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Abstract

When making predictions with complex simulators it can be impor-

tant to quantify the various sources of uncertainty. Errors in the struc-

tural specification of the simulator, for example due to missing pro-

cesses or incorrect mathematical specification, can be a major source

of uncertainty, but are often ignored. We introduce a methodology

for inferring the discrepancy between the simulator and the system in

discrete-time dynamical simulators. We assume a structural form for

the discrepancy function, and show how to infer the maximum like-

lihood parameter estimates using a particle filter embedded within a

Monte Carlo expectation maximization (MCEM) algorithm. We illus-

trate the method on a conceptual rainfall runoff simulator (logSPM)

used to model the Abercrombie catchment in Australia. We assess

the simulator and discrepancy model on the basis of their predictive

performance using proper scoring rules.
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1 Introduction

The increasing usage of computer simulators in science and decision making

raises many interesting statistical challenges. Because there is no natural

variability in a simulator experiment, quantifying the degree of confidence

in predictions is a task that needs to be explicitly undertaken by the mod-

ellers. For a given phenomenon and simulator of it, there are several sources

of uncertainty: parametric uncertainty from not knowing the ‘true’ param-

eters values; initial condition uncertainty; uncertainty in measurements of

the system (which is relevant if observations are used to improve forecast

performance in a data assimilation scheme, or if forcing functions are imper-

fectly observed); numerical solver error; uncertainties induced by different

temporal/spatial scales in the simulator and data; and finally, uncertainty

from errors in the specification of the structural form of the simulator. Ide-

ally, predictions should account for uncertainty, giving a forecast distribution

that incorporates and combines uncertainty from all of these sources.

In this paper we focus on quantifying the simulator structural error in

dynamical systems. There are a large variety of reasons why simulators are

nearly always imperfect representations of the physical system they were de-

signed to predict. For example, modellers’ understanding of the system may

be flawed, or perhaps not all physical processes were included in the analysis,

and so on. This discrepancy has variously been called model error, model

discrepancy, model structural error, and the term we use, simulator discrep-

ancy. Once we accept the existence of simulator discrepancy, it is natural

to ask whether we can either improve the simulator or quantify the error.
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The modeller might seek to improve their simulator through more accurate

theory. Instead, we ask what can be learnt empirically about the simulator

discrepancy, using past predictions and subsequent system observations.

While many methods have been proposed for dealing with parametric and

initial condition uncertainty (Saltelli et al., 2000; Oakley and O’Hagan, 2002)

and controlling numerical errors (Oberkampf and Trucano, 2008), methodol-

ogy for quantifying simulator discrepancy is less well developed. The methods

that have been proposed broadly classify into subjective methods that rely on

expert knowledge (Goldstein and Rougier, 2009; Vernon et al., 2010; Strong

et al., 2011), metric based methods to quantify the degree of error in past

performance (Beven, 2006), turning deterministic dynamics into stochastic

dynamics (see for example, Crucifix and Rougier (2009)), allowing param-

eters to vary through time (Kuczera et al., 2006; Reichert and Mieleitner,

2009), using ensembles of predictions from different simulators (Smith et al.,

2009; House et al., 2011), data assimilation based methods (Griffith and

Nichols, 2000), and direct statistical modeling of the simulator discrepancy

(Kennedy and O’Hagan, 2001; Higdon et al., 2008; Goldstein and Rougier,

2009).

The method that is developed here is most closely related to the method-

ology proposed in Kennedy and O’Hagan (2001). They modelled the simula-

tor discrepancy as a state dependent random function using a Gaussian pro-

cess model. Their approach was for a static experimental situation in which

observations were made for different values of the input conditions. The ap-

proach does not easily extend to the analysis of dynamical systems. To see

why, suppose the output of the simulator is the prediction of a time-series
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of observations, y1, . . . , yn. Under the approach in Kennedy and O’Hagan

(2001), the discrepancy would be a function from the initial conditions to a

time-series of length n. When n is moderate to large in size, unless a suit-

ably large number of independent trials (time-series) are available then we

are unlikely to be able to successfully model the discrepancy. By consider-

ing the simulator discrepancy on the level of the dynamics, rather than the

static form used in Kennedy and O’Hagan (2001), we reduce the dimension

of the input and output space of the discrepancy function. Their approach

is also not suitable in situations where we want to combine the simulator

predictions with past observations in a data assimilation scheme in order to

improve performance, which is common in many fields.

In this paper we focus solely on dynamical systems, where we assume

there is a state variable x evolving through time which is noisily observed

at discrete times, giving equally spaced observations y1, . . . ,yT . We aim to

quantify errors in the prescribed dynamics of the simulator, and to learn the

simulator discrepancy as a function of the current state vector. Quantify-

ing the simulator discrepancy can be thought of as involving two separate

issues: estimating the direction and magnitude of the bias; and quantifying

the remaining uncertainty. We aim to do both, modelling the bias using a

simple linear regression and quantifying the remaining uncertainty using an

additive Gaussian white noise term. Although this is a simple model for the

discrepancy, it should be contrasted with the usual approach in data assimi-

lation schemes, which is to either ignore simulator discrepancy, or to use just

an additive Gaussian white noise term.

Learning the discrepancy on the dynamics is inferentially difficult, as the
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true state xt is never observed. The simulator dynamics are a map from the

state vector x, to another state at a later time, and it is here where we seek

to train the discrepancy, but using only noisy observations y1, . . . ,yT .

The focus of our approach is on improving the predictive power of the

simulator. We aim to give probabilistic predictions of future observations

that adequately represent the uncertainty in our predictions. Given observa-

tions up to time t, y1, . . . ,yt, we aim to provide forecasts π(yt+k|y1, . . . ,yt)

of future events so that the future holds fewer surprises, in the sense that the

tails of our distribution are neither too light nor too heavy. This approach

is in contrast to focussing on the explanatory power of the simulator, where

we would instead aim to achieving a good fit of the simulations to previously

observed data (Shmueli, 2011). We do not address the issue of calibrating un-

known simulator parameters here, but instead assume that we are provided

with a precalibrated simulator in order to quantify its prediction error.

The structure of the paper is as follows. In the next section we describe

the framework used to quantify the discrepancy, the methodology to learn

the discrepancy, and comment on how to assess probabilistic forecasts made

by dynamical systems using scoring rules. In Section 3 we illustrate the

methodology on a conceptual rainfall-runoff simulator of the Abercrombie

water-basin in Australia that has been the focus of several previous uncer-

tainty quantification studies in hydrology. Section 4 offers discussion. A

further case study and technical details of the algorithm are available in the

online supplementary material.
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2 Theory

2.1 Statistical forecasting framework

We consider simulators of dynamical systems in which a state vector evolves

in time and is noisily observed at regular intervals. Let xt ∈ Rd denote the

value of the state vector at time t, and let x0:T = {x0, . . . ,xT}. We assume

we are given an imperfect simulator of the system dynamics, f , that is used

to predict one time-step ahead

xt+1 = f(xt,ut). (1)

For example, f could be a simulator that numerically integrates a system of

differential equations dx
dt

= h(x,u, t) with xt as the initial condition. The

vector ut contains the forcing functions required by the simulator for the

time period in question, and is included in the notation to emphasise that

the simulator is a fixed function, not varying through time. Note that we

assume the simulator has been calibrated previously, so that there are no

unknown simulator parameters that need to be estimated.

We now impose a statistical framework that allows us to relate the sim-

ulator to the observations. This consists of two parts; the first relates the

observations to the system (the measurement process), and the second re-

lates the simulator prediction to the system (the simulator discrepancy). Let

y0:T = {y0, . . . ,yT} denote a sequence of observations of the state that are

conditionally independent given x1, . . . ,xT and assume that yt = g(xt) ∈ Rp,

where g(·) is a stochastic mapping, and that the observation likelihood,
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π(yt|xt), is known and can be evaluated point-wise.

The second part of the statistical framework is to relate the simulator

to reality, by specifying a model of the simulator discrepancy. A common

approach in data assimilation is to model the discrepancy as a white noise

term, so that errors are independent and identically distributed. This is

equivalent to making the assumption that the prediction error of f is similar

in all parts of space. However, in many scenarios the simulator discrepancy

is smaller in some regions of space and larger in others. This occurs in

the free-fall case study in the supplementary material where we consider a

simulator of a falling object with the wrong specification of air-resistance. At

low velocities the simulator is accurate, but at higher velocities the simulator

error is large. Representing simulator discrepancy as a white noise process

ignores this subtlety.

To account for varying simulator accuracy in different parts of space, we

introduce a state-dependent simulator discrepancy δ(·), which is a function

of the current state and forcings. We assume that the system dynamics are

xt+1 = f(xt,ut) + δ(xt,ut). (2)

Contrast these dynamics with the simulator dynamics in Equation (1). The

aim of this paper is to describe methodology to infer the functional form of

δ, and to show that the effort of moving from a white simulator discrepancy

to a state-dependent discrepancy can significantly improve the performance

of the forecasting system. We assume a simple parametric form for δ linear

in the parameters and use ordinary least squares regression to estimate the
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unknown parameters in δ.

Let δ(x,u) = (δ1(x,u), . . . , δd(x,u))>. For ease of exposition, we as-

sume that δi(x,u) and δj(x,u) are conditionally independent given x (they

are unconditionally dependent), so that we we can consider the simulator

discrepancy in each of the d dimensions of x separately. We assume that

δj(x) = pj(x,u)βj + εj (3)

where βj is a vector of J unknown parameters, pj = (p
(1)
j , . . . , p

(J)
j )> is a row

vector of J specified functions of x and u, and εj ∼ N (0, τj) independently

sampled at every occurrence. Let θ denote the collection of the d× (J + 1)

unknown parameters in δ. For a deterministic simulator, the probability

density function for the system dynamics of x assumed by our statistical

framework is

π(xt+1|xt, θ) =
d∏

j=1

1√
2πτj

exp

[
− 1

2τj

(
xj,t+1 − fj(xt,ut)− pj(xt,ut)βj

)2]
(4)

where fj is the jth dimension of the simulator output, and xj,t+1 is the jth

component of xt+1. We do not explicitly include the forcings u in the density

notation, as we assume they are observed without error.

Estimation of the simulator discrepancy for the dynamics of x, can raise

philosophical difficulties. Unobservable quantities can be problematic as they

are in some sense merely labels; it can be unclear what, if any, physical reality

they represent. In conceptual models, x is often viewed only as a useful tool

for modelling and forecasting purposes, but not necessarily as having an
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operationally defined physical meaning. We can avoid the problem of talking

of the error in the dynamics of (the label) x by thinking of δ as a way of

decreasing/quantifying errors in forecasts of the observables y, and choosing

not to focus on a direct interpretation of δ. In the next section, we introduce

methodology for estimating θ. We drop the use of bold notation for vector

quantities.

2.2 Inference for δ(·)

Inferring the shape of the simulator discrepancy is difficult, as it acts on the

dynamics of the unobserved state vector, and thus the likelihood function

L(θ) = π(y1:T |θ) is unknown in closed form ffor all nonlinear simulators.

By introducing the hidden state trajectory x0:T into the calculation, the

conditional independence structure of the statistical framework can be used

to gain a degree of tractability. The likelihood of θ given x0:T and y0:T is

π(x0:T , y0:T |θ) =

(
T∏

t=0

π(yt|xt)

)(
T−1∏
t=0

π(xt+1|xt, θ)

)
π(x0) (5)

allowing the EM algorithm (Dempster et al., 1977) to be used to find the

maximum likelihood estimate, θ̂ = arg maxθ L(θ), by using x0:T as the missing

data. The EM algorithm is iterative, generating a sequence θ(1), θ(2), . . . with

θ(n+1) = arg maxθ Q(θ, θ(n)) where

Q(θ, θ(n)) = EX

[
log π(X0:T , y0:T |θ)|y0:T , θ(n)

]
, (6)
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so that θ(n) converges to a maxima of L(θ). The expectation in Equation

(6) is taken with respect to the smoothing distribution π(x0:T |y0:T , θ(n)),

which is unknown in general and cannot be computed analytically. However,

we can sample from π(x0:T |y0:T , θ(n)) using sequential Monte Carlo meth-

ods. If {x(i)
0:T}i=1,...,M are samples from π(x0:T |y0:T , θ(n)), we can approximate

Q(θ, θ(n)) by

Q̃(θ, θ(n)) =
1

M

M∑
i=1

log π(x
(i)
0:T , y0:T |θ), (7)

and then seek to maximize Q̃, allowing us to bypass the computationally

intractable expectation. A consequence of using the Monte Carlo EM al-

gorithm, is that we lose the likelihood-ascent property of the standard EM

algorithm, and so cannot guarantee convergence (Wei and Tanner, 1990).

However, the number of Monte Carlo samples, M , can be increased for each

iteration of the EM algorithm, so that the Monte Carlo error in the estima-

tion of the expectation decreases as we converge on the maximum likelihood

estimate θ̂ (Caffo et al., 2005).

Substituting Equation (5) into Equation (7) reduces the problem to max-

imising
M∑
i=1

T−1∑
t=0

log π(x
(i)
t+1|x

(i)
t , θ) (8)

with respect to θ, where we have used the assumption that the prior distri-

bution for x0 and the observation process do not depend on θ. For various

choices of parametric family for δ, Equation (8) can be maximized analyt-

ically. In particular, if δ is a linear model with Gaussian noise, such as in

Equation (3), then when we substitute Equation (4) for π(xt+1|xt, θ), and re-

call that we are assuming conditional independence between the components
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of δ, the maximization problem in Equation (8) separates into d minimization

problems: for j = 1, . . . , d minimize

1

2τj

M∑
i=1

T−1∑
t=0

(
x

(i)
j,t+1 − fj(x

(i)
t , ut)− pj(x

(i)
t , ut)βj

)2

+
1

2
MT log τj. (9)

These optimization problems can be seen to be equivalent to the classical least

squares optimization. Let vj be the response vector for optimization j, found

by stacking elements x
(i)
j,t+1−fj(x

(i)
t , ut) for i = 1, . . . ,M and t = 0, . . . , T −1,

and let Zj denote the corresponding design matrix found by stacking the rows

pj(x
(i)
t , ut) in the same order as for vj. Maximizing Equation (9) then gives

β̂j = (Z>
j Zj)

−1Z>
j vj

τ̂j =
1

MT
(vj − Zjβ̂j)

>(vj − Zjβ̂j),

which are the usual maximum-likelihood estimates.

To generate sample trajectories, x0:T , from π(x0:T |y0:T , θ), we use the

bootstrap particle filter (Gordon et al., 1993; Doucet et al., 2001) and ap-

proximate the filtering distributions by a sample of N weighted particles.

Details of the algorithm are given in the supplementary material. While in

theory the filter generates N smoothed trajectories, in practice the marginal

distribution of x0 will be degenerate, with typically the same value of x0 be-

ing observed in all N trajectories. To generate M smoothed trajectories, we

implement M independent filters, and randomly pick a single smoothed tra-

jectory from the final filtering distribution in each filter. Because each filter

is independent, we avoid the problem of degeneracy for x values towards the
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start of the time-series. An alternative way to avoid degeneracy would be to

use a particle smoother, such as that suggested by Godsill et al. (2004), but

at the cost of making parallelization more difficult.

Because we are using the MCEM algorithm with finite sample size, the

parameter estimates will continue to fluctuate even after having essentially

converged. A stopping rule can be used to decide when to terminate the

iterations in the EM algorithm, such as requiring a maximum percentage

change in the MLE estimates over consecutive iterations. The stringency of

the stopping criterion applied will depend on the size of N and M and on

the identifiability of the discrepancy parameters.

A drawback of using the EM algorithm to estimate the MLEs is that er-

ror estimation is difficult as the marginal likelihood is not directly available.

Standard error estimates are usually found by estimating the Hessian matrix

using numerical differentiation, which can then be inverted to estimate the

asymptotic variance of the MLE. For example, the supplemented EM algo-

rithm (Meng and Rubin, 1991) uses an identity relating the Hessian matrix

to the second derivative of Q and the first derivative of the EM operator

(i.e., the derivative of M(θ(n)) = arg maxθ Q(θ, θ(n))). These approaches are

unlikely to work for the MCEM algorithm. Because we approximate Q by

a Monte Carlo sum in the MCEM algorithm, numerical differentiation of Q

and of M(θ(n)) is likely to be both prohibitively expensive (computationally)

and unstable in most cases. As the focus of our paper is on improving the

predictive power of simulators, rather than on the value of the estimated

discrepancy, we do not focus on the uncertainty of the parameter estimates

here. If uncertainty estimates of the parameters are required, then a Markov
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chain Monte Carlo (MCMC) approach is likely to be a simpler way to ac-

cess the uncertainty distributions than the EM algorithm, although this will

require considerably more computation.

2.3 Assessing forecasting systems

Our motivation for quantifying simulator error is to improve forecasting

power, both in terms of reducing absolute error and quantifying uncertainty.

As the majority of statistical diagnostic tools are designed to assess explana-

tory power rather than predictive power (Shmueli, 2011), we now make clear

how we will judge the success or otherwise of a forecast.

We base the assessment on the ability to predict future observations

given past observations, via the use of the k-step-ahead forecast distributions

π(yt+k|y1:t). We use a training sequence of data y
(1)
1:T1

to train the model, and

then use an independent validation data set y
(2)
1:T2

in the testing. To find

π(yt+k|y1:t) we use a data assimilation scheme to obtain the filtering dis-

tributions π(xt|y1:t), before propagating these through Equation (2) to find

π(xt+k|y1:t) and then through the observation process to find π(yt+k|y1:t). It

is not possible to analytically calculate these distributions and so all cal-

culations are done using weighted ensembles of particles obtained from the

particle filter.

We wish to assess both the bias and the uncertainty quantification of

the forecasts. To assess the bias, we only need the means of the forecasts.

Let mt(k) = E(yt+k|y1:t) be the mean k-step-ahead forecast at time t. We

use the mean-square-error (MSE) and the Nash-Sutcliffe (NS) statistic (Nash
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and Sutcliffe (1970)) applied to the mean forecast

MSE =
1

T − k

T−k∑
t=1

(yt+k −mt(k))2, NS = 1−
∑T−k

t=1 (yt+k −mt(k))2∑>
t=k+1(yt − ȳ)2

to assess the accuracy of the mean forecast. The Nash-Sutcliffe statistic is

an analogue of the coefficient of determination, R2, and is commonly used

in hydrology to assess simulator accuracy. It compares the mean forecast

performance with the performance of the climatological forecast ȳ = 1
T

∑
yt.

The values are often converted to percentages, so that 100% indicates per-

fection. Any score greater than 0% indicates superior performance to the

climatological forecast.

Although the mean-square-error and Nash-Sutcliffe statistics are useful

for quantifying the bias of forecast systems, they ignore any quantification

of uncertainty. Scoring rules can be used to assess probabilistic forecasts,

as they judge forecasts not only on their mean prediction, but also on the

accuracy of the uncertainty quantification (see Jolliffe and Stephenson (2003)

for an introduction). A score is said to be proper if it is optimized for

well-calibrated probability assessments (Gneiting and Raftery, 2007), and

propriety is considered an essential attribute in scientific forecast evaluation.

We use the continuously ranked probability score (CRPS) (Gneiting and

Raftery, 2007), which is a proper scoring rule. If π(·) is the density function

of the forecast and if y is the observation, then it can be shown that the

CRPS can be calculated as

crps(π, ỹ) = Eπ||Y − y|| − 1

2
Eπ||Y − Y ′|| (10)
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where Y and Y ′ are independent copies of a random variable with probability

density function π(·). This representation allows the CRPS to be estimated

by a Monte Carlo estimate using an ensemble of forecasts. Note that if the

forecast is deterministic (so that π(y) is the Dirac delta function δY (y)), then

Equation (10) reduces to the absolute error, crps(δY , y) = |Y − y|. Hence,

the CRPS generalises the absolute error, allowing us to compare probabilistic

and deterministic forecasts.

We compare forecasting systems by calculating the average score across

a sequence of observations,

CRPS =
1

T − k

T−k∑
t=1

crps(πt,k, yt+k),

where πt,k is the distribution of the k-step-ahead forecast. Both scores are

written in their negative orientation, so that the forecast system with the

smallest value is preferred. We convert the raw CRPS value into a skill

score by comparing it to the score attained by a reference forecast (such

as climatology) in the same way the Nash-Sutcliffe statistic converts raw

mean-square-error values into a percentage by comparing the forecast with

climatology ȳ. We define the continuously ranked probability skill score

(CRPSS) to be

CRPSS = 1−
CRPSforecast
CRPSreference

,

which can also be converted into a percentage. Finally, plots of the forecast

errors versus the fitted values can also be used to assess the forecasting

system.
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3 Case study: Rainfall-runoff simulator

The supplementary material contains a simulation study in which the motion

of an object in freefall is simulated with no air resistance. We demonstrate

that noisy observations of the object’s location can be used to infer the error

in the dynamics of the simulator with great accuracy. In this section we

focus on a more complex simulator from hydrology that has been the subject

of several previous analyses in the literature on uncertainty quantification in

computer experiments (Kuczera et al., 2006; Reichert and Mieleitner, 2009;

Conti et al., 2009). The logSPM simulator is a conceptual rainfall-runoff

model from the saturated path modelling (SPM) family (Kavetski et al.,

2003) used to model the conversion of rainfall into runoff. The model can

be considered as three linked conceptual stores (representing soil, ground,

and river water stores) with flow between, in, and out of the compartments

at different rates. Each store can be thought of as a box, with a base area

equal to the area of the catchment, containing a varying depth of water

(see Figure 1). Water enters the catchment area as rain and leaves either

through river discharge, evaporation, or percolation to deep aquifers. We

model the system by a three dimensional temporally varying state vector,

denoted h(t) = (hsoil(t), hgw(t), hriver(t)), which represents the spatially aver-

aged depth of water in each store (measured in mm) at time t. The mathe-

matical specification of the simulator is given by mass balance equations for

each of the three conceptual stores.

1. The depth of water in the soil store is denoted hsoil(t) (mm), and

increases at rate (1 − fsat(t))R(t), due to mass flux from rain, R(t)
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(mm/day), minus surface runoff, R(t)fsat(t). The proportion of rain

diverted to overland flow depends on the soil saturation, modelled as

fsat(t) =
1

1 + φF exp(−φshsoil(t))
− 1

φF + 1
.

Water in the soil store decreases due to lateral subsurface flow to the

river store at rate φlatfsat(t), percolation to the ground water store at

rate φgwfsat(t), and evapotranspiration at rate fet(t)P (t), where P (t)

is the potential evapotranspiration (mm/day), and the ratio of actual

to potential evapotranspiration is related to the soil saturation by the

model

fet(t) = 1− exp(−φethsoil(t)).

Mathematically,

dhsoil

dt
= (1− fsat(t))R(t)− φlat fsat(t)− φgw fsat(t)− fet(t)P (t).

2. The ground water store (deep aquifers) is a linear reservoir with depth

hgw(t) (mm). The depth increases due to percolation from the soil at

rate φgwfsat(t), and decreases due to base flow to the river store at rate

φbfhgw(t), and percolation to deep aquifers at rate φdphgw(t):

dhgw

dt
= φgwfsat(t)− (φbf + φdp)hgw(t).

3. The river water store temporarily delays the water flow in the river,

and is modelled as a linear reservoir of depth hriver(t) (mm). The depth
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increases due to surface runoff at rate R(t)fsat(t), lateral subsurface flow

at rate φlatfsat(t), and base flow from groundwater at rate φbfhgw(t). It

decreases due to river flow out of the watershed at rate φrhriver(t):

dhriver

dt
= R(t)fsat(t) + φlatfsat(t) + φbfhgw(t)− φrhriver(t).

The final output of the simulator is the river flow, Qr(t), which is the product

of the watershed area Aw and the river runoff flux φrhriver(t):

Qr(t) = Awφrhriver(t).

See Figure 1 for a visual representation of the simulator. The two external

forcing functions relate to weather conditions for the day in question; the rain,

R(t), and the potential evapotranspiration, P (t). There are eight simulator

parameters, denoted φ·, which we fixed at values estimated in Reichert and

Mieleitner (2009), with φs = 0.02, φF = 125, φet = 0.016, φlat = 1.5, φgw =

4.9, φbf = 0.0002, φr = 0.6, and φdp = 0.02. In a more comprehensive

analysis, we may wish to let these parameters vary and estimate them along

with the discrepancy function. However, for the purposes of this paper, we

suppose we are given a calibrated simulator that we treat as a black-box, for

which we then attempt to characterize and quantify the discrepancy.

FIGURE 1 ABOUT HERE.

Data are available from the Abercrombie watershed in New South Wales,

Australia, from the year 1972 to 1976. Of the three state variables, only a

function of the river flow hriver(t) is observed, which again highlights the
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difficulty faced when quantifying model error: noisy observations of one of

the three state vectors are used to estimate the uncertainty in the dynamics

of all three quantities. Reichert and Mieleitner (2009) and Kuczera et al.

(2006) examined the logSPM simulator for the Abercrombie watershed using

the same data as we use below. Both approaches focused on allowing the

simulator parameter values (φ·) to change through time: Kuczera et al. (2006)

looked for storm dependence in the parameter values; Reichert and Mieleitner

(2009) used stochastic model parameters and introducted multipliers onto

the forcing terms to correct for input errors, and then inferred the implied

dynamics of the parameters through time. We prefer to take a different

approach and use constant (calibrated) simulator parameters, and instead

look to learn a functional form for the simulator discrepancy.

Our statistical framework for relating the simulator to the observations,

can be broken down into two parts. We start by relating the simulator

dynamics to the system, before then describing a model relating the system

to the observations. For the discrepancy model we used a linear combination

of the three state variables and the two forcing functions, a constant bias

term, plus white noise Gaussian residuals for each of the three dimensions in

the dynamics:

δ(h,u) =


δs(h,u)

δgw(h,u)

δr(h,u)

+ ε =


as + b>

s h + c>s u

agw + b>
gwh + c>gwu

ar + b>
r h + c>r u

+ ε , (11)
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where h = [hs hgw hriver]
> ∈ R3 is the state vector and u = [R P ]> ∈ R2 the

two weather forcing functions. The linear parameters for the soil dynamics

discrepancy are grouped in the vectors bs = [bs,1 bs,2 bs,3]
> ∈ R3 and cs =

[cs,1 cs,2]
> ∈ R2, whilst the constant bias is given by the scalar as. Similarly,

the other vectors agw, ar,bgw, br, cgw, cr represent the same coefficients for

the ground water and river state dynamics. The remaining discrepancy is

modelled by Gaussian white noise, with ε ∼ N (0, Σ) where Σ is a diagonal

matrix with diagonal entries (σ2
s , σ2

gw, σ2
r). More complex choices, such

as non-diagonal choices for Σ, heteroscedastic variances, and more complex

structural forms in Equation (11) can be considered within this framework.

To relate the observations to the system, we follow Reichert and Mieleit-

ner (2009) and apply a transformation (Box and Cox, 1964) to the obser-

vations and predicted system value in order to reduce the heteroscedasticity

of the residuals. We assume independent identically distributed Gaussian

measurement error on the transformed river flow, log(Qr + λ), so that

log(Qr + λ) ∼ N (log(Awφrhriver(t) + λ), s2), (12)

where we take the measurement variance to be s2 = 0.1 (Aw = 2770km2

for the Abercrombie catchment). The effect of applying the logarithmic

transformation to the data is to induce a heteroscedastic variance on the

measurement process, so that on days with small average river flows the

measurements are assumed to have a smaller variance than on days for which

the average river flow was large.

TABLE 1 ABOUT HERE.
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To train the discrepancy model δ(h,u), we used a half year period (180

days) of contiguous observations from the Abercrombie dataset (observations

from 16 June 1975 till 11 December 1975). We used N = 2000 filtering par-

ticles and M = 50 smoothed trajectories in the MCEM algorithm described

in Section 2.2. We tested various starting points for the parameters, and

although some variation in the estimated values is observed due to using

the Monte Carlo EM algorithm, we found that this variation did not have

a large effect on the predictive power of the forecasting system. The es-

timated maximum-likelihood values are given in Table 1. Notice that the

estimated variance term for the river discrepancy function is several orders

of magnitude smaller than for the soil or ground water discrepancy. This is

expected, as we observe the river flow, but not the other two water stores.

In general we find that inferring relationships involving observed quantities

(rain, potential evapotranspiration, and river flow) is easier than inferring

relationships involving the unobserved soil and ground water stores.

The raw parameter estimates are not particularly informative. To as-

sess the impact of our efforts we need to examine the predictive performance

of the forecasting system. We do this by reporting the mean square er-

ror (MSE), the Nash-Sutcliffe statistic (NS), and the continuously ranked

probability skill score (CRPSS). We use the bootstrap particle filter (see the

supplementary material) to find a weighted sample of particles {W (i)
t ,h

(i)
t }

which approximates π(ht|Q1:t), and then run the system forwards in time for

each particle to find the one- and five-step-ahead predictions, which can then

be compared with the observations. We propagate each particle h
(i)
t through

the system dynamics (Equation (13)) k times to get a weighted sample of
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particles {W (i)
t ,h

(i)
t+k} which approximate the density π(ht+k|Q1:t). Finally,

we propagate the particles through the observation process (Equation 12),

adding Gaussian noise, before applying the inverse Box-Cox transformation

to get values which can be directly compared with the raw observations. Let

Qrep
t+k denote the theoretical replications of the (t + k)th observation, each of

which will have an associated weighted Wi, giving a weighted sample of points

{W (i)
t , Q

rep,(i)
t+k } that approximates the predictive distribution π(Qrep

t+k|Q1:t).

This distribution can then be compared to the observed value Qt+k, taking

care to use weighted averages to calculate the predictive mean and variance.

We compare the performance of three different forecasting systems:

(ODE) logSPM with measurement process only (no simulator error). A com-

mon assumption made when using complex simulators is to assume

that the observations arise from the simulator prediction plus measure-

ment error, ignoring any simulator discrepancy. We use this forecasting

system as the benchmark against which we measure any improvements

made by quantification of the simulator discrepancy. The observation

process is applied N times to get an ensemble comparable with that

generated by the other forecasting systems.

(VAR) logSPM plus a white noise simulator discrepancy and measurement

process. We assume no deterministic bias in the model discrepancy

(setting a· = b· = c· = 0 in Equation (11)) and use system dynamics

ht+1 = f(ht,ut) + εt with εt ∼ N (0, D), where D is a diagonal

matrix. We estimated the variances to be σ2
s = 97.6929, σ2

gw = 4.4354

and σ2
r = 0.0004 using the MCEM algorithm.
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(FULL) logSPM plus full discrepancy model and measurement process. We

assume the system dynamics are described by

ht+1 = f(ht,ut) + δ(ht,ut). (13)

During the assessment phase, the parameter estimates for δ remain

fixed at the values shown in Table 1.

Tables 2 and 3 show the results from assessing the three forecasting sys-

tems on the training data (data from 16 June 1975 to 11 December 1975),

for the one- and five-step-ahead predictions. We can see that the system

that uses the full discrepancy model (Equation (13)) out performs the other

two systems on all three measures. The inclusion of any simulator discrep-

ancy, VAR or FULL, leads to superior predictions over the simulator only

system (ODE). The use of the full discrepancy model (FULL) does bring im-

provement over the variance only model (VAR), but not by a great amount.

Figure 2 shows the fitted residuals for the ODE and FULL forecast systems.

Both plots show evidence of correlated residuals, showing that further mod-

elling improvements could still be made, although the correlation is much less

extreme when using the full discrepancy. The simulator only residuals are

not centred around zero showing a systematic departure from the modelling

assumptions, whereas the residuals for the discrepancy model are centred

around the line y = 0, as would be expected if the model were true. Also

plotted are dashed lines showing two standard deviations either side of y = 0,

at y = ±2s where s is the standard deviation of the measurement process. If

the assumed level of measurement error is accurate, then we would expect ap-
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proximately 95% of the 180 observations to lie within these two dashed lines

if the simulator was perfect. This occurs for the full discrepancy forecasting

system, but is clearly not the case for the simulator only system (ODE).

TABLES 2 AND 3, AND FIGURE 2 ABOUT HERE.

If we test the forecasting systems on an independent data set, i.e., on

data that was not used in the training procedure, then the results are not

always so positive and it is possible to make worse predictions using the full

discrepancy model than when simply using the simulator only. For example,

testing the forecasting systems on the same period, but from the year 1976,

yields a CRPSS of 60% for the ODE system, but a value of only 21% for the

FULL system (VAR scores best with 81.4%), which is superior to climatology,

but poorer than the deterministic ODE model. There are a few reasons why

we believe we see this drastic drop off in performance. The first is that the

results here were obtained after fitting the model to a short period of only 180

days. As found in Kuczera et al. (2006), the simulator discrepancy is largest

during periods of high rainfall (storms). For the training data used there was

essentially only a single large storm during this time, and so it seems likely

that we have over-fit the model. By using a longer training period of data

collected during more representative conditions, we hope to be able to solve

the problem of overfitting. We also found evidence of seasonal dependence,

with the simulator discrepancy taking a different form in summer months to

that found in the winter months. We could attempt to correct this by either

fitting separate discrepancy functions during the different seasons (assuming

we have enough data to do this), or by including an element of seasonal

dependence into the structural form of the discrepancy.
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Finally, it should be noted that the discrepancy model used is extremely

simple. Extending the model to allow heteroscedastic variances in the dis-

crepancy model (i.e., making Var(ε) state dependent) either through the use

of generalised linear models, or through another normalising transformation,

may lead to an improvement in the quantification of uncertainty. The simu-

lator discrepancy is largest during storms, and relatively small during periods

of minimal rain, however the model we have fit here only allows for a single

variance for the discrepancy, regardless of the weather, and so is a compro-

mise between the two different situations. Finally, using a more complex, or

non-parametric mean function (such as a Gaussian process) for the discrep-

ancy in Equation (11) would allow us greater flexibility to capture any signal

about the shape of the discrepancy function.

4 Discussion

If we wish to make predictions that take uncertainty into account then we

must include some description of simulator discrepancy. In this paper, we

specified a statistical model for the simulator discrepancy function and have

then shown how to use a training period of simulator predictions and subse-

quent observations to calibrate the statistical model. The focus here was on

simple linear models for δ with homoscedastic error. Several immediate ex-

tensions are possible within this framework, such as the use of general linear

models to allow heteroscedastic errors with state dependent variance, as well

as allowing for correlation between different dimensions of the discrepancy

function. We focused solely on quantifying simulator discrepancy, not on sim-
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ulator calibration. In the case where we also wished to estimate uncertain

simulator parameters we could either calibrate the simulator before fitting

the discrepancy model, as done in this paper, or attempt to jointly infer both

sets of parameters. A joint approach is preferable, but raises computational

and statistical problems and has not been considered in this paper. We sus-

pect that in most problems a high degree of non-identifiability would exist

among the simulator and discrepancy parameters.

The method proposed is computationally expensive, as it requires the

repeated use of a particle filter embedded within the EM algorithm, which in

turn requires repeated draws from the simulator. For expensive dynamical

simulators, we could dynamically emulate the simulator as described in Conti

et al. (2009), and use the emulator as a cheap statistical surrogate for the

simulator to decrease computation time. To avoid running the particle filter

an excessive number of times, we used a maximum likelihood approach to

estimate the parameters in the discrepancy function. However, fixing the

parameters at their maximum likelihood values ignores the uncertainty in

the estimates. This could be avoided with a Bayesian approach, but at the

expense of further computation.

Finally, note that even for simulators with a box structure (non-spatial)

this is a hard problem, as typically we are trying to infer errors in the dynam-

ics of variables that are never observed. For spatially distributed simulators

(and many environmental systems originate from conservation laws in both

space and time, and thus have spatial and temporal properties) the prob-

lem is harder still. Developing discrepancy models for spatially distributed

simulators would either require dense (in space and time) observations, or
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strong prior knowledge of the discrepancy functional form. Where dense ob-

servations are available, for example in a heavily instrumented catchment,

or measurement campaign, the approaches presented in this paper could be

applied, replacing the regression functions in the discrepancy term (Equa-

tion (11)) with spatially distributed functions, such as radial basis functions,

or spatial splines. This would maintain the relative simple parametric form

for the discrepancy, but introduces the challenge of locating and setting the

number of basis functions/knot points. Further work is needed to explore

whether such methods can realistically be applied to complicated spatially

distributed simulators.
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Dimension Bias Linear parameters Forcing coeffs. Variance
a· b·,1 b·,2 b·,3 c·,1 c·,2 σ2

·
Soil δs 12.7803 -0.0662 0.0740 0.8091 -0.6254 -2.0863 29.7519
Ground water δgw 6.7218 -0.0205 0.0362 -0.8516 -0.0766 -1.5297 2.7294
River δr -0.2111 0.0022 -0.0019 -0.0487 0.0034 0.0384 0.0005

Table 1: Estimated maximum likelihood parameters for the discrepancy func-
tion described by Equation (11). Each row describes the parameter values for
the discrepancy function in the dynamics of one of the three state variables
representing the three conceptual water stores in the logSPM simulator.

One step ahead predictions (k = 1)
MSE NS (%) CRPSS (%)

ODE 0.2764 74.6 73.2
VAR 0.1547 85.8 81.6
FULL 0.0988 90.9 85.0

Table 2: Validation results for the one-step-ahead forecasts for the three
forecasting systems described in the text. ODE is the deterministic logSPM
simulator, VAR is the simulator plus a white noise discrepancy, and FULL is
the simulator plus the estimated discrepancy function. The three measures
used are the mean square error (MSE), the Nash-Sutcliffe statistic (NS), and
the continuously ranked probability skill score (CRPSS). The data used in
the validation was a 180 day period (16 June 1975 till the 11 December 1975).
The reference forecast used for the NS statistic and the CRPSS was a Gaus-
sian distribution with mean and variance estimated from the observations
(i.e., the climatological forecast).

5 Tables

6 Figures
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Figure 1: A visual representation of the logSPM simulator.
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Five step ahead predictions (k = 5)
MSE NS (%) CRPSS (%)

ODE 0.2764 74.6 73.2
VAR 0.1944 81.0 79.5
FULL 0.1035 89.9 84.5

Table 3: Validation results for the five-step-ahead forecasts for the three
forecasting systems described in the text. The scores for the ODE system
are the same as in Table 2.
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Figure 2: A residual plot showing the one-step-ahead transformed fore-
cast errors, log(Qt+1 + λ) − m̃t(1), versus the fitted values, m̃t(1) =
log(Awkrhriver,t+k + λ)). The plot on the left is for the ODE forecasting
system with no simulator discrepancy term, and the plot on the right is for
the full discrepancy model. A forecasting system which had no simulator
discrepancy would have a residual plot that looked like an uncorrelated band
of residuals distributed about the line y = 0. The dashed lines are two stan-
dard deviations (of measurement error) either side of y = 0, giving bounds
within which we would expect to see approximately 95% of the 180 points if
the simulator were perfect.
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