Scenario Analysis, Decision Trees and Simulation for Cargo Screening

Galina Sherman and David Menachof: University of Hull – Business School (Logistics Institute)
Peer-Olaf Siebers and Uwe Aickelin: Nottingham University – Computer Science (IMA Research Group)

Background

Introduction

- •Cargo screening at seaports
- Looking for stowaways
- •Efficiency is not known

Tools for evaluating different policies

- •Trade-Off Analysis
- •Cost-Benefit Analysis
- Pareto Analysis

Evaluation methods used in tools

- Scenario analysis
- Decision trees
- •Simulation (Monte Carlo and DES)

Aim and Focus

Aim: To examine different probabilistic methods that are frequently used for conducting Cost-Benefit Analysis of different cargo screening policies

Focus

- Comparison between techniques
- Data requirements
- Use in security research

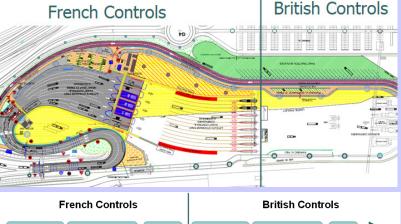
Case Study - Calais

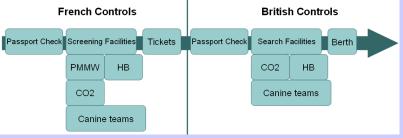
- Stowaways (clandestines)
- •900,000 lorries/year
- •0.4% are positive detected lorries

Scenarios

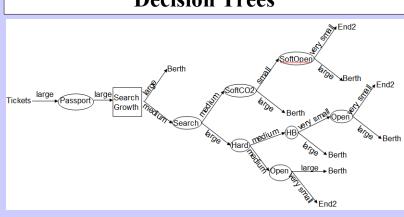
Traffic Growth (TG)	p (TG)	Clandestine Growth (CG)		Search Growth (SG)
0%	0.25	-50%	0.33	0%
10%	0.5	0%	0.33	10%
20%	0.25	25%	0.33	20%

Table 1: Two factors with three scenarios and one decision variable with three options


	-50% CG	0% CG	+25% CG
0% TG	0.083	0.083	0.083
10% TG	0.167	0.167	0.167
20% TG	0.083	0.083	0.083


Table 2: Combined probabilities assuming independence of probabilities

Conceptual Model


Scenario Analysis

- •% of vehicles searched
- •# of positive lorries stopped
- •Comparison with base scenario CG=0%
- •# of positive lorries missed
- Cost of extra searches
- •Relative # of positive lorries missed vs. CG=0%

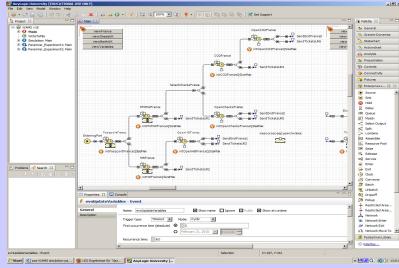

TG vs. SG	SG 0%	SG +10%	SG +20%
TG 0%	£60,000,000	£59,545,455	£60,000,000
TG 10%	£66,000,000	£65,000,000	£65,000,000
TG 20%	£72,000,000	£70,454,545	£70,000,000

Table 3: Expected costs excluding SG costs for CG = 0%

Decision Trees

Simulation (using AnyLogic)

- •Monte Carlo Simulation
- •DES 0: basic (incl. times and resources)
- •DES 1: DES 0 & seasonal arrival rates
- •DES 2: DES 0 & queue size restrictions (UK controls)
- •DES 3: DES 1 & queue size restrictions (UK controls)

UK Border Agency

Results and Conclusions

	Total expected costs			Cheapest option	
Option	1: SG=0%	2: SG=10%	3: SG=20%	Cheapest option	
SA	£60,500,000	£60,000,000	£60,416,667	2	
DT	£60,497,446	£60,000,000	£60,418,795	2	
MCS	£60,335,818	£60,058,184	£60,461,341	2	
DES 0	£60,797,873	£60,250,740	£60,350,102	2	
DES 1	£60,881,284	£60,017,602	£60,406,308	2	
DES 2	£60,714,953	£60,166,442	£60,857,915	2	
DES 3	£59,817,382	£60,116,618	£61,624,835	1	

Table 4: Overall cost comparisons of all methodologies

- •Scenario analysis, decision trees and simulation are useful for cost benefit analysis of static systems
- •In dynamic environments simulation is more flexible (e.g. seasonal arrivals rates and queue restrictions)
- •Further comparison of methods can be found in Table 5.

		SA	DT	MC	DES
Risk type	Discrete / Continuous	D	D	C	C
	Correlated / Independent	С	Ι	both	both
	Sequential / Concurrent	С	S	both	both
Decision process	Strategic / Operational	S	S	S	О
	Broad / Detailed	В	В	В	D
	Complexity	L	M	Н	Н
Model Characteristics: Low, Medium, High	Data requirements	L	L	M	Н
	Tool costs	L	L	M	Н
	Training costs	L	L	Н	Н
	Assumptions	Н	M	L	L

Table 5: Factors to take into consideration before making decisions

Future Research

- •How useful is simulation for analysing the impact of rare events?
- •Looking at standard deviation in the context of rare events: How can it be used to assess risk when events get rarer?
- •Comparison of probabilistic (top down) with object oriented (bottom-up) routing in simulation models

The Research Team

This project is supported by the EPSRC, grant number EP/G004234/1 and the UK Border Agency.