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Summary

Despite recognition of the importance of soil bacteria
to terrestrial ecosystem functioning there is little
consensus on the factors regulating belowground
biodiversity. Here we present a multi-scale spatial
assessment of soil bacterial community profiles
across Great Britain (> 1000 soil cores), and show the
first landscape scale map of bacterial distributions
across a nation. Bacterial diversity and community
dissimilarities, assessed using terminal restriction
fragment length polymorphism, were most strongly
related to soil pH providing a large-scale confirmation
of the role of pH in structuring bacterial taxa.
However, while a diversity was positively related to
pH, the converse was true for b diversity (between
sample variance in a diversity). b diversity was found
to be greatest in acidic soils, corresponding with
greater environmental heterogeneity. Analyses of
clone libraries revealed the pH effects were predomi-
nantly manifest at the level of broad bacterial taxo-
nomic groups, with acidic soils being dominated by
few taxa (notably the group 1 Acidobacteria and
Alphaproteobacteria). We also noted significant cor-
relations between bacterial communities and most
other measured environmental variables (soil chem-
istry, aboveground features and climatic variables),
together with significant spatial correlations at close
distances. In particular, bacterial and plant com-
munities were closely related signifying no strong
evidence that soil bacteria are driven by different
ecological processes to those governing higher

organisms. We conclude that broad scale surveys are
useful in identifying distinct soil biomes comprising
reproducible communities of dominant taxa. Together
these results provide a baseline ecological frame-
work with which to pursue future research on both
soil microbial function, and more explicit biome
based assessments of the local ecological drivers of
bacterial biodiversity.

Introduction

Bacteria constitute a major portion of the biodiversity in
soils (Gans et al., 2005; Roesch et al., 2007; Fulthorpe
et al., 2008), and play an essential role in maintaining soil
processes (Brussaard, 1997; Bardgett et al., 2008), which
ultimately affect the functioning of terrestrial ecosystems.
An understanding of the factors that influence the biodi-
versity of soil bacterial communities is needed, first as a
framework for determining the roles of different taxa in
soils; and also to predict ecosystem responses to a
changing environment. From a natural historical perspec-
tive, our understanding of how bacterial communities are
distributed at landscape scales remains rudimentary
(Dequiedt et al., 2009). More broadly, microbial species
have been perceived as being ubiquitous and are often
assumed to be functionally redundant, leading some
researchers to suspect that microbes follow different eco-
logical rules to higher organisms (discussed in Martiny
et al., 2006). There is therefore growing wider interest in
whether microbial biogeographic patterns differ funda-
mentally from those of larger organisms (Horner-Devine
et al., 2004; Martiny et al., 2006; Prosser et al., 2007).

Of fundamental importance is the basic ecological
requirement to determine whether microbes are ubiqui-
tously or randomly distributed (Martiny et al., 2006;
Ramette and Tiedje, 2007); and if they are not, to eluci-
date the relative influence of biotic and abiotic factors in
affecting community structure. Previous studies based on
pure cultures isolated from soils have typically revealed
endemism within defined isolated taxa (Cho and Tiedje,
2000; Ramette and Tiedje, 2007). However, the taxa
detected by culturing are known to not reflect the domi-
nant taxa in an environment (Dunbar et al., 1999; Amann
and Ludwig, 2000), and molecular methods based on
diversity profiling of environmental DNA are more useful if
we wish to gain additional information on how the domi-
nant members of bacterial communities differ in compo-
sition across landscapes. Using such methods, Fierer and
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Jackson (2006) found in 98 soil samples widely distrib-
uted across the Americas, that pH was the main driver
determining the richness and composition of bacterial
taxa, above and beyond other environmental and spatial
factors. More recent reports have also documented the
overriding effect of pH on soil bacterial communities
assessed with molecular community profiling approaches,
although they have focussed on discrete geographic
regions (Hartman et al., 2008a; Baker et al., 2009; Jesus
et al., 2009). To bridge the gap between local and wide-
scale assessments, more studies are required encom-
passing greater spatial sampling across multiple soil
biomes, to reveal whether the predictable relationships
between total bacterial communities and specific environ-
mental factors are a global feature of bacterial biogeog-
raphy. Furthermore, some assessment of the taxonomic
resolution provided by the 16S based methodologies is
required in order to address the conflicting conclusions
regarding the stronger spatial effects apparent in the local
studies of bacterial isolates.

The relationships observed between soil pH and bac-
terial community structure have largely been based on
correlations of pH and an index of diversity, i.e. a univari-
ate descriptor of the number and proportions of taxa
within each sample. Despite some criticism that these
measures only reflect the diversity of taxa detectable with
a molecular method, and not the entire bacterial commu-
nity (Bent et al., 2007; Blackwood et al., 2007), simple
indices do allow for comparisons of community–
environment relationships across studies, and are there-
fore more suitable than multivariate comparisons of
pairwise distances in providing wide-scale synthesis. A
unimodal relationship between diversity and pH was
observed in the American survey, while a more geographi-
cally constrained study of wetland soils did not show the
same characteristic drop in diversity at low pH (Hartman
et al., 2008a), highlighting that further studies are needed
to globally synthesize the precise relationships between
bacterial diversity and pH. Additionally, a key issue that
has yet to be addressed in studies of soil bacterial diver-
sity is how b diversity, the variability in communities
among samples (Whittaker, 1960), changes across domi-
nant soil environmental gradients. Large-scale surveys of
b diversity are critical for understanding how bacterial
communities respond to environmental factors as commu-
nities with similar levels of a diversity might be composed
of very different taxa.

Determining general rules governing bacterial bioge-
ography at a global scale therefore requires widespread
spatial surveillance of community diversity and compo-
sition, coupled with extensive collection of environmental
data. We sought to analyse bacterial communities in
over 1000 soils collected across Great Britain as part of
a nationwide monitoring scheme. The soils were col-

lected from the 2007 Countryside Survey (www.
countrysidesurvey.org.uk/); a long-term British monitor-
ing programme incorporating extensive sampling of
habitat and soil characteristics at multiple spatial scales.
We used a simple molecular community profiling tool
[terminal restriction fragment length polymorphism
(TRFLP) analysis] and limited sequencing of selected
clone libraries (V1–V3 regions of 16S rRNA) to assess
the biogeography of soil bacterial communities with
respect to three broad and related aims: (i) to address
the environmental and spatial determinants of bacterial
biogeography at multiple spatial scales across Britain;
(ii) To investigate how bacterial diversity and beta diver-
sity vary according to the detected environmental gradi-
ents and (iii) to generate a broad-scale map of patterns
of bacterial biodiversity at a nationwide scale.

Results

Explaining variance in bacterial community diversity

Simpsons index was used to calculate bacterial a diver-
sity in each of the soil samples (n = 1010), and was then
used as a response variable in multiple regressions, using
each environmental variable as a predictor (for variables
see Experimental procedures). Soil pH was found to
be the strongest predictor of a diversity (r 2 = 0.41,
P < 0.0001, n = 1010, Fig. 1), followed by the first axis
scores of a plant community ordination (r 2 = 0.27,
P < 0.0001, n = 1010). While remaining significant all
other variables generally were weakly correlated with r 2

values of less than 0.2. The large effect of plant commu-
nities was also reflected when testing the effects of the
aggregate vegetation class categorical variables on diver-
sity (r 2 = 0.29, P < 0.0001, n = 990), indicating that typi-
cally ‘improved’ habitats such as agricultural land and
grasslands have higher soil pH and consequently higher
diversity. As soil pH increased, bacterial diversity between
samples became less variable. The larger amount of
variation in diversity between low pH soil samples raises
the possibility that over larger areas, meta-communities of
low pH soils may in fact be more diverse. We tested this
by applying additive diversity partitioning (Lande, 1996),
to samples grouped into discrete pH classes. While lower
pH soils exhibited lower within-sample diversity (a diver-
sity), between-sample variance (b diversity) declined with
increasing pH (b diversity v pH: r 2 = 0.19). Therefore,
although high pH soils were more diverse at a particular
location (soil core), there was much less variability among
groups of high pH soils. Overall, the mean total diversity (g
diversity = a + b) remained lower in the low pH soils, but g
diversity increased less rapidly with increasing pH com-
pared with a diversity (g diversity r 2 = 0.26). One plausible
mechanism for the decline in b diversity with increasing
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pH is that low pH soils are more variable across sites in
their abiotic conditions.

We hypothesized that low pH organic soils represented
relatively heterogeneous habitats, thereby facilitating a
greater number of potential niches for bacterial commu-
nities compared with more homogeneous higher pH
mineral soils. Variance across the pH gradient was exam-
ined by comparing the variation in abiotic conditions
(climate, altitude, soil organic matter, soil moisture and
soil phosphorous) within each of the pH classes (see
Fig. 1). As predicted, there was a substantial decline in
the variance in environmental conditions across sites
(Fig. 2), lending support for the hypothesis that there are
a greater number of potential niches in low pH soils.

Mapping and explaining variance in bacterial
community composition

While diversity indices are useful in describing community
characteristics by a single vector, they provide no evalu-
ation of important compositional features of biodiversity
relating to the abundances of shared taxa. To specifically
assess changes in bacterial composition (incorporating
taxon abundance and identity), we used non-metric mul-

tidimensional scaling (NMDS) ordination to represent, in
two dimensions, the pairwise Bray Curtis similarities
between soil community TRFLP profiles (n = 1010,
Fig. 3A). Linear fitting of environmental factors to the ordi-
nation (n = 818) revealed significant effects of most mea-
sured variables, with pH again being the strongest
correlate (Table 1). Consistent with higher b diversity, the
spread of data points over the ordination was greater in
low pH soils. Therefore, the higher pH soils, while com-
prising a larger diversity of taxa, are more similar in
terms of community distances than the less diverse low
pH soils.

The significance of the other measured variables can
be interpreted by examining the directions of the correla-
tions with the samples scores in the ordination plot
(Table 1) or by mapping the ordination scores across
Great Britain (Fig. 3B). Northern regions posses a greater
proportion of upland habitats, with the harsh climatic con-
ditions giving rise to distinct plant communities and acidic
soils of high organic matter content. These factors show
commonality with heathland and upland regions of
England and Wales, and thus these biomes shared similar
bacterial communities. This is in marked contrast to most
of England and parts of Wales, which generally possess a
milder climate, less acidic lowland soils and a typically
agricultural floristic community (Haines-Young et al.,
2003). These areas share common characteristics with
lowland regions of Eastern Scotland, and predictably, their
bacterial communities were more similar. As exemplified
by the high correlations with plant community ordination

Fig. 1. Relationships between soil pH and bacterial diversity. The a
diversity of soil bacterial communities was most strongly related to
soil pH (r 2 = 0.41, n = 1010). While a diversity is positively related
to pH, a negative relationship is observed for b diversity. Data
points represent the Simpson’s diversity index for each sample,
with circles or triangles representing the aggregate vegetation
classification (AVC): Circles = moorland grass mosaics, upland
wooded, heath and bog; triangles = crops and weeds, fertile
grassland, tall grass and herb, infertile grassland, lowland wooded
habitats. Mean a, b and g diversity calculated on soils grouped by
pH are shown as indicated in the legend, with coloured data points
representing the pH bins.
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Fig. 2. Relationship between the variance in environmental
conditions and soil pH. Each of the quantitative abiotic
environmental measurements was scaled to have a mean of zero
and standard deviation of one. For each environmental parameter,
the variance was calculated over each of the pH bins used in
Fig. 1. The mean (+/- standard error) of these variances is plotted
across the pH range.
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results (Axis 1 of a detrended correspondence analysis:
See Table 1 and Fig. 3A), soil bacterial communities are
broadly structured similarly to plant communities with dis-
tributions governed by covarying soil chemical, geologi-
cal, climatic conditions together with historical and current
land use.

The role of space and environment

Here we wish to explore whether there are any additional
spatial sources of variation in bacterial communities
indicative of either local biotic processes such as dis-
persal, or other unmeasured spatially correlated environ-
mental parameters. We address this question in terms of
distances by examining the correlations between commu-
nity, environmental and spatial distance matrices using
Mantel tests (Legendre and Legendre, 1998). We maxi-
mized the community–environment correlation by select-
ing a subset of environmental parameters giving the
highest Pearson’s r. This calculation was performed using
the bioenv procedure within the R package vegan
(Oksanen et al., 2009) and resulted in the selection of
three variables [pH, plant DCA 1 scores and (log)CN
ratio], which were then centred on their means and scaled

Fig. 3. Ordination and mapping of bacterial communities.
A. Representation of the pairwise similarities between samples using two dimensional NMDS ordination. The three dominant environmental
gradients associated with the ordination are also represented: a colour ramp showing pH; circles or triangles representing the habitats defined
by AVC group (see Fig. 1) and generalized additive model fitted contours illustrate the first axis sample scores obtained from detrended
correspondence analyses of plant communities.
B. Spatial mapping of bacterial communities across Great Britain using inverse distance weight interpolation of first axis NMDS scores. The
locations of the 1 km2 plots that comprise up to five soil cores are indicated on the map. The main differences in bacterial communities are
reflected in the broad environmental, climatic and land use features of the landscape.

Table 1. Summary of relationships between environmental factors
and bacterial communities.

Variable r 2 P

Correlation

Axis1 Axis2

pH 0.777 0.001 + +
Plant DCA scores (axis 1) 0.616 0.001 - -
C : N Ratio 0.532 0.001 - +
% Moisture 0.531 0.001 - +
Loss on ignition (%) 0.506 0.001 - +
% Carbon 0.495 0.001 - +
% Nitrogen 0.405 0.001 - +
Rain 0.349 0.001 - -
Temperature (oC) 0.333 0.001 + +
Sun (h) 0.327 0.001 + +
Eastings (m) 0.321 0.001 + +
Cloud (% cover) 0.304 0.001 - -
Altitude (m) 0.261 0.001 - -
Plant DCA scores (axis 2) 0.242 0.001 - -
Northings (m) 0.195 0.001 - -
Phosphorus (mg kg-1) 0.046 0.001 + +
Plant DCA scores (axis 3) 0.002 0.5 - +

Correlations with numeric environmental variables (r 2) were obtained
by fitting linear trends to the NMDS ordination and significance (P)
was determined by permutation (nperm = 999). +/- signifies the direc-
tion of association with each of the NMDS axes.
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to unit variance before calculation of the environmental
distance matrix. When examining the total dataset
(n = 886 samples after removing missing environmental
data, 392 055 pairwise comparisons), mean community
and environmental dissimilarity increased in similar
manner with geographic distance (Fig. 4A). However, a
thorough evaluation of partial residual plots revealed non-
linear patterns within the datasets, potentially invalidating
the results of Mantel tests. These are inferred in Fig. 4A,
particularly at the furthest distance classes, where envi-
ronmental dissimilarity continues to rise whereas commu-
nity dissimilarity levels off. Additionally at the most
extreme distance lags relationships become erratic, as a
result of a combination of a lower number of pairwise
comparisons, and broadly similar biomes at the most
northerly and southerly locations within Britain. These
issues were overcome by truncating the distance matrices
to only include comparisons between samples less than
200 km apart, and then taking the logarithm of these
distance before the Mantel tests.

Both community and spatial dissimilarities were
positively correlated with geographic distance (Mantel
r = 0.10 and 0.11, respectively, P < 0.001). However, the
community–space relationship was marginal compared
with the correlations of community and environmental dis-
similarities (Mantel r = 0.6973, P < 0.001). Partial correla-
tions of community distances and space, given the

environment, resulted in a weak but significant correlation
(partial Mantel r = 0.035, P < 0.001), indicating a minor
increase in genetic dissimilarity with space once the envi-
ronmental relationships had been removed. Further evi-
dence of a significant spatial component for the closest
distance classes was observed by constructing a partial
mantel correlogram (Fig. 4B), which tests the mean
residual community variation (after environment) for dis-
crete distance classes against the means over all other
distances (Legendre and Legendre, 1998). Here signifi-
cant correlations were obtained for the first distance class
(< 1 km), indicating that the mean residual variance within
the 1 km squares was less than between square variation
once environment had been taken into account. However,
this spatially correlated residual component was still mar-
ginal compared with the large correlations between com-
munity and environment. It is of note that other methods
based on constrained ordination and variance partitioning
(Legendre et al., 2008) were also explored to estimate the
relative importance of environmental and spatial factors.
While these methods also highlighted the strong impor-
tance of environmental structuring, the appropriateness of
their usage was uncertain as the ordinations were notably
arched, indicative of non-linear correlations present over
long environmental gradients. We therefore conclude that
most of the variation in soil bacterial communities deter-
mined with the TRFLP method can be explained by the

Fig. 4. Relationships between community,
spatial and environmental distances.
A. The mean variance in community (filled
circles) and environmental (open circles)
dissimilarities with space. Means were
calculated over discrete distance lags of
20 km length across all sampling sites, and
the data rescaled to facilitate plotting. Both
community and environmental dissimilarities
increase with distance, a consequence of the
high level of environmental control over
bacterial communities.
B. Mantel correlogram showing spatial
autocorrelation of the community residuals
after linear regression with environmental
distances. The first distance lag was selected
to include all comparisons at < 1 km and
subsequent lags chosen to represent
approximately equal n representative of
distances up to 200 km. The significance of
each correlation (filled circles) with all other
lags was tested by permutation (n = 999,
a < = 0.001).
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environment, although there is some evidence to suggest
other variables not assessed here may additionally struc-
ture communities at local scales.

Broad taxonomic features of soil bacterial communities

The identities of bacterial taxa differing across the envi-
ronmental gradients were investigated by sequencing a
subset of samples. Approximately 160 16S rRNA gene
clones were sequenced from each nucleic acid extract
from 15 geographically dispersed soils of low, medium
and high pH (n = 5; ~400 nucleotides per clone).
Sequences were then grouped and classified into opera-
tional taxonomic units (OTUs) at varying levels of similar-
ity, and the results confirmed patterns shown by the
TRFLP method. Regardless of the similarity level used to
classify sequences, low pH soils had less taxonomic rich-
ness and diversity compared with intermediate or high pH
soils (Fig. S1A and B). However, maximal correlations
between TRFLP and clone library diversity indices
(r 2 ~ 0.8) were found when sequences were classified at a
low level of sequence similarity (60–70%) implying that
the TRFLP approach does not discriminate taxa at a par-
ticularly high taxonomic resolution (Fig. S2). Assessments
of the numbers of distinct taxa found in all five soils from
each pH group also highlighted that the compositional
distinctness of equivalent pH soils is only manifest when
sequences are compared at a relatively low taxonomic
resolution (Fig. S1C). Taxa could only be found consis-
tently in all five soils of similar pH when sequences were
classified at low levels of similarity. Conversely, when
grouping sequences at the 0–10% dissimilarity ranges,
there were in fact few taxa common to all five soils of
equivalent pH. We therefore present only the broad taxo-
nomic groups that differed between samples across the
pH gradient (Fig. 5), following classification using the
Ribosomal Database Project’s Bayesian Classifier. Low
pH soils were dominated by Group 1 Acidobacteria along
with the Alphaproteobacteria. As pH increased the
Alphaproteobacteria became more dominant at interme-
diate pH, and higher pH soils comprised a more evenly
distributed abundance of many different taxa, with a
notable increase in the Actinobacteria and Group 6
Acidobacteria.

In order to consolidate the sequencing data and TRFLP
community profiles, we performed an exploratory analysis
to determine the sequence identity of dominant TRFLP
peaks responding to the dominant environmental gradi-
ent. We first examined individual terminal restriction frag-
ments (TRFs), which had strong associations with the
NMDS axis scores (in Fig. 3A), and then determined the
identities of these fragments by examining enzyme cut
sites within the available sequences (Fig. S3A). Commu-
nities to the left of the NMDS ordination plot were domi-

nated by several peaks, which could be confidently
identified as Group 1 Acidobacteria (52 to 55 and 226 to
229 nucleotides). Plotting the relative abundances of
these TRFs versus pH revealed a marked decline in
Group 1 Acidobacteria with an increase in pH across all
samples analysed in the survey (Fig. S3B). With increas-
ing first axis sample scores (reflecting a positive pH
gradient) the negative skew on the second axis corre-
sponded with an increased abundance of several TRFs
identifiable as Alphaproteobacteria, which exhibited a uni-
modal response to pH. The high pH soils to the right of the
ordination comprised a high diversity of many different
taxa. Both the TRFLP and sequencing approaches there-
fore revealed that the strong environmental effects on
bacterial communities were largely due to the responses
of only a few broad taxonomic lineages to the environ-
mental gradients.

Discussion

The results from this study show that bacterial diversity
measured with simple community profiling methodologies
is mainly correlated with soil pH, in broad agreement with
other studies examining soil bacterial biogeography
across America (Fierer and Jackson, 2006; Lauber et al.,
2009). However, the exact shape of the relationship dif-
fered within British soils despite this survey covering
similar ranges of soil pH. No decline in diversity at high pH
was observed in our study, possibly identifying unexplored
interactions between pH and diversity within the southern
dry habitats examined in the American survey. Similarly,
other more recent studies investigating local relationships
between pH and diversity in temperate and Arctic biomes
have failed to identify reduced diversity at high pH
(Hartman et al., 2008b; Rousk et al., 2009; Chu et al.,
2010), illustrating that more widespread surveys are
required to provide a global synthesis on the exact nature
of this relationship. Importantly, we also found that other
measured environmental factors also had a significant
influence on soil bacterial diversity and community dis-
similarities. This could be due to subtle differences in
methodology, or the differences in sampling scale and
location carried out here. It is possible that the tenfold
higher sample sizes in the current study provided the
statistical power required to detect more subtle environ-
mental drivers of bacterial biodiversity.

The large correlations between bacterial and plant
biodiversity observed in our study, albeit confound by soil
pH, reveals that there are direct correlative links between
above and belowground diversity. The biogeography of
dominant broad groups of bacterial taxa is therefore
determined by covarying soil chemical, geological, cli-
matic and biotic factors commonly known to affect the
distribution of larger organisms (Gaston, 2000). Addition-
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ally, we infer that alterations in land use that affect soil pH
may have large consequences for soil bacterial biodiver-
sity at landscape scales. Establishing whether pH alone is
directly responsible for the observed differences in com-
position is problematic as soil pH is correlated with a
number of other biotic and abiotic variables. Soil pH
affects C and N substrate availability, possibly brought
about through a change in aboveground communities
(Kemmitt et al., 2006); and increased bioavailability of
toxic metals is also noted in low pH soils (Pietri and
Brookes, 2008), which may have additional effects upon
soil microbes.

An important aspect of our survey is that it represents
the first large-scale molecular examination of soil bacte-
rial 16S rRNA gene b diversity. For microbial communi-
ties the variation in diversity between samples (b
diversity) has traditionally been less studied than a
diversity (diversity within a single sample), despite b
diversity measurements being considered important for
an overall understanding of community dynamics (Green
and Bohannan, 2006; Lozupone et al., 2007). Contrary
to a diversity, b diversity was highest in low pH, high C
organic soils and lowest in high pH, low C agricultural
soils. Similarly, in marine sediments b diversity was
shown to be higher in low pH, high C surface layers, and
decreased with increasing depth and pH and decreasing
C concentrations (Wang et al., 2008). In British soils,
decrease in b diversity correlated with a reduction in
environmental heterogeneity among soils across the pH
gradient. Other alternative, yet complementary, explana-
tions may relate to greater vertical heterogeneity in low
pH soil cores, and also the possibility that less diverse
communities are naturally more variable and prone to
turnover. Hypothetically, multiple soil cores taken across
a bog are likely to differ more in their abiotic and biotic
characteristics than multiple cores taken across an
improved grassland field. The limited number of broad
taxonomic groups found in the acidic soils will therefore
vary more in relative abundance across the bog, possi-
bly because of a greater number of possible niches
within the environmentally patchy landscape. We did not
find evidence in our study that greater b diversity meant
meta-communities of low pH soils matched or exceeded
the total diversity (g diversity) of higher pH soils.
However, these results emphasize the importance of
considering between-site variance in future studies
attempting to form landscape scale conclusions regard-
ing diversity from point sample assessments.

The differences in biodiversity across the detected envi-
ronmental gradients were the result of consistent changes
in the composition of the dominant broad taxa, identified
by both the TRFLP analyses and the sequencing of a
limited number of soils. The dominant groups of bacteria
detected (Fig. 5) are known to be the most abundant in

soils globally (Janssen, 2006), and we observed similar
responses of these taxa to soil pH as reported in another
study, which used pyrosequencing (Lauber et al., 2009).
The Alphaproteobacteria and Actinobacterial groups have
been known for some time to play important roles in soil,
a facet of the general culturability of these taxa (Hugen-
holtz et al., 1998). Additionally, there is growing recogni-
tion of the importance of Acidobacteria in the soil
environment (Barns et al., 1999; Jones et al., 2009). Pre-
viously a broad lineage of taxa only discovered in soils
through the use of molecular techniques, they have now
been shown to be culturable using low pH media, low
nutrients and long incubation times (Kishimoto et al.,
1991; Barns et al., 1999; Sait et al., 2002; 2006).

Our findings support other molecular studies that
reveal that the Acidobacteria phylum, in general, are
more abundant at low pH, yet display subgroup differ-
ences in response to soil pH: Groups 1 and 2 Acidobac-
teria were negatively correlated with soil pH, whereas
Group 6 Acidobacteria increased in abundance with
increasing pH (Lauber et al., 2008; 2009; Jones et al.,
2009; Rousk et al., 2010). Importantly, the low a diversity
and high b diversity at low pH were due to the large, yet
variable, abundances of the Group 1 Acidobacteria.
Therefore, it appears that the established pH–diversity
relationship observed here and elsewhere is driven by
the dominance of a few taxonomic groups in low pH
soils. It remains to be determined whether the pH effect
is still apparent when rarer members of the community
are assessed; with these particular groups excluded.
Indeed this represents a potential question, which could
be addressed by future targeted deep sequencing. Fur-
thermore, it must be noted that importance of pH in
driving changes in broad taxa does not negate the influ-
ence of other environmental, temporal and biotic pro-
cesses in driving the diversity of sub-populations of these
taxa. However, the changes in dominant taxa over the
pH gradient may have consequences for soil processes
as there is increasing evidence that Alphaproteobacteria
(the other predominant taxon at low pH) dominate Aci-
dobacteria in soils with high nutrient availability, and the
relative abundances of these taxa have been associated
with broad measures of ecosystem functioning such as
carbon cycling (Smit et al., 2001; Griffiths et al., 2006;
Fierer et al., 2007; Thomson et al., 2010). At the simplest
level, it is imperative that we understand the functional
consequences of these broad shifts in dominating taxo-
nomic lineages over soil environmental gradients, if we
are to progress in deciphering exactly how bacterial com-
munities are linked with soil processes. Additionally, if
such linkages do in fact exist, quantifying the variance of
dominating lineages in similar soil biomes (b diversity)
may be useful in explaining the variability of soil pro-
cesses at landscape scales.
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Despite the large effect of environmental factors on
community distances, we also found some evidence for
residual spatial autocorrelation at closer spatial scales.
However, given the relatively low taxonomic resolution of
the TRFLP method identified subsequently in this study
and elsewhere (Blackwood et al., 2007), we do not
believe this is a significant indicator of structuring as a
result of biotic factors such as dispersal. More likely, it is
indicative of other spatially correlated environmental
factors not included in the analyses. One such parameter
that was not assessed in our study was the specific time
each core was sampled during the 2007 summer, which
could reflect local variability in climate or plant mediated
nutrient cycling, factors that are known to influence bac-
terial communities (Griffiths et al., 2003). Regardless of
these minor effects, the general dominance of control by
edaphic factors is in contrast to several studies that have
used methods discriminating taxa at higher taxonomic
resolution to explore environment–space relationships
(Cho and Tiedje, 2000; Ramette and Tiedje, 2007). Simi-
larly, a study using pyrosequencing to contrast bacterial
biodiversity in different soils found little taxonomic overlap
across sites (Fulthorpe et al., 2008). This finding in par-
ticular was mirrored in our clone analyses, which showed
few shared taxa in distantly sampled soils of equal pH,
when OTUs were defined at low levels of sequence
dissimilarity.

Therefore, the larger effect of edaphic control is only
manifest when assessing sequences at the level of
broad taxa, or using a simple community profiling tool
with inherently low levels of taxonomic discrimination. It
is likely that sub-populations of the taxonomic groups
detected within these soils will be endemic at local
scales, and we urge caution in confusing the strengths
of environment–space relationships (or indeed any other
ecological pattern) when communities are assessed at
low levels of taxonomic resolution (for discussion see
Horner-Devine et al., 2004). In addition, it is noteworthy
that seldom are such long environmental gradients
assessed in community studies of higher organisms, and
most multivariate statistical routines underperform when
analysing such data (see Smith and Lundholm, 2010 for
discussion). Future work investigating the biogeography
of soil bacterial communities should therefore focus on
local communities in soils of equivalent pH, using
methods offering greater taxonomic discrimination. For
example, an important question arising from our study is
whether the magnitude of purely spatial variability
relates to the changes in b diversity we observed along
the soil pH gradient. Our data therefore serve to high-
light the distinct soil biomes comprising similar broad
community structures (see summary Fig. 6), which may
provide a guide for future efforts specifically addressing
local biogeographic patterns.

To conclude, this study represents one of the largest
attempts to comprehensively map and investigate the
regulation of different components of soil bacterial biodi-
versity at multiple spatial scales over a landscape. We
have shown that broad groups of soil bacterial taxa are
distributed non-randomly, and their abundances can be
predicted by key environmental variables known to be
important in structuring plant diversity. Of fundamental
importance, we believe that neither our study nor other
studies assessing broad taxonomic groups of bacteria
provide sufficient taxonomic discrimination to indicate
that soil bacterial biogeographic patterns are in any way
unique. Future research in this area would benefit from
using appropriate methodologies to discriminate bacte-
rial taxa at a taxonomic resolution more reflective of the
levels used in generating theory for larger organisms
(Horner-Devine et al., 2004; Martiny et al., 2006). Mean-
while, the emerging global recognition of the dominant
broad taxa inhabiting specific soil biomes should be
marked as an achievement in itself, and it is now
imperative to address the significance of these compo-
sitional differences within a functional context. Determin-
ing whether these basic taxonomic differences confer
altered functionality will enable a true evaluation of the
role soil bacterial biodiversity in modulating ecosystem
services, and provide a framework to predict landscape
scale responses under future environmental change
scenarios.

Experimental procedures

Sampling regime

Samples were collected between May and November 2007
from 233 1 km2 squares across the UK as part of the Coun-
tryside Survey (http://www.countrysidesurvey.org.uk/). Within
each 1 km2 sampling area, up to five soil cores were sampled
(5 cm diameter, 15 cm deep) from the centre of randomly
allocated 200 m2 sub-plots used for the vegetation survey.
For each soil core the location (eastings, northings and alti-
tude) was recorded along with field measures of flora. Floral
assessments documented the presence and percent cover of
vascular plants, and a selected list of the more common
bryophytes and macro-lichens (Smart et al., 2003). As pre-
dictor variables indicative of floral biodiversity we used
vectors representing the first three axes of a Detrended Cor-
respondence Analysis performed on the binary floral dataset
(denoted DCA1, DCA2, DCA3). Additionally, a categorical
variable was used to denote habitat type based upon the
plant species assessments, denoted as the aggregate veg-
etation class (Firbank et al., 2003). Soil physical and chemi-
cal characteristics were determined from a duplicate 15 cm
core taken adjacent to the microbial core [for full details see:
CS Technical report No. 3/07 (Emmett et al., 2008)]. These
numeric variables included pH; % carbon (C), % nitrogen (N),
C : N Ratio, % organic matter (loss on ignition), phosphorous
(Olsen P, mg kg-1); and soil moisture content (% moisture).
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Climatic variables (rain, sun, cloud cover and temperature)
were based on mean data per square between 1961 and
2000.

Molecular analyses

Soil cores were homogenized under sterile conditions and
total nucleic acids were extracted from 0.25 g of soil using a
previously described method (Griffiths et al., 2000), modified
to include a 30 min hexadecyltrimethylammonium bromide
(CTAB) freeze-thaw, soft-lysis stage. TRFLP of 16S rRNA
genes (V1–V3 variable regions) was performed using forward
primer 63F 5′-CAGGCCTAACACATGCAAGTC-3′ labelled at
the 5′ end with 6FAM fluorescent dye and reverse primer,
519R 5′-GTATTACCGCGGCTGCTG–3′ (Thomson et al.,
2010). Amplicons were purified using the PureLink PCR puri-
fication kit (Invitrogen, Paisley, UK), then digested using
restriction endonuclease MspI. Fragment analysis was per-
formed using a 3730 DNA analyser (Applied Biosystems, CA,
USA) and individual TRFs were binned manually using Gen-
emarker software (SoftGenetics, PA, USA). Before statistical
analyses the intensity of each fragment was converted to a
proportional abundance, by dividing by the total intensity of all
detected fragments.

To identify individual TRFs changing across environmental
gradients, a subset of 15 soil cores were selected for clone
library generation and sequencing. These soils represented
five spatially and environmentally distinct replicates at pH
4.23 (+/- 0.23), 6.15 (+/- 0.08) and 8.28 (+/- 0.16). Amplicons
for cloning were generated from total DNA with primers 63F
and 519R using the TOPO TA Cloning Kit (Invitrogen, Paisley,
UK). Colonies were picked and colony PCR products (M13F
and M13R primers) were sequenced using the M13R primer
and BigDye v3.1 chemistry before analysis on a 3730 DNA
analyser (Applied Biosystems, CA, USA).

Bacterial 16S rRNA gene sequences were trimmed and
edited, before phylogenetic placement using the Ribosomal
Database Project’s Naive Bayesian rRNA Classifier tool
(http://rdp.cme.msu.edu/classifier/) with a bootstrap cut-off of
50% (Wang et al., 2007). Using the MOTHUR software
(Schloss et al., 2009) sequences were aligned to the green-
genes 16S rRNA gene sequence database (DeSantis et al.,
2006) and an uncorrected pairwise distance matrix was
formed. Sequences were then assigned to OTUs using the
furthest neighbour clustering algorithm before calculation of
diversity indices by classifying sequences at varying levels of
similarity. Sequences were deposited in The European
Molecular Biology Laboratory sequence database under

Crops and weeds
Fertile Grassland
Infertile grassland
Lowland woodland
Tall grass and herb

pH< 6.905 pH< 5.205

CN>=21.76

Heath and bog
Moorland grass mosaics
Upland Woodland

pH>=6.905 pH>=5.205

CN< 21.76

n=403

=0.014

=0.023

=0.025=0.028

=0.008
=0.97=0.94

=0.91 =0.91

=0.93

n=226

n=113 n=109

n=65

Vegetation Classification

Fig. 6. Multivariate regression tree summarizing community–environment relationships. The tree was calculated on the TRFLP dataset using
all the environmental variables as predictors. For each split a rule is selected based on the predictors to minimize the dissimilarity within the
TRFLP profiles in the resulting two nodes. The tree explains 50% of the variability in TRFLP profiles, much of which is accounted for by the
first split based on the vegetation classification. Soil pH was the next best predictor for the first split (pH < > 5.2), and also was the best
predictor for the two subsequent splits. Low pH soils were additionally split into two groups based on soil C : N ratio. At each terminal node,
the mean abundances of each TRF are shown, together with the mean a diversity and b diversity for each group. TRFs with an important
influence on the community variance observed in this study are also highlighted (red = Group 1 Acidobacteria, blue = Alphaproteobacteria).
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accession numbers FN808422-FN810977. To approximate
the identities of individual TRFs, the obtained sequences
were digested in silico with restriction endonuclease MspI
using the TRFLPMAP software (http://nebc.nerc.ac.uk/cgi-
bin/trflp0_2.cgi). Bacterial identifications were assigned to
TRFs if greater than 75% of sequences for a given range of
fragments belonged to a particular taxon.

Statistical analyses

All statistical analyses were carried out using various libraries
within the R software package (R Core Development Team,
2005). Diversity indices were calculated by additively parti-
tioning Simpson’s diversity index according to Lande (Lande,
1996). The Simpson’s index of diversity was first calculated
for each sample (Eq. 1), where pi represents the relative
abundance of each TRFLP peak within each sample. Subse-
quently samples were binned into six discrete pH classes (pH
3.5 to 8.5) and the mean Simpson’s index taken to represent
the a diversity per pH class. b diversity was determined as a
mean variance per pH class according to Eq. 2, where pij is
the TRF abundance in each sample and pi is the mean
abundance of the i th TRF across all samples within the pH
class. The g diversity per pH class (Eq. 3) was taken as the
sum of the mean a and mean b diversity.

Equation 1: α diversity = − ( )∑1 2pi

Equation 2: β diversity = −( )∑ p pij i
2

Equation 3: γ α βdiversity = +

Non-metric multidimensional scaling analyses were per-
formed using MetaMDS functions within the vegan package
(Oksanen et al., 2009) based on dissimilarities calculated
using the Bray–Curtis index, and environmental vectors were
fitted using the envfit and ordisurf routines. The variable
scores (individual TRFs) associated with the NMDS ordina-
tion were calculated as weighted averages of site scores
using the wascores function in vegan. First axes site scores
were mapped using inverse distance weighting interpolation
using the default settings within the gstat package (Pebesma,
2004). Mantel tests and mantel correlograms were carried
out on Bray–Curtis distances for the species (TRFLP) data;
euclidean distances for the geographical coordinates and
scaled environmental variables within vegan. A sums of
squares multivariate regression tree was calculated within
the mvpart package, using the using the one-standard error
rule on the cross-validated relative error to determine the
number of terminal nodes (De’ath, 2002).
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Supporting information

Additional Supporting Information may be found in the online
version of this article:

Fig. S1. Analyses of sequences and relationships with OTU
definition. Sequences from 15 geographically dispersed soils
at low, medium and high pH were classified into OTUs at
incrementally varying levels of dissimilarity (n = 5 for each pH
group). (A) Mean (+/- standard error) taxonomic richness,
defined as the total numbers of OTUs, for low medium and
high pH soils. (b) Mean (+/- standard error) Simpson’s diver-
sity for low medium and high pH soils. (C) The proportions of
common sequences within each pH group. The numbers of
sequences present in all five clone libraries at low, medium
and high soil pH was quantified. Soils of similar pH share
similar taxa only when sequences are defined at high levels
of dissimilarity.
Fig. S2. Correlations of clone library and TRFLP data. The
Simpson’s diversity index was calculated for each of the
clone libraries after classification of sequences at varying
levels of similarity. The plot shows the relationship with the
corresponding indices obtained from the TRFLP analyses of
the same subset of soils. Strongest correlations are observed
when clones are clustered at low levels of similarity, showing
that the TRFLP method is unlikely to resolve closely related
taxa.
Fig. S3. Responses of dominant taxa to environmental gra-
dients (TRFLP data). (A) Plots showing the strength of asso-
ciations between bacterial taxa (TRFLP peaks) and each of
the NMDS axes. Most of the TRFLP peaks correlated with
the negative first axis scores can be identified as Group 1
Acidobacteria (highlighted in red). Positive first axis scores
are associated with a greater richness of TRFLP peaks.
Most of the TRFLP peaks correlated with the negative
second axis scores are identifiable as Alphaproteobacteria
(shown in blue). (B) The relative abundances of these taxa
plotted against the dominant environmental gradient (pH,
n = 1010). High abundances of Group 1 Acidobacteria are
associated with low pH-organic soils. The negative skew on
the second axis is largely the result of a unimodal relation-
ship between Alphaproteobacteria across the dominant envi-
ronmental gradients. TRFLP profiles to the right of the
ordination (high pH mineral soils) comprise a large number
of unidentified taxa.

Please note: Wiley-Blackwell are not responsible for the
content or functionality of any supporting materials supplied
by the authors. Any queries (other than missing material)
should be directed to the corresponding author for the
article.
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