol. As such, integrating Particle LCDs

directly into systems takes substantial expertise in

software development in general, and in

communications software in particular. Due to the

technical difficulty of working with Particle LCDs, this

was not a task that the designers could undertake on

their own. Development of a component to control

Particle LCDs therefore took place in a more traditional

manner, with designers providing feedback on early

versions of components to developers, in order to

influence the design of later versions of components.

Since team members were working at different sites,

and in order to allow testing of newly-developed

components, identical sets of Particle technology were

purchased by each site, and each site maintained an

installation of ECT into which new components could be

installed for testing.

As a first attempt at providing access to these LCDs,

the developers produced a heavyweight component,

Particle LCD which could place an item of text at a

particular position on the screen, and distributed a

version of this component to the designers, via email.

Experimentation with this component, through

graphical interfaces provided with ECT, revealed the

need to fit more text onto the screen. The designers

adopted scrolling as one possibility, and prototyped

scrolling text by writing a simple lightweight component



that could be used to control Particle LCD, and to move

items of text around on its screen. This was then

distributed to designers, who experimented with it, and

discovered a limitation in the Particle OS, which they

corrected by modifying the OS itself. A new version of

the OS, along with a new version of the Particle LCD

component which had been modified to support

scrolling, was then distributed by email to the

designers, who tested it, and fed back more detailed

requirements as to how scrolling should work. These

requirements were expressed through a variety of

media, including text and video. Requirements were

then integrated into Particle LCD by the designers,

which continued in development until it was suitable for

use.

At this point, and despite a working heavyweight

component, the Particle platform was abandoned, in

favour of a more flexible solution built around Bluetooth

communication to repackaged mobile phones (see

figure 9 below for a photograph). However, earlier work

on developing scrolling routines was useful in

developing components to control displays on phones,

and code from the Particle LCD component was ported

across to a new component capable of controlling a

phone.

Figure 9 Mobile-phone based displays

In terms of integrating component-orientation into

design practice, this episode has raised a number of

interesting issues, and has resulted in a number of

suggestions for changes to the design of ECT (although,

in this case, these designs have not yet been

implemented). Importantly, this episode has illustrated

that, when components are written with the intention of

controlling physical, computational devices, then these

components cannot be considered to be self-contained

in the traditional sense of the word (as introduced

earlier in this paper). In the case of the Particle LCD

development process outlined above, the Particle LCD

component became dependent upon particular

modifications to the Particle OS for its successful

operation, and even without these modifications, this

component would still have been dependent upon

particular versions of the Particle hardware platform.

Versioning is a major issue here, and at times it has

caused us difficulties; we have lost considerable

amounts of time in making mistakes such as using a

newer version of Particle LCD to try to control a Particle

with an older version of the operation system. This

suggests that, if component-orientation as a technique

and technology is to become more useful in the

development of network-spanning applications that

make use of computational devices, that versioning

support needs to become an integrated, automated

part of the component-development process (unlike our

development process, in which we had to manually

track version changes). Potentially, such support might

make use of versioning information being embedded

into the component itself. It might have been possible,

for example, to distribute the Particle LCD component

with an embedded set of metadata to describe the

version of the hardware platform it required, and an

embedded version of the Particle OS, for installation



before use of the component (rather than the OS being

distributed separately, and installed by the designer).

Such changes might improve the efficiency of the

design process.

Episode three – assembling a complete

system

Episode one demonstrated our ability to construct

applications that spanned a network, whilst episode two

provided us with a facility to distribute information to

small LCDs. Building on these experiences, we began

work on the design of a completed system that we

intended to deploy into a number of homes. Our choice

was to make use of existing components where

possible, to write additional components where

necessary, and to assemble these components into a

working system through use of the ECT graph editor.

We then aimed to deploy this system for a lengthy

period of time, and to study the impact that its

deployment had on domestic life.

Our aim in building this system was, once again, to

provide a novel communication channel. This time,

however, we decided to focus on providing information

about the immediate environment that could be found

outside of the home. Having identified a number of

websites as being a source of local information, we

decided to construct a system that filtered this

information by measuring the wind direction on the

roof. By measuring this direction, by identifying

geographical areas that were upwind from the house,

and by gathering information from websites that

related to these areas, we hoped to provide residents

with interesting knowledge about their local area that

they may not have come across otherwise. By

distributing a network of LCDs around the home, and

by using these to display this information, we hoped to

provide an interesting talking point that would be a

valuable addition to daily life.

Of course, even once we had developed our ideas to

this stage, we were still a long way from a finished

system. We needed to refine the design of our system,

and we began this process by developing a number of

prototypes. These made use of a set of existing

heavyweight components with which we had become

familiar. Where required, these were augmented with

lightweight components which had been constructed

from Processing scripts. As in previous episodes, we

developed this system as team, and made use of a

number of “component-orientated diagrams” to aid us

in this process. Figure 10 below shows one of these

diagrams, which was produced midway during the

process of our prototype development. Each of the ten

blocks in this diagram represents one component, with

links between these blocks representing information

flow between components. Some of these components

already existed, whilst others did not. Producing such

diagrams allowed us to map out the current state of our

system, and our future implementation tasks.



Figure 10

One example of such a task is represented by the

component in the top left of figure 10. This particular

item was intended to represent a piece of software that

was capable of extracting information from an

anemometer. Having identified the need for this

component, we decided to simulate it by writing a

lightweight component which read from a static file of

wind simulation data. Later, this component was

replaced by a heavyweight component, written by the

developers in our collaboration, which was capable of

connecting to a real anemometer. A number of other

components were also prototyped and improved in this

manner. Components intended to filter local

information, for example, were prototyped using

lightweight components. The performance of these was

found to be insufficient, and they were replaced with

more efficient heavyweight components which had

been crafted by the developers. However, in all of these

cases, prototyping work carried out through scripting

simplified the later development work, and facilitated

the collaboration between members of our team.

Eventually, after a number of iterations, we settled

upon a final design for our system, and began a

process of testing which we hoped would produce a

system which would be sufficiently robust to deploy.

However, at this stage, we began to encounter a

number of difficult problems with ECT, which delayed

our progress. In particular, we struggled to keep any

ECT-based system running for more than a few hours;

repeatedly, they would all freeze after an unpredictable

period, for no apparent reason. After consultation with

the authors of the system, we traced our difficulties

down to a number of bugs with the implementation of

ECT, but fixing these took a lot of effort (and was never

satisfactorily completed). Consequently, we decided to

implement a stand-alone version of our system, which

was not component-orientated, but which implemented

all of the behaviour that we had been prototyping

throughout our design process. This stand-alone

version used much of the code from our existing

components, and, as a result, only took a few days to

develop. It worked reliably, and was deployed over a

substantial time period into a number of homes. There

is not the space in this paper to describe these

deployments, but they will feature in future

publications.

Discussion

This case-study has presented a number of interesting

episodes from our collaboration, which has centered on

the use of ECT in the prototyping and deployment of



network-spanning applications. We have used ECT

throughout a two-year time period, and have developed

a substantial amount of experience throughout this

time. We have found that it has facilitated our

collaboration in many ways, often allowing us to work

in more innovative and effective ways than would have

been possible otherwise. In addition, however, we have

encountered limitations and difficulties with this

software, which we have sometimes been able to

correct, and which have sometimes caused us

difficulties. In this section of the case-study, we reflect

on our experiences, drawing out themes, and

identifying important lessons. We have grouped these

into the following three sub-sections, and hope that

they will be useful to others.

ECT as a co-ordination point for collaboration

Our case study has illustrated the capability of ECT as a

co-ordination point for our design processes. As a large

group of individuals who are distributed across multiple

institutions, coordinating our progress has been

important, and ECT has supported such coordination in

a number of ways. Firstly, it has simplified the

processes by which we have collectively learnt about

the potential of technologies. This is illustrated in

episode one, in which designers made use of existing

facilities to distribute components across networks. By

deploying such systems into real homes, we gained a

substantial amount of knowledge about the capabilities

of common wireless networking technologies. Episode

two provides another example of this, in which an

extended, iterative design process resulted in a finished

version of a component that could control a small LCD.

Secondly, ECT has simplified the process of articulating

our understandings and needs in relation to software

and hardware; since ECT allows for the graphical

manipulation of components, this makes it easier for

designers to point to a component and say “I need it do

this” or “I don’t understand why it does that”. Finally,

by supporting the expression of a system as a set of

interconnected components, ECT has simplified the

process of refining the design of these systems. At

various times, team members have collectively looked

at a graphical representation of a system, identified

tasks that need to be done, and allocated responsibility

for these tasks. Such a process is illustrated in episode

three, in which components intended to gather wind

parameters and use them to filter information were first

prototyped as scripts, and then implemented as

heavyweight components. Such processes are also

illustrated in episode one, in which designers took on

the responsibility of prototyping the core logic of the

power-sharing installation, whilst developers focused on

perfecting the existing X10 controller component. Of

course, as described in episode 3, we chose not to

deploy component-orientated systems into homes,

preferring to focus on the development of more

efficient and traditionally structured software. This was

produced by the developers in our team, in a compiled

language, and as such would not be tractable to the

designers in our team. However, since so much ECT-

orientated prototyping had already taken place, the

specification and construction of this software was only

a minor task, and there was no need for the

modification of this at a later date.

Extending the notion of components

We began our collaboration by adopting the traditional

definition of a component as a self-contained unit of

software, whose inner workings were hidden, and which

would be developed by an expert computer user, for

the use of a less-expert computer user. Rapidly, we had



to abandon this notion, in favor of a more flexible

definition which suited out purposes better. Firstly,

such a definition slowed our design processes, due to

the creation of a dependency between developers and

designers. Secondly, learning to use components whose

inner workings are hidden can be hard, especially if the

design of these components is rapidly changing. And

finally, as illustrated in episode two, when components

are being developed to control individual devices, then

such components are effectively dependent upon

specific versions of devices and driver software, so are

no longer self-contained. Our response to these first

two points has been to extend the ways in which

components can be defined in ECT, by allowing the use

of the Processing scripting language for their

development. Effectively, this has allowed the creation

of components whose inner workings are visible (since

scripts can be dynamically inspected and modified

whilst the component is still running). We have not,

however, solved the issues of versioning that arise from

components no longer being self-contained; we hope

that future tools will provide support for such issues.

Augmenting existing design practice

Our description of ECT in this case study has placed it

at the centre of the design practice. However, in reality,

ECT had to coexist with a variety of other design tools,

some of which already had a well-established role in

design. On the side of the developers, these tools

included programming languages, compilers, and

software development environments. On the side of the

interaction designers, these included 3D printers and

Macromedia Flash. Integrating ECT such an existing

context took effort, and potentially involved a steep

learning curve, which sometimes delayed our short-

term progress. Our key observation here, therefore, is

that, although new tools will always require new

learning, tool designers are more likely to be successful

if they attempt to augment existing practice, rather

than replace it. In the case of ECT, limiting ourselves to

only heavyweight component development would have

represented an attempt to replace existing design

practice, and would always be likely to fail. By

integrating the Processing scripting language, however,

with which our designers were already familiar, we

found a way of making use of both their existing

experience and an existing library of Processing scripts.

Interestingly, although we have presented ECT as being

at the core of our collaboration, the designers in

particular have tended to see Processing as being at

core, with ECT taking on the role of an add on that

provided access to a range of hardware devices. This is

an interesting example of a conclusion that can only be

drawn from studying tools in use, and we would argue

that much more work needs to be done to understand

other tools in this context.

Conclusion

In this paper we have presented a case-study outlining

the use of ECT, a component-orientated design tool, in

a two-year collaboration between interaction designers

and technologists. We have studied the use of this tool

throughout the course of this collaboration, and have

presented the results in this paper. Studying the long-

term use of this tool has allowed us to develop our

understanding of the role of such a tool in an extended,

multi-site collaboration, and to provide information

which we hope will lead to the development of better

tool-support for network-spanning applications in the

future.



Acknowledgements

Research described in this paper has been supported

through the EPSRC Equator project (GR/N15986/01),

whilst writing of the paper has been supported through

the both the EPSRC Challenge of Widespread

Ubiquitous Computing project (EP/F03038X/1) and the

EPSRC Wearable Biosensing and the Design,

Documentation and Adaptation of Entertainment

Experiences project (EP/F066910/1)

References

[1] Greenhalgh, C., Izadi, S., Mathrick, J., Humble, J.

and Taylor, I. A Toolkit to Support Rapid Construction

of Ubicomp Environments. Proceedings of UbiSys

workshop at UbiComp 2004.

[2] Naur, P. and Randell, B. Software Engineering,

Report on a conference sponsored by the NATO Science

Committee , Garmisch, Germany, 7th to 11th October

1968. Available at:

http://www.cs.dartmouth.edu/~doug/components.txt

[3] Preece, J., Rogers, Y. and Sharp, H. Interaction

design: beyond human-computer interaction. Published

by Wiley, 2007 (2nd edition)

[4] http://news.bbc.co.uk/1/hi/sci/tech/1264205.stm

[5] http://www.phidget.com

[6] http://www.processing.org

http://www.cs.dartmouth.edu/~doug/components.txt
http://news.bbc.co.uk/1/hi/sci/tech/1264205.stm
http://www.phidget.com/
http://www.processing.org/

