
 

 
 
 
 

                     

 

 

 

 

 

Unit testing of AngularJS 
A look into writing tests for web application 
 
 

Joel Karttunen 
 
 
 
 
 
 
 

Bachelor’s thesis 
May 2016 
Technology, Communication and Transport  
Degree Programme in Software Engineering



1 
 

 

 
 
 

Description 

Author(s) 

Karttunen, Joel 
Type of publication  

Bachelor’s thesis 
Date 

05 2016 

Language of publication:   
English 

Number of pages  

30 
Permission for web publi-

cation: (X) 

Title of publication  

Unit testing of AngularJS 
A look into writing tests for web application 

Degree programme  

Software Engineering 

Supervisor(s) 

Rantala Ari 

 
 
Assigned by 

Protacon Solutions Oy 

Abstract 

This task was assigned by Protacon Solutions Oy with the objective set to study and imple-
ment unit testing in AngularJS JavaScript framework as part of the development process of 
the customer’s application. 

The thesis focuses on studying the AngularJS framework and if and how its design philoso-
phy complements the unit testing principles. The focus was on studying unit testing via de-
veloping unit tests iteratively onto the application created beforehand. 

The tests were created with Jasmine testing framework, a tool recommended by the Angu-
larJS development team. Other testing frameworks were studied before the thesis, how-
ever Jasmine was chosen to be examined more closely. 

The thesis results in several unit tests created for the customer’s application, and 
knowledge was provided for the company about the unit testing of a modern JavaScript 
web application to be distributed among the co-workers in the company. 

In addition, the backbone for developing and expanding the unit tests for the application 
and other future applications developed with AngularJS was laid down. The tests were cre-
ated with trial-and-error method, and best practices were recorded to be expanded upon, 
determined by the nature of the application and what was best suited for it. 

 

Keywords/tags 
JavaScript, AngularJS, Unit testing 

 
 
Miscellaneous 

 



2 
 

 

 
 
 

Kuvailulehti 

Tekijä(t)  

Karttunen Joel 
Julkaisun laji  

Opinnäytetyö, AMK 
Päivämäärä 

05 2016 
Sivumäärä  

30 
Julkaisun kieli  

Englanti 
 Verkkojulkaisulupa 

myönnetty: (X) 
Työn nimi  

AngularJS yksikkötestaus 
Yksikkötestien teko web-sovellukseen 

Tutkinto-ohjelma  

Ohjelmistotekniikan koulutusohjelma 

Työn ohjaaja(t)  

Ari Rantala 

 
 

Toimeksiantaja(t)   

Protacon Solutions Oy 

Tiivistelmä  

Opinnäytetyön toimeksiantajana toimi Protacon Solutions Oy. Tehtävänä oli tutkia ja 
kehittää yksikkötestejä AngularJS- sovelluskehyksellä kehitettyyn web-pohjaiseen 
asiakkaalle toteutettuun sovellukseen. 

Työ keskittyi AngularJS-sovelluskehyksen ominaisuuksien tutkimiseen ja miten niitä pystyi 
hyödyntämään sovelluksen yksikkötestejä kehitettäessä, ja kuinka AngularJS 
sovelluskehyksen rakenne tuki yksikkötestien suunnitelun teesejä. 

Testit kehitettiin käyttäen Jasmine-testaussovelluskehystä, mikä on AngularJS-kehittäjien 
suosittelema työkalu testien kehitykseen. Muita testaussovelluskehyksiä tutkittiin pikaisesti 
ennen työn aloittamista, mutta niistä päätettiin luopua ennen työtä. 

Tuloksena syntyi useita yksikkötestejä asiakkaan AngularJS-sovellukseen, ja osaamista ja 
tietotaitoa yritykselle yksikkötestien tekemisestä AngularJS-sovelluskehyksellä kehitettyyn 
sovellukseen. Tarkoituksena on jakaa tätä tietotaitoa eteenpäin. 

Lisäksi tuloksena oli pohjustus uusien testien tekemiseen ja vanhojen lisäkehitykselle 
asiakkaan sovelluksessa. Testit kehitettiin yrityksen ja erehdyksen kautta, josta voi jatkaa 
parhaaksi todetuin menetelmin testien kehitystä. Testit suunniteltiin ja toteutettiin juuri 
kyseiseen sovellukseen sopiviksi. 

Avainsanat (asiasanat)  

JavaScript, AngularJS, yksikkötestaus 
 
 Muut tiedot  

 

 

 

 

  

http://www.finto.fi/


1 
 

 

Contents  

1 Introduction ............................................................................................................ 3 

2 Specifying the problem .......................................................................................... 4 

3 AngularJS framework ............................................................................................. 6 

3.1 Introduction to AngularJS ............................................................................ 6 

3.2 Structure of AngularJS framework .............................................................. 7 

3.2.1 Dependency Injection ................................................................................ 7 

3.2.2 Scope ......................................................................................................... 7 

3.2.3 Controller ................................................................................................... 8 

3.2.4 Service ..................................................................................................... 10 

3.2.5 Directive ................................................................................................... 11 

4 Software testing ................................................................................................... 14 

4.1 Introduction to software testing ............................................................... 14 

4.2 Levels of tests ............................................................................................ 14 

4.3 Unit tests ................................................................................................... 15 

5 Implementation of tests to AngularJS application ............................................... 17 

5.1 Tools and methods .................................................................................... 17 

5.1.1 Jasmine .................................................................................................... 17 

5.1.2 Spies ......................................................................................................... 18 

5.1.3 Promises .................................................................................................. 19 

5.2 Implementing Unit Tests ........................................................................... 20 

5.2.1 Initial setup .............................................................................................. 20 

5.2.2 Testing controllers ................................................................................... 22 

5.2.3 Testing services........................................................................................ 24 

5.2.4 Testing directives ..................................................................................... 26 

6 Conclusions ........................................................................................................... 28 

References .................................................................................................................... 30 



2 
 

 

 

Figure 1: Defining a controller ........................................................................................ 9 

Figure 2: A Angular service using $resource service to make calls to backend ........... 11 

Figure 3: Defining a new directive................................................................................ 12 

Figure 4: Injecting directive to view template ............................................................. 13 

Figure 5: Levels of testing, by scale .............................................................................. 15 

Figure 6: Requirements can be mocked with only required parts implemented ........ 16 

Figure 7: Creating a jasmine spy .................................................................................. 18 

Figure 8: Evaluating spy after test ................................................................................ 19 

Figure 9: Structure of application and test files ........................................................... 21 

Figure 10: Mock resource is created to provide reusable methods for mocking. ....... 22 

Figure 11: The beforeEach section of the controller test ............................................ 23 

Figure 12: Implementing tests to controller ................................................................ 24 

Figure 13: Testing a service method that uses HTTP POST .......................................... 25 

Figure 14: Verify that no request remain unfulfilled after each test ........................... 26 

Figure 15: Test failed due to wrong expectation ......................................................... 26 

Figure 16: The beforeEach section of directive test ..................................................... 27 

Figure 17: Executing a directive test ............................................................................ 27 

 

Acronyms 

TDD   Test Driven Development 

BDD  Behaviour Driven Development 

HTML  Hyper Text Markup Language 

CSS  Cascading Style Sheets 

PHP  Hypertext Preprocessor  

 

 

 



3 
 

 

1 Introduction 

Testing is a key part of application development and should be a standard in every 

company wanting to succeed in today. However, are there applications, where some 

elements require more attention for testing than others?  

In the past, web applications were mostly structured by processing every request on 

the server side, and afterwards views were generated for the web browser to dis-

play. The client side interactivity was provided by some small JavaScript snippets, yet 

the core logic of the whole application rested within the server side code (Graetz, A 

brief history of single-page applications.) 

What has changed? Today, web application design has moved increasingly into de-

pending more on client side execution for logic, with popular JavaScript libraries be-

ginning from such as JQuery, Knockout, and moving to frameworks like AngularJS and 

EmberJS. The server side architecture can be as simple as some lightweight PHP 

framework with REST architecture, while the client side web page handles not only 

display logic with views, but also the application’s business logic (Graetz, A brief his-

tory of single-page applications.) 

What about testing? Writing unit tests can be viewed as a norm in standard server-

side programming languages such as C# and PHP. They have years of development 

with them and standardized tools and methods to write efficient unit tests for the 

application. But when the main business logic moves to the browser side of the appli-

cation, what then? How, and what do the tests need to accomplish the task they are 

set to do? What tools to use? Do they differ, and if so, how? 

Of course, web applications have been tested before, and probably also successfully. 

But do these new shiny frameworks offer easy and simple implementation of unit 

and other type of tests into the software? 

AngularJS framework is described to be created with testability in mind (AngularJS: 

Developer Guide, Unit testing.) As a new developer looking into the framework and 

the promises it is offering, in this document methods used to test a fresh AngularJS 

application are described, part of the development of which the author of the thesis 

was. 



4 
 

 

The work was done in assigning company, Protacon Solutions Oy. The tests were cre-

ated using the tools and environments provided by the company. 

 

2 Specifying the problem 

The process described in this document started while the author worked as devel-

oper in a newly founded AngularJS project. The whole AngularJS framework had to 

be learned it mostly on-the-go. As the framework is created with testability in mind – 

or so the development team behind it says – the idea of studying these claims 

emerged to see if they were true. As the company had not really done any unit test-

ing on client side of a web application project, the theme for this study was set. 

As a rather new developer in the field of programming, unit testing concepts and 

methods were much to none existent, so at start I the unit testing of other applica-

tions was studied, mostly some backend unit tests created for .Net project. As the 

knowledge of unit testing principles began to grow, it was time to set those princi-

ples to the previously created AngularJS application, and do the testing in Angular 

way. 

The AngularJS part of the testing was rather straight forward. Usually the tests were 

written component by component, improve and iterate over and over. As the REST 

architecture used in the application makes the service calls rather similar, some util-

ity components were needed to be used only for the tests. 

While testing the application, some rather good points about the structure of the ap-

plication, and what was wrong with it, emerged. As the AngularJS framework was 

new and the understanding of it in the start was rather limited, some controllers and 

other components were bloated and became difficult to test afterwards. In this pro-

ject, these too-big-to-fail components were a good example of why unit testing 

should be done before, or at the same time as the development of the application, 

and TDD, or BDD can be a good thing.  

Most of the unit testing carried out in the application was mocking and isolating the 

components from each other, as they should be. Of course, there are other points of 



5 
 

 

view for what unit tests should do, as should they interact more broadly with other 

components of the application; however, this case study focuses only on the iso-

lated, smallest unit testing cases of the application. 

This study consists of three larger parts listed as follows.  

First, there is some background information about the AngularJS framework and its 

structure, components and usage. As the framework can be rather odd-looking for a 

developer with background in for example jQuery library, some examples are made 

and key components are described. Afterwards the philosophy behind unit testing is 

explained. 

Second, the tools used in the unit testing of the AngularJS application are explained. 

Finally, the results of how testable the AngularJS application is are given a thought, 

along with any notices of how one should structure their components to be more 

testable. 

 

 

 

 

 

 

 

 

 

 

 



6 
 

 

3 AngularJS framework 

3.1 Introduction to AngularJS 

AngularJS is a JavaScript framework created and managed by Google. Its main pur-

pose is to bring useful architectural features from server side programming lan-

guages to client side programming. AngularJS frameworks several key points that 

make it good can be described as follows (Freeman 2014, 3): 

 Extendable: AngularJS is made to be extendable. It is easy to develop new 
features to your existing AngularJS application. 

 Maintainable: AngularJS applications are easy to debug and fix, which makes 
them easier to maintenance. 

 Testable: AngularJS supports unit and end-to-end tests, which helps in finding 
bugs and design flaws. 

 Standardized: AngularJS extends HTML5 technologies and uses the capability 
of modern browsers, which means one can write the Angular app and en-
hance it with other outside frameworks and libraries as you desire. 

 

The framework is also described as following: AngularJS was created to solve the 

problem with creating dynamic views with HTML, which was not really designed to 

be used in that. AngularJS aims to solve these problems by extending the HTML lan-

guage with framework specific attributes, rather than abstracting the HTML, CSS or 

JavaScript code to control the view like some other libraries tend to do (AngularJS: 

Developer Guide, Introduction.)  

AngularJS is a versatile and powerful tool, which gives the developer a chance to 

quickly create reusable components and views. One objective that should be taken 

into consideration, at least when starting to use the Angular framework, is to learn to 

code components in the Angular way, which can be very different from other JavaS-

cript libraries developer may have used in the past. 

 

 

 

 



7 
 

 

3.2 Structure of AngularJS framework 

3.2.1 Dependency Injection 

“Dependency Injection (DI) is a software design pattern that deals with how compo-

nents get hold of their dependencies. 

The Angular injector subsystem is in charge of creating components, resolving their 

dependencies, and providing them to other components as requested." (AngularJS: 

Developer Guide, Dependency Injection.) 

Dependency injection in AngularJS framework enables the different components, 

such as controllers or services to require other components to be injected to the cur-

rent scope of the component. Dependency injection in AngularJS consists of two ser-

vices, the $injector and $provide. 

$provide service handles the requests for Angular services, factories, values etc. All 

the components listed are in fact just shortcuts to the $provide service, which is 

called when the component is required in the application.  

$injector service is responsible for creating the instances for components, such as 

services that the $provide gives. One single $provide instance is created for the 

whole AngularJS application and the it injects the requested components as needed 

with it’s $get method. Injectable functions consist of service, directive, filter and fac-

tory functions (AngularJS Git hub wiki, Understanding Dependency Injection.) 

3.2.2 Scope 

The AngularJS’s scope is a centre part for the framework. Scope’s job is to bind the 

code behind logic of the controller into the view to display the data to user. This is 

called data-binding. Each data binding to scope adds a watcher function to the Angu-

larJS’s core $watch list. The $watch lists contain every binding the page has, and the 

list is used to update the actual displayed data during the $digest loop, if the value 

that has been watched is changed from the previous iteration of the loop. This chain 

of events is called Dirty Checking. 



8 
 

 

Objects and functions are bound to the $scope inside the controller function. The 

controller to be bound to view is described in the view template using the custom 

ng-controller attribute. The data-binding to $scope variables can be either one or 

two way. In one way binding, the data required to display is checked only once, and 

changes to the value do not change in the dirty checking part of the process. (Angu-

larJS: Developer Guide, Scopes.) 

3.2.3 Controller 

AngularJS controller is simply an ordinary JavaScript function, which is injected to 

web pages DOM. When a new controller is created, a new child $scope object is also 

created and attached to the controller. 

AngularJS controller's job is to control the interaction with user's input and the view. 

In MVC model, controllers usually land between the model and the view. Controllers 

also implement the applications business logic. Controllers should be kept as simple 

as possible so that the logic contained within controller doesn't become too difficult 

to handle. Simple controllers are easier to track and change through the whole appli-

cation. 

Key points what and what not a controller should do are following (AngularJS: Devel-

oper Guide, Controllers): 

 Initialize the $scope object and its state 

 Add functionality to the $scope object 
 

What it should not do: 

 Manipulate DOM 

 Format user input 

 Filter output 

 Share state between other controllers 

 Manage the creation of other components 
 

Manipulation of DOM in AngularJS is a task for directives. AngularJS contains also 

data binding to bind $scope data to templates. User input formatting should be done 



9 
 

 

through AngularJS’ form controls. Filters are used to control the output. Angular ser-

vices are used to share states between components. 

When a controller is kept simple, it is easier to write unit tests for it, and testability is 

one of the key design points of AngularJS. A controller is created as described in Fig-

ure 1. 

 

Figure 1: Defining a controller 

In the figure above, a new controller is defined to a module Nestor.Event.Controllers 

which can be thought as a namespace where the module is. The module can contain 

several controllers, and after the module definition, a controller is created by passing 

it’s name as a first parameter. The $scope service which is built into AngularJS itself is 

always injected to the controller to be able to make two way data-bindings with the 

view. A _event object is also injected to the controller, which contains some data 

about the event. 

After the initialization, the injected _event is assigned to the $scope.event variable 

and can be displayed in the view. 

The structure of controller, and other AngularJS components, can be intimidating for 

developers new to AngularJS.  



10 
 

 

 

3.2.4 Service 

AngularJS services are JavaScript objects that are injected to other angular compo-

nents by the dependency injector. Services are used to share application state be-

tween components. Services can be separated to two categories, services and facto-

ries. Both are very similar and the only difference between them is how they are in-

stantiated (AngularJS: Developer Guide, Services.) 

Angular services are singleton objects, which means that every usage of the service is 

referred to single service object, which is created by the service factory. In addition, 

all services are only instantiated when they are needed for the first time. In other 

words, they are lazy. Like with controllers, services can also be injected with other 

services. Dependency injection with services makes the application's logic loosely 

coupled, and its benefits for one are to simplify unit testing of the functions (Cooper 

2013).  

Services are created similar to the controller. When a service is created, its factory 

function is registered to angular application module, and it is instantiated once it is 

needed somewhere in the application. 

An example of service could be a one that implements REST –architectural methods 

GET, POST, PUT and DELETE for an object by wrapping it into the built-in AngularJS 

http service (Figure 2). 



11 
 

 

 

Figure 2: A Angular service using $resource service to make calls to backend 

 

3.2.5 Directive 

Directives are one of the core functionalities in AngularJS, used to make basic HTML 

richer by injecting custom properties to common HTML elements. Directives can be 

used to separate common, repeatable parts of the application, for example lists that 

require some kind of order or pagination logic. They are 'compiled' - as worded by 

the Angular development team – when forming the web page’s DOM. While the 

compiling is not the same thing in a sense as compiling in programming languages 

like C, the process shares some similarity with it. Compiling can be described as fol-

lows: "For AngularJS, "compilation" means attaching directives to the HTML to make it inter-

active. The reason we use the term ‘compile’ is that the recursive process of attaching direc-

tives mirrors the process of compiling source code in compiled programming languages." 

(AngularJS: Developer Guide, Directives.) 



12 
 

 

Directives can have a controller defining their own business logic, and like other An-

gular components, they can be injected with different services. Directives can con-

tain their own HTML templates, which is useful when separating larger HTML pieces 

into smaller ones. Smaller, isolated pieces of application are usually easier to unit 

test, as the logic contained within tends to be simpler. 

When directives are created, the controller functions like a regular AngularJS control-

ler, with one larger difference. Directives can create their own isolated $scope ob-

ject, or inherit the scope object from the parent controller where they are defined. 

Isolated scopes are usually the way to go, because directives can also be injected 

with parameters from the parent $scope. This keeps the contained logic simpler and 

the local $scope object does not get polluted by variables it does not care from the 

containing parent (AngularJS: Developer Guide, Directives.) 

New directive is defined as demonstrated in Figure 3: 

 

Figure 3: Defining a new directive 

The controller can be implemented at the same time as directive, or the controller’s 

name can be passed as a parameter to allow the AngularJS to resolve it. The tem-

plateUrl parameter specifies the path to html file which contains the view part of the 

directive. The directive is used within HTML as follows (Figure 4): 



13 
 

 

 

Figure 4: Injecting directive to view template 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



14 
 

 

4 Software testing 

4.1 Introduction to software testing 

Software is tested to evaluate and validate that the software created in the process is 

what was originally wanted and ordered. Software testing qualifies that the software 

has the required standards and meets the requirements it was set to do. Testing 

does not limit to a single phase in software development, but is rather a continuous 

process that includes developers testing of codebase via unit-, integration- and ac-

ceptance testing, and also a more abstract testing documentary such as testing plans.  

Testing can be seen as the final stamp of approval for the software created as when 

all the requirements are met and the tests created for them pass, the software is 

done. Of course, no software can be 100% tested and bug-free, however the large 

scale of testing minimizes the risks and needs to do more costly repairing processes 

afterwards in the maintenance phase of the software. It is estimated that the 

amount of money lost because of insufficient testing in year 2002 in the US was 59.5 

billion dollars (Kasurinen 2013, 11). 

Software testing is not a new idea in the software industry risen in recent years. The 

concepts of testing have been around as long as complex programs were beginning 

to surface. As the level of complexity in software has increased, so has the possibility 

for human error, thus creating bugs. Bugs are an error in software created by the de-

veloper, as there are no ‘hardware’ defects in the code itself unlike in real word ap-

plications. The software created these days are much too complex for human mind 

to keep track on every single possibility and fault in logic. This is where and why test-

ing is needed (Pan 1991.) 

4.2 Levels of tests 

Software testing includes different types of testing levels specializing in testing cer-

tain scale within the software. These levels are unit testing, integration testing, sys-

tem testing and finally acceptance testing as seen in figure 5. The levels are ordered 



15 
 

 

from smallest scale to largest. This document focuses mostly on the lowest, unit test-

ing level, but other levels are briefly described also (Software Testing Fundamentals 

2011, Software Testing Levels.) 

 

Figure 5: Levels of testing, by scale 

 

4.3 Unit tests 

Unit tests are in the lowest section of the testing hierarchy. These tests are aimed to 

test the smallest testable pieces of code isolated from the rest of the software’s 

logic. Unit tests are created for components that usually have one or more inputs 

and a single output. Tests can be created either as a white box or black box methods. 

Unit tests are usually fast to execute, and the most numerous in any software. Unit 

tests give reliability and validity to the isolated logic behind pieces of software, and 

serve as a base for other levels of testing. 

In standard server side programming languages, such as PHP or C#, unit tests are 

usually created for each class in the software. Unit tests are done by mocking, stub-

bing and faking the outside requirements of the component being tested to ignore 

any possible interaction and failure not related to the current scope of the test. See 

Figure 6 for example. 

On the other hand, some developers prefer to not use the isolation technique of unit 

testing if not actually necessary, and rather let the outside requirements of the com-



16 
 

 

ponent being tested be included in the testing process. This might lead to a test fail-

ing because of an outside interference, nevertheless the idea behind this is that the 

outside component is also tested and should be fixed sooner than later (Fowler 

2014.)  

 

Figure 6: Requirements can be mocked with only required parts implemented 

 

Unit testing is usually (and should be) performed during the development process of 

the program. Unit tests are created by the developer before, or after the compo-

nent’s creation. Test-first testing development processes, such as Test Driven Devel-

opment rely on creating the unit (and other levels) tests before the actual compo-

nent is implemented. 

 

 

 

 



17 
 

 

5 Implementation of tests to AngularJS application 

5.1 Tools and methods 

One of the key advantages in AngularJS when viewed from the unit testing perspec-

tive is the dependency injection of the framework. Due to the nature of unit tests 

and isolation of concepts when designing and implementing unit tests, mocking the 

dependencies for controllers, services and directives becomes simple with the de-

pendency injection. 

AngularJS has a library, angularMocks, designed to mock the applications compo-

nents as its name says. Test runners are used to actually run the tests and generate 

results. One of the most used test runner for tests created for AngularJS project, as 

well as other tests written in JavaScript is the Karma (previously called Testacular) 

test runner library. It is the tool also used in this document. 

There are several testing frameworks for AngularJS in which the tests are actually 

run. Nothing restricts the developer to be retained to a single testing framework; 

however for the simplicity's sake, one should not use too many different frameworks 

than necessary. These tests are written with Jasmine framework, which is the one 

AngularJS team themselves recommend. Other frameworks include, but are not lim-

ited to Mocha, Chai, and their extensions, like Chai-As-Promised. 

5.1.1 Jasmine 

Jasmine framework contains all the necessary components to successfully write tests 

for a REST client application, such as handling of promises. 

Jasmine is described as a "behavior-driven development framework for testing JavaS-

cript code". Jasmine is not restricted to a single JavaScript framework. Jasmine offers 

a clean and readable way to quickly write unit tests without the developer needing 

to specify the JavaScript framework used (Jasmine Framework documentation.) 



18 
 

 

Jasmine tests are ordinary JavaScript functions, which makes them instantly familiar 

to use for a frontend developer. Tests suites are created by the global function 'de-

scribe' and test specs are created by the function 'it'.  Describe functions can be 

nested as needed, so the developer has all the control to the test structure. 

Following the unit testing guideline of setup and teardown phases, Jasmine imple-

ments them as functions beforeEach / beforeAll and afterEach/afterAll. BeforeEach 

or beforeAll functions are run as their name says before every test suite, and one 

should implement the necessary mocking and setuping inside these functions. After 

the test suite has run, the afterEach or afterAll functions are run, and this is the place 

for tearing down anything that requires to do so. Using beforeEach and afterEach 

provides the developer a way to specifically setup/teardown  

5.1.2 Spies 

While unit testing, isolation is the key and any outside logic not belonging to the cur-

rently tested feature should be mocked. Jasmine offers spy functions to mock func-

tion's result values and determine if correct functions where called when the tests 

are executed.  In default, spy objects replace the function they are assigned, and as a 

result, callback functions can be painful to test. Luckily, spies can be delegated to use 

the actual implementation of the function. 

Spies are created as described in Figure 7: 

 

Figure 7: Creating a jasmine spy 



19 
 

 

Spies can be assigned to return a certain value as pictured, or they can be assigned to 

call some other function with the and.callFake() function chain. If the mocked func-

tion is required to fall back to the actual implementation, the and.callThrough() func-

tion chain is used. 

 

Evaluating spying results in the end of test is done as seen in Figure 8: 

 

Figure 8: Evaluating spy after test 

The toHaveBeenCalled() function has two variations, toHaveBeenCalledTimes(), 

which takes a number as parameter and evaluates how many times the spy has been 

called, and toHaveBeenCalledWith() which evaluates in what parameters the func-

tion has been called. 

5.1.3 Promises 

One of the key parts of a REST-architectural client application written in JavaScript 

are promises; functions which return values are resolved asynchronously. Promises 

can be hard to test, as the value they return cannot be mocked as easily as a normal 

variable. The promises resolve in the real application after a certain timeout after 

which their values are returned, like in a $http call to the backend. In unit tests, no 

actual calls are wanted to be made to the backend, however, still developers want to 

test the functions using these promises with similar asynchronous behaviour. 

 



20 
 

 

5.2 Implementing Unit Tests 

Writing the unit tests proved to be fast and rather simple after the initial setup of the 

testing framework and runner. As previously noted, testing framework used during 

this document’s process was Jasmine framework, and the test runner used was 

Karma. The application to which the tests were created has a REST architecture, with 

a lightweight PhalconPHP PHP-framework serving as a backend, and a MongoDB 

NoSQL database. The tests written contain only unit tests for the client implemented 

in AngularJS 1 version and the backend is completely ignored in the test cases. 

The tests were written for the controllers interacting with the scope and view, ser-

vices handling the GET, POST, PUT, DELETE methods to backend, and directives hold-

ing a more special functionality. Service testing with Jasmine provided to be rather 

simple, thanks to the mocked $httpMock -service which provided a clean and easy 

way to mock the return statements of the backend without actually requiring any in-

teraction with backend and the database. 

5.2.1 Initial setup 

The Jasmine framework and Karma test runner were installed to the application with 

npm. Installing node packets with it is rather straightforward, requiring few com-

mands to successfully install the packet and its requirements. 

Installing Jasmine with command line tool: 

 npm install –g jasmine 

This installs the Jasmine framework globally to the computer and it can be used in 

the project. 

Installing Karma with command line tool: 

 npm install karma 

This installs Karma test runner. Karma development team recommends the Karma 

test runner to be installed locally to the projects folder. When installed globally, it 

can sometimes interfere with other installations in the computer, and this was found 

to be problematic during the creation of tests. 



21 
 

 

Karma requires a configuration file in order to run. The configuration file contains in-

formation such as paths to the applications files and test files, frameworks, browsers 

in which the tests are run and special Karma pre-processors that might be needed 

and other runner specific configurations. This configuration file can also be created 

with tool such as gulp, if the project has it. The configuration file depends on the pro-

ject’s structure, and is rather simple so it is not looked into any deeper in this docu-

ment. 

Any other extensions or frameworks can be installed similarly to the previous exam-

ples, using npm, as long as they are contained in the package manager’s repository. 

Example of the file structure used in the application and testing is seen in Figure 9. 

 

Figure 9: Structure of application and test files 

Each component is contained within its own folder, holding possible controller, ser-

vice, directive files as well as initializing and route configuration specific files. The test 

files are in a folder separate from the applications source files, however, they are 

mimicking the file structure of the application, with each component in its own folder 

and tests split to files containing either controller, service or directive tests. 

An argument can be made that the test files should be contained in the same folder 

as the main application source files. This provides an easier way to share and transfer 

components not specifically tied to the logic of the application between other appli-

cations. This way the tests are shared as well and no additional testing would be 



22 
 

 

needed. As the code in this application is rather application specific and components 

with any ‘general’ usage are rather scarce, tests were placed to a separate folder.  

5.2.2 Testing controllers  

Because of the structure of the application, most of the controllers hold a similar 

functionality and logic within them. Most controllers implement a CRUD logic to the 

entity that they are responsible of, for example creating or editing customer infor-

mation, listing and deleting customers. Unit testing these kind of features is quite 

similar. To reduce the need to mock the same request structure used in nearly every 

controller, it was decided to create a new service which holds the commonly used 

service methods in controllers (Figure 10). This allows an easier mocking phase for 

the tests, while allowing test specific parameters and return values to be used. The 

usage of AngularJS’ $q service allows to mock the structure of promises, and return a 

controlled value with the response. 

 

 

Figure 10: Mock resource is created to provide reusable methods for mocking. 



23 
 

 

Testing a controller starts by injecting the required services and other components in 

the test suites beforeEach section (Figure 11). All required mocking for the tests 

should be also done in this section. Any required $scope property should also be 

mocked. Finally, the new controller is initialized with the required injection parame-

ters. Not every parameter is required to be a mock, however following the idea of ig-

noring any possible outside interference, it was preferred to use at least empty ob-

jects in place of the actual implementation of component if possible. 

 

Figure 11: The beforeEach section of the controller test 

In the figure above, the benefit of the mockResource service can be seen, where 

there is no need to write separate mocked query functions for the project services 

getCustomers and getCompanies method’s, however rather pass the value that is 



24 
 

 

wanted to return to the mockResources query function. The usage of spies allows to 

verify that these service calls were indeed made during the execution of the tests. 

In the last part of the image, the controller is initialized with several mocked parame-

ters passed to the constructor function, overriding the actual implementation of the 

components. 

The actual tests are implemented in ‘it’ functions, provided by Jasmine. Because of 

the structure of AngularJS controller and it’s relation to $scope, to achieve the data-

binding features manual use of the $digest function of the $scope is needed to fire 

the watchers in $scope in the tests (Figure 12). 

 

Figure 12: Implementing tests to controller 

5.2.3 Testing services 

Writing unit tests for services mainly used for communicating with the backend PHP 

server is simple by mocking the backend with a  $httpBackend service contained in 

ngMock AngularJS module. This mock allows to prevent the actual requests to the 

backend, which are not required in the unit testing context, and to use predefined 

responses to routes as a placeholder. Service testing with REST applications does not 

require to actually be interested in the response, however, rather to what path the 

request is sent, and if it is using the correct HTTP method with the correct data. 



25 
 

 

The $httpBackend contains several functions used to make expectations to different 

routes and can mock the returned value from that route. Expect functions will fail 

the test if they are not called within the execution of the test. Similar to expect func-

tions, $httpBackend contains a when function that can be used the same way to 

mock responses to requests in certain routes. When functions do not fail the tests 

when no calls are made towards them, and they can be used in looser unit testing 

like black box testing as well as integration testing. 

Mocking the backend with $httpBackend requires it to be injected to the test suite 

and defining the desired route, possible data that is sent in the request, and giving a 

response. After the mock and expect function is defined, method of the service 

which is the target of the testing that is called with necessary data. After the method 

execution, $httpBackend.flush() method is called to mock the asynchronous nature 

of the http calls and give the mocked response (Figure 13). 

Finally, $httpBackend has two functions to verify that all requests defined were made 

and every expectation was fulfilled. These functions, verifyNoOutstandingExpecta-

tion() and veryfyNoOutStandingRequest(), should be done in the afterEach section of 

Jasmine test suite, eliminating the need to repeat the code after each ‘it’ block (Fig-

ure 14). Any request that has not been fulfilled, or some request that was not ex-

pected, give errors when the test is run (Figure 15). 

 

Figure 13: Testing a service method that uses HTTP POST 



26 
 

 

 

Figure 14: Verify that no request remain unfulfilled after each test 

 

Figure 15: Test failed due to wrong expectation 

5.2.4 Testing directives  

Testing directives consists of testing both the controller that the directive uses, as 

well as the directive’s compiling itself. Testing the directives controller is equal to 

standard controller testing. One should also test any service related to the directive’s 

functionality that is used in controller. 

The testing of directive’s HTML and how it appears on the page’s DOM can be seen 

as conflicting with integration and the end 2 end tests done in the browser; however, 

the same testing of HTML can also be done via unit testing if necessary. 

The initialization and beforeEach section of directive tests are similar to a controllers 

test (Figure 16). It requires mocking any outside parameter that is injected to the di-

rectives controller during the execution of the test. In addition, directive testing re-

quires the use of AngularJS’ $compile service to actually generate the html code that 

the directive displays in DOM. The manual $digest call is also recommended to be 

done in this section for AngularJS to create the html. 



27 
 

 

 

Figure 16: The beforeEach section of directive test 

The element variable contains the html code of the directive, and testing should be 

done against it. The testing of element shares characteristics with a standard ac-

ceptance of other tests either done in browser by user or automated. The element 

can be searched for html components via selectors. In the figure below, a div with 

class .comment-feed-action is searched, and the test verifies that it was indeed cre-

ated during the compilation of the directive. The contents of the div are also evalu-

ated to validate the correct functionality of the directive (Figure 17). 

 

Figure 17: Executing a directive test 

 



28 
 

 

6 Conclusions 

The path to understand and learn AngularJS can be a difficult one for a new devel-

oper, especially with a limited experience in front end JavaScript coding. The Angu-

larJS framework differs greatly by its usage and functionality from such well-estab-

lished JavaScript libraries like JQuery. Mastering the AngularJS is a long process, how-

ever, in my opinion worth it. The clean and documented structure of each compo-

nents brings much needed clarity to writing JavaScript, and the business-logic is wel-

come on the client side. Pairing AngularJS with lightweight backend and focusing 

both the view and business logic on the client provides a simple structure for a to-

day’s single page application. 

Testing of AngularJS application proved to be a very similar experience as learning 

the AngularJS itself. After the basics were mastered and the efficient structure of 

tests was found, writing unit tests to components was quite fast. Of course the simi-

lar CRUD operations contained within each controller or service made the writing of 

tests also fast. The one feature that made AngularJS tests easy to implement was the 

strong dependency injection service, which helped mocking and stubbing the fea-

tures required in controllers and services. Rather than fully implementing mocks to 

every single dependency, one could mock only the needed parts of the features. The 

spying features in Jasmine were also helpful in order to verify the requests made dur-

ing the execution of the tests. 

As downside the way of doing tests after the application is released and in mainte-

nance cannot be recommended. The testing of certain components, mostly overly 

bloated controllers with thousand(s) of lines can be nearly impossible to unit test 

without massive refactoring. This experiment proved that unit – and why not other 

stages of – testing should be done during the development process rather than after-

wards. Why this was not done with this application remains a mystery. Perhaps it 

was the unfamiliarity with client side testing in browsers because of past experiences 

or the rarity of JavaScript testing, I do not know. But after studying the unit testing in 

AngularJS, I cannot do anything but recommend it. 

During the writing of tests to application there were some design flaws found in 

larger components that could have been reworked during the development. This is 



29 
 

 

one example of the benefits of test-first processes and can save developers from big 

refactoring processes afterwards. More lines of code in controller also means more 

human errors and thus more bugs that can be difficult to find or fix. 

This document focuses only on the unit testing part of AngularJS. The unit tests writ-

ten for this document follow the string unit testing philosophy that excludes all out-

side interaction of the tests scope. The next step could be writing larger integration 

tests that interact between the other AngularJS components forming a broader per-

spective of the application’s quality and performance. Automated tests using real 

browser environments and mimic the user interactions within the page using the 

protractor selenium web driver could be the next step in testing this application. 

Perhaps the most valuable result of this document was to provide information about 

unit testing of web based client applications to the employer, and to bring some kind 

of proof why unit testing should be done during the development process, rather 

than afterwards. The knowledge gained during the process of creating this document 

can be shared between co-workers, and perhaps one day every developer can do 

every phase of testing, whether it’s done in client or backend, using the most up-to-

date tools and practises, and to make software that does not break under stress. The 

last part is probably not realistic in any way in the world we currently live in. 

 

 

 

 

 

 

 

 

 

 

 

 



30 
 

 

References 

AngularJS Developer Guide. Accessed on 12 April 2016. Retrieved from 

http://www.angularjs.org. 

AngularJS Git hub wiki. Accessed on 16 April 2016. Retrieved from 

https://github.com/angular/angular.js/wiki/. 

Cooper, J, 2013. AngularJS Step-by-Step: Services. Accessed on 16 April 2016. Re-

trieved from https://www.pluralsight.com/blog/tutorials/angularjs-step-by-step-services. 

Fowler, M, 2014. Unit Test. Accessed on 12 May 2016. Retrieved from http://martin-

fowler.com/bliki/UnitTest.html. 

Freeman, A, 2014. Pro AngularJS. 

Jasmine Framework documentation. Accessed on 8 May 2016 2016. Retrieved from 

http://jasmine.github.io 

Graetz, B. AngularJS vs EmberJs. Accessed on 8 May 2016. Retrieved from http://an-

gularjs-emberjs-compare.bguiz.com/index.html. 

Karma Test Runner documentation. Accessed on 8 May 2016. Retrieved from 

http://karma-runner.github.io/0.13/index.html. 

Kasurinen, J.P, 2013. Ohjelmistotestauksen käsikirja. 

Pan, J, 1999. Software Testing. Accessed on 12 May 2016. Retrieved from https://us-

ers.ece.cmu.edu/~koopman/des_s99/sw_testing/. 

Software Testing Fundamentals. Accessed on 12 May 2016. Retrieved from 

http://softwaretestingfundamentals.com. 

http://www.angularjs.org/
https://github.com/angular/angular.js/wiki/Understanding-Dependency-Injection
https://www.pluralsight.com/blog/tutorials/angularjs-step-by-step-services
http://martinfowler.com/bliki/UnitTest.html
http://martinfowler.com/bliki/UnitTest.html
http://jasmine.github.io/
http://angularjs-emberjs-compare.bguiz.com/index.html
http://angularjs-emberjs-compare.bguiz.com/index.html
http://karma-runner.github.io/0.13/index.html
https://users.ece.cmu.edu/~koopman/des_s99/sw_testing/
https://users.ece.cmu.edu/~koopman/des_s99/sw_testing/
http://softwaretestingfundamentals.com/

