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Abstract 

There is disagreement in the literature as to whether episodic memory maintains an inherent temporal 

organisation, that is, whether learned items are necessarily organised along some temporal dimension 

or whether temporal organisation is a task-specific occurrence. The current series of experiments 

explored this issue. In Experiment 1, we tested whether temporal or spatial contiguity was present in 

an incidental encoding task where either strategy (but not both together) could be employed at test. In 

Experiment 2, we attempted to facilitate the use of a spatial retrieval strategy at test by asking 

participants to recall the location where target items had been displayed at study, after incidental 

encoding. Experiment 3 explored the role of study-test congruency by informing participants at 

encoding that they would be tested on either their memory for the temporal sequence or spatial 

locations, and then testing both at retrieval. Finally, Experiment 4 employed a masking task at 

encoding to ensure participants could not predict the true nature of the task, despite it being incidental, 

and a surprise free recall task.  Predominantly, participants displayed recall performance consistent 

with temporal contiguity, although there was evidence for spatial contiguity under certain conditions. 

These results are consistent with the notion that episodic memory has a stable and predictable 

temporal organisation.      

Keywords: Temporal; Spatial; Memory; Episodic Memory. 
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Introduction 

Questions about the way episodic memories are organised in the mind, if not the brain, have a 

long history (e.g., Mandler, 1967), with pre-eminent focus being paid to semantic structures and 

scripts (e.g., Schank & Abelson, 1977). However, when learning lists of semantically unrelated items, 

individuals are typically found to retrieve memories in the order they were experienced. This is 

commonly termed the temporal contiguity effect (for example, Kahana, 2018; Sederberg, Miller, 

Howard & Kahana, 2010). The order in which semantically unrelated items are learned affects the 

probability of recall of these items (Murdock, 1962), with primacy (i.e., better recall for earlier items) 

and recency (i.e., better recall for later items) effects; but learning order also affects the sequence of 

retrieval (Sederberg, et al., 2010). For instance, a number of studies have demonstrated that free recall 

of short lists (4-6 items) tends to begin with the first item and then commonly proceeds in a forward 

serial order, essentially following a temporal retrieval order (Ward, Tan & Gren-fell-Essam, 2010; 

Spurgeon, Ward & Matthews, 2014; Neath & Crowder, 1996). With longer lists, immediate free recall 

may often begin from the last presented item (Howard & Kahana, 1999), but as retrieval of one item 

can facilitate retrieval of items that were learned in nearby temporal positions (Kahana, 1996), 

temporal clustering in recall is frequently observed regardless of starting position, list-length or age of 

participants (Bruno et al., 2016; Talamonti, Koscik, Johnson, & Bruno, 2020). Therefore, temporal 

clustering/contiguity appears to be a central feature of episodic memory (Kahana, Howard & Polyn, 

2008; Healy & Kahana, 2014). Indeed, in a recent review, Healey, Long and Kahana (2019) indicated 

that temporal contiguity is an important predictor of recall dynamics and whilst some factors affect 

the influence of contiguity, few eliminate it.  

Despite the demonstrated importance of temporal retrieval in episodic memory, questions 

remain as to whether temporal contiguity is inherent in memory or rather a corollary of the way 

episodic memory is assessed. In a recent review, Hintzman (2016) has argued against the notion that 

temporal contiguity is an essential feature in episodic memory, suggesting that if participants can 

anticipate the method of testing, they will tailor their encoding strategy to suit the perceived testing 

paradigm, essentially maximising their own performance. According to Hintzman (2016), the 
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majority of the literature supporting the ubiquitous presence of temporal retrieval in episodic memory 

has originated from studies employing multiple lists, which cue participants as to the nature of the 

experiment, and subsequently an intentional learning paradigm. In support of Hintzman’s (2016) 

claims, evidence points to examples of memory retrieval that are not temporal in nature. For instance, 

Curiel and Radvansky (1998; see also 2002) demonstrated increased use of temporal context 

information in map learning when place names were used, and increased spatial priming when 

participants were asked to point in the direction of locations. These findings support Hintzman’s 

suggestion that the nature of the testing conditions will influence the strategy used to retrieve 

information from memory. Similarly, Nairne, Cogdill and Lehman (2017) found no evidence of 

temporal clustering during a free recall task, except when participants were directly instructed to list 

the items in the order of presentation (see Exp. 3, but see Healey, 2018 for exceptions). These 

examples indicate that whilst temporal information can be employed as a successful retrieval strategy 

or at least, a successful retrieval cue in semantically unrelated lists, it is not the only retrieval method 

that can be utilised. Indeed, Polyn, Norman and Kahana (2009) suggest that at the time of learning, 

unrelated items are likely to form representational clusters based on either temporal or spatial types of 

information, which can then be employed as retrieval cues. In addition, Cortis Mack, Dent and Ward 

(2018) demonstrated the coexistence of both spatial and temporal information in memory formation. 

Thus, if information can be organised as different representations (e.g., temporal and spatial) at 

encoding, then it is possible that both types of information will be stored in memory. Subsequently, 

any of these representations could be employed as a retrieval strategy at recall.    

 All in all, the literature remains mixed on the question of whether encoding the temporal 

contiguity together with learned information is a necessity, and we wish to tackle this question with 

the present paper. Our driving hypothesis is that multiple representations, temporal and spatial in this 

case (Polyn et al., 2009; Cortis Mack et al., 2018), are possible for the same item, and that these 

representations both coexist and are inherent (see also McNamara, Halpin & Hardy, 1992). During 

retrieval, participants will then, either automatically or deliberately, activate one or both of these 

representations that will then cue retrieval of the rest of the sequence. The current series of 
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experiments aimed to explore whether temporal contiguity is an inherent feature of memory retrieval 

using both incidental and intentional learning tasks over a single trial (c.f., Hintzman, 2016). 

Following Curiel and Radvansky (1998), our task can be completed successfully using either a 

temporal or a spatial strategy (Talmonti, Montgomery, Clark & Bruno, 2020). In Experiment 1, we 

presented stimuli around a spatial array and observed whether temporal or spatial clustering was 

employed at retrieval in a surprise free recall task. In Experiment 2, we attempted to manipulate 

clustering again using a surprise test, but this time were presented it as spatial in nature. In 

Experiment 3, we looked at the effect of congruence between encoding instructions and expected 

testing task in spatial and temporal tasks. Finally, in Experiment 4, we adopted a simple spatial 

reaction time cover task at encoding and explored retrieval sequence using a surprise free recall task. 

As, typically, spatial and temporal information are conflated during study (e.g., left is processed 

before right), our experiments attempted to put participants in conditions where these types of 

information were pitched against one another, therefore essentially forcing participants to adopt either 

a temporal or spatial approach at recall.  

  Experiment 1 

Methods 

Participants 

Thirty-one (7M: 24F) participants with a mean age of 20.35 (SD=5.92) took part in the current study. 

Based on previous work conducted in our lab (Talamonti et al., 2020), where a similar study design 

was employed, the required sample size was calculated using an a priori power analysis. Using 

G*Power 3.1.7 (Faul, Erdfelder, Lang & Buchner, 2007) with an alpha =.05, power =0.80 and an 

effect size d = 0.50, we obtained a required sample size of 27. Twenty-nine of these participants were 

right-handed and two participants were left handed. All participants were either staff or students at 

Liverpool Hope University. All studies received Ethical approval from the Liverpool Hope University 

ethics committee. 
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Design 

The study had 2, one sample t-test designs. The dependent variables were the temporal and spatial 

contiguity factors calculated from the retrieval sequence.  

Stimuli and Procedure 

Participants were each shown 8 targets, all of which were from the same semantic category and all 

were well known fruits (apple, banana, cherries, kiwi, lemon, orange, pear, and strawberry). Each of 

the targets were displayed in turn on a circular array comprised of 7 black boxes and a single box 

containing a target image (see Figure 1). Each of the boxes and target images were 200 x 200 pixels in 

size and were displayed on a screen resolution of 1024 x 1280 pixels. The order and location of the 

targets display were random, meaning any target could be displayed in any of the locations in any 

temporal order. The experiment was conducted using Eprime 2.0, and the experimental script 

recorded the order of display and the locations in which each target was displayed. 

Figure 1. An illustration of the display stimuli. Here the apple target is displayed in location 1.  

 

Encoding Procedure 

 During encoding, all participants saw each target and each location only once. Participants were first 

displayed with a fixation cross for 500 ms, which was then replaced by the first target item to be 

displayed for 3s before a 1s inter stimulus interval. This process was then repeated until all targets had 
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been displayed. At encoding, participants were asked to complete a simply naming task and to say the 

fruit name aloud.   

Retrieval Procedure 

In the retrieval phase, participants were provided with a response sheet and were asked to list as many 

of the target items that they had previously seen in any order. Participants were given a maximum of 3 

minutes to complete this task (although it should be noted, most participants finished the task in under 

1 minute). Importantly, participants only completed the encoding task and retrieval task once.  

Measuring Contiguity 

Contiguity Factors 

As a result of the nature of the task, total recall performance was high (89%). This was by design as 

the central area of interest was the retrieval sequence, not overall recall. Interestingly, the first item 

displayed at encoding was the first item recalled in 67.74% of participants. As discussed in the 

procedure, each participant only completed a single encoding and a single retrieval task, however, as 

participants could potentially retrieve the items following either a temporal or spatial sequence. As 

such, the single output sequence was used to compute both Temporal and Spatial factors (a separate 

measure of temporal and spatial contiguity respectively).  

The first stage of calculating both spatial and temporal contiguity was to produce a recall matrix. 

Here, the participants’ retrieval list was compared to both the spatial and temporal encoding sequence. 

For instance, if the temporal sequence was A, B, C, a recall sequence of 1, 2, 3 showed the items 

recalled in the correct order. However, a sequence of 1, 3, 2 showed the retrieval order of A, C, B. 

The same approach was employed to generate the spatial sequences. This was generated for both the 

temporal and spatial sequences. Once the matrices were produced, the method of calculation for the 

temporal and spatial factor scores was replicated from Polyn et al. (2009) and Sederberg et al. (2010). 

As outlined in Sederberg et al. (2010), for each observed transition, the possible transition lags are 

ranked following the negative values of the serial position. To determine a factor score for that 

transition, the equation (R-1)/(N-1) was used, where R is the value of the rank for the observed 
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transition and N is the number of possible transitions.  The final contiguity score is simply the average 

of these values for all observed transitions. The resulting factor scores range from 0.0 – 1.0, where 

values greater than 0.5 suggest that participants were following the relevant (temporal or spatial) 

sequence and values below 0.5 suggest the sequence was not followed (Sederberg et al., 2010). This 

process was repeated for each participant’s spatial and temporal sequences. The factor scores were 

computed in bulk using the Behavioural Tool box release 1.01 for Matlab which was design 

specifically for this purpose (Computational Memory Lab, 2020).  

Whilst the reporting of temporal factor scores is common in the literature, there have been some 

concerns raised about this approach. The primary issue here is that even in a randomly retrieved 

sequence, there would exist some contiguity between transitions, particularly in cases where there 

exists strong primacy or regency effects (Polyn et al., 2011; Healey, 2018). These artificial levels of 

contiguity can influence the results of the study. As such, we adopted the corrected measure of 

contiguity reported by Healey (2018). Here, as well as the temporal and factor scores for each 

participant, we also calculated the factor score for 10,000 random permutations of the sequence. 

Participant’s mean scores were then converted into z-scores using the equation below: 

(𝑃𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡𝑠 �̅� − 𝑃𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 �̅�)

𝑃𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑆𝐷
 

The z scores, z Temporal Contiguity and z Spatial Contiguity (zTC and zSC respectively), now have 

an expected value of zero, so contiguity is present in when the condition average is significantly 

above zero.  

Conditional Response Probabilities 

As well as zTC and zSC scores, we also calculated Lag Conditional Response Probabilities (Lag-

CRP). The Lag-CRP is a measure of how a retrieved item follows another in the sequence (Howard & 

Kahana, 1999), providing a stronger representation of sequence than a serial position alone. Here, a 

positive Lag indicates forwards recall and a negative Lag is indicative of backwards recall, with lower 

Lags suggesting performance closer to the sequence, in this case either the Temporal or Spatial 
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sequences. In the current study, Lag-CRP’s were calculated in accordance with Kahana (1996) and 

Sederberg et al. (2010) using the Behavorial Toolbox release 1.01 for Matlab (Computational 

Memory Lab, 2020). Lag-CRP’s are calculated by dividing the of times a transition of each lag size is 

observed by the number of times it could have been made. This excludes transitions to items which 

have previously been recalled or would fall outside the parameters of the list (for instance, assuming 8 

items in a sequence and a starting point of position 1, then there are 7 possible transitions (transitions 

to items 2,3,4,5,6,7 and 8, with corresponding lags of +1, +2, +3, +4, +5, +6 and +7), subsequently, in 

this case, no negative lags are possible) (Kahanna, 1996). 

Results and Discussion 

The average zTC and zSC scores can be seen in Figure 2.  

Figure 2. The mean scores zTC and zSC scores. Error bars represent ± 95% CI.   
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Figure 2 suggests zSC score does not significantly differ from zero and subsequently does not differ 

to performance expected by chance (as indicated by the 95% CI), whereas the zTC score suggest 

evidence of temporal contiguity.  To formally test this observation, we conducted two one sample t-

test analyse whether the zTC and zSC scores significantly differed to chance (zero). The analyse 

demonstrated a significant effect of zTC scores, t(30) = 4.28, p<.001, d = 1.61, but no significant 

effect of zSC, t(30)= 1.60, p=.12.  

To explore further which retrieval strategy best fit our data, we calculated lag conditional response 

probabilities (CRP) for both the temporal and spatial sequences. Figure 3 shows the Lag CRP’s for 

both the Temporal and Spatial sequences. These data suggest that the Temporal sequence produces 

higher CRP’s for lower Lag values, again providing evidence that a Temporal retrieval strategy is the 

best fit of the data. In addition, Figure 3 suggests a higher proportion of positive lags, suggesting 

some use of a forwards retrieval strategy. This is consistent with previous literature (Kahana, 1996).  

 Figure 3. Conditional response probabilities as a function of Lag for both the Temporal and Spatial 

retrieval strategies. Error bars represent ± 95% CI    

 

The aim of Experiment 1 was to explore whether participants engaged in a temporal or spatial 

retrieval strategy using a display which could facilitate both strategies, and without no explicit 

instruction to follow any specific encoding strategy. The results indicated that a temporal retrieval 
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strategy demonstrated contiguity, suggesting that participants were more likely to follow the temporal 

strategy in a surprise free recall test. This finding was also supported further by the Lag CRP data. In 

addition, the analysis suggests that the zSC scores did not differ from chance. However, the test phase 

of Exp. 1 required participants to list all the study items with no specific constraint. It is possible that 

the retrieval instructions (i.e., “list the items you have seen”) may have facilitated the use of temporal 

clustering at this stage, despite the use of a spatial structure at encoding.  

Experiment 2 

In Experiment 2, we attempted to encourage the use of an alternative, non-temporal, retrieval 

sequence at test by asking participants not only to retrieve the identity of the objects, but also the 

locations in which each item was displayed. We predicted that when participants were required to 

draw on spatial information to complete the task, we would observe more reliance on a spatial 

sequence at retrieval.  

Methods 

Participants 

Twenty-two (6M: 16F) participants with a mean age of 21.73 (SD=5.40) took part in the current 

study. Nineteen of these participants were right handed and three participants were left handed. All 

participants were naive to the true aims of the study and none had participated in Experiment 1. All 

participants were either staff or students at Liverpool Hope University.  

Design 

The study had 2, one sample t-test designs. The dependent variables were the temporal and spatial 

contiguity factors calculated from the retrieval sequence.  

Procedure 

Encoding Procedure 

The encoding procedure in Experiment 2 was exactly the same as that in Experiment 1.  
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Retrieval Procedure 

To encourage a spatial retrieval procedure, participants were provided with a response sheet which 

replicated the display array (8 blank boxes displayed around a circle) from the encoding procedure. 

Participants were asked to fill in the array, writing the name of the target items in the location there 

were displayed. To keep a record of the order of recall, participants were also asked to indicate the 

recall position by marking the sequence with digits (i.e. 1 = first recalled, 2 = recalled second and so 

on…).  

Results and Discussion 

As in Experiment 1, overall recall performance was high (88.6%, with 68.18% of recalling beginning 

with the first displayed item) so no further analysis was conducted on this data. To explore the central 

hypothesis we calculated the zTC and zSC scores replicating the procedure outlined in Experiment 1. 

The mean factor scores for each strategy can be seen in Figure 4a.  

Figure 4. a) The means factor scores for both a temporal and spatial strategy, b) Conditional 

response probabilities as a function of Lag for both the Temporal and Spatial retrieval sequences. All 

error bars represent ± 95% CI. 

 

Figure 4a shows that the zTC scores appear significantly larger than the zSC scores, which are only 

marginally above chance (0). Again, to test for contiguity we conducted 2 one sample t-tests. The 
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results revealed that the zTC were significantly higher than 0 (chance), t(21) = 7.90, p<.001, d = 0.97 

and the zSC scores did not differ significantly from chance, t(21)= 2.03, p=.06.  

Again, Lag CRPs were calculated for both the Spatial and the Temporal sequences (See Figure 4b). 

These data suggest that the temporal sequence has a lower probability of selection for higher lag 

values (both positive and negative), whereas the spatial sequence probabilities appear consistent 

across all lag values. This is again indicative that a Temporal sequence seems to be the best fit of 

these data. As with Experiment 1, the lag CRPs appear to be higher for positive lag values, suggesting 

at least some use of a forwards retrieval strategy.      

Experiment 2 aimed to encourage the use of a spatial retrieval strategy at test in an incidental learning 

task by asking the participants to retrieve the spatial location of targets. The results suggest that 

despite location information being central to the retrieval task, data still support the predominance of a 

temporal retrieval strategy. This finding contrasts the views of Hintzman (2016) who argued that the 

nature of the retrieval task can influence the way information is recalled at test. It is, however, 

possible that because participants were only asked to consider the spatial information at retrieval, 

information had already been clustered temporally due to the nature of the encoding task. This 

question was addressed next. 

Experiment 3 

In Experiment 3, we aimed to explore the effect of congruence between encoding strategy and 

expected testing method, on the use of spatial and temporal contiguity. To do this, we explicitly told 

participants at encoding that they were either later to be tested for their ability to retrieve items in a 

temporal order, or to retrieve items in a spatial sequence. 

Methods 

Participants  

Forty (10M: 30F) participants with a mean age of 23.14 (SD=8.10) took part in the current study. 

Thirty-seven of these participants were right handed and three participants were left handed. All 



 

14 

participants were naive to the true aims of the study and none had participated in either Experiments 1 

or 2. All participants were either staff or students at Liverpool Hope University. 

Design 

The study had a 2 x 2 mixed design with a single between participants factor (Encoding Task, with 2 

levels, Temporal or Spatial) and a single within participants factor (Sequence, with two levels, 

Temporal and Spatial). There were 19 participants in the Temporal Condition and 21 participants in 

the Spatial Condition. The dependent variables in the current study was participants’ spatial and 

temporal contiguity scores.  

Procedure 

Encoding Procedure 

The encoding procedure in Exp. 3 was the same as that in Exp. 1. The participants saw each target 

fruit displayed in a random location for 3 seconds and were asked to name the item. The difference 

for Exp. 3 was that participants were either told that they would be tested on their ability to recall the 

stimuli in the order they were displayed, or on their ability to recall the locations each object was 

displayed in.  

Retrieval Procedure 

In the retrieval task, participants were asked to complete both the recall task from Experiment 1 (list 

the words in temporal order) and the recall task from Experiment 2 (complete the spatial array listing 

each item in the correct spatial location whilst recalling the order the locations were completed). The 

order of these tasks was counter-balanced across participants. In the Temporal task they were asked to 

recall the items in the order they were presented, whereas in the spatial task they were asked to recall 

the items that were presented in each location starting with the target displayed at the top of the array 

and then to proceed clockwise around the array.  
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Results and Discussion 

Overall recall performance was high, 92.50%  for the Temporal Encoding Condition and 86.81% in 

the Spatial Encoding Condition. Again, the first item retrieved was predominantly the first item 

displayed at encoding (81.25%). Once data were collected, the first stage of analysis was to calculate 

the zTC and zSC scores for both retrieval strategies and both encoding conditions, in addition to the 

Lag CRPs, for each of the retrieval strategies in both encoding conditions. As we deemed the spatial 

and temporal contiguity scores separate dependent variables, we explored each in separate analyses. 

The mean contiguity scores can be seen in Figure 5 and Lag-CRPs for each strategy can be seen in 

Figure 6. 

Figure 5. The Mean z contiguity scores from both a) temporal and b) spatial sequences for all 

encoding and test combinations All error bars represent ± 95% CI. 
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Figure 6. Conditional response probabilities as a function of Lag for each encoding and retrieval 

combination  for a)the Temporal and b), the Spatial retrieval sequences Temporal congruent 

indicates a temporal encoding task and temporal retrieval, Temporal Incongruent indicates temporal 

encoding task and spatial retrieval task, Spatial Incongruent indicate spatial encoding task and 

temporal test and Spatial Congruent indicates a spatial encoding and spatial retrieval task. All error 

bars represent ± 95% CI. 

 

 

Hintzman (2016) argued that if participants are able to predict how they will be tested, they will adopt 

a memory strategy to maximise performance at retrieval. Following this argument, when participants 

expect a temporal recall task, then the temporal retrieval strategy should yield higher levels of 

contiguity than a spatial retrieval strategy; and vice versa. It is less clear, however, what to expect 

when the learning and test instructions are incongruent. In Exp. 2, we implicitly attempted to 

encourage and observed a spatial strategy; nevertheless, we still observed that temporal clustering was 

dominant. Therefore, we predict the same pattern in Exp. 3: temporal clustering will win over spatial 

clustering, except when spatial instructions are consistently provided both at study and test. As our 

central hypothesis is concerned with whether we observed higher levels of contiguity within the 

congruent strategy to encoding, we examined the differences between zTC and zSC separately.   
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Temporal Contiguity Analysis 

The first stage of the analysis was to explore the standardized Temporal Contiguity scores for all the 

encoding and retrieval strategies. These can be seen in Figure 5a.  These data met parametric 

assumptions and as such a 2 x 2 mixed ANOVA with a single between participants independent 

variable, Encoding Scenario (with two levels, Temporal or  Spatial), and a single within participants 

independent variable, Retrieval task (with two Levels, Temporal and Spatial) was employed to 

explore these data. Results showed a significant main effect of Retrieval Task (F(1, 38) = 27.19, MSE 

= 2.08, p<.001, 𝜂𝑝
2 = .42), but no significant main effect of encoding task (F(1, 38) = 2.17, MSE = 

1.57, p=.149) or interaction (F(1, 38) = .189, MSE = 2.08, p=.666). 

These findings are supported by the CRP data, which indicate the highest probability of a +1 

transition in both the temporal retrieval conditions irrespective of encoding task (see Figure 6a), 

although, a +1 transition was also the most likely transition in the spatial retrieval condition. Together, 

these data suggest that when participants are tested for temporal order, they accurately recall the 

temporal sequence irrespective of whether they expected a temporal or spatial test at encoding. 

However, when they are tested on the spatial sequence, they show no evidence of temporal contiguity.  

Spatial Contiguity Analysis 

A similar pattern of results was observed when exploring the standardized Spatial Contiguity scores.  

Figure 5b shows the z spatial contiguity scores for both encoding conditions and both retrieval 

conditions. Again, these data met parametric assumptions and were analysed using a 2 x 2 mixed 

ANOVA. The analysis demonstrated a significant main effect of Retrieval task F(1, 38) = 4.75, MSE 

= 2.85, p=.036, 𝜂𝑝
2 = .11, but again no significant main effect of Encoding Task, F(1, 38) = 1.48, MSE 

= 1.99, p=.231, or an interaction, F(1, 38) = .937, MSE = 2.85, p=.339. 

The Lag CRP results mirrored those reported in the temporal analysis (see Figure 6b): there was a 

higher likelihood of a +1 spatial transition in both spatial retrieval tests, again irrespective of how 

expected test at encoding. These results suggest that participants are more likely to follow the spatial 

sequence when asked to. In addition, when tested on the temporal sequence, participants did not 
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demonstrate significant spatial contiguity, but it should be noted that with a temporal encoding task 

and temporal retrieval, participants did demonstrate spatial contiguity above that expected by chance 

(zero), although this analysis did not demonstrate a significant interaction.  

Experiment 3 aimed to test whether the anticipation of test type influenced participants to adopt a 

particular memory strategy to maximise performance (measured by temporal and spatial contiguity). 

The current study demonstrated a congruency effect when the test matched what was expected at 

learning: this is consistent with our prediction that a match between study and test instructions should 

favor the matched clustering modality. However, the current data also show that participants can 

demonstrate Spatial contiguity when the incongruent temporal test is expected and Temporal 

contiguity when anticipating the incongruent Spatial encoding task. We therefore draw mixed 

conclusions from these results. First, Hintzman’s (2016) suggestion that when participants can 

anticipate the method in which they will be tested, they will adopt an appropriate strategy at encoding, 

is partially supported, as participants demonstrated temporal contiguity and spatial contiguity in the 

respective congruent tests. However, we did also observe temporal contiguity following spatial 

encoding and spatial continuity following an anticipated temporal test which contrasts with 

Hintzman’s predictions. Overall, as reported elsewhere in the literature (Cortis Mack et al., 2018), our 

findings support the notion that spatial and temporal context information coexist in memory and can 

be activated even when incongruent to the encoding instructions. We addressed the issue of the 

incidental paradigm further in Experiment 4. 

Experiment 4 

Experiments 1-3 all made use of the same encoding cover task, which was to name the item 

displayed. However, as previously discussed, Hintzman (2016) argues that if participants can 

determine how they will be tested, this will influence the retrieval process employed. It is conceivable 

therefore that in Experiments 1-3 some participants may have determined the true nature of the study, 

which in turn would have emphasised the use of temporal contiguity. Therefore, in Experiment 4 we 

used a cover task: we instructed participants to focus on clicking onto the stimuli as fast possible and 
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that we were interested in their reaction times. This way, the true scope of the research was hidden to 

participants.  

Methods 

Participants 

Forty participants (20M: 20F) took part in the current study. All participants were undergraduate 

students and had a mean age of 20 years. Some participants volunteered in exchange for partial course 

credits. 

Design 

The study had 2, one sample t-test designs. The dependent variables were the temporal and spatial 

contiguity factors calculated from the retrieval sequence.  

Encoding Procedure 

During encoding, all participants were informed that they were taking part in a simple reaction time 

experiment. The stimuli were displayed in the same way as in Experiments 1-3, however, instead of 

naming the fruits, participants were asked to click the mouse to highlight the fruits’ location as 

quickly as possible. All fruits were displayed for 3 seconds, regardless of reaction time speed and then 

the mouse cursor was automatically re-set to the centre of the array before the next trial took place. 

Participants saw each item and each location in a random order.  

Retrieval Procedure 

In the retrieval phase, participants were provided with a response sheet and were asked to list as many 

of the target items that they had previously seen in any order. Participants were given a maximum of 3 

minutes to complete this task (although it should be noted, as in the previous tasks, most participants 

finished the task in under 1 minute). Importantly, participants only completed the encoding task and 

retrieval task once.  
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Results 

Overall recall performance was again high with 85.95% of items being recalled. Again, the recall 

sequences were used to calculate the zTC and zSC scores and in addition, the Lag CRPs for each 

strategy. These can be seen in Figure 7.  

Figure 7. a). The mean z contiguity scores from both temporal and spatial retrieval sequences. b). 

Conditional response probabilities as a function of Lag for both the Temporal and Spatial retrieval 

sequences. All error bars represent ± 95% CI. 

 

Figure 7 shows that, whilst both scores significantly differ from 0 (as indicated by the 95% CI), there 

appears to be significantly higher temporal contiguity than spatial contiguity. A one sample t-test 

revealed that there was a significant effect of zTC, t(39) = 11.04, p<.001, d = 1.08, and a significant 

effect of zSC, t(39)= 3.61, p=.001, d = 1.21.  The mean contiguity scores suggest that there is higher 

contiguity for the Temporal sequence. This finding is mirrored by the Lag CRPs which show the 

highest likelihood of a one step forward transition in the temporal condition.   

Experiment 4 aimed to explore the temporal contiguity effect using an alternative encoding cover task 

which would encourage participants to adopt a spatial retrieval strategy. Whilst we found some 

evidence for spatial contiguity, which suggests that a spatial cover task might encourage spatial 
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contiguity at retrieval, this was far smaller than the evidence of a temporal contiguity effect further 

supporting the idea that temporal contiguity is an inherent feature of episodic memory.  

General Discussion 

The present paper tested whether temporal contiguity, along with other forms of information (i.e., 

spatial locations), is an inherent feature of our memory systems. The current experiments demonstrate 

that participants produce patterns of recall that are generally more consistent with employing temporal 

contiguity at retrieval, as opposed to spatial contiguity, including when the retrieval task is designed 

to promote the use of the latter (Exp. 2). However, we did find evidence of spatial contiguity in some 

circumstances. Experiment 3 showed that participants had the ability to retrieve the items following a 

spatial sequence if instructed to do so. More interestingly, we found that when an encoding task was 

employed to attempt to promote spatial contiguity, we found some evidence of it in an incidental 

learning task (Exp. 4). However, whilst we demonstrated some spatial contiguity, this was far lower 

overall than the levels of temporal contiguity observed following the same spatial cover task. 

Collectively, these results suggest that temporal contiguity may be a characteristic principle of 

episodic memory (Hurlstone, Hitch & Baddeley,  2014), which is consistently encoded together with 

the information and, at least when semantic clustering is not available, is prioritised as a prompting 

cue when retrieving information. 

Consistent with previous findings with short word lists (e.g. Ward et al., 2010; but note that Cortis, 

Dent, Kennet & Ward, 2015, found that word lists of eight items began roughly equally from item 1 

or from the last four), we observed the tendency to initiate recall from the beginning of a list, and then 

move forward. Subsequently, our results suggest that the first item may typically be most memorable 

in short lists, appealing to a primacy effect, rather than a recency effect. The former has traditionally 

been attributed to the fact that items presented early on a list are granted more opportunities for 

rehearsal, and thus can be memorised better. However, recent reports have suggested rehearsal may 

not be sufficient to explain primacy effects in short lists (Grenfell-Essam, Ward & Tan, 2013; 

Spurgeon, Ward & Matthews, 2014). Excluding rehearsal, then a possible explanation of our results, 

also previously presented in Bruno et al. (2016; In Press), relies upon a combination of memorability 
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and attributional cueing. Once the most memorable item is retrieved (i.e., often the first and most 

distinctive perhaps due to increased attentional focus on that item (Sederberg et al., 2006), so-called 

“edge effects” (Brown, Neath & Chater, 2007), or greater availability of processing resources 

(Tulving, 2008)), it is then possible that features of this item, such as temporal and/or spatial cues, 

will facilitate retrieval of other items and therefore influence the sequence of recall. This notion is 

consistent with Underwood (1969, p. 560), who argued that ‘…strength, so called, is a bi-product of 

the attributes, of which the temporal attribute is only one.’, but also broadly consistent with temporal 

context models (e.g., Howard, Fotedar, Datey & Hasselmo, 2005; Howard & Kahana, 2002; Howard 

& Kahana, 1999), which posit that retrieval of an item activates its encoding context, thus facilitating 

subsequent retrieval of items that share that (temporal) context (i.e., items learned around the same 

time). In this case, temporal or spatial contiguity would emerge depending on the prevailing cue, or 

attribute, and so it becomes important to be able to establish what may affect cue strength, and not just 

item strength. 

The findings of the current studies support the notion that our memories present a stable and 

predictable temporal organisation (Healy & Kahana, 2014; Kahana et al., 2008). However, we have 

also demonstrated that the spatial sequence can be retrieved under certain conditions. Although, it is 

important to note the observed spatial contiguity only exceeded that observed for temporal contiguity 

when the participants were specifically instructed to follow that sequence. In incidental learning 

conditions, with retrieval not guided by the experimenter, we found stronger evidence for temporal 

contiguity. This conclusion raises questions as to why temporal contiguity seems to be favoured over 

spatial contiguity in our data. One possibility is that temporal information is generally better encoded 

than spatial information, resulting in stronger representations for the former. However, this 

explanation does not fully explain the pattern of results observed in the current experiments, since, in 

Experiment 3, participants demonstrated a benefit for a spatial strategy over a temporal strategy, even 

when they expected a temporal test. The match between encoding and testing conditions, or transfer 

appropriate processing (Morris, Bransford & Franks, 1977), should be expected to yield stronger 

representations for either type of information, whereas we found that participants could recall both 
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sequences regardless of the encoding instructions when specifically instructed to do so. Therefore, 

either the expectation that matching encoding and testing method should produce a stronger memory 

trace is incorrect, which would be inconsistent with a vast swath of the literature and with our finding 

that there was also a temporal benefit when a temporal task was expected, or perhaps temporal 

information is the stronger or more distinct of the two attributes or contextual cues regardless of 

expectation. However, this primacy of temporal information over spatial information may only be true 

when processing verbal stimuli. Whilst we used images as targets, the naming task in Exp. 1-3 could 

encourage participants to treat them as verbal stimuli. Indeed, Curiel and Radvansky (1998; 2002) 

have demonstrated increased use of temporal information when place names (linguistic information) 

were introduced in a memory task, but increased spatial priming when names were omitted and 

responses were indicated using a pointing task. This finding appears to suggest that our pattern of 

results may be unique to language-based tasks – perhaps due to the sequential nature of sentence 

construction. However, in Exp 4., we did not employ the naming task, rather a spatial reaction time 

measure, and we still observed higher levels of temporal contiguity (although we did also observe 

spatial contiguity at lower levels). This would suggest that the naming task leading to verbal encoding 

cannot fully explain our findings.  

As our focus in this paper was to examine temporal and spatial contiguity in free recall, semantic 

relations between items were controlled by using the same semantic category (Fruit). Indeed, we do 

expect that semantic clustering would provide a stronger encoding environment that temporal 

clustering. This assumption is supported by Nairne et al. (2017), who reported no evidence of 

unprompted temporal clustering in a free recall task when participants were required to rate the 

survival properties of the items at encoding. It is likely, in this case, as expected, that semantic 

clustering would have over-shadowed temporal clustering, thus rending the latter cue much weaker.  

One limitation of the current set of studies is that in order to be able to isolate the temporal and spatial 

sequences, we could not display targets with spatial continuity (i.e. starting at the top location and 

sequentially following a clockwise spatial sequence around the array). If items had been presented in 

this fashion it would have been impossible to ascertain whether spatial or temporal clustering were 
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more likely, as both sequences would produce the same deviation regardless of the strategy employed. 

It is possible that by not following a directly logical spatial sequence, the current design would 

promote the use of a temporal retrieval strategy. We do not think that this limitation invalidates the 

current findings, especially in Experiment 3 when participants were told to encode the spatial 

locations for subsequent test, however, it does raise questions about how to encourage the use of a 

spatial strategy without confounding temporal and spatial sequence.  Future studies should attempt to 

address this issue. A further limitation here is that of list length. In the current study we explored the 

contiguity effect using eight target items. As previously noted, shorter list lengths may encourage 

participants to begin with the first displayed target item (e.g. Ward et al., 2010) and longer lists may 

encourage participants to start with retrieval of the last displayed item (Howard & Kahana, 1999). In 

addition, Healey et al. (2019) reported that temporal contiguity is more likely in shorter lists.  This is a 

potential issue, however, again, we do not believe it invalidates the current findings. Simply because 

the free recall of the sequence starts with the first displayed target, it does not imply that subsequent 

items must be retrieved following a temporal sequence. Indeed, in Experiments 2, and 4, we 

employed encoding instructions that aimed at facilitating retrieval following a different sequence, yet 

continually found evidence of temporal contiguity. This contrasts the prediction of Hintzman (2016) 

who suggested that if participants did not anticipate a temporal retrieval task, they could use 

alternative strategies to guide retrieval. However, list length is an important factor and should be 

explored in subsequent work. In addition, there are two further limitations which should be 

considered. The first is that whilst Exp. 1, 2 and 4 all employed an incidental learning paradigm, we 

did not survey the participants after the experiment was complete to ensure that they had remained 

naive to the true aims of the study at encoding. Indeed, the finding of spatial contiguity in Exp. 4 

could be potential explained if the participants had anticipated a spatial memory task following the 

reaction time encoding. We do not think this invalidates the current findings but it does encourage 

further testing of the effect. In addition, the spatial testing task employed in Exps. 2 and 3 asks 

participants to retrieve the locations but manually record their temporal order as they did. This 

retrieval task could draw attention to a desire to track temporal order and subsequently yield an 

experimenter demand characteristic. We do not believe this to be the case, especially as the same test 
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task was used in Exp. 3 when spatial contiguity was demonstrated even when incongruent to the 

expected test at encoding. However, the tracking of spatial and temporal sequence should be 

considered and any potential confound designed out in subsequent experiments.  

A final issue that should be considered is the reported contiguity scores in the current experiments. 

The reported values in the current study are substantially larger than those reported elsewhere in the 

literature (for example Healey, 2018). Since all calculated contiguity scores were done using the 

Computational Memory Lab’s (2020) Behavioural Tool box release 1.01 for Matlab, we do not 

believe that this is a result of a differing method of calculation. As such, these differences require 

further consideration. One explanation is the type of stimuli employed, we used a single 8 item list 

and all of our target items were pictures from the same semantic category. Healey (2018), in contrast, 

used larger lists (16 items) of predominantly semantically unrelated lists (randomly drawn from a pool 

of 1638 words). As there is substantial evidence that pictures are recalled better than words (Paivio, 

1971; Rajaram, 1996) and that items with a shorter list length commonly follow a temporal order 

(Ward, et al., 2010; Spurgeon, et al., 2014 & Neath & Crowder, 1996), these differences in magnitude 

of the effect may be accounted for by these methodological differences. In addition, whilst we believe 

we had the necessary power to observe the reported effects, we note that others have had substantially 

larger sample sizes (see Healey et al., 2018, for a review). We also note that in our experiments, 

where temporal contiguity was explored in conditions of incidental learning, we see high consistency 

in the values for contiguity (zTC values between 1.5 and 2.0, which would overlap in the respective 

confidence intervals, though these were higher in the intention learning paradigm used in Exp. 3) 

despite changes in methodology. This again supports the notion that our findings represent a reliable 

effect and not a methodological flaw. However, it would be useful to systematically investigate how 

these methodological changes affect the observation of contiguity scores to help inform future work.    

In sum, the current studies aimed to explore whether temporal contiguity is an inherent feature of 

memory which later influences subsequent retrieval processes. Whilst we detected some evidence for 

spatial contiguity, all four experiments indicated recall performance that supports an inherent 

functional temporal organisation in memory.   
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