
Vladislav Lysenkov

A prototype of the movie archive

for research and publishing

in structural biology

Bachelor’s Thesis

Information Technology

May 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Theseus

https://core.ac.uk/display/38140866?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

DESCRIPTION

Date of the bachelor's thesis

06.05.2015

Author(s)

Vladislav Lysenkov

Degree programme and option

Information Technology

Name of the bachelor's thesis

A prototype of the movie archive for research and publishing in structural biology

Abstract

The aim of this work was to pilot technologies that could lead to the foundation of an archive of animations

visualizing dynamics and functional changes in molecular structures. The scientific context is important as an

implication of specific premises and requirements that were to be satisfied.

The thesis involved the development of the web-based user interface for the display and management of videos

and their further annotation with links to PDB and EMDB. This was done using technologies such the Django

framework, the Popcorn.JS library and various APIs. The methods included the Agile SCRUM based iterative

methodology, the user experience testing, and the version control by the means of SVN.

Stepwise, the project had grown into a functional prototype. The essential details, the process and the challenges

are described. The user testing revealed the usability issues and general expectations.

In conclusion, this work had demonstrated the feasibility of the discussed movie archive and has the possibility

of the further development.

Subject headings, (keywords)

Software development, Agile, Python, Django, JavaScript, User experience testing

Pages Language URN

47 English

Remarks, notes on appendices

Tutor

Reijo Vuohelainen

Bachelor’s thesis assigned by

European Bioinformatics Institute (EMBL-EBI)

Workplace supervisor: Ardan Patwardhan

CONTENTS

1 INTRODUCTION.. 1

1.1 The EBI and its role in modern structural biology 1

1.2 Aims and objectives of the work/study, or the need for a movie archive .. 2

1.3 Structure of the work/study .. 2

2 AN OVERVIEW OF TECHNOLOGIES, SETUP, AND METHODS 4

2.1 The architecture of the movie archive .. 4

2.2 The Python language, the Django framework and their packages 6

2.3 The development and testing environment ... 9

2.4 Popcorn.JS – what it is and what it is for ... 13

2.5 Version control ... 14

2.6 Management in general, Agile and SCRUM .. 15

3 THE CATALOG AND ITS CONTENT .. 16

3.1 The foundation of the Django project and the main app 16

3.2 The manipulation and the display of the content 17

4 THE INTERACTION WITH THE MEDIA .. 19

4.1 Working with the YouTube API... 20

4.2 Working with the Vimeo API ... 25

4.3 Popcorn.JS library and its appliances and implications 28

5 THE INTEGRATION .. 31

5.1 General emdb_django project ... 31

5.2 Using the EMPIAR User model and authentication system 32

5.3 The deposition workflow .. 34

5.4 The Front-end ... 36

6 USER EXPERIENCE TESTING .. 38

6.1 Aims, objectives and methods of testing .. 38

6.2 The first round of testing and the analysis of gathered feedback 40

6.3 The second round of testing and the analysis of gathered feedback 41

7 CONCLUSION .. 43

BIBLIOGRAPHY .. 45

1

1 INTRODUCTION

1.1 The EBI and its role in modern structural biology

The European Bioinformatics Institute, one of the outstations of the European Mo-

lecular Biology Laboratory stores, curates and distributes biological data. This data is

comprehensive enough to be one of the main sources for significant biological re-

search.

One of the goals of the organization is to provide openly accessed cloud services,

tools and databases to support analysis and publication. The EBI consists of groups

working on genomes and gene expression, protein sequences, molecular structures,

chemical biology and others.

One of these groups, the PDBe or Protein Data Bank in Europe helps to collect, inter-

pret and validate structural biology data, advancing expertise and developing and

maintaining structure databases such as PDB and EMDB (Electron Microscopy Data

Bank) and services on top of them such as PDBeFold, PDBeMotif or SIFTS. Most of

them are to some extent integrated and connected with each other, as well as with oth-

er services from the EBI and associated institutions.

This integration might be one of the ultimate goals of bioinformatics as a science. It is

very heterogeneous, yet to elicit the biological value from the data, it is always im-

portant to relate it to another source of information. "The key to bioinformatics is in-

tegration, integration, integration" (Chicurel 2002). The EBI thrives to fill the gaps

and bring new solutions to the table. So does PDBe. Along with the tradition, this

movie archive project demonstrates the feasibility of linking one kind of useful infor-

mation to another.

2

1.2 Aims and objectives of the work, or the need for a movie archive

The idea of the movie archive was proposed by Helen Saibil in 2012, at an expert

workshop “A 3D cellular context for the macromolecular world” that was held by

PDBe. More precisely, it was stated that despite animations being “an excellent means

to visualize dynamics and functionally important changes in molecular structures”

(Patwardhan et al. 2014), journals where such animations are usually stored do not

provide them in a sustainable and integrated way. Indeed, in the course of the devel-

opment it was ascertained that supplementary materials in journals are far from con-

sistency. Not only they have no metadata and are not referred to as standalone entries

in any particular order, but the essentials like storage and presentation are lacking.

Some of these movies are even confined in PDF documents (Clare et al. 2012).

Therefore it was decided to initiate a project that would meet this need and

a) cater for movies, maintaining them in a controlled manner for public access

b) use YouTube or another movie channel as a video backend whenever possible

c) capture annotations and references linking the movie to relevant EMDB and

PDB entries, since animations are based on experimental structures from PDB

and EMDB.

Thus, the aim of this project was to pilot technologies that could be used to develop

such movie/animation archive, by the means of web-based user interface for upload-

ing, annotating and validating the movies.

1.3 Structure of the work/study

This document is divided according to the stages of development.

The first chapter describes the preamble of the project: where it was originated, how

does it fit in and why.

The second chapter describes objectives and challenges that had to be thought through

and solved, as well as the initial steps and foundations that had to be taken and laid in

order to proceed productively.

3

The third chapter describes the actual implementation, starting with the basis of the

project, the Catalog.

The fourth chapter continues to describe the actual implementation, touching upon a

proper display of movie annotations, an essential distinctive feature of the project.

The fifth chapter describes another important and the longest stage, the integration of

project as one of the PDBe services.

The sixth chapter describes everything with the user perspective.

In the seventh and final chapter, the conclusion is made.

4

2 AN OVERVIEW OF TECHNOLOGIES, SETUP, AND METHODS

2.1 The architecture of the movie archive

There are four essential parts that constitute the movie archive project.

First, the part called the Catalog represents the medium for management and represen-

tation of certain objects and their metadata, in our case – of the movies visualizing

molecular dynamics. The meaning behind these objects is semi-important: one needs

to understand the relevance of given data to not go off the rails and to understand the

needs of an end user. This is further discussed in the Testing and Completion chapter.

Other than that, the task is technical. The Catalog must be further divided into the

means of assembling, arranging and accessing the index of its entries and the means of

interacting with suitable video hosting services where movies can be collected and

stored.

Due to the nature of the project, the data (i.e. movies) is supposed to be stored at a

reliable source. Thus the movie archive should be able to provide access to the re-

quested data with high availability and properly answer the privacy issues that would

inevitably arise at current state of the typical publishing workflow. These characteris-

tics can be set as very basic requirements, although the actual implementation uncov-

ered that there is more to be desired. Hence, a developer-friendly API and mutual

compatibility with external libraries represent advanced requirements.

Second is the interface for annotating movies showing molecular dynamics – in other

words, stressing the context of any particular movie. As shown in Figure 1, the user

should be able to interact with the video seeing the different states timely highlighted.

5

Figure 1. The initial mock-up

Third, the proposed web service is currently a “child” of another project, Electron

Microscopy Pilot Image Archive (EMPIAR). The latter, being an operating archive

for raw 2D image data related to the EMDB structures, has a profound Deposition &

Annotation workflow and an authorization system. The wise thing to do was to use

and adapt these systems rather than implement them from the scratch. Expectedly,

there might arise a further need for a common authorization across PDBe projects.

Fourth and finally, the user interface is finalizing this work.

Altogether they form a system allowing to compose, modify, review and view movie

entries, which in turn consist of video files, annotations to them, and range of refer-

ences.

6

2.2 The Python language, the Django framework and their packages

Since the main and parent project is written in Django, inducing the development of

any new project that don’t have contradicting is pursued along the way. It is unknown

whether any comparison with other solutions (like Ruby on Rails or Java under

Grails) has been made at PDBe. It is evident though that Python, a general-purpose

language used as a foundation of Django, is vastly popular in scientific applications.

One could name a number of reasons behind it but Python is, above all, well support-

ed by the community and therefore gives access to tons of specific libraries such as

SciPy and NumPy.

The Django framework, as well as any other framework, is basically a collection of

libraries. Django is often described as a “powerful framework” for web applications;

however it does have limitations and is more of a “convenient framework”. According

to its history, it was devised as an answer to a growing demand for adding new fea-

tures at several content-driven sites in a timely manner (Holovaty and Kaplan-Moss

2009). It does its job – having Python for its operation and loosely using the MVC

(Model-View-Controller) design pattern, – the Django framework allows clear, quick

assembly and integration of most of given projects.

In essence, Django makes the life of a developer easier, abstracting from repetitive

tasks and distinguishing between the template and the context layers. It should be not-

ed that while generally following the MVC pattern, Django provides its own naming

for its parts. To eliminate confusion, it is helpful to elaborate on both. In terms of

MVC,

 Model represents a module that serves as mediator between the database and

other modules, describing the structures of database tables, providing mechan-

ics of access and control, filtering and sorting and so on;

 View represents a module that performs data input and output by means of the

user interface;

7

 Controller represents a module that processes the data. The Controller is call-

ing either the Model or the View when it needs to address the database or the

user correspondingly.

In terms of Django, however, View has a different interpretation, hence Django is ra-

ther an MTV framework:

 Model, again, represents a data access module;

 Template represents a module that is generally called View and is responsible

for how the data appears. Usually it is a web page written in HTML with the

addition of special tags stating where and in what format the given data should

be put;

 View represents a module that is responsible for determining which data ap-

pears. Thus, the View processes the data just as the Controller does, but along

with the Django framework itself and its service modules such as callback to

the predefined URL.

In addition, Django allows concepts like ModelForm (a built-in shortcut for creating

forms) or using processing logic inside Models. This behavior is made upon the flexi-

bility of Python that sees each module as containing separate definitions and state-

ments and importing them from other modules. See Figure 2 for further details.

Further in this document, only Django MTV definitions of Models, Views and Tem-

plates are used.

8

Figure 2. Diagram of the Model-View-Controller and Model-Template-View pat-

terns.

The modularity of Python implies that virtually any Django project is naturally com-

partmentalized and likely to use external packages (libraries). For reference, in terms

of Python a package is a group of modules, or a module that contains submodules un-

der a common namespace, while a library (a module distribution) is package that is

subjected to be published and imported en masse. This is done in accordance with

Python and Django philosophies (The Zen of Python and DRY correspondingly) and

in a general attempt to prevent the reinvention of the wheel.

For example, if one would like to do anything with URL, it would be sensible to im-

port already implemented package urllib (urllib2, urllib3 according to the exact needs)

rather than to implement the functionality yourself.

It should be noted that two major revisions of Python (Python 2 and Python 3) do not

have backward compatibility. Python 3 was designed with the intention to reduce the

redundancy of the previous version, conforming to the main philosophy. The changes

included, for instance,

 removed support for old-style classes,

 print function (instead of a statement),

 renamed functions,

 extended Integer division,

 altered dictionaries,

 Unicode for all strings.

Understandably, all this caused substantial difficulties in the translation from Python 2

to Python 3. As a result, a sufficient amount of libraries that were written in the era of

Python 2 have not been ported to Python 3. This implies the use of Python 2 in many

projects, including this one.

The Django framework itself, despite the laboriousness of the task, has started to offi-

cially support Python 3 from the version of Django 1.5. The community endorses de-

velopers to use compatibility library (django.utils.six) and write Python 3 code.

9

2.3 The development and testing environment

2.3.1 Setting up the workstations and the prerequisite modules

At the workplace, it was advantageous to operate different development environments.

The term development environment in this context is not to be misinterpret for IDE

(Integrated Development Environment), which is a type of software application and

discussed in the Version control section. The term development environment stands

for an instance with a specific installation and configuration of software products and

their dependencies.

At first, I was given a Red Hat Enterprise Linux machine supported by EBI’s Systems

department. It didn’t have root rights and the development was to an extent con-

strained – particularly, old versions of Python (2.6) and Django (1.4) were impedi-

mental. For a supplement of the web server with up-to-date software, an Amazon EC2

instance was used over SSH connection.

Later I was given a MacBook with OS X El Capitan installed. This version of the OS

has novel security feature called System Integrity Protection (SIP) that stood in the

way, particularly forbidding to install gdata package for Python. It was impossible to

do this manually either unless booting in the recovery mode and turning off SIP.

However, since the laptop was supported by EBI’s Systems, another solution had to

be found. In the end I have placed two modules in the package (apiclient and

oauth2client) in the project directory and the rest could be installed properly, allowing

Python distutils system package manager to catch them up automatically.

It is worth mentioning that alongside with Django itself, the (abridged) list of import-

ed packages for this project included:

 httplib/httplib2, urllib/urllib2, urlparse, json for making corresponding re-

quests that would otherwise be on the sketchy side;

10

 gdata 2.0.18 / google-api-python-client 1.4.2 for interaction with the YouTube

API (V2/V3);

 PyVimeo 0.3.3 for interaction with the Vimeo API;

 django-embed-video 1.1.0 for a facile embedding of uploaded YouTube and

Vimeo videos. It was later proved to be an overkill for the task, but left for any

future use;

 mysql-python 1.2.5 that is an Python interface for MySQL database server.

 django-sslserver 0.19, Pillow 2.9.0 (fork of PIL), psutil, postgres, psycopg2,

NumPy 1.9.2, python-dateutil 2.4.2, SciPy 0.16.0b2 for integration purposes.

At the time this work was underway, the PDBe group was discussing transition to a

more up-to-date, stable and supported version of Django going by the number 1.8.x.

This was proposed a sufficient time ago, but Systems were reluctant of securing the

move because it would require a fair amount of time and effort not only for Systems,

but for all groups with relevant services.

The development of the movie archive was done entirely with Django 1.8.2 version

instead of 1.4.x that was released in early 2012 and running on most of the available

servers and workstations. A specific setup (basically a virtual environment) at the de-

velopment and productions servers was required and the parent project EMPIAR took

the lead in piloting the update. It is closely described in the next section.

2.3.2 Web server infrastructure and the Anaconda environment

The IT infrastructure at the EBI is inherently complex as it comprises several datacen-

ters in England. However, at the web production layer only VMs (Virtual Machines)

need to be considered. Without going into details, there are naming schemes associat-

ed with VMs, utilizing 3-tier model of deployment – development, staging and pro-

duction machines. They are used to provide access to the EBI data resources and ser-

vices over the internet. It should be noted that this concerns only web application

11

server services. The VMs rely on storage provided over NFS and SAN where web

applications are actually stored alongside with the data.

To be externally visible on the internet, or moreover, to be visible in a secure and

scalable way, these VMs are running web application servers including Apache HTTP

Server. Following the LAMP philosophy, they are not monolithic like the built-in

Django web server (i.e. not containing all functions in one process) and are able to

handle the requests when the resources are decentralized.

The Apache HTTP Server is a general-purpose http server. Its main purpose is to

serve static content, but with the support of various modules it can serve dynamic con-

tent as well. The modules can enhance the functionality of the web server, for in-

stance, aiming for support of different programming languages and IDEs or fixes, im-

provements and modifications. The modules are usually compiled with given envi-

ronment and loaded into the Apache HTTP Server configuration file, but can be cus-

tomized too. In our case, the mod_wsgi module is designed specifically for Python

applications and in conjunction with Django is able to generate the content when re-

quired (i.e. dynamically).

This is how it works. The client sends HTTP requests to the server, where they are

forwarded to the Apache HTTP Server and its mod_wsgi module consequently. The

mod_wsgi together with Django serve as an application server that executes the logic

to generate responses that would return to the client. In the meantime, the Django app

connects to the database which may or may not be physically on the same server. The

requests for static content are served directly from storage the web server has access

to. Thus, the Apache HTTP Server acts as a medium between the client and the Djan-

go application. See Figure 3 for further details.

12

Figure 3. The diagram of the web server

The environment for running Django 1.8 in the VM, however, relies on an independ-

ent configuration. Since Systems were not going to make the general update, a sepa-

rate and secure environment had to be introduced. The changes were done by means

of Anaconda environment that was installed using the Conda package management

system. Anaconda is actually built upon and includes Conda, along with Python itself

and many more open-source Python, C, R, and Scala scientific packages with their

dependencies. Conda creates environments simply hard-linking isolated installations

of everything required (including all dependencies), making it possible to operate mul-

tiple environments by activating (changing the path to their binaries) ones when need-

ed and even with lack of administrative privileges (root rights).

Down to the web server, the mod_wsgi module for Django 1.8 has to be replaced with

the one modified and compiled with Anaconda Python 2.7 / Django 1.8 environment.

From the technical perspective, the pages are generated by the server anew with each

request. This may cause a significant overhead with large number of requests, which

is why it is common practice to use load-balancing and caching for high-loaded web

services. However since the EBI is rarely accessed by thousands hits simultaneously

and scientific services may require non-caching technologies, this is not the case with

the described web server.

13

2.4 Popcorn.JS – what it is and what it is for

2.4.1 The Popcorn library

In 2010, Mozilla jointly with Bocoup and CDOT developed an HTML5 video JavaS-

cript library allowing embedding or adjoining web elements to the video. Back then, it

was a notable example of using modern web technologies in interactive media, and

was proposed as its future (Merkley 2012).

It is still alive, despite that the community is idle. The library has various plugins al-

lowing connections to various sources from video services to Wikipedia. It is possible

to use it to add free text, links and images alongside or over the video player.

The library was used in this project to implement a basic annotation interface for the

movie archive.

2.4.2 Popcorn Maker

The Mozilla Popcorn Maker project was made on the top of the Popcorn.JS library. It

was a web application that had been helping to create and share the media empowered

with Popcorn.JS. It had its moments, but was closed not long before the movie archive

project was started. It is no longer supported, because "it’s a matter of resources"

(Mozilla Foundation 2015). However, since the Popcorn Maker project was open-

source, the Wikimedia Foundation had planned to turn it into a collaborative video

editor (Vibber 2015).

14

Picture 1. A screenshot of Popcorn Editor demo made by Wikimedia Foundation.

Popcorn Maker had undergone several major revisions and the last were powered by

the Node.js JavaScript platform, a comprehensive solution for server environment. It

would be sensible to try to reproduce it locally with integration in the existing system,

but this is beyond the described project.

2.5 Version control

Version control, or revision control, is a necessary technique in large projects with

multiple participants, because it allows to track and synchronize committed changes

and generally benefits the team work.

The movie archive project is supposed to be only a part, or rather a child of the EMDB

web service. Hence, continuing with team work, it is essential to use the same VCS

(Version Control System), in our case – Subversion (SVN) for stated purposes. SVN

is a free VCS that makes use of the central repository, extending it to working branch-

es with their local copies.

In order to interact with SVN, it is possible to use a command line (e.g. from the serv-

er), a standalone software application such as RapidSVN, or a plugin for the IDE,

such as Subversive plugin for the Eclipse IDE.

15

2.6 Management in general, Agile and SCRUM

At the workplace, it was customary to use the SCRUM methodology. Its purpose is

the efficient team work, so the pronoun we should be more appropriate here. It is help-

ful in keeping the discipline and preventing the participants from tilting at windmills.

The methodology consists of three parts: the plan, the reports, and the retrospective. A

cycle of development is called a Sprint, each of them having its own schedule but

generally not more than four weeks. We had a Sprint planning in the start of each

Sprint, where we had divided our goals for the sprint into relatively small tasks no

longer than several days.

Then every day we made a short stand-up report of what was done on the previous day

and what was intended to be done next. After the Sprint, we gave short presentations

called Sprint reviews, followed by Sprint retrospectives where we discussed what was

done and what weren’t. The development of this project took three Sprints overall.

Figure 4. Overall process of the Sprint

16

3 THE CATALOG AND ITS CONTENT

3.1 The foundation of the Django project and the main app

The Django project is considered a Python package. It can contain several apps, which

are essentially packages too and can in turn contain their modules. They are being

imported in Django when the server is started. The modules hierarchically form the

structure of the project. After the django-admin startproject and startapp commands

have been executed, the structure is as follows:

− movie archive/ − the root of the project
− movie archive/ − the root of the project package (source code)
− init .py − these files are package−indicators for Python
− manage.py − the management interface to the Django framework
− settings .py
− urls .py
− app1/

− init .py
− admin.py
− forms.py
− models.py
− tests .py
− views.py
− templates

− index.html
− app2/
...
− upload/
− templates / − the root of the base templates

− base.html
− static / − the root of the static content
− media / − mediafiles that are created or uploaded, e .g. movies

Code 1: The names of the unsigned modules should be self-explanatory

The actual hierarchy and nesting may seem redundant, but are important for three rea-
sons: the Python 2 packages originate from filesystem, the Django apps should have a
single location, and also it is just human-readable.

17

Verbatim, a catalog is a register, a simple way of organizing things. The fundamental

job of a catalog is to contain, query, structure and categorize its content.

Conformably, the information concerning any particular object is stored as values of

its attributes. All attributes are written in models and passed and processed in views

according to their purpose. Therefore, the catalog represents all models and views

needed for the movie archive to exist in this capacity.

An end user would work with an orderly array of the relevant data, queried from the

centralized database. Interestingly, an end user itself would have their rights belong to

this database, since there is a need to distinguish between them and to regulate the use

of the objects. This is further described in the Integration chapter.

Consequently, an end user is given the possibility to see a limited amount of attributes

and do a limited amount of actions upon them. For example, a list of open entries,

with each one of them having its own description, thumbnail and title, or a list of the

entries deposited by user, which is further described in the Integration chapter too.

In its settings, the Django project is set to connect to the MySQL database where the

entries with their relations and values of their attributes are stored. The app constitut-

ing this project is historically called Upload, referring to the first function implement-

ed during the project development – the upload of the movie to the YouTube.

3.2 The manipulation and the display of the content

This section describes selected views and models that are responsible for the CRUD

operations. They are intentionally changed (truncated) from their final version to in-

troduce the functionality gradually.

The above-mentioned CRUD, or Create, Read, Update, Delete concept represents the

fundamental content management actions. In our case, this applies both to the data-

base and to the interface – because using the Django framework implies the so-called

separation of presentation and content design philosophy. [No reference here, this is a

logical statement.] From the interface perspective, however, we are using the request

18

methods of the HTTP protocol, that is, we are using the REST (REpresentational State

Transfer) design pattern that applies to web applications.

To start with, in order to create anything with user input, one needs to go through 5

basic steps. First, it is essential to have a model through which the Django would create

a corresponding table to write this input to.

1 class Vid(models.Model):
2 title = models.CharField(max length=200)
3 description = models. TextField ()

Code 2: models.py sample

The second step of this abridged MTV interaction would be a form. The Django frame-
work has a helper ModelForm class to simplify the creation of it.

1 class VidForm(forms.ModelForm):
2 class Meta:
3 model = Entry
4 fields = [’ title ’ , ’ description ’]

Code 3: forms.py sample

That is, considering that the called model exists and has the corresponding fields. The
final version of the project includes more complex customized forms, however at the
stage of constructing of the Catalog this would be only bells and whistles. The form is
required for the view to pass it to the template. It is common practice to address the
form as either valid or not valid. But before that, we need to use POST request to obtain
the data. This might already give an idea on how to implement the update on the data.

1 def create (request):
2 context = RequestContext(request)
3 if request .method == ’POST’:
4 form = VidForm(request.POST, request .FILES)
5 if form. is valid ():
6 form.save(commit=True)
7 # The placeholder
8 # form.save () for the placeholder
9 return HttpResponseRedirect(’ /moviearchive’)

10 else :
11 messages. error (request , ’Try again . ’)

19

12 else :
13 form = VidForm()
14 args = {}
15 args .update(csrf (request))
16 args [’form’] = form
17 return render to response (’ create vid .html’ , args , context)

Code 4: views.py sample, create view

In this Code 4, the placeholder represents the additional logic or any changes in the
model that are not directly influenced by the input data. For example, a call to the
YouTube API function or another request. For an end user to access it, the form should
be located at the specific URL. All possible URLs including the ones used only by the
app’s logic (i.e. not accessible in a form of a link in the UI) are specified in the urls
module. It is illustrated in Code 5.

1 from django.conf . urls import patterns , include , url
2 urlpatterns = patterns (’ ’ ,
3 url (r ’ ˆget /(? P<vid id>\d+)/$’, ’upload.views.view vid’),
4 url (r ’ ˆ create /$’ , ’upload.views. create ’),
5)

Code 5: urls.py sample, create and view-vid url patterns

After the view saves the form, the data in the database changes according to the input.
The Update is done similarly, although it generates the page with the requested con-tent
from the database first. The Read is straightforward and can be done in one line; the
Delete makes use of the DELETE request method. All introduced CRUD opera-tions
were used repeatedly over the course of development.

4 THE CATALOG AND ITS CONTENT

When it comes to professional video hosting services, there aren’t many alternatives
on the market. Certainly, there are dozens of video distribution websites, but much
less can comply with our basic requirements, to say nothing of the advanced ones (see
section 2.1). As an example, Popcorn.JS library provides media wrappers only for
YouTube, Vimeo and SoundCloud services. It is possible to create a custom plugin or
use the library separately from the media (further elaborated on in section 4.4), but it
was decided to give the big players a try first.

20

4.1 Working with the YouTube API

The YouTube satisfies the basics requirements for video hosting services that were

defined in the section 2.1. The Creator Studio, a user interface for an end user, is clear

and straightforward. It allows to upload videos, edit their metadata, add subtitles and

see basic analytics and even provides plain video editor. Moreover, the YouTube has a

function called Annotations which resembles the mock-up that was made prior to this

investigation (see Figure 1, Figure 6).

Figure 6. The YouTube Annotation editor.

These built-in Annotations could become a nice tool for the linkage between movies

and corresponding PDB/EMDB entries, if only they weren’t born limited. It is stated

that "you can only add annotations to your videos on your computer" (YouTube help

pages 2016) meaning that one needs to login to the YouTube website and use Creator

Studio to proceed with this action. This contradicts with the proposed idea of the mov-

ie archive project: the movies should be managed from the EBI-maintained user inter-

face, allowing

 manifold uploads without obtaining YouTube credentials for every user;

 additional features such as the above-mentioned linkage.

21

This could be performed only via the API (Application Programming Interface) of the

YouTube video service. Unfortunately, the API is unsuitable for the YouTube Annota-

tions despite that the community is asking for it (Google Project Hosting 2008).

Other than that, the YouTube API might seem even excessive, though well-

documented. Since its temp of development is pushed by Google, it is likely that the

current revision will become deprecated in a couple of years. This project uses the

latest (V3) version at moment.

The API requires the user to authenticate prior to making any data requests. Conse-

quently, we needed to obtain proper authorization credentials. This is done in five

steps in Google Developers Console (GDC):

1. In the Project section of the GDC, create the project and see an Easter egg after

choosing test project for the name.

2. In the API Manager section of the GDC, enable YouTube Data API v3. This is

done in the Overview section with the unambiguous list of APIs. If this is not

done, the next step will prompt back.

3. In this project, we are using OAuth 2.0 credentials. Therefore in the Creden-

tials section of the GDC, create OAuth client ID with the application type be-

ing either Web application or Other. For the purpose of non-redundancy, the

Other client is used. The system will generate a JSON that can be downloaded.

4. In the Python script or module with the desired functionality (e.g. uploading or

updating the video) it is essential to query this JSON and set the relevant scope

stating the level of access. This is the reason for having separate almost identi-

cal authentication functions in this project.

5. The initial execution of the desired functionality is most conveniently done

from the IDE or Python interpreter. With OAuth client ID, the GDC prompts

the developer to accept terms in the browser and then switch back to the appli-

cation. Which in turn should generate another JSON with the access token for

the relevant scope. In terms of Django, all JSON files fit well in the static di-

rectory.

22

The views of the movie archive project import and repeatedly call YouTube API func-

tions. The calls with their arguments are prudently accommodated in place of the place-

holder comment, as seen in Code 6 that is an extension of Code 4. Global variables such

as the one from class EMDBGlobal can be used in order to return the value into the view.

1 def create (request) :
2 ...
3 if form. is valid () :
4 uploaded vid = form.save(commit=True)
5 # send this file to youtube
6 youtube = get authenticated service (uploaded vid)
7 try :
8 initialize upload (youtube, uploaded vid)
9 except HttpError :

10 messages. error (request , ’HTTP error’)
11 messages.success (request , ’Video saved. ’)
12 uploaded vid . youtube url = ” https :// www.youtube.com/watch?v

=” + EMDBGlobal.youtube response id
13 form.save () # for the placeholder
14 ...

Code 6: views.py sample, create view, calling YouTube API functions

1 def initialize upload (youtube, uploaded vid) :
2 body=dict(
3 snippet =dict(
4 title =uploaded vid. title ,
5 description =uploaded vid. descr ,
6 categoryId=uploaded vid. category
7) ,
8 status =dict(privacyStatus =uploaded vid. privacyStatus)
9)

10 insert request = youtube.videos () . insert (
11 part=”,” . join (body.keys()) ,
12 body=body,
13 media body=MediaFileUpload(uploaded vid.file , chunksize=−1,

resumable=True)
14)
15 resumable upload(insert request)

Code 7: util-youtube.py sample, initialize-upload method

23

1 def resumable upload(insert request) :
2 ...
3 while response is None:
4 try :
5 status , response = in− sert request .next chunk()
6 if ’ id ’ in response :
7 EMDBGlobal.youtube response id = response[’id

’]
8 except:
9 messages. error (request , ’ Retriable error ’)

10 retry += 1
11 ...

Code 8: util-youtube.py sample, resumable-upload method

Consequently, the initialize-upload function takes authentication and saved arguments
and calls the YouTube API insert method to upload the video in chunks. It is then passed
to the resumable-upload method that checks the response status of the upload and saves
the global variable with the successful result. See Code 7 and Code 8 for further details.
To display the uploaded content, we need to pass acquired attributes to the template.

Inside the template the Django template language is used. It is fairly simple: whatever
arguments are rendered in the view can be addressed at the template level. To let the
model be as concise as possible, it was decided to import django-embed-video app that
allows easy embedding of YouTube (and Vimeo) videos in the Django templates. The
Code 9 illustrates the whole concept. As a result, the movie is displayed in a standard

iframe element with player controls that is provided by the YouTube itself. However,
further investigation reveals that utilization of the YouTube as a video backend for the
movie archive raises a few is-sues. First and foremost, it can degrade quality of the
uploaded video. It does a good job at being omnivorous, but is apparently focused on
standard aspect ratios, color schemes and codecs. That being said, scientific videos
such as discussed molecular dynamics animations are usually produced with profes-
sional software like UCSF Chimera with particular, sometimes peculiar configurations.
These videos can easily be, for instance, vertical and generally not strictly following any
widely accepted signal and resolution formats. Not surprisingly, when the YouTube at-
tempts to adjust the uploaded video to accommodate it within allowed resolution mode,
it is a rare occasion for that video to be available in full detail. Moreover, most videos
after processing obtain black stripes. With a few CSS tricks, however, the responsive

24

video container can be achieved for an embedded YouTube video.

1 # views .py
2 def view vid(request , vid id =1):
3 return render to response (’vid .html’ , {’vid’ : Vid. objects . get (id=

vid id) }, context instance =RequestContext(request))
4
5 # vid .html
6 <div>
7 {% if vid %}
8 {% video vid . youtube url query=”rel=0” as my video %}
9 {% video my video ”medium” %}

10 {% endvideo %}
11 {% endif %}
12 </div>

Code 9: Displaying the embedded video using django-embed-video and a line from
the corresponding view. The indentation in the HTML file is for readability

Apart from that, the YouTube API is changing fast enough to be a hindrance to slowly
developed libraries like Popcorn.JS. For instance, the official release of the Popcorn.JS
media wrapper for YouTube (HTMLYouTubeVideoElement) is relying on the YouTube
API V2 and therefore deprecated. This is elaborated in section 4.3.

Another matter to consider is YouTube’s policy towards reloading of the same videos
(duplicates). The service apparently compares hashes with previously uploaded videos,
but the public API won’t tell which video the current upload is being compared to
(the Creator Studio will). Therefore the only feasible way to get this information is
to hash files at the project side and maintain another database or table. This behavior
was discovered during the debugging process but might as well arise if there is e.g. a
mistake in the deposition process or a need to separate videos on the basis of privacy.
Overall, it was then considered unsuitable to post such videos to the movie archive, but
the YouTube option is left for a backup strategy.

25

4.2 Working with the Vimeo API

Since YouTube was proven to be insufficient, we had to come up with an alternative.

Fortunately, Vimeo at least partially follows YouTube’s example and satisfies the

requirements too.

First thing to note is that Vimeo’s user interface is notably more minimalistic than that

of YouTube. Despite that, it allows all basic operations too, except for the video edi-

tor. Each can be executed via API; however, since Vimeo offers membership plans

along with a free one, certain features are only available with paid account. Sadly,

there is no single reference for these extensions in the API, instead they may just arise

in the development process. For example, the ability for getting direct link for down-

loading the source of the video is an underdocumented function of the PRO API. Gen-

erally, the paid accounts get larger storage, detailed privacy and distribution settings,

the video player customization and advanced statistics. After consideration, a PRO

account has been purchased.

Similarly to YouTube, Vimeo requires a specific authentication workflow to be passed

in order to start using its API. This is done in the following steps at the Vimeo Devel-

oper website:

 In the My Apps section, create an API app – which is not an actual application

but rather its credentials. This generates Client Identifier (key) and Client Se-

crets. The app should get a status of approval for Upload Access. Vimeo says

it takes up to 5 business days, however possibly due to the PRO status of the

account it took only several hours.

 In the same section on the created app page, generate a token with the required

scope. From the security perspective, a different token should be used for eve-

ry other scope of use. Unlike YouTube, Vimeo does not enforce this policy,

and a scope combining public, private, create, edit, delete, upload scopes can

be set.

 The API uses OAuth 2.0. To make an API request with the token, the client

key and the secret must be referred to as well. If anything else like the bearer

(authorization type of the token) is needed, it will be obtained on the fly (with

26

help of some additional code) but will not be stored. For details on the method of

authentication and its usage, see Code 10 and Code 11.

1 def vimeo make auth():
2 mytoken=’xxx’
3 mykey=’yyy’
4 mysecret=’zzz/aaa’
5 vimeovid = vimeo.VimeoClient(
6 token=mytoken,
7 key=mykey,
8 secret =mysecret)
9 return vimeovid

10 ...

Code 10: util-vimeo.py sample, authentication method. The credentials are
hardcoded for clarification. A more clever thing to do is to import them

1 def vimeo upload(args) :
2 vimeovid = vimeo make auth()
3 video uri = vimeovid.upload(
4 # video uri =’video uri ’,
5 filename=args . file ,
6 upgrade to 1080=False)
7 vimeovid.patch(video uri ,
8 data={
9 ’name’: args . title ,

10 ’ description ’ : args . descr})
11 return video uri

Code 11: util-vimeo.py sample, initialize-upload method

1 def create (request) :
2 ...
3 if form. is valid () :
4 uploaded vid = form.save(commit=True)
5 # send this file to vimeo
6 vimeo video uri = vimeo upload(uploaded vid)
7 vimeo full url = vimeo request url (vimeo video uri)
8 uploaded vid . vimeo url = vimeo full url
9 form.save () # for the placeholder

10 ...

Code 12: views.py sample, create view, calling Vimeo API functions

Like in the case of YouTube, the views of the project import and repeatedly call Vimeo
API functions. The actual upload function is abstracted from the developer and rests in

27

the Vimeo library. Based on the credentials, it generates and utilizes an upload ticket

that contains the metadata of the uploaded video. This is done via an authenticated
POST request. The upload is made with a PUT request to the target URI. Once it is
completed, the user can and will PATCH the result, updating e.g. the name the video
or other parameters. See Code 11 and Code 12 for further details. On a side note, the
videos can be uploaded repeatedly and will be regarded as separate entities.

To display the uploaded content, the Django template language along with django-

embed-video app are used again. If one would try to share the embedding code from
any Vimeo video using the Share button in the player, the result would be able to be ef-
fectively embedded without the black stripes. The django-embed-video, unfortunately,
doesn’t extract the correct aspect ratio or resolution for an iframe (container) element.
It is an extraction indeed – and the values of the container should coincide with the
aspect ratio of video resource itself. Vimeo allows to get the specification of any video
in JSON by the means of a GET request (see Code 13 for details). This JSON can con-
tain e.g. a link to the video, its height and width, or the whole iframe code. The latter,
unfortunately, uses default values of height and width as well. To display the correct
width and height for every particular video, they need to be saved in the modified model
along with e.g. the URL.

1 def vimeo request url (video uri) :
2 vimeovid = vimeo make auth()
3 headers = { ” Authorization ” : ”bearer ” + vimeovid.token }
4 r = vimeovid.get (” https :// api .vimeo.com” + video uri , headers=headers

)
5 parsed = json . loads (r . text)
6 truncated = parsed[’embed’][’html’] # direct iframe code
7 ...

Code 13: util-vimeo.py sample, create view, calling Vimeo API functions

Other than that, there are two issues related to the display of the video. First, Vimeo
degrades quality too, although often provides with more options, such as more grad-
ual choice of resolution, the link to HTTP Live Streaming or the original video file.
Theoretically, it can be employed in a third party player with Vimeo as a CDN (Con-
tent Delivery Network). However, it would require a substantial amount of effort to
maintain and therefore left for the future development (see Chapter 6).

28

Last, but not least, Popcorn.JS does work well with the official release of the Pop-

corn.JS media wrapper for Vimeo (HTMLVimeoVideoElement). A full-fledged Pop-

corn.JS solution, however, requires more than just a wrapper. This is further elaborat-

ed in section 4.3.

4.3 Popcorn.JS library and its appliances and implications

The idea of providing the user with annotations to a given scientific movie spreads out

into two complementary elements: side annotations and overlay annotations. The first

represent the relationship between a given movie and EMDB/PDB entries. The second

and generally are free text (though can include links or even pictures) and appear on

the top of the movie and should act as a tip to what is going on.

Unfortunately, few people use Popcorn.JS nowadays. The community is idle and

powerless. The website of the library seemingly maintained by Mozilla, but not actu-

ally looked after – there are obsolete pieces of documentation, examples that no longer

work and more importantly, and only the old revision (1.5.6) of the library itself avail-

able for download and on the CDN (Content Delivery Network). The open-sourced

code on GitHub, however, is being updated relatively regularly – last commit to date

(last check 28
th

 of April 2016) was on 6
th

 of June 2015.

It was suggested that those interested should build the required revision (1.5.11) them-

selves or use separate links for all necessary plugins. The Popcorn.JS documentation

suggests using a “build tool” that is an available website that generates the old revi-

sion (1.5.7) once again. In the end the Bower package manager was used with a local

copy of the GitHub repository. For an unknown reason it is not stated explicitly in the

documentation, but inside the repository one can find the Makefile (basically a list of

JavaScript modules) for the Bower. The Bower should be installed locally by the

means of another package manager for JavaScript, npm. Other than that, it need cor-

rectly configured Makefile and bower.json (manifest file). This approach was tried

successfully.

Another challenge in utilizing the library consists in its plugins. They allow to call a

diverse range of functions. For example, it is possible to display stylized and animated

29

text, other media, extracts from Wikipedia, and/or Google maps in a timely manner

along with the main media. However, not every plugin

a) is supported continuously

b) will suite specific needs

c) will integrate with other plugins flawlessly and in a known way

The Popcorn.JS documentation encourages developers to write their own plugins to

support their cases. In our case, the task was to receive the data from the Django ap-

plication and display both free text and EMDB/PDB annotations simultaneously. Ac-

cordingly, we needed to define the format of the extracted data and output this data in

two different types of annotations.

The development had started with free text annotations, but closer to the end of the

first Sprint it became clear that any attempts to extend their use to EMDB/PDB anno-

tations would cause unnecessary delays. The data had been hardcoded (transferred

literally) into the complex div HTML element that had a lower z-index CSS attribute

than neighboring and parent elements. As a result, it was an overlay over the video

HTML element. There were two major problems with it. First, its markup did not con-

tain a special place for the style or the link, nor did it accept any code from Django.

Second, due to the mixed nature of the resulting div element (one div on top of anoth-

er), even if it would have a link, it would not be easy to make it clickable.

The second version of the movie annotation display was developed with mentioned

challenges and issues in mind along with the deeper expertise in the domain. It is still

an overlay, but now based on the modified Popcorn Base Plugin (Chirls 2012) collec-

tion, which in turn is an extension of the standard Footnote plugin. The Footnote

plugin allows to pass text to the elements using arguments. The relationship between

the Popcorn.JS and an HTML container is illustrated in Code 13. Most of the data can

be easily inserted from Django using Django template language. For instance, the

pop.footnote calls can be looped or supplied from a JSON file.

30

1 # index .html:
2 <script type=’ text / javascript ’ src=’ static / js /popcorn−complete.min.js’>
3 <div id=”video”></div>
4 <div id=”foo”></div>
5
6 # JavaScript
7 // create a Popcorn.JS instance
8 var wrapper = Popcorn.HTMLYouTubeVideoElement(”#video”);
9 // var wrapper = Popcorn.HTMLVimeoVideoElement(”#video”);

10 wrapper. src = ” https :// www.youtube.com/watch?v=1ZywgbBVUKE”;
11 var pop = Popcorn(wrapper);
12 pop. footnote ({
13 start : 1,
14 end: 5,
15 text : ”Works with YouTube! This is the

link”,
16 target : ”foo”
17 }) ;
18 pop. footnote ({
19 start : 7,
20 end: 15,
21 text : ”Yay!”,
22 target : ”foo”
23 }) ;
24 // play video
25 pop.play () ;

Code 14: The example usage of the Footnote plugin for Popcorn.JS with media
wrappers. The file popcorn-complete.min.js is an instance of the library

This qualifies for a common method for the two types of annotations as well, because
the target can be different in each case. However, the display of the free text annotations
in an overlay over YouTube and Vimeo iframe elements required further investigation.
An HTML5 Video player was used as a working substitute, despite that it can only
display open formats of videos such as Ogg Theora or WebM, or those which codecs
were included in the operating system such as MP4/H.264. All the rest, proprietary
formats such as Apple QuickTime would not be supported. The usage of professional
HTML5 players such as JW Player would not help the issue (JW Player Media Format
Reference).

31

The display of the side annotations with EMDB/PDB entries linked required the ex-

traction of the corresponding data. Thankfully, there is a profound REST API specifi-

cally for this occasion. It provides JSON output with all details for major services, so

what was need here is only to play with it to get the title, the description and the

thumbnail of any particular EMDB/PDB entry.

5 THE INTEGRATION

The integration turned out to be the most intensive and the longest part of the project.

It had to be done along with other functionality and took 1.5 Sprints (see section 2.6)

in total. It can be divided into the three parts.

First, it should be able to coexist with range of PDBe projects written in Django. The

movie archive project itself is embodied in one Django app. What was described pre-

viously, however, is only the ground-laying of the project. Second, it was decided to

utilize the existing authorization system, continuing to comply with the Django phi-

losophy. Third, as was shown in the first round of user testing (see section 7.2), the

deposition workflow that was developed to demonstrate the feasibility required a sub-

stantial improvement. A new workflow had been designed and as a result, it was de-

cided to modify the existing deposition workflow of the EMPIAR project.

5.1 General emdb_django project

The moving of the app from the movie archive-centered Django project to the new

parent Django project requires several changes in configuration to be made. To start

with, all other apps belonging to developers at PDBe need to be checked by Python at

every run of the server. This implies that all packages that they are using should be

installed on the local machine. Moreover, to deal with the development of more than

one app at a time, developers work with their own settings module which is merged it

in the SVN when it comes to the production.

32

By default, Django would direct any calls to the models to the single default database. In

our case, most of the apps connect to their own database or an instance of the database.

Handling multiple databases can be done either with specifying the particular database

to use in the call or by setting up the database routers for the particular app’s models.

In this project, the usage of the latter was explicitly stated in the settings module. The

routers are essentially simple methods to ensure the app will be querying the exactly

predefined database. Code 15 illustrates a control of a reading operation on models in

the Upload (movie archive) app.

1 def db for read (self , model, ∗∗hints) :
2 if model. meta. app label == ’upload’ :
3 return ’movie archive dep’
4 return None

Code 15: routers.py sample, the method sends reading queries for the upload app
to movie-archive-dep database

One other thing to consider is the arrangement of the templates. As seen in Code 1, for
the sake of modularity the Django project can include layers of templates, usually at
least app’s templates and base templates (their directory lies in the root of the project
package). Strictly speaking, the base templates need not and cannot be assigned to any
particular app; yet among several developers, it is obvious that one keeps it clean and
uses only own templates unless otherwise agreed. This project utilizes 2 (two) base

templates. The subject of templates is covered in section 5.4.

5.2 Using the EMPIAR User model and authentication system

The default User model in the Django framework is limited. It has only the field at-
tributes such as username, password, email, first-name, and last-name, plus status and
relationship attributes. In most cases and primarily for authentication purposes, it suits
well. However, if there is a need in extended user profiles (such as an extended model
for depositors with fields such as address and ORCID), it is advised to create a proxy
model that would inherit from the original and override its functionality.

There have been discussions on whether there should be a common authentication sys-
tem on the basis of an independent Django app that would be used by all future and
some of the existing projects.

33

There are actually a number of ready-made solutions, reusable apps for handling reg-

istration and user profiling such as django-userena (Bread & Pepper 2013) for letting

users operate their accounts. However, the movie archive project is utilizing the User

model and the authentication system of another project, EMPIAR, to let existing users

of that project operate with their credentials. In its turn, the EMPIAR project relies on

the custom User model and the authentication that is built upon it, and so should the

movie archive.

In order to create a proxy model, a custom class UserProfile was defined with a One-

to-one relationship to the default User model. This user profile is represented by a

UserProfileForm based on (but not inherited from) the model and the default Us-

erCreationForm. Its fields are represented both by the built-in types that are defined

inside the Django forms module like forms.CharField or forms.EmailField and cus-

tom fields made of other forms – which is allowed as forms are essentially classes in

Python.

Other than that, a built-in user management system includes registration, password

confirmation and reset, login/logout, as well as various user groups and permissions

and the authorization (validation of the access rights of the authenticated user). All of

them need to be specifically configured and called in the views. In the movie archive

project, it is realized by the means of

a) adaptation of the EMPIAR’s views related to basic functionality such as regis-

tration and login/logout;

b) wrapping the movie archive’s views in the modified EMPIAR’s decorators

(authorization).

The above-mentioned decorators are used in some of the wrapped views that are cov-

ered in section 5.3. In terms of Python, a decorator is an object (such as a function)

intended to dynamically extend another object with the additional behavior. The con-

cept belongs to the Python syntax from the version 2.4, allowing to prepend objects

with the @ symbol for convenience. It is actually wrapping a given object and then

returning a modified one. It is beneficial in terms of optimization and is often used in

e.g. bounds checking (validation of an object within certain boundaries).

34

1 @never cache
2 @is depositor
3 def movie deposition (request) :
4 ”””
5 Requests object and returns display of the deposition list page
6 ”””
7 context = RequestContext(request)
8 ...
9

10 # The same result could be achieved with
11 def movie deposition (request) :
12 ...
13 movie deposition = never cache (is depositor (movie deposition))

Code 16: views.py sample, the decorators in action

The Django framework includes its own decorators that are sometimes used in this
project. For example, the @never-cache decorator’s name speaks for itself. The mod-
ified EMPIAR’s decorators include checks of the user’s status and permissions, such
as the capability to create new depositions or make changes to existing ones. Code 16

illustrates a case with both Django and own decorators.

5.3 The deposition workflow

At start, the deposition of new entry to the movie archive was fairly simple: a link to the
Upload section, a few links to the editing subsections, a few concise forms (see Figure

7 for illustration). The user experience testing that is elaborated in Chapter 6, however,
had demonstrated that the whole workflow would benefit from a more ra-tional design.
This doesn’t concern merely a web page design that is elaborated in Chapter 6; rather,
there was a need in an intuitive and thus an efficient process. Moreover, the release
procedure had yet to be developed.

35

Figure 7. Menus and forms of the first user-tested revision of the project.

To tackle this issue, a deposition workflow had been conceived. Thereupon, the movie

deposition had a life cycle and the user was to be guided at every step of it. The poten-

tial users of the movie archive had roughly been divided into two groups: the deposi-

tors and the annotators. The task of the depositors, who are usually owners or contrib-

utors to the movies, is to create a deposition, upload the movie and add metadata, and

then submit it. The annotators would then review the deposited entry, make changes

or send it back to the depositor, repeat, and finally release the entry.

The described workflow was generally similar to the correspondent workflow of the

EMPIAR project which had already been a donor of the authentication system. More-

over, it would be at least remotely familiar to a potential user when implemented.

Therefore it was decided to adopt and mimic the already developed solution that was

the EMPIAR’s workflow instead of writing a completely new one.

The structure of the EMPIAR project, however, is significantly more complex. Its

purpose is in the storage of raw images – and as such, it should provide mechanisms

for the upload of very large datasets (up to several terabytes) and their subsequent

association with the metadata. This also implies a method of efficient communication

between the depositor and the annotator. As a result, the data model is spread across

each relevant group of users. It is done in a way of duplicating the entries with all their

relationships to ensure the smooth transition of access rights. At this point, it was clear

that the annotators’ part of the workflow might not have bide its time in the end. Apart

from that, a user can have access to their multiple depositions, but multiple users and

multiple user groups can be assigned with access rights for the same deposition. The

access rights differ in types – read, write, submit, owner.

36

As a result, the data model is fine-grained – the deposition entries have relationships

with annotations of three types (free text, EMDB, PDB), with different types of au-

thors and rights, and through the rights – with various possible depositors. The status

attributes allow the movie entry to be either save or pended. The project operates with

the selected EMPIAR models and forms when necessary (e.g. in authentication). The

forms allow to populate them with information from the profile or other models such

as authors. When the deposition has been completed, it is also possible to hold the

entry instead of the submission – in a case when a depositor would like to wait for the

publication or EMDB/PDB entry release.

5.4 The Front-end

This project is not about the front-end. It was intended to be usable by a professional

community rather than responsive or generally good-looking. That being said, both

sides had to be tackled to align with both the EBI guidelines and the actual user expe-

rience. The latter is described in Chapter 6, but it is necessary to provide the back-

ground and the approach to the issue.

As it was stated in Chapter 4, the Django framework allows to utilize its template lan-

guage to render any arguments from views. However, it is not its only application. It is

a programming construct, and as such, provides with simple logic such as conditional

statements or loops or the concept of the template inheritance. The latter allows to

have not one, but a set of templates for any particular project.

In this regard, the base templates define a basis of the site layout. They usually con-

tain all standard HTML tags, styling and links to external resources such as JavaScript

libraries. More importantly, they are builded in blocks, sections of the page that are

placeholders for other templates. Insides of a block are then substituted by other tem-

plates using references to the particular blocks.

It is said that the apps’ template extends the base template when its block with the

content overrides the same block in the base template. Thus, the apps’ template inher-

37

its the layout and styles of the base. It does not inherit any additional modules or tem-

plate tags that can be loaded into the template. Code 16 illustrates the concept.

base.html

<!DOCTYPE html>

<html>

<head>

<title>

{% block title %}

{% endblock %}

</title>

{% block codeheader %}

{% endblock %}

</head>

<body>

{% block content %}

{% endblock %}

</body>

</html>

index.html

{% extends "base.html" %}

{% block title %}

{{ argument.title }}

{% endblock %}

{% block codeheader %}

{% include "header.html" %}

{% endblock %}

{% block content %}

{% if many_args.count > 0 %}

{% for arg in many_args %}

<h1>{{ arg.title }}</h1>

{% endfor %}

{% else %}

<h1>Nothing to look at.</h1>

{% endif %}

{% endblock %}

Code 17: base.html, index.html samples, using the template tags.

As a result, the base template is the ideal space to comply with the EBI website guide-

lines and rules. These describe essential layout and design patterns that a developer is

advised to follow, including the usage of grid systems for layout, the HTML5 standard

compatibility, the EBI-specific colour palette and the usability techniques. The EBI

also provides a boilerplate that is based on the HTML5 Boilerplate (H5BP 2015) and

the 960px Grid System (Smith 2014). This boilerplate is used as a base for the base

templates for the project.

The movie archive does not utilize any complex visualization techniques. For the dis-

play of the depositions list, a DataTables plugin for jQuery library is used. The pre-

view of deposition that is discussed in Chapter 6 was challenging primarily due to a

substantial amount of a routine work. The base template that was used in the Catalog

and in the player page had contradicted with the base template for the deposition

workflow. Apart from that, no problems with the generation of the layout were detect-

ed.

38

The general approach of appending the new elements to the UI was rather straightfor-

ward and can be described as “from the simple to the complex”. Their placement

could have been changed during the development and in reaction to the feedback, as

shown in Chapter 6.

6 USER EXPERIENCE TESTING

6.1 Aims, objectives and methods of testing

In order to produce tangible and applicable services, the PDBe group utilizes user ex-

perience (UX) testing as an integral part of the iterative development process. The

feedback of the selected potential users helps developers to design features which are

actually convenient and useful. Therefore, the outcomes and conclusions of testing

might be included in the next Sprint (see section 2.6).

For this project, an independent testing protocol had been devised and employed. The

following illustrates a slightly simplified testing protocol:

1) Provide background information about the project – the idea with its justifica-

tion, a general description of the implementation including details of technolo-

gy and usage and relation to other PDBe’s services.

2) Explain the purpose of testing – that testing is an integral part of the develop-

ment process and that the result will be used for further development.

3) Explain testing procedure – that testers are asked to navigate themselves in the

interface and perform certain actions and observe how intuitive it is. The test-

ers are informed that they are being observed as well. To avoid a possible ex-

perimenter bias, suggestions and tips would be fairly minimalistic.

4) The test is divided into three parts:

a. 5 second test: show the catalog page for 5 seconds, remove it from

sight and ask to describe the page and available functionality.

b. Test case – watch the movie: ask to find a preselected movie, proceed

to its page and play the movie. Then ask to explain what the movie is

39

about and what EMDB and PDB entries are involved and at approxi-

mately what time points. There are options in tabs to differentiate be-

tween YouTube and direct access – accordingly, ask to explain what

the testers can see in terms of difference in functionality.

c. Test case – upload the movie: show the preselected video file and give

some background on what it is about, which PDB and EMDB entries it

should be linked to and at what time points; then ask to create a new

entry in the archive (i.e. upload the video file and supply it with the

given metadata). Consider:

i. Are the testers able to find the login page and can they follow

the directions for registration and login?

ii. How do they explain what they see at the landing page of the

deposition system?

iii. Are they able to upload the video file, fill out the metadata in-

cluding annotations and submit the entry?

iv. What is their expectation of what will happen next?

5) Additional questions after the test:

a. What improvements or new features would the testers like to see in the

movie archive?

b. What did they not like or find confusing with the movie archive?

c. What kind of annotations should be captured for the movies? Which

annotations that are currently captured are unnecessary?

d. What type of controls would they like to use when filling out the anno-

tations (e.g. for the time)?

6) Get background details needed to fill out the testing log.

Protocol 1. User eXperience (UX) testing protocol

A total of 6 (six) people were asked to follow the protocol and speak their mind. There

were two rounds of testing, with users from PDBe and LMB (MRC Laboratory of

Molecular Biology, Cambridge). Consequently, 6 (six) testing feedbacks were gath-

ered and analyzed with a break of one Sprint (approximately a month) between testing

rounds. The first round was carried out internally (at PDBe), while the second round

included both internal and external participants. Two users from PDBe participated

twice – in the initial testing and in the follow-up. All the rest participated only once.

40

6.2 The first round of testing and the analysis of gathered feedback

In the first round of testing, the participants interacted with the functional, but basic

version of the movie archive project. The integration to the parent project had started

by then; however the EMPIAR-like deposition workflow was not ready to be tested by

a potential end-user. The elements of the interface and the logic of the deposition were

structured the way it was relevant to the development process. The results of the test-

ing show that this perspective was not always adequate to the user’s expectations.

To summarize, both testers agreed on that

 in terms of styling, the general layout was uncluttered but could benefit from

more outstanding and more intelligently grouped elements. For example, one

suggestion was that EMDB/PDB annotations could assemble when there are

too many of them, and another – that they should be grouped by time rather

than type;

 in the player, it was expected to have the ability to pause the movie (which

could be toggled on/off) when the EMDB/PDB annotation highlighted. This

could become a guided walkthrough of the scientific context of a given movie;

 in the movie entry and annotation editing pages, there were difficulties in un-

derstanding the purpose and specifying of different inputs, especially of the

position and the timing ones; the menus were not intuitive either;

 in the EMDB/PDB annotation editors, the whole concept of interaction with

corresponding API was not obvious: from accession code format to filling the

fields that are populated automatically.

41

In addition, they have both suggested

 to allow multiple annotations (free text, EMDB, PDB) to be completed on the

same page and to see changes immediately (to have a more smooth workflow);

 to be able to select time from the video rather that textually and to have fine

grained control;

 to have a clear "submit" button when the annotation is finished. At the same

time, the whole movie entry should not be made public until it is "released".

The individual comments were regarded as well. Some of the notions had already

been underway. However, since the project is rather short-term, we had to tackle cer-

tain priorities. Several most crucial suggestions had been discussed on the next Sprint

planning and as a result, passed to the Product Backlog. In the final version of the pro-

ject, the deposition workflow had been made anew, most of the found mistakes had

been corrected and the player had not been altered in any way other than the addition

of Vimeo video service.

6.3 The second round of testing and the analysis of gathered feedback

At the time of the second round of testing, the integration to the parent project had

been almost completed and the participants interacted with the EMPIAR-like deposi-

tion workflow. Therefore it was essential to separate the first-time users from the sec-

ond-time users who would notice the update. The protocol of testing, however, was

general enough to not require changes.

The following summary illustrates the opinions of the users from the LMB site and

one user from PDBe, who had not seen the interface before:

 The deposition workflow was substantially less perplexing and generally cor-

related with the expectations, except for the hold of the public release until all

modifications are done and a corresponding request is made;

 There was little or no mention of the layout; however there were significantly

more small unintuitive details. For example, in the movie entry and

annotations editing pages overall, the left menu with green/red circle indicators

was not always seen; the buttons 'Save' and 'Save + validation' were

misleading for everyone;

42

 In the movie entry editing page, some fields such as ORCID (identifier for re-

searchers) were consistently missed, inadequately filled or needed better intro-

duction; buttons allowing to copy the existing information (e.g. from the user

profile) were not frequently used;

 In the annotation editing pages, there were expectations to see a preview be-

fore the submission – because of the lack of comparison with the movie itself.

This concerns not only the timing and the position, but the text and the gist of

the annotation too;

 In the player, it was expected to have the ability to check and choose the time

on the timeline, however the simple JS player wouldn’t let to do so;

On the other hand, experienced users users were mostly focused on the

acknowledgement of changes and the absence of such:

 They went to deposition straight away and passed through to annotations

smoothly, copied the details using a button, quite naturally clicked 'Add More'

in annotations – all that they could be to an extent familiar with as with the

EMPIAR project (which is not their responsibility);

 Discussed on how the 'Save' button is different from 'Save + validation' and

whether it’s needed at all;

 Actually tested the interface in detail – for instance, discovered that fields that

allow at least 10 characters in practice do not allow to input ‘EMBL-EBI’ as

organization;

 Overall found the forms too stringent in comparison with previous version;

 Expected to see changes immediately (a preview) too;

 The drop-down lists for the position were considered a good option, but a sug-

gestion was made to validate the position not only by its starting point but by

the ending point as well;

 Another suggestion went to the timing settings – to be able to choose see

'start/end of video' in a checkbox instead of manually typing the number;

 Concerning the pausing of the movie that was reflected in the first round of

testing, there was a complaint that without such functionality the eye switches

between the EMDB/PDB annotations and the movie itself and thus one loses

sense of the progress of the movie.

43

 A remark was made on that most of the time there would be only one EMDB

and one PDB entry that correspond together. Hence in annotation editing pages

there could be an option to freely add EMDB and PDB at the same timeframe

– perhaps with a drop-down list and a button similar to 'Copy from user details'

in the deposition form;

The second round of testing took place at the end of the last Sprint for this project.

Hence, statements are better regarded as suggestions for the next generations of the

project. That being said, a couple of suggestions were either aligned with the

development course or relatively easy to implement (of which the buttons case would

be a nice example). The several times mentioned preview has to do with the front-end

development and was described in Chapter 6. Sadly, it was not available for testers in

time due to the amount of work.

Overall, the test users actively shared their ideas, complaints and other thoughts, and

even seemed to be generally pleased with the project. It gives some hope for the

future.

7 CONCLUSION

The aim of this work was to demonstrate feasibility of a movie archive with annota-

tions to link molecular animations to experimental structures from PDB and EMDB.

Such a development could potentially take the burden from journals that are not pres-

ently able neither to store animations not to refer them to EMDB and PDB entries in a

consistent way.

The implementation of the project took several steps. First, the scope of the techniques

and technologies was known all along. Still, an evaluation of their particular capabili-

ties had been done (Chapter 2). Consequently, a product backlog was devised in place

of requirements specification, and was updated repeatedly as part of the iterative de-

velopment process. Next, a number of revisions of the project had been developed,

from the fundamental functionality to the integration with an existing code base

(Chapters 3, 4, 5). Finally, the user experience testing in two rounds had been carried

44

out with its results being taken into consideration for the last and future revisions of

the project (Chapter 6).

To name a few challenges, it had been discovered that good ideas might become

abandoned out of priorities. This concerns, to start with, the Popcorn.JS interactive

media library that is no longer well-supported and as such, raises difficulties where it

shouldn't (Section 4.3). Apart from that, many proposed features in the product back-

log had to be moved down because of the underestimation of the scale of the integra-

tion. In the end, the latter took more time than everything else (Section 5.3).

The outcomes, from the completed items and changes in the product backlog to the

feedback from the user experience testing, resulted in multiple suggestions on the fur-

ther development. For instance, from the technical POV, there is a lot to be improved

in the Django architecture of the movie archive. On the other hand, the direction of the

further integration into the PDBe services, as well as the collaboration with journals is

undecided; the movie archive may become either an independent service or a supple-

ment to the pillars it is relying upon such as PDB or EMDB.

On a final note, the nature of the project implies an open ending. Whether it will be

supported by EBI/PDBe in the future or not, a state of functional prototype had been

achieved and raised discussions of its application in the scientific community. The

methods and technologies that had been piloted and documented are to an extent

unique and stand a chance be adopted in future projects as well.

45

BIBLIOGRAPHY

Bread & Pepper company 2013. Userena Introduction — django-userena [version]

documentation, documentation pages.

http://django-userena.readthedocs.io/en/latest/

Referred 25.04.2016

Brion Vibber 2015. Popcorn Maker is dead, long live Popcorn Editor, blog.

https://brionv.com/log/2015/10/02/popcorn-maker-is-dead-long-live-popcorn-editor/

Referred 15.04.2016

Chicurel Marina 2002. Bioinformatics: Bringing it all together, Nature.

Chirls Brian 2012. Popcorn Base Plugin, GitHub repository (MIT license).

https://github.com/brianchirls/popcorn-base

Referred 20.04.2016

Daniel K. Clare et al. 2012. ATP-Triggered Conformational Changes Delineate Sub-

strate-Binding and -Folding Mechanics of the GroEL Chaperonin, Cell Press. Docu-

ments S2, S3, S4.

Django 1.8 Documentation, Design philosophies, Don’t repeat yourself (DRY).

https://docs.djangoproject.com/en/1.8/misc/design-philosophies/#don-t-repeat-

yourself-dry

Referred 11.04.2016

EBI Website Guidelines.

http://www.ebi.ac.uk/web/guidelines

Referred 25.04.2016

EBI PDBe REST API documentation.

http://www.ebi.ac.uk/pdbe/pdbe-rest-api

Referred 20.04.2016

46

Google Project Hosting, Server-side issues and feature requests, 2008. New feed for

accessing annotation data on Youtube videos.

https://code.google.com/p/gdata-issues/issues/detail?id=558

Referred 17.04.2016

Google, YouTube help pages 2016. Create and edit annotations, the video.

https://support.google.com/youtube/answer/92710

Referred 17.04.2016

Holovaty Adrian and Kaplan-Moss Jacob 2008. The Definitive Guide to Django: Web

Development Done Right, Apress.

H5BP group 2015. html5-boilerplate, GitHub Table of Contents markdown.

https://github.com/h5bp/html5-boilerplate/blob/master/dist/doc/TOC.md

Referred 25.04.2016

JW Player Media Format Reference, Publisher Support pages.

https://support.jwplayer.com/customer/portal/articles/1403635-media-format-

reference

Referred 20.04.2016

Merkley Ryan 2012. Online video -- annotated, remixed and popped, TED Talk.

https://www.ted.com/talks/ryan_merkley_online_video_annotated_remixed_and_popp

ed

Referred 15.04.2016

Mozilla Foundation 2015. Product Update for Appmaker and Popcorn Maker, Mozilla

Learning blog.

https://blog.webmaker.org/product-update-for-appmaker-and-popcorn-maker

Referred 15.04.2016

Patwardhan Ardan et al. 2014. A 3D cellular context for the macromolecular world,

Nature Structural & Molecular Biology.

47

Python 2.7.11 documentation, 2016.

https://docs.python.org/2/

Referred 08.04.2016

Smith Nathan 2014. 960 Grid System, GitHub readme markdown.

https://github.com/nathansmith/960-grid-system/

Referred 25.04.2016

Tim Peters 2004. PEP 20 -- The Zen of Python.

https://www.python.org/dev/peps/pep-0020/

Referred 11.04.2016

