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Abstract. In this article we propose a class of so-called two-grid hp–version discontinuous
Galerkin finite element methods for the numerical solution of a second–order quasilinear elliptic
boundary value problem of monotone type. The key idea in this setting is to first discretise
the underlying nonlinear problem on a coarse finite element space V (TH , P ). The resulting
‘coarse’ numerical solution is then exploited to provide the necessary data needed to linearise the
underlying discretisation on the finer space V (Th, p); thereby, only a linear system of equations
is solved on the richer space V (Th, p). In this article both the a priori and a posteriori error
analysis of the two-grid hp–version discontinuous Galerkin finite element method is developed.

Moreover, we propose and implement an hp–adaptive two-grid algorithm, which is capable of
designing both the coarse and fine finite element spaces V (TH , P ) and V (Th, p), respectively, in
an automatic fashion. Numerical experiments are presented for both two– and three–dimensional
problems; in each case, we demonstrate that the cpu time required to compute the numerical
solution to a given accuracy is typically less when the two-grid approach is exploited, when
compared to the standard discontinuous Galerkin method.

1. Introduction

Over the past few decades, there has been a considerable renewed interest in discontinuous
Galerkin finite element methods (DGFEMs) for the numerical solution of a wide range of partial
differential equations; for an extensive survey of this area of research, we refer to [12]. DGFEMs
were introduced in the early 1970s for the numerical solution of first-order hyperbolic problems
(see [13, 14, 16, 28, 30, 38]). Simultaneously, but quite independently, they were proposed as non-
standard schemes for the approximation of second-order elliptic equations [2, 34, 43]. The recent
upsurge of interest in this class of methods has been stimulated by the computational convenience
of DGFEMs due to a high degree of locality, the need to approximate advection-dominated diffu-
sion problems without excessive numerical stabilisation, the necessity to accommodate high-order
hp– and spectral element discretisations for first-order hyperbolic equations and advection-diffusion
problems [20, 29], and the desire to handle nonlinear hyperbolic problems in a locally conservative
manner and without auxiliary numerical stabilisation [10, 15]; see also [9, 11] for the error analysis
of the local version of the DGFEM in the elliptic case, as well as [3] and [35].

In the recent articles [24, 27] a family of interior-penalty hp–DGFEMs were formulated for
the numerical approximation of a class of scalar quasilinear boundary value problems of mono-
tone type. In particular, both a priori ([24]) and a posteriori ([27]) bounds were derived on the
error, measured in terms of a mesh-dependent energy norm. For related work on h–version lo-
cal DGFEMs for quasilinear PDEs, we refer to the articles [8, 21], for example; for hp–version
DGFEMs, see [22, 23], for example. This article is devoted to the a priori and a posteriori er-
ror analysis of the so-called two-grid variant of the hp–version symmetric interior penalty (SIP)
DGFEM for the numerical approximation of strongly monotone second–order quasilinear partial
differential equations. We point out that two-grid methods were originally introduced by Xu
[47, 48, 49]; see, also, [4, 6, 7, 18, 19, 32, 42, 46] for related work.

The construction of a two-grid method to compute the numerical approximation of a nonlinear
partial differential equation may be summarised as follows. Let X and Y be two Hilbert spaces.
Further, we write N (·; ·, ·) : X × X × Y → R to denote a semilinear form, with the convention
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that N (·; ·, ·) is linear with respect to the arguments to the right of the semi-colon. We suppose
that u is the unique solution to the variational problem: find u in X such that

N (u;u, v) = 0 ∀v ∈ Y. (1)

Problem (1) can be thought of as the weak formulation of a nonlinear partial differential equation
on X whose unique solution is u ∈ X . In practice (1) cannot be solved in closed form but needs
to be approximated numerically. For the purposes of this paper, we shall consider general hp–
version finite element approximations to (1). In order to construct a Galerkin approximation
to this problem, we consider a sequence of finite–dimensional spaces {Xh,p}, parameterised by
the positive discretisation parameters h and p. Simultaneously, consider a sequence of finite–
dimensional spaces {Yh,p}. For the purposes of this paper, Xh,p and Yh,p can be thought of as
finite element spaces consisting of piecewise polynomial functions of degree p on a partition Th, of
granularity h, of the computational domain. The (standard) Galerkin approximation uh,p of u is
then sought in Xh,p as the solution of the finite–dimensional problem

Nh,p(uh,p;uh,p, vh,p) = 0 ∀vh,p ∈ Yh,p, (2)

where Nh,p(·; ·, ·) : Xh,p ×Xh,p × Yh,p → R. The computation of uh,p defined in (2) involves the
numerical solution of a potentially very large number of coupled nonlinear equations, which can be
extremely computationally expensive. The key idea of the two-grid approach is as follows: given
‘coarser’ finite element spaces XH,P ⊆ Xh,p and YH,P ⊆ Yh,p, first solve the nonlinear problem:
find uH,P ∈ XH,P such that

NH,P (uH,P ;uH,P , vH,P ) = 0 ∀vH,P ∈ YH,P . (3)

Finally, using uH,P as appropriate data, compute the two-grid approximation of (1) by solving
the problem: find u2G ∈ Xh,p such that

Nh,p(uH,P ;u2G, vh,p) = 0 ∀vh,p ∈ Yh,p. (4)

We emphasise that this latter problem is linear.
In this article we analyse the hp–version of the two-grid SIP DGFEM, see [7], for the numerical

solution of the following quasi-linear elliptic boundary-value problem:

−∇ · (µ(x, |∇u|)∇u) = f in Ω, (5)

u = 0 on Γ, (6)

where Ω is a bounded polygonal domain in R
2, with boundary Γ and f ∈ L2(Ω). Here, we assume

that the nonlinearity µ satisfies the following conditions:

(A1) µ ∈ C0(Ω̄ × [0,∞)) and
(A2) there exists positive constants mµ and Mµ such that the following monotonicity property

is satisfied:

mµ(t− s) ≤ µ(x, t)t− µ(x, s)s ≤Mµ(t− s), t ≥ s ≥ 0, x ∈ Ω̄. (7)

From [31, Lemma 2.1] we note that, as µ satisfies (7), there exists constants C1 and C2, C1 ≥
C2 > 0, such that for all vectors v,w ∈ R

2 and all x ∈ Ω̄,

|µ(x, |v|)v − µ(x, |w|)w| ≤ C1|v − w|, (8)

C2|v − w|2 ≤ (µ(x, |v|)v − µ(x, |w|)w) · (v − w). (9)

By setting s = 0 in (7) we deduce the following bound on µ:

mµ ≤ µ(x, t) ≤Mµ, t ≥ 0, x ∈ Ω̄. (10)

For ease of notation we shall suppress the dependence of µ on x and write µ(t) instead of µ(x, t).
The outline of the rest of this article is as follows. Section 2 introduces the two-grid hp–version of

the SIP DGFEM for the numerical approximation of (5)–(6). In Section 3 we derive both a priori
and a posteriori bounds on the error, measured in terms of the corresponding (DGFEM) energy
norm, for the proposed numerical scheme. Section 4 is devoted to the design of an hp–adaptive
algorithm which can construct the coarse and fine hp–finite element spaces in an automatic fashion.
The performance of the proposed adaptive strategy is demonstrated in Section 5; we refer to [18]
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for numerical experiments which validate the sharpness of the a priori error bounds. Finally, in
Section 6 we summarise the work presented in this paper and draw some conclusions.

2. Two-Grid hp–Version DGFEM

In this section we discuss the numerical approximation of the problem (5)–(6) based on em-
ploying both the hp–version of the (standard) SIP DGFEM, together with its so-called two-grid
variant. To this end, in the following section we first introduce the necessary notation.

2.1. Meshes, Spaces, and Trace Operators. We consider shape-regular meshes Th that par-
tition Ω ⊂ R

2 into open disjoint triangles and/or parallelograms κ, such that Ω =
⋃

κ∈Th
κ. By

hκ we denote the element diameter of κ ∈ Th, h = maxκ∈Th
hκ, and nκ signifies the unit outward

normal vector to κ. We allow the meshes Th to be 1-irregular, i.e., each edge of any one element
κ ∈ Th contains at most one hanging node (which, for simplicity, we assume to be the midpoint of
the corresponding edge). Here, we suppose that Th is regularly reducible (cf. [37, Section 7.1]), i.e.,
there exists a shape-regular conforming (regular) mesh Teh (consisting of triangles and parallelo-
grams) such that the closure of each element in Th is a union of closures of elements of Teh, and that
there exists a constant C > 0, independent of the element sizes, such that for any two elements

κ ∈ Th and κ̃ ∈ Teh with κ̃ ⊆ κ we have hκ/h̃eκ ≤ C. Note that these assumptions imply that the
family {Th}h>0 is of bounded local variation, i.e., there exists a constant ρ1 ≥ 1, independent of
the element sizes, such that

ρ−1
1 ≤ hκ/hκ′ ≤ ρ1, (11)

for any pair of elements κ, κ′ ∈ Th which share a common edge e = ∂κ ∩ ∂κ′.
To each κ ∈ Th we assign a polynomial degree pκ ≥ 1 (local approximation order) and define

the degree vector p = {pκ : κ ∈ Th}. We suppose that p is also of bounded local variation, i.e.,
there exists a constant ρ2 ≥ 1, independent of the element sizes and p, such that, for any pair of
neighbouring elements κ, κ′ ∈ Th,

ρ−1
2 ≤ pκ/pκ′ ≤ ρ2. (12)

With this notation, we introduce the finite element space

V (Th,p) = {v ∈ L2(Ω) : v|κ ∈ Spκ
(κ) ∀κ ∈ Th} ,

where

Spκ
(κ) =

{
Ppκ

(κ) if κ is a triangle,

Qpκ
(κ) if κ is a parallelogram.

Here, given p ≥ 0, Pp(κ) denotes the space of polynomials of degree at most p on κ, while Qp(κ)
is the space of polynomials of degree at most p in each variable on κ.

We shall now define some suitable edge operators that are required for the definition of the
proceeding DGFEM. To this end, associated with the mesh Th, we denote by EI

h the set of all
interior edges of the partition Th of Ω, and by EB

h the set of all boundary edges of Th. In addition,
Eh = EB

h ∪ EI
h denotes the set of all edges in the mesh Th.

Let v and q be scalar- and vector-valued functions, respectively, which are smooth inside each
element κ ∈ Th. Given two adjacent elements, κ+, κ− ∈ Th which share a common edge e ∈ EI

h ,
i.e., e = ∂κ+∩∂κ−, we write v± and q± to denote the traces of the functions v and q, respectively,
on the edge e, taken from the interior of κ±, respectively. With this notation, the averages of v
and q at x ∈ e are given by

{{v}} =
1

2
(v+ + v−), {{q}} =

1

2
(q+ + q−),

respectively. Similarly, the jumps of v and q at x ∈ e are given by

[[v]] = v+nκ+ + v−nκ− , [[q]] = q+ · nκ+ + q− · nκ− ,

respectively, where nκ± denotes the unit outward normal vector on ∂κ±, respectively. On a
boundary edge e ∈ EB

h , we set {{v}} = v, {{q}} = q, [[v]] = vn and [[q]] = q · n, with n denoting the
unit outward normal vector on the boundary Γ.
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For an edge e ∈ Eh, we define he to be the length of the edge; moreover, the edge polynomial
degree pe is defined by

pe =

{
max(pκ, pκ′), if e = ∂κ ∩ ∂κ′ ∈ EI

h ,

pκ, if e = ∂κ ∩ Γ ∈ EB
h .

(13)

Finally, we recall the following inverse trace inequalities.

Lemma 2.1. We note that for an edge e of an element κ ∈ Th that the following inverse trace
inequalities hold: there exists a positive constant CT , independent of h and p, such that

‖w‖2
L2(e)

≤ CT
p2

κ

he
‖w‖2

L2(κ) and ‖∇w‖2
L2(e)

≤ CT
p2

κ

he
‖∇w‖2

L2(κ)

for all w ∈ V (Th,p).

Proof. See [40, Theorem 4.76] for details. �

2.2. Standard interior penalty DGFEM discretisation. In this section we first introduce
the so-called standard SIP DGFEM for the numerical approximation of the problem (5)–(6). To
this end, given a (fine) mesh Th partition of Ω, together with a corresponding polynomial degree
vector p, the standard DGFEM is defined as follows: find uh,p ∈ V (Th,p) such that

Ah,p(uh,p;uh,p, vh,p) = Fh,p(vh,p) (14)

for all vh,p ∈ V (Th,p), where

Ah,p(ψ;u, v) =
∑

κ∈Th

∫

κ

µ(|∇hψ|)∇hu · ∇hv dx +
∑

e∈E
h

∫

e

σh,p[[u]] · [[v]] ds

−
∑

e∈E
h

∫

e

({{µ(|∇hψ|)∇hu}} · [[v]] + {{µ(|∇hψ|)∇hv}} · [[u]]) ds,

Fh,p(v) =
∑

κ∈Th

∫

κ

fv dx,

and ∇h is used to denote the broken gradient operator, defined elementwise. Here, the interior
penalty parameter σh,p is defined as follows:

σh,p = γ
p2

e

he
,

where γ > 0 is a constant, which must be chosen sufficiently large (independent of the local element
sizes and polynomial degrees), cf. Lemma 2.2 below; see, also, [22, 24], for example.

Remark 2.1. The SIP DGFEM scheme defined in (14) is identical the method studied in [22], and
represents a slight alternative to the parameterised DGFEMs considered in [24].

Remark 2.2. In the case of an inhomogeneous boundary condition u = g on Γ, the right-hand side
linear functional Fh,p(·) must be replaced by

Fh,p(v) =
∑

κ∈Th

∫

κ

fv dx +
∑

e∈EB
h

∫

e

σh,pgv ds,

and the fourth term in the semilinear form Ah,p is replaced by

−
∑

e∈EI
h

∫

e

{{µ(|∇hψ|)∇hv}} · [[u]] ds−
∑

e∈EB
h

∫

e

µ(|∇hψ|)∇hv · n(u − g) ds,

cf. [24]
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Introducing the energy norm

‖v‖2
h,p = ‖∇hv‖2

L2(Ω) +
∑

e∈E
h

∫

e

σh,p|[[v]]|2 ds,

on the class of spaces H1(Ω) + V (Th,p), the general form of the semi-linear form Ah,p(ψ; ·, ·) is
coercive, in the sense that the following lemma holds for sufficiently large γ.

Lemma 2.2. There exists a positive constant γmin, such that for any γ ≥ γmin, there exists a
coercivity constant Cc > 0, independent of h and p, such that

Ah,p(ψ; v, v) ≥ Cc ‖v‖2
h,p (15)

for all ψ, v ∈ V (Th,p).

Proof. By application of (10), Lemma 2.1 and the arithmetic-geometric mean inequality, 2ab ≤
εa2 + ε−1b2 with ε = δσ−1

h,p and δ > 1, we have that

Ah,p(ψ; v, v) =
∑

κ∈Th

∫

κ

µ(|∇ψ|)|∇v|2 dx +
∑

e∈E
h

∫

e

σh,p|[[v]]|2 ds

− 2
∑

e∈E
h

∫

e

{{µ(|∇ψ|)∇v}} · [[v]] ds

≥
∑

κ∈Th

∫

κ

µ(|∇ψ|)|∇v|2 dx +
∑

e∈E
h

∫

e

σh,p|[[v]]|2 ds

−
∑

e∈E
h

∫

e

(
ε|{{µ(|∇ψ|)∇v}}|2 + ε−1|[[v]]|2

)
ds

≥mµ

∑

κ∈Th

‖∇v‖2
L2(κ) + (1 − δ−1)γ

∑

e∈E
h

∫

e

p2
eh

−1
e |[[v]]|2 ds

−M2
µCρδγ

−1
∑

κ∈Th

p−2
κ he ‖∇v‖2

L2(∂κ)

≥ min(mµ − CTM
2
µCρδγ

−1, (1 − δ−1)γ) ‖v‖2
h,p .

Thereby, the statement of the lemma immediately follows, provided γ > CTM
2
µCρδm

−1
µ , where

Cρ is a positive constant dependent on ρ1 and ρ2 from (11) and (12), respectively. �

2.3. Two-grid interior penalty discretisation. In this section, we now proceed to introduce
the so–called two-grid SIP DGFEM approximation to (5)–(6). To this end, we consider two
partitions Th and TH of the computational domain Ω, of granularity h and H , respectively. Here,
we refer to Th and TH as the fine and coarse mesh partitions of Ω, respectively. In particular,
we assume that Th and TH are nested in the sense that, for any κh ∈ Th there exists an element
κH ∈ TH such that κ̄h ⊆ κ̄H . Moreover, to each mesh Th and TH , we associate a corresponding
polynomial degree distribution p = {pκ : κ ∈ Th} and P = {Pκ : κ ∈ TH}, respectively, with the
property that, given κh ∈ Th and the associated κH ∈ TH , such that κ̄h ⊆ κ̄H , the corresponding
polynomial degrees satisfy the following condition:

pκh
≥ PκH

.

Given Th, p and TH , P , we may construct the corresponding fine and coarse hp–finite element
spaces V (Th,p) and V (TH ,P ), respectively, which satisfy the following condition: V (TH ,P ) ⊆
V (Th,p).

With this notation, we now introduce the hp–version of the two-grid algorithm [7, Algorithm
1] for the SIP DGFEM discretisation of (5)–(6):

(1) Compute the coarse grid approximation uH,P ∈ V (TH ,P ) such that

AH,P (uH,P ;uH,P , vH,P ) = FH,P (vH,P ) (16)

for all vH,P ∈ V (TH ,P ).
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(2) Determine the fine grid solution u2G ∈ V (Th,p) such that

Ah,p(uH,P ;u2G, vh,p) = Fh,p(vh,p) (17)

for all vh,p ∈ V (Th,p).

Existence and uniqueness of the solution uH,P for this formulation is demonstrated in [22]. The
formulation (17) is a symmetric interior penalty discretisation of a linear elliptic PDE, where the
coefficient µ(|∇huH,P |) is a known function; thereby, the existence and uniqueness of the solution
u2G to this problem follows immediately, cf., for example, [41, 45].

3. Error Analysis

In this section, we develop the a priori and a posteriori error analysis of the two-grid SIP
DGFEM defined by (16)–(17).

3.1. A priori error bound. We first recall the following a priori error bound for the standard
SIP DGFEM approximation (14) of the quasi-linear problem (5)–(6).

Lemma 3.1. Assuming that u ∈ C1(Ω) and u|κ ∈ Hkκ(κ), kκ ≥ 2, for κ ∈ Th then the solution
uh,p ∈ V (Th,p) of (14) satisfies the error bound

‖u− uh,p‖2
h,p ≤ C3

∑

κ∈Th

h2sκ−2
κ

p2kκ−3
κ

‖u‖2
Hkκ (κ) (18)

with 1 ≤ sk ≤ min{pκ + 1, kκ}, pκ ≥ 1, for κ ∈ Th, and C3 is a positive constant independent of
u, h and p.

Proof. See [22] or [24]; we note, however, that the latter article employs a slightly different DGFEM
formulation. �

Remark 3.1. We note that this error bound also clearly holds for the two-grid coarse solution uH,P

defined in (16) with the energy norm ‖·‖h,p replaced by ‖·‖H,P , and similarly the mesh size and
polynomial degrees hκ and pκ replaced by Hκ and Pκ, respectively.

Employing Lemma 3.1, we now deduce the following error bound for the two-grid approximation
defined in (16)–(17).

Theorem 3.1. Assuming that u ∈ C1(Ω), u|κ ∈ Hkκ(κ), kκ ≥ 2, for κ ∈ Th and u|κ ∈ HKκ(κ),
Kκ ≥ 2, for κ ∈ TH , then the solution u2G ∈ V (Th,p) of (17) satisfies the error bounds

‖uh,p − u2G‖2
h,p ≤ C4

∑

κ∈TH

H2Sκ−2
κ

P 2Kκ−3
κ

‖u‖2
HKκ (κ) , (19)

‖u− u2G‖2
h,p ≤ C3

∑

κ∈Th

h2sκ−2
κ

p2kκ−3
κ

‖u‖2
Hkκ (κ) + C4

∑

κ∈TH

H2Sκ−2
κ

P 2Kκ−3
κ

‖u‖2
HKκ (κ) , (20)

with 1 ≤ sk ≤ min{pκ + 1, kκ}, pκ ≥ 1, for κ ∈ Th, 1 ≤ Sk ≤ min{Pκ + 1,Kκ}, Pκ ≥ 1, for
κ ∈ TH , and C3 and C4 are positive constants independent of u, h,H,p and P .

Proof. By application of the triangle inequality, we get

‖u− u2G‖h,p ≤ ‖u− uh,p‖h,p + ‖u2G − uh,p‖h,p . (21)

We note that the first term on the right-hand side of (21) may be bounded by employing Lemma
3.1. Let us now deal with the second term; to this end, from (14) and (17) we have that

Ah,p(uH,P , u2G, vh,p) = Ah,p(uh,p;uh,p, vh,p)

for all vh,p in V (Th,p). Let φ = u2G − uh,p ∈ V (Th,p); then from Lemma 2.2, we get

Cc ‖u2G − uh,p‖2
h,p ≤ Ah,p(uH,P ;u2G − uh,p, φ)

= Ah,p(uH,P ;u2G, φ) −Ah,p(uH,P ;uh,p, φ)

= Ah,p(uh,p;uh,p, φ) −Ah,p(uH,P ;uh,p, φ)

≡ T1 + T2 + T3, (22)
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where

T1 =
∑

κ∈Th

∫

κ

(µ(|∇uh,p|) − µ(|∇uH,P |))∇uh,p · ∇φdx,

T2 = −
∑

e∈E
h

∫

e

{{(µ(|∇uh,p|) − µ(|∇uH,P |))∇uh,p}} · [[φ]] ds,

T3 = −
∑

e∈E
h

∫

e

{{(µ(|∇uh,p|) − µ(|∇uH,P |))∇φ}} · [[uh,p]] ds.

To bound term T1, we employ the triangle inequality, (8), (10) and Lemma 3.1; thereby, we deduce
that

|T1| ≤
∑

κ∈Th

∫

κ

|µ(|∇uh,p|)∇uh,p − µ(|∇uH,P |)∇uH,P | · |∇φ| dx

+
∑

κ∈Th

∫

κ

|µ(|∇uH,P |)∇ (uH,P − uh,p) | · |∇φ| dx

≤ (C1 +Mµ)
∑

κ∈Th

∫

κ

|∇ (uh,p − uH,P ) | · |∇φ| dx

≤ (C1 +Mµ)






(
∑

κ∈Th

‖∇(u− uh,p)‖2
L2(κ)

) 1
2

+

(
∑

κ∈TH

‖∇(u − uH,P )‖2
L2(κ)

) 1
2




 ‖∇φ‖L2(κ)

≤ (C1 +Mµ)C3





(
∑

κ∈Th

h2sk−2
κ

p2kκ−3
κ

‖u‖2
Hkκ (κ)

) 1
2

+

(
∑

κ∈TH

H2Sk−2
κ

P 2Kκ−3
κ

‖u‖2
HKκ (κ)

) 1
2



 ‖φ‖h,p .

(23)

Proceeding in an analogous manner for term T2, we get that

|T2| ≤
∑

e∈E
h

∫

e

{{|µ(|∇uh,p|)∇uh,p − µ(|∇uH,P |)∇uH,P |}} · |[[φ]]| ds

+
∑

e∈E
h

∫

e

{{|µ(|∇uH,P |)∇ (uH,P − uh,p) |}} · |[[φ]]| ds

≤ (C1 +Mµ)
∑

e∈E
h

∫

e

{{|∇ (uh,p − uH,P ) |}} · |[[φ]]| ds

≤ (C1 +Mµ)



∑

e∈E
h

∫

e

σh,p|[[φ]]|2 ds




1
2

×








∑

e∈E
h

σ−1
h,p ‖{{∇(u− uh,p)}}‖2

L2(e)





1
2

+




∑

e∈E
h

σ−1
h,p ‖{{∇(u− uH,P )}}‖2

L2(e)





1
2




.



8 S. CONGREVE, P. HOUSTON, AND T. P. WIHLER

Applying Lemma 2.1, inequalities (11) and (12), and Lemma 3.1 gives

|T2| ≤ (C1 +Mµ)CρCTγ
− 1

2 ‖φ‖h,p

×






(
∑

κ∈Th

‖∇(u − uh,p)‖2
L2(κ)

) 1
2

+

(
∑

κ∈Th

‖∇(u− uH,P )‖2
L2(κ)

) 1
2






≤ (C1 +Mµ)C3CρCT γ
− 1

2 ‖φ‖h,p

×





(
∑

κ∈Th

h2sk−2
κ

p2kκ−3
κ

‖u‖2
Hkκ (κ)

) 1
2

+

(
∑

κ∈TH

H2Sk−2
κ

P 2Kκ−3
κ

‖u‖2
HKκ (κ)

) 1
2



 , (24)

where the constant Cρ depends on ρ1 and ρ2, from (11) and (12) respectively. We now consider
the term T3:

|T3| ≤
∑

e∈E
h

∫

e

{{| (µ(|∇uh,p|) − µ(|∇uH,P |))∇φ|}} · |[[uh,p]]| ds

≤
∑

e∈E
h

‖µ(|∇uh,p|) − µ(|∇uH,P |)‖L∞(e) ‖{{∇φ}}‖L2(e)
‖[[uh,p]]‖L2(e)

.

We note that from inequality (10), we have

‖µ(|∇uh,p|) − µ(|∇uH,P |)‖L∞(e) ≤ ‖µ(|∇uh,p|)‖L∞(e) + ‖µ(|∇uH,P |)‖L∞(e) ≤ 2Mµ.

Since u ∈ H1
0(Ω), we note that |[[u− uh,p]]| = |[[uh,p]]|; thereby,

|T3| ≤ 2Mµ




∑

e∈E
h

σ−1
h,p ‖{{∇φ}}‖

2
L2(e)





1
2



∑

e∈E
h

∫

e

σh,p|[[u− uh,p]]|2 ds





1
2

.

Applying Lemma 2.1, (11), (12) and Lemma 3.1 completes the bound for this term:

|T3| ≤ 2MµCρCT γ
− 1

2

(
∑

κ∈Th

‖∇φ‖2
L2(κ)

) 1
2

‖u− uh,p‖h,p

≤ 2MµC3CρCTγ
− 1

2

(
∑

κ∈Th

h2sk−2
κ

p2kκ−3
κ

‖u‖2
Hkκ (κ)

) 1
2

‖φ‖h,p . (25)

Inserting (23)-(25) into (22) and dividing both sides by ‖φ‖h,p gives

‖u2G − uh,p‖h,p ≤ C





(
∑

κ∈Th

h2sk−2
κ

p2kκ−3
κ

‖u‖2
Hkκ (κ)

) 1
2

+

(
∑

κ∈TH

H2Sk−2
κ

P 2Kκ−3
κ

‖u‖2
HKκ (κ)

) 1
2



 .

Noting that V (TH ,P ) ⊆ V (Th,p), we deduce that

‖u2G − uh,p‖h,p ≤ C4

(
∑

κ∈TH

H2Sk−2
κ

P 2Kκ−3
κ

‖u‖2
HKκ (κ)

) 1
2

,

which gives (19). Exploiting this inequality to bound the second term on the right-hand side of
(21) and applying Lemma 3.1 to bound the first term, we deduce (20). �

Remark 3.2. We note that due to the dependence of the nonlinear coefficient µ on |∇u|, the error
bound derived in Theorem 3.1 indicates that the mesh and polynomial distribution of both the
fine and coarse finite element spaces V (Th,p) and V (TH ,P ), respectively, should grow at roughly
the same rate, albeit the constants C3 and C4 present in the error bound being of differing sizes.
Numerical experiments demonstrating the optimality of these theoretical bounds are given in [18].
This is in contrast to the h–version a priori error analysis undertaken in [7] in the case when
µ = µ(u). Indeed, in that setting, by using a suitable duality argument (e.g., in convex domains)
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in order to optimally bound the resulting L2–terms, it is shown that for convergence, the coarse
and fine mesh sizes H and h, respectively, should satisfy H = O(

√
h), when the polynomial degree

is (uniformly) set equal to one.

3.2. A posteriori error bound. In this section, we develop the a posteriori error analysis of
the two-grid SIP DGFEM defined by (16)–(17).

Let us denote by Πκ,pκ
the L2-projection onto V (Th,p). Then, we state the following upper

bound.

Theorem 3.2. Let u ∈ H1
0(Ω) be the analytical solution of (5)-(6), uH,P ∈ V (TH ,P ) the numer-

ical approximation obtained from (16) and u2G ∈ V (Th,p) the numerical approximation computed
from (17); then the following hp–a posteriori error bound holds

‖u− u2G‖h,p ≤ C5

(
∑

κ∈Th

(
η2

κ + ξ2κ
)

+
∑

κ∈Th

h2
κp

−2
κ ‖f − Πκ,pκ

f‖2
L2(κ)

) 1
2

, (26)

with a constant C5 > 0, which is independent of h, H, p and P . Here, for κ ∈ Th, the local fine
grid error indicators ηκ are defined by

η2
κ = h2

κp
−2
κ ‖Πκ,pκ

f + ∇ · {µ(|∇uH,P |)∇u2G}‖2
L2(κ)

+ hep
−1
e ‖[[µ(|∇uH,P |)∇u2G]]‖2

L2(∂κ\Γ) + γ2h−1
e p3

e ‖[[u2G]]‖2
L2(∂κ)

(27)

and the local two-grid error indicators ξκ are defined, for all κ ∈ Th, as

ξ2κ = ‖(µ(|∇uH,P |) − µ(|∇u2G|))∇u2G‖2
L2(κ) . (28)

Remark 3.3. We note that the third term in the local error indicator ηκ defined in (27) is sub-
optimal with respect to the polynomial degree. This sub-optimality results from the fact that due
to the possible presence of hanging nodes in Th, a non-conforming interpolant is used in the proof
to Theorem 3.2. For conforming meshes, a conforming hp–version interpolant may be employed
which removes this sub-optimality; see [27, Remark 3.3] for details.

Remark 3.4. In the case of an inhomogeneous boundary condition u = g on Γ, the third term in
the local error indicators ηκ is replaced by

γ2h−1
e p3

e ‖[[u2G]]‖2
L2(∂κ\Γ) + γ2h−1

e p3
e ‖u2G − gh‖2

L2(∂κ∩Γ) ,

where gh is a piecewise approximation to the boundary function g; in this setting additional
data-oscillation terms also arise, see [25] for details.

Remark 3.5. We remark that local lower bounds for the right-hand side of (26), i.e., the efficiency
of the proposed error indicator, can be proved by adding the term

E2 :=
∑

κ∈Th

‖µ(|∇u|)∇u− µ(|∇uH,P |)∇u2G‖2
L2(κ)

to the norm ‖u− u2G‖2
h,p. Then, by applying (8) we have

E2 ≤ 2
∑

κ∈Th

ξ2κ + 2
∑

κ∈Th

‖µ(|∇u|)∇u− µ(|∇u2G|)∇u2G‖2
L2(κ)

≤ 2
∑

κ∈Th

ξ2κ + 2C2
1

∑

κ∈Th

‖∇u−∇u2G‖2
L2(κ)

≤ 2
∑

κ∈Th

ξ2κ + 2C2
1‖u− u2G‖2

h,p,

and therefore we obtain (26) with the left-hand side being replaced by
(
‖u− u2G‖2

h,p + E2
) 1

2

, and

a different constant C̃5. Furthermore, in order to obtain lower bounds on the error, the fine grid
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indicators ηκ can be estimated in terms of the local error by proceeding along the lines of [27].
Finally, in order to bound the two-grid error indicators, we use again (8) to infer that

ξκ ≤ ‖µ(|∇uH,P |)∇u2G − µ(|∇u|)∇u‖L2(κ) + ‖µ(|∇u|)∇u − µ(|∇u2G|)∇u2G‖L2(κ)

≤ ‖µ(|∇uH,P |)∇u2G − µ(|∇u|)∇u‖L2(κ) + C1 ‖∇u−∇u2G‖L2(κ) .

Remark 3.6. Based on the hp–a posteriori error analysis developed in [50], the error bound stated
in Theorem 3.2 may be generalised to domains Ω ⊂ R

3, assuming that the underlying mesh Th

consists of 1-irregular hexahedral elements.

Proof of Theorem 3.2: The proof of this error bound is based on a generalisation of the proof
of the corresponding a posteriori bound for the standard hp–version SIP DGFEM for second-
order quasi-linear elliptic PDEs; see [27] for details. Given that the fine mesh partition Th of Ω
may contain hanging nodes, under the assumption that Th is regularly reducible, i.e., Th may be
refined to create a conforming mesh Teh as outlined in Section 2.1. We denote by V (Teh, p̃) the
corresponding DGFEM finite element space with polynomial degree vector p̃ defined by p̃eκ = pκ

for any κ̃ ∈ Teh with κ̃ ⊆ κ and some κ ∈ Th. We note that V (Th,p) ⊆ V (Teh, p̃) and due to the
assumptions in Section 2.1, the DGFEM norms ‖ · ‖h,p and ‖ · ‖eh,ep corresponding to the spaces

V (Th,p) and V (Teh, p̃), respectively, are equivalent on V (Th,p), cf. [27].
An important step in our analysis is the decomposition of the DGFEM space V (Teh, p̃) into two

orthogonal subspaces: a conforming part [V (Teh, p̃)]‖ = V (Teh, p̃) ∩ H1
0(Ω), and a nonconforming

part [V (Teh, p̃)]⊥ defined as the orthogonal complement of [V (Teh, p̃)]‖ in V (Teh, p̃) with respect to
the DGFEM energy inner product (·, ·)eh,ep (inducing the DGFEM energy norm ‖ · ‖eh,ep), i.e.,

V (Teh, p̃) = [V (Teh, p̃)]‖ ⊕‖·‖eh,ep
[V (Teh, p̃)]⊥.

Based on this setting, the DGFEM–solution u2G obtained by (16)-(17) may be split accordingly,

u2G = u
‖
2G + u⊥2G, (29)

where u
‖
2G ∈ [V (Teh, p̃)]‖ and u⊥2G ∈ [V (Teh, p̃)]⊥. We can define the error in the solution obtained

by (16)-(17) as

Eh,p = u− u2G, (30)

and let

E
‖
h,p = u− u

‖
2G ∈ H1

0(Ω). (31)

We notice that ∥∥∥E‖
h,p

∥∥∥
h,p

≤ CD ‖Eh,p‖h,p , (32)

where the constant CD > 0 is independent of γ, h and p but depends only on the shape regularity
of Th and the constants ρ1 and ρ2 in (11) and (12), respectively; see [27, Corollary 3.6].

Exploiting inequality (9) yields

C2 ‖Eh,p‖2
h,p = C2




∑

eκ∈Teh

∫

eκ

|∇u−∇u2G|2 dx +
∑

e∈E
h

∫

e

σh,p|[[Eh,p]]|2 ds





≤
∑

eκ∈Teh

∫

eκ

{µ(|∇u|)∇u − µ(|∇u2G|)∇u2G} · ∇Eh,p dx + C2

∑

e∈E
h

∫

e

σh,p|[[Eh,p]]|2 ds.

By noticing that Eh,p = E
‖
h,p−u⊥2G, we split the right-hand side of this inequality into the following

four parts

C2 ‖Eh,p‖2
h,p ≤ |T1| + |T2| + |T3| + |T4|, (33)
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where

T1 =
∑

eκ∈Teh

∫

eκ

{µ(|∇u|)∇u − µ(|∇uH,P |)∇u2G} · ∇E‖
h,p dx,

T2 = −
∑

eκ∈Teh

∫

eκ

{µ(|∇u|)∇u − µ(|∇u2G|)∇u2G} · ∇u⊥2G, dx

T3 = C2

∑

e∈E
h

∫

e

σh,p|[[Eh,p]]|2 ds,

T4 =
∑

eκ∈Teh

∫

eκ

{µ(|∇uH,P |)∇u2G − µ(|∇u2G|)∇u2G} · ∇E‖
h,p dx.

Here, E
‖
h,p ∈ H1

0(Ω) and u⊥2G ∈ [V (Th,p)]⊥ are defined by (31) and (29), respectively. We note
that T1, T2 and T3 are analogous to the corresponding terms which arise in the a posteriori error
analysis of the standard SIP DGFEM discretisation of (5)–(6), cf. [17] and [27]. Indeed, from [17]
and [27], we recall the following bound:

|T1| + |T2| + |T3| ≤ C

(
∑

κ∈Th

η2
κ

) 1
2

‖Eh,p‖h,p . (34)

We now consider the term T4:

T4 =
∑

eκ∈Teh

∫

eκ

{µ(|∇uH,P |)∇u2G − µ(|∇u2G|)∇u2G} · ∇E‖
h,p dx

=
∑

κ∈Th

∫

κ

{µ(|∇uH,P |)∇u2G − µ(|∇u2G|)∇u2G} · ∇E‖
h,p dx

≤
∑

κ∈Th

‖(µ(|∇uH,P |) − µ(|∇u2G|))∇u2G‖L2(κ)

∥∥∥∇E‖
h,p

∥∥∥
L2(κ)

≤
(
∑

κ∈Th

ξ2κ

) 1
2 ∥∥∥E‖

h,p

∥∥∥
h,p

.

Thereby, applying (32), gives

T4 ≤ CD

(
∑

κ∈Th

ξ2κ

) 1
2

‖Eh,p‖h,p . (35)

Inserting (34) and (35) into (33) gives

C2 ‖Eh,p‖2
h,p ≤ C

(
∑

κ∈Th

η2
κ

) 1
2

‖Eh,p‖h,p + CD

(
∑

κ∈Th

ξ2κ

) 1
2

‖Eh,p‖h,p .

Dividing both sides of the above inequality by ‖Eh,p‖h,p, using the Cauchy–Schwarz inequality, and

applying the triangle inequality in order to replace f by Πκ,pκ
f , completes the proof of Theorem

3.2. �

4. Two-Grid hp–Adaptive Mesh Refinement Algorithm

For the standard SIP DGFEM discretisation of the quasi-linear problem (5)–(6), the mesh may
be automatically constructed using the hp–adaptive refinement algorithm outlined in [27]. In
that setting, the local error indicators are defined in an analogous way to ηκ given in (27), with
uH,P and u2G both replaced by uh,p. In the context of the two-grid SIP DGFEM discretisation
defined by (16)–(17), it is necessary to refine both the fine and coarse meshes, together with their
corresponding polynomial degree vectors, in order to decrease the error between u and u2G with
respect to the energy norm ‖ · ‖h,p.
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To this end, we first note that, from the Theorem 3.2, we have, for each fine element κ ∈ Th,
a local error indicator ηκ and a local two-grid error indicator ξκ. As noted above, the local error
indicator ηκ is similar to the one which arises within the analysis of the standard SIP DGFEM
discretisation. With this in mind, ηκ represents the error arising from the linear fine grid solve
defined in (17), while the local two-grid error indicator ξκ represents the error stemming from the
approximation of the nonlinear coefficient µ(|∇uh,p|) on the fine mesh Th by the same quantity
evaluated with respect to the coarse grid solution uH,P , i.e., the error committed by replacing
µ(|∇uh,p|) by µ(|∇uH,P |).

With this observation, we design the fine finite element space V (Th,p) by employing the local
error indicators (27), while the coarse finite element space V (TH ,P ) is constructed in such a
manner as to control the size of the local two-grid error indicators (28). More precisely, we wish
to design both V (Th,p) and V (TH ,P ) in such a manner that ηκ and ξκ are of comparable size.
To this end, we propose the following algorithm.

Algorithm 4.1. The finite element spaces V (Th,p) and V (TH ,P ) are constructed, based on
employing the following algorithm.

(1) Initial step: Select initial coarse and fine meshes TH and Th, as well as initial coarse
and fine polynomial degree distributions P and p, respectively, in such a manner that the
resulting coarse and fine hp–finite element spaces V (TH ,P ) and V (Th,p), respectively,
satisfy the condition: V (TH ,P ) ⊆ V (Th,p).

(2) Perform hp–mesh refinement of the fine hp–finite element space V (Th,p): more precisely,
using the fine grid error indicators ηκ from (27), apply a fixed fraction strategy to mark
elements with a comparatively large error contribution. Then, if an element is set for re-
finement, decide on whether to perform h– or p–refinement based on testing the smoothness
of the fine grid solution u2G; see, e.g., [26] (or [44]) to design V (Th,p).

(3) Perform coarse mesh refinement: for a fixed constant steering parameter 0 ≤ λ < ∞, for
each element κ ∈ Th, do:
(a) If λξ2κ ≥ η2

κ then mark for refinement the coarse element κH ∈ TH where κ ⊆ κH.
(b) If the element is set for refinement decide on whether to perform h– or p–refinement,

e.g., by again testing the smoothness of the coarse grid solution uH,P ; see, [26, Section
2.4.1] (or [44]).

(4) Perform mesh smoothing to ensure:
• For all fine elements κ ∈ Th there exists a coarse mesh element κH ∈ TH such that
κ ⊆ κH;

• For all κ ∈ Th and κH ∈ TH , where κ ⊆ κH , that Pκ ≤ pκ.
In this article we perform h–refinement on the fine mesh Th and p–derefinement on the
coarse mesh TH where necessary.

Remark 4.1. For the purposes of the numerical experiments in the following section, in Step 1
above, the two-grid hp–adaptive algorithm is initially started with V (TH ,P ) = V (Th,p).

Remark 4.2. We note that the algorithm allows the steering parameter λ to be zero. In this
situation no coarse mesh refinement will be performed and hence the algorithm will only refine
the fine mesh.

5. Numerical Experiments

In this section we present a series of numerical experiments in two- and three-dimensional space
to demonstrate the performance of the a posteriori error bound derived in Theorem 3.2 and the
hp–adaptive mesh refinement strategy from Algorithm 4.1. We set the interior penalty parameter
constant γ to 10 and the steering parameter λ to 1 for all experiments. The nonlinear equations are
solved by employing a damped Newton method [36, Section 14.4]. The solution of the resulting set
of linear equations, emanating from either the fine mesh or at each step of the iterative nonlinear
solver, was computed using either the direct MUMPs solver, see [1], for two–dimensional problems
or an ILU preconditioned GMRES algorithm, see [39], for the three–dimensional problem. We
also calculate the error bound in Theorem 3.2 by setting the constant C5 to 1.
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Figure 1: Example 1. (a) Comparison of the error in the DGFEM norm, using both the standard nonlinear
solver (u∗ = uh,p) and the two-grid method (u∗ = u2G), with respect to the number of degrees of freedom;
(b) Effectivity of the h– and hp–refinement using the two-grid method; (c) Comparison of number of
degrees of freedom in the coarse and fine mesh.

For each example, as well as solving using the two-grid method, we compute the standard
SIP DGFEM formulation (14) for comparison. In order to determine the improvement in the
computation time from using the two-grid method over the standard SIP DGFEM, both algorithms
were timed, on the same computer, using the FORTRAN cpu_time function [33, Section 8.16.2],
which times purely the amount of cpu time and is therefore unaffected by other processes on the
computer.

5.1. Example 1. In this example we repeat the first numerical experiment from [27, Section
4.1] with s = 20. Therefore, we let Ω be the unit square (0, 1)2 ⊂ R

2 and define the nonlinear
coefficient as

µ(x, |∇u|) = 2 +
1

1 + |∇u| . (36)

We select the right-hand forcing function f so that the analytical solution to (5)–(6) is given by

u(x, y) = x(1 − x)y(1 − y)(1 − 2y)e−20(2x−1)2 .

In Figure 1(a) we present a comparison of the actual error measured in terms of the energy
norm versus the third root of the number of degrees of freedom (of the fine mesh) for both the
standard DGFEM formulation (14), together with the two-grid SIP DGFEM (16)–(17). In this
figure we perform both h– and hp–adaptive mesh refinement for both schemes. Here, we can see
that, for the problem at hand, the true error in the two-grid SIP DGFEM is only marginally worse
than the corresponding quantity for the standard DGFEM, when the same number of degrees of
freedom in the two-grid fine mesh, as in the mesh for the standard DGFEM, are used. From Figure
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Figure 2: Example 1. Cumulative cpu timing of the standard (u∗ = uh,p) and two-grid (u∗ = u2G) solver
compared to the actual error in the DGFEM norm: (a) h–refinement; (b) hp–refinement.
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Figure 3: Example 1. (a) Coarse and (b) fine meshes after 11 h–adaptive refinements; (c) Coarse and (d)
fine meshes after 11 hp–adaptive refinements.

1(b), we observe that for both the h– and hp–refinement strategy, the error bound overestimates
the true error by a roughly consistent amount, in the sense that the effectivity indices are roughly
constant; indeed, here, the effectivity indices are around 13. Although the two-grid SIP DGFEM
gives a slightly worse error than the standard DGFEM, for a fixed number of fine mesh degrees
of freedom, we note that the two-grid algorithm only performs the expensive nonlinear solve on
a coarser grid which, hopefully, possesses far less degrees of freedom than the standard DGFEM.
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Figure 4: Example 2. (a) Comparison of the error in the DGFEM norm, using both a standard nonlinear
solver (u∗ = uh,p) and the two-grid method (u∗ = u2G), with respect to the number of degrees of freedom;
(b) Effectivity of the h– and hp–refinement using the two-grid method; (c) Comparison of number of
degrees of freedom in the coarse and fine mesh.

Figure 1(c) shows the number of degrees of freedom on the coarse grid compared to the number of
degrees of freedom on the fine mesh. As can be seen, there are considerable less degrees of freedom
on the coarse grid and, therefore, we would expect the two-grid solver to be computationally less
expensive. To this end, the magnitude of the true error, measured in the DGFEM norm, for both
the standard and two-grid methods, when both h– and hp–adaptive mesh refinement has been
employed, compared to the cumulative cpu time required for the calculation of each numerical
solution is shown in Figure 2. This figure clearly illustrates the superiority of employing the
two-grid variant of the SIP DGFEM for this problem. Indeed, for a given fixed accuracy, the two-
grid SIP DGFEM requires around an order of magnitude less cpu time to compute the numerical
approximation to u, compared to the standard DGFEM.

In Figure 3 we show the fine and coarse h– and hp–refinement meshes after 11 mesh refinements,
where the colour bar indicates the polynomial degree for hp–refinement. For h–refinement we can
see that all the fine grid refinement occurs around the interior and bases of the exponential ‘hills’
in the analytical solution, as would occur for the standard DGFEM. Notice that only a small
amount of refinement has taken place in the corresponding elements in the coarse mesh, namely,
wherever ξκ is expected to be large. In the fine mesh of the hp–refinement case the h–refinement
occurs mostly around the base of the hills with p–refinement in the interior of the hills, cf. also
the coarse grid.

5.2. Example 2. In this example we repeat the second numerical experiment from [27, Section
4.2]. Thereby, we let Ω denote the L-shaped domain (−1, 1)2 \ [0, 1)× (−1, 0] ⊂ R

2 and select the
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Figure 5: Example 2. Cumulative cpu timing of the standard (u∗ = uh,p) and two-grid (u∗ = u2G) solver
compared to the actual error in the DGFEM norm: (a) h–refinement; (b) hp–refinement.
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Figure 6: Example 2. (a) Coarse and (b) fine meshes after 11 h–adaptive refinements; (c) Coarse and (d)
fine meshes after 11 hp–adaptive refinements.

nonlinearity to be

µ(x, |∇u|) = 1 + e−|∇u|2 .

By writing (r, ϕ) to denote the system of polar coordinates, we choose the forcing function f and
an inhomogeneous boundary condition such that the analytical solution to (5)–(6) is

u = r2/3 sin
(

2
3ϕ
)
.
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Note that u is analytic in Ω̄ \ {0}, but ∇u is singular at the origin.
In Figure 4(a), we again present a comparison of the actual error measured in terms of the

energy norm versus the third root of the number of degrees of freedom (of the fine mesh) for
both the standard DGFEM formulation (14), together with the two-grid SIP DGFEM (16)–(17),
employing both h– and hp–refinement. As in Example 1, for this problem the true error in the
two-grid SIP DGFEM is only marginally worse than the corresponding quantity for the standard
DGFEM, when the same number of degrees of freedom in the two-grid fine mesh, as in the mesh
for the standard DGFEM, are employed. Figure 4(b), shows the effectivity indices of both the
h– and hp–refinement strategies. For all meshes, these are roughly constant. We can see from
Figure 4(c), which shows the number of degrees of freedom on the coarse grid compared to the
number of degrees of freedom on the fine mesh, that there are considerable less degrees of freedom
on the coarse grid and, thereby, we would again expect the two-grid solver to be computationally
less expensive. In Figure 5 we plot the cumulative cpu time taken by the two schemes, which is
compared to the actual error, for both h– and hp–refinement strategies. Here, we see that for
h–refinement, the two-grid SIP DGFEM results in an error that is roughly a constant amount
lower than the error in the standard method, for the same computation time. For hp–refinement,
we see that initially the two-grid method is less computationally expensive, however, as refinement
proceeds the improvement in computation time from using the two-grid method decreases.

In Figure 6 we show the fine and coarse h– and hp–refinement meshes after 11 mesh refinements,
where the colour bar indicates the polynomial degree for hp–refinement. For h–refinement we can
see that both the fine and coarse grid refinement is fairly uniform except around the singularity
at the origin, where strong refinement appears, with the coarse grid mesh refinement being less
refined. For the hp–refinement case, the h–refinement occurs mostly around the origin with high p–
refinement in the rest of the domain, with the coarse grid refinement done mostly by p–refinement,
with a small amount of h–refinement around the origin.

5.3. Example 3. In this section we let Ω be the Fichera corner (−1, 1)3 \ [0, 1)3 ⊂ R
3, use the

nonlinearity (36) from the first example and select f and a suitable inhomogeneous boundary
conditions such that the analytical solution to (5)–(6) is

u(x, y, z) = (x2 + y2 + z2)q/2,

where q ∈ R. From [5] we note that for q > −1/2 the solution satisfies u ∈ H1(Ω); in this case
we select q = −1/4 as in [50]. We note that this gives a singularity at the re-entrant corner (the
origin).

In Figure 7(a), we again present a comparison of the actual error measured in terms of the energy
norm versus the fourth root (see [50]) of the number of degrees of freedom (of the fine mesh) for
both the standard DGFEM formulation (14), together with the two-grid SIP DGFEM (16)–(17),
employing both h– and hp–refinement. Here, we can see that for this problem the true error in the
two-grid SIP DGFEM is almost identical to the corresponding quantity for the standard DGFEM
when the same number of degrees of freedom in the two-grid fine mesh is employed as in the
mesh for the standard DGFEM. From Figure 7(b), we can see that the effectivity indices of the h–
refinement strategy are roughly constant, suggesting that the error bound constantly overestimates
the error. For the hp–refinement strategy, we note that the effectivity index seems to rise slightly
as refinement occurs; we point out that similar behaviour was observed in [50] for the numerical
approximation of the Poisson equation posed in the same Fichera corner domain. From Figure
7(c), which shows the number of degrees of freedom on the coarse grid compared to the number
of degrees of freedom on the fine mesh, we can see that the two-grid solver uses significantly
less degrees of freedom on the coarse grid than on the fine mesh; thereby, we would expect the
computation time to be considerable lower than for the standard solver. From the comparison of
the cumulative cpu timing with the actual error in the DGFEM norm, Figure 8, this expected
improvement is indeed observed for both h– and hp–refinement strategies. In particular, for a
given fixed accuracy, the two-grid SIP DGFEM requires around an order of magnitude less cpu
time to compute the numerical approximation to u, compared to the standard DGFEM.
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Figure 7: Example 3. (a) Comparison of the error in the DGFEM norm, using both a standard nonlinear
solver (u∗ = uh,p) and the two-grid method (u∗ = u2G), with respect to the number of degrees of freedom;
(b) Effectivity of the h– and hp–refinement using the two-grid method; (c) Comparison of number of
degrees of freedom in the coarse and fine mesh.
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Figure 8: Example 3. (a) Cumulative cpu timing of standard (u∗ = uh,p) and two-grid (u∗ = u2G) solver
compared to the actual error in the DGFEM norm: (a) h–refinement; (b) hp–refinement.

Figure 9 shows the fine and coarse meshes after 5 h–refinements. We can see that both the fine
and coarse grid refinement is fairly uniform but concentrated around the singularity at the origin;
we also note that the coarse grid mesh is less refined than the fine mesh, as we would expect.
The fine and coarse meshes after 6 hp–mesh refinements are shown in Figure 10. Here, we see
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(a) (b)

(c) (d)

Figure 9: Example 3. Finite element mesh after 5 h–adaptive mesh refinements: (a) Coarse mesh; (b)
Fine mesh; (c) Three-slice of coarse mesh; (d) Three-slice of fine mesh.

that at the singularity at the origin both the fine and coarse meshes have mostly h–refinement
with p–refinement occurring away from this area. Again we can see that both the coarse and fine
meshes have been refined in a similar manner, with the coarse mesh just being less refined than
the fine mesh.

6. Concluding Remarks

In this article, we have developed the a priori and a posteriori error analysis for a class of two-
grid hp–version DGFEMs for the numerical solution of second–order quasilinear elliptic boundary
value problems of monotone type. In particular, due to the type of nonlinearity considered, the
a priori error bounds indicate that the dimension of the coarse and fine finite element spaces
V (TH ,P ) and V (Th,p), respectively, should grow at roughly the same rate, in order to retain
optimal convergence of the underlying numerical method; computational results confirming these
theoretical findings have been presented in [18]. On the basis of the a posteriori error bound, we
have designed and implemented a two-grid hp–adaptive algorithm which is capable of designing
both the coarse and fine finite element spaces V (TH ,P ) and V (Th,p), respectively, in an automatic
manner. In particular, our numerical experiments indicate that gains in computational efficiency
may be attained when the two-grid method is exploited in comparison to the standard (single
grid) DGFEM. Current work is based on extending the present analysis to non-Newtonian fluid
flows in both two– and three–dimensions.
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(a) (b)
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Figure 10: Example 3. Finite element mesh after 6 hp–adaptive mesh refinements: (a) Coarse mesh; (b)
Fine mesh; (c) Three-slice of coarse mesh; (d) Three-slice of fine mesh.
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[50] L. Zhu, S. Giani, P. Houston, and D. Schötzau. Energy norm a-posteriori error estimation for hp-adaptive

discontinuous Galerkin methods for elliptic problems in three dimensions. Math. Model. Methods Appl. Sci.,
2011.

E-mail address: pmxsc@nottingham.ac.uk and Paul.Houston@nottingham.ac.uk

School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, NG7

2RD, UK

E-mail address: wihler@math.unibe.ch

Mathematisches Institut, Universität Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland


