

Gergely Györki

Ting-e-Ling – A Health Monitoring Device

Information Technology

2016

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Theseus

https://core.ac.uk/display/38139415?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

VAASA UNIVERSITY OF APPLIED SCIENCES

Information Technology – Software Engineering

ABSTRACT

Author Gergely Györki

Title Ting-E-Ling – A Health Monitoring Device

Year 2016

Language English

Pages 36

Name of Supervisor Timo Kankaanpää

With the world becoming focused on health on a personal level, individuals have

the possibility to track their basic medical data, such as pulse, blood pressure, tem-

perature, activity and hormone levels. The global trends also show general interest

in personal health. This project aims to help people with tracking their individual

health, by measuring and sending related data to the most common hand-held de-

vices: smartphones. Not only this, but there are other implications of the collected

data than health: the project will try to match people up (if allowed) with other

people who share similar body traits and activity to them, helping them to find

friends, partners or even love interests on Social Media sites like Tinder.

Delektre Ltd is developing a ring (named Ting-E-Ling), which is capable of meas-

uring the previously mentioned health data (pulse, blood pressure and body temper-

ature to begin with). It can transfer this data to other devices via a Bluetooth con-

nection. The project needs to make a software level interface on those devices (An-

droid smartphones – later IOS planned), to process, log and display the data. Other

parts include displaying the data on Social Media. The ring will use Low-Energy

Bluetooth for the communication, which must be taken into account during the de-

velopment. The user interface of the application must be intuitive and easy to use.

The ring is currently in development phase. Initial testing of the hardware has be-

gun, and a prototype device capable of mimicking the data stream from the ring has

been produced and provided by the company. The development of an Android ap-

plication which is capable of the previously listed features has been initiated.

1

PAGE OF CONTENTS

1 INTRODUCTION .. 2

2 BACKGROUND ON HUMAN HEALTH .. 4

2.1 Pulse .. 4

2.2 Blood Pressure .. 5

2.3 Body Temperature .. 6

3 RELEVANT TECHNOLOGIES .. 7

3.1 Low-Energy Bluetooth, Attribute Protocol and Generic Attribute Profile 7

3.2 Java ... 10

3.3 Android SDK and Operating System .. 11

3.4 XML .. 12

3.5 JSON ... 13

4 APPLICATION ANALYSIS ... 14

4.1 Requirement Specification .. 14

4.2 Functional Specification ... 15

4.3 Modular diagram ... 16

4.4 GUI design .. 17

5 APPLICATION DESIGN .. 18

5.1 Hardware ... 18

5.2 Use case methods .. 18

5.3 Data Description ... 20

5.4 Data Model.. 21

5.5 Class diagram .. 22

5.6 Sequence diagrams.. 24

6 IMPLEMENTATION .. 28

6.1 Implementing the Bluetooth connection ... 28

6.2 Graphical Layout .. 31

6.3 Testing... 31

7 SUMMARY ... 34

8 CONCLUSION .. 35

9 LIST OF REFERENCES ... 36

2

1 INTRODUCTION

The Ting-E-Ling Ring project is a project started by a company called Delektre Oy.

Delektre is an innovative micro-company, which deals with everyday problems in

new and imaginative ways. The idea and the features of the project were designed

by Delektre, as well as the hardware and software of the ring itself, but the imple-

mentation and documentation of the phone application was done by the writer of

this thesis, with the help of the company.

The aim of the project is to provide a compact health measurement device for every

day use, which utilizes two needed pieces of hardware: a ring, which can be worn

on the finger of the user, and the user’s own smartphone.

The ring would house a set of sensors, which are used to collect data from the user’s

body. The types of data the sensors can measure are (but not limited to): pulse,

blood pressure and temperature. The ring then uses a Low Energy Bluetooth inter-

face to transmit the data to smartphones. The transmission utilizes the Attribute

Protocol and the Generic Attribute Profile to transmit the data between devices. The

phones need a specific software (the topic of this thesis), which listens to the broad-

casts of the ring, and translates the raw data into the display. The application is able

to differentiate between different data, and switch between different types seam-

lessly while keeping track of previous measurements in all types. The application

is capable of saving the data for prolonged periods of time on the storage of the

phone, and synchronise the data to an online media. It also makes a connection to

Social Media services through the profile of the user, and even posts data in the

name of the user, if the permission is given (for example, if the user was running

for 15 minutes, and the ring detects the constant high level pulse, and it can assume

that the user is working out, and when the pulse returns to a constant normal level,

it can post a message about it). Naturally, the user has full control over to whom

and when the data is shown.

3

The data gathered can be used for other areas of life as well. One is, to get the

similarly active people together. The application can track other people who have

similar health trends like the user, and can recommend meeting them. This can be

used to get to know other, similar minded people.

The application initially is designed to be used on Android platforms. The develop-

ment language is Java, and Android Studio was used as the development IDE. The

smart phone needs to be able to utilize Low-Energy Bluetooth (BLE) technology to

be able to receive the transmissions coming from the hardware.

In the 2nd Chapter, a background research is shown on human health, which is

utilized in the project. It includes relevant information about Pulse, Blood Pressure

and Body Temperature. The 3rd Chapter gives description about the relevant tech-

nologies used to develop and test the project. The 4th Chapter is all about the de-

scription of the project itself. It was done before the actual work has started, and

consists of the modelling of data, the structure of the software and the relevant dia-

grams to help the description. The 5th shows the initial GUI plans and the final

GUI, and describes what the components are expected to do. In 6th Chapter covers

the implementation of the project, where the more difficult parts of the application

are covered and shown with code snippets taken from the IDE. The 7th Chapter

gives details about the testing phase of the project. In Chapter 8, the summary of

the learning result is explained, and in Chapter 9, the conclusion of the project is

done.

4

2 BACKGROUND ON HUMAN HEALTH

Since the project focuses heavily on tracking health data of individual persons, re-

search was done on the data collected. The data currently tracked in the project are

pulse, blood pressure and body temperature.

2.1 Pulse

Pulse is the number of times the heart pumps in one minute. It is measured in beats

per minute (BPM). This value is influenced by the current needs of the body, in-

cluding THE need of absorbing oxygen or excreting carbon-dioxide. In normal

cases, the value rests between 50 and 90, with physically healthy people generally

having A lower resting pulse. Values exceeding 90 are considered high and this

state is called Tachycardia. Above 160 values can be considered very high, but dur-

ing At heavy physical load (such as excercise), this rates can be considered normal.

Constant, very high values can indicate health problems, and they are dangerous,

since they can lead to cardiac arrest or stroke. Lower values are desired, but ex-

tremely low values (below 50) can result in dizzyness, fatigue or even fainting.

During sleep, the pulse of a healthy adult can drop down to 40-50BPM. All of these

values are subject to change based on age, physical attributes and activity of a per-

son, with the younger and smaller people having higher resting values, older and

physically fit people having lower resting values. (6)

Pulse can be measured with hand, if a person is trained to do it. It can be palpated

at places, where one can push an artery against a bone. Easily palpable places are

the wrists, the side of neck and the inside of the elbow. The most generally used

method is to place the index-, middle- and ring-fingers on the place to the palpation

place, and count the beats for a minute. Heart rate can also be measured by listening

to the heart beats directly, with the common accessory being the stethoscope. (5)

Newer methods include wrist mounted devices, which automatically measure the

pulse (and the blood pressure as well). Most of these can still be bulky and uncom-

fortable to use, since most of them exerts high pressure around the measurement

place to compress the artery against the bones.

5

2.2 Blood Pressure

Blood pressure is the force the blood exerts on the wall of the blood vessels during

flow. It is measured in millimeters of mercury (mmHg). The measurement is broken

down to two parts: systolic and diastolic blood pressure. Systolic pressure is the

pressure during the heart beat, and diastolic pressure is the pressure while the heart

rests during beats. The notation is the systolic pressure followed by a slash followed

by the diastolic pressure (such as 110/60). The desired ranges of values are 90-120

for the systolic cycle, and 60-80 for the diastolic cycle. Under the lower limit, the

state is called hypotension. This state can cause dizziness or fainting, and long term

low value can cause damage in the brain due to lack of enough blood. Hypertension,

on the other hand, is the state if a person has systolic pressure above 140 or diastolic

pressure above 90. This state has multiple stages, with above 160/100 signing a

Stage 2 hypertension and above 180/110 a Hypertensic urgency. High blood pres-

sure can lead to strokes, heart attacks and it is one of the main causes of kidney

failure. Even moderate rise in the average blood pressure can reduce the life expec-

tancy of a person, hence the need to carefully monitor this value. The mentioned

values are lower for children under about 18 years old, with the younger the child,

the lower the blood pressure. (3)

Measuring this value with sufficient accuracy is usually done with a stethoscope

and sphygmomanometer. The sphygmomanometer consists of an inflatable cuff at-

tached to a mercury (or aneroid) manometer. The measurement is done by attaching

the cuff to the arm of the patient, roughly at the same height as the heart. Then, by

inflating the cuff, the blood circulation is obstructed in the arm. The examiner lis-

tens to the heart beats of the patient with the stethoscope below the attached point

of the cuff. Then, the cuff is slowly deflated, and the blood from the heartbeat starts

to make a sound and exert pressure on the cuff, which pushes the attached liquid in

the manometer higher. This measured value is the systolic pressure. Then during

the rest of the heart, the sound silences and the pressure drops: this is the diastolic

pressure. (3)

6

More modern home measuring devices can measure both pressure and pulse to-

gether with a similar inflatable cuff and an electronic device. While the size of these

devices is smaller, and they are easier to use, even for untrained people, these de-

vices are still too big to be used all day around without being inconvenient.

2.3 Body Temperature

Normal human body temperature depends on the place of measurement, and it can

change slightly throughout the day. Commonly measurements are taken in the

mouth, armpit or rectum. Normal human body temperature varies around 36,8°C

(+-0.4°C). Under 35°C is the state called hypothermia, when the body temperature

drops to dangerously low levels, which can cause shivers, confusion and eventually

death. Over above around 37.5°C (there is no universally agreed value) is called

hyperthermia. This state can be reached due to overheating or fever, and while they

produce different symptoms, both can be dangerous and taken care of. Overheating

can cause severe dehydration of the body, and fevers can be a result of illness.

Above 40°C body temperatures can be extremely dangerous, especially for chil-

dren, as at this level, the cells of the body start to get damaged, due to the proteins

breaking down by the heat.

Old measurement devices used mercury in a sealed glass tube, with a metal tip,

which heated the mercury with body heat, and the temperature could be read from

the expansion of it. Newer devices use electrical sensors for the measurement, and

are completely automatic. While they are small, they are still inconvenient if some-

one wishes to track their body temperature all around the day. Smaller devices have

been developed (and are being developed) which can measure the body temperature

on the fingers of the patient. (4)

7

3 RELEVANT TECHNOLOGIES

3.1 Low-Energy Bluetooth, Attribute Protocol and Generic Attribute Profile

The Ting-E-Ling project, as mentioned before, uses a small hardware, shaped as a

wearable ring as the data collection device. This takes care of taking the measure-

ments constantly. It has a Low-Energy Bluetooth device for broadcasting the col-

lected data for paired smartphones. Because of this, the devices used to receive

transmissions from the Ring must be capable of listening to Low-Energy Bluetooth

broadcasts to pick up the signals. Normal (higher energy) Bluetooth is not used.

The application uses the Attribute Protocol (ATT) to rceive the signals from the

ring. As the name of the ATT suggests, the sole building blocks of the transmissions

are the attributes. Each attribute is made up by three parts:

 An UUID, which defines the type of the attribute.

 A value.

 A 16-bit handle, which identifies the attribute (as several attributes with the

same UUID can exist within a device).

The ATT does not define or validate the value, it merely stores them in an array of

bytes of given length. The meaning of the value is defined by the UUID, which in

turn is defined in the higher level protocols, such as the Generic Attribute Profile

(GATT). Permissions hidden inside the value are also left to handle by the higher

protocols, as ATT does not try to test the values for these.

The ATT uses server-client hierarchy in the transmissions. The server stores the

values, the client stores nothing; it only reads and writes the values. Most of the

time, the client initiates the connection by inquiring the attributes from the server,

but ATT has the capability to set indication flags, where the server takes the initia-

tive, and notifies the client that a flagged value has been changed. In the case of this

project, the server is the ring, and the client is the smartphone application. (2)

The Generic Attribute Profile (GATT), is built top on ATT. Its job is to interpret

and translate the attributes into usable values. To do this, it uses the UUIDs and

8

handles to decide the type of attribute. The basis of these decisions is the UUID of

0x2800. This UUID, along with the handle, signs a new primary service definition.

The GATT uses these service definitions to plot the boundaries of the services. The

service identifier is supplied as the value for the attribute. The UUID 0x2800 is a

signal for the GATT, that a new primary service is defined, and all attributes until

the next 0x2800 UUID are part of that service. Secondary services, which are in-

cluded in primary services, are defined with the UUID of 0x2801, but they work

the same way. The service itself is described in the value by another UUID.

The attributes between the service definitions are the characteristics of the service.

THE characteristics come as pairs of attributes:

 The Main Characteristic Attribute stores the UUID of the value, and the

handle of the value. The main characteristc’s own UUID is 0x2803, to allow

easy discovery of all characteristics.

 The value characteristic stores the actual value. Its UUID and handle is de-

fined in the main characteristic, which allows for cross checking. The format

is decided by the UUID, so the client always knows how to interpret the

value.

Apart from the value, the ATT can add more description of the value (such as unit,

range, human readable description etc). These values can be identified in the fol-

lowing way: it is not the value attribute, which can be found if it has the handle

which is defined in the characteristic AND it falls into the characteristics range (be-

fore the next characteristic definition happens). Most of these are defined as stand-

ard descriptors in GATT, but services can define their own.

There is a special descriptor, called the Client Characteristics Configuration De-

scriptor (CCC or 3C). This descriptor always has the UUID of 0x2902, it has a 16-

bit value, which is meant to be a bitmap. The server is required to store and serve a

seperate instance of the value for each connected client, and each client can see only

their copy. The first 2 bits of the CCC are reserved by the GATT specification, for

notification and indication. By setting these bits, the client can ask the server to

9

notify whenever the characteristic changes, which is very useful for peripherial de-

vices, such as the Ting-E-Ling Ring. The CCCs can be identified the same way as

the other descriptors. The method of the notification is that when the server changes

a charateristic, which the notifications has set, it starts to advertise. When the client

picks up the signal, it initiates connection, and reads the characteristic. (2)

Table 1 below shows an example of attribute transmissions, and the description of

the interpretation of them (the UUID for A thermometer is not this. These are just

example values):

Handle UUID Description Value
0x0100 0x2800 Thermometer service definition UUID 0x1816

0x0101 0x2803 Characteristic: temperature

UUID 0x2A2B
Value handle:

0x0102

0x0102 0x2A2B Temperature value 20 degrees

0x0104 0x2A1F Descriptor: unit Celsius

0x0105 0x2902
Client characteristic configuration
descriptor

0x0000

0x0110 0x2803 Characteristic: date/time

UUID 0x2A08
Value handle:
0x0111

0x0111 0x2A08 Date/Time 1/1/1980 12:00

Table 1 – Example ATT transmission

The first attribute sent is the service declartion of the thermometer. It has the com-

pulsory 0x2800 as its UUID, and has the thermometer UUID as the value. The sec-

ond attribute is a characteristic declaration, where it has the compulsory UUID of

0x2803, and has the UUID of the temperature and the handle for the value as its

value. The third attribute is the temperature value. The fourth one is a descriptor,

which defines the unit for the temperature. The fifth one is the CCC, which has the

compulsory UUID of 0x2902 and has a bitmap as its value. The sixth and seventh

attributes are again characteristic descriptions and a value, for a timestamp. The

table was taken from epxx.co - Bluetooth: ATT and GATT.

The Low-Energy Bluetooth, the ATT and GATT are integral parts of the project.

With AN understanding of these protocols and profiles, the interpretation of the

transmitted data becomes much easier.

https://epxx.co/artigos/bluetooth_gatt.html

10

3.2 Java

The application itself is written in Java programming language, utilizing the An-

droid SDK libraries. Java is a purely an Object Oriented Language, created in 1991

by Sun. It became well- known in the technological life in 1995, when it was inte-

grated into the Netscape Navigator webbrowser.

Java sorts the application’s files into packages. This allows logical seperation of the

files, as well as allowing multiple objects of the same name existing in the same

project, as long as they are in different packages.

The objects of Java are called classes. Every function or attribute is sorted logically

into a class. The classes all originatE back to a core Object class by using inher-

itance. With inheritance, classes can inherit attributes and functions from their par-

ent class, override them and add new attributes and functions. In other words, they

extend (or specialize) the functionality of their parent. Most of the time, class ob-

jects must be instantiated before use. One class can have multiple number of in-

stances (with different values given to their attributes) at any time.

The attributes and functions of the classes can have different access levels. The

default access level is not signed in the code, and it allows the usage of the attribute

or function inside the package the class is in. The other permission levels are:

 Public – the attribute/function can be accessed project-wide.

 Protected – the attribute/function can only be accessed from the class itself

OR a child class.

 Private – the attribute/function can only be accessed from the class itself.

There are several other descriptors of the functins and attributes, which can influ-

ence the behaviour of them. If they are signed as ”static”, they can be accessed

without instantiating the class, and all instances of the class share the same ”static”

value. Static functions can only use static variables. Final variables must be given

a value when the class is instantiated and (as their name suggests) their value cannot

be changed in the future.

11

Java support abstract classes and interfaces. Abstract classes are incomplete, which

must be subclassed, with their functions fully described in the child class. They can

contain variables of any kind as usual. Interfaces contain only the footprint of the

functions, and they can only contain final variables.

Java can be utilized in development of multiple projects. It has built in libraries to

develop web servlets (servlet API), applications with GUI (Swing), Java Servlet

Pages (JSP) and many more. It is not limited to these examples, as there are numer-

ous libraries made by the community, which can enhance its usage enermously.

The Java language uses the Java Virtual Machine (JVM) as a platform to run. The

JVM is an universal platform for all Java based programs. It allows easy porting

between different operating systems.

3.3 Android SDK and Operating System

The Android Software Development Kit is a collection of libraries and development

tools. It includes a debugger (Android Debugger Bridge, aka ADB), the libraries

for development, an emulator, which enables testing of the applications on PC, doc-

umentation and sample codes. It does not require any IDE to run, as the developers

can modify the source files of the projects, compile, run and debug them with com-

mand line tools included in the SDK, and even control attached test devices. How-

ever, the main supported IDE for the SDK is Android Studio by Google. Other

mainstream IDEs used for Android development are IntelliJ Idea, which has built

in Android support, and Eclipse and Netbeans, which support Android development

via plugins. The compiled projects are packaged as APK (apk extension) files,

which are stored in the /data/app folder on the Android devices (this folder requires

root permission to access for security reasons). To install the applications, the APK

files ask for the required permissions from the user on installation.

The Android projects are using Views for user display (Views are stored in XML

description files, which the Android libraries translate into viewable objects), and

Activities to process the information going in and out of the application. One appli-

cation can have numerous views and activities. Activities can communicate with

12

each other and other applications with Intents. Intents (as the name suggests), sig-

nals a request from the Activity. It has a Request Code, a Return code, and it can

hold extra variables declared by the user, however it is incapable of passing objects.

This project relies heavily on the Android SDK, using every aspect of it. The IDE

used for development is Android Studio by Google.

3.4 XML

The Extensive Markup Language (XML) is a markup language, which is used very

heavily in today’s software development projects. It has a wide variety of use, rang-

ing from making configuration files to describe Views in webpages and Android

applications.

XML files are composed of Unicode character strings. The version and encoding

of the file is stated in the beginning of the document, and while it can be omitted, it

is highly recommended by the standards to state.

XML has usually two different objects: markups and contents. Markups usually

start with a < character and end with >. These markups are known as tags. Tags can

be start tags (<example>), end tags (</example>, or empty tags (<example />). Tags

which have both start- and end-tags and have content, or they have empty tag with-

out content are defined as elements.

Start-tags or empty tags can have attributes. The usage of these is usually to provide

extra information about the content, for example giving the path of a file or giving

the country code for a location.

XML is used in the project for several purposes. The Manifest of the application,

which states the required permissions to run the app, the required version of the

application, the Activities used in the app (and it specifies which is the starter ac-

tivity) is one such file. Other XML files contain static variables for the GUI (strings,

width and height values of objects in the Views, colors, etc.). Other usage of XML

is the description of the Views of activities, which are interpreted by the operating

system and translated to user viewable objects.

13

3.5 JSON

The Ting-E-Ling phone application uses JavaScript Object Notation (JSON) files

to store the data of the measurements. JSON files are stored in the extension with

json, and they are user readable, plain text files. JSON files can have objects and

arrays stored inside of them. Arrays are made up by a list of objects, and objects

can have arrays as a property. Arrays are marked with the [] symbols, and objects

are put between {} symbols. Each object can have multiple properties. A property

is made up by the name of the property and the value of it. The name must be put

inside quotation marks. The values can omit the quotation marks if they represent

a number, else they have to have it too. Properties are seperated by a comma. A

simple JSON file can look in the following way:

{

”userlist”:[

{”Name”:”Gergely”,”Age”:24,”Hobbies”:[”Games”,”Reading”],”Grades”:[5,3]},

{”Name”:”János”,”Age”:23,”Hobbies”:[”Bowling”,”Pool”],”Grades”:[5,5,4]},

{”Name”:”Attila”,”Age”:23,”Hobbies”:[”Blogging”,”Cooking”],”Grades”:[5,3]},

]

}

In the example, userlist is the sole property of the top level object. It holds an array

of users, which have the properties of ”Name”, ”Age”, ”Hobbies” and ”Grades”.

Properties in an array do not have to match, for example if ”János” has been grad-

uated, his ”Grades” property can be omitted and a ”Job” variable can be introduced,

although if a program tries to interpret it, it must be handled properly (as null vari-

able or such).

Most mainstream programming languages have built in capability or at least a pop-

ular library to handle JSON files. They can be easily written to and from, since they

have no need for serialization like a binary file. Their properties are easily read and

translated into objects in the application. In Java, the JSON reader and JSON writer

classes are responsible for this purpose, but in this project an extra library, named

GSON was used. GSON simplifies the task of translating back and forth between

Java and JSON objects. It can be as simple as declaring a GSON object, and pass

14

the object or list of objects to it, and it returns the JSONized version of it, which is

ready to be written in a file.

4 APPLICATION ANALYSIS

4.1 Requirement Specification

The main functions of the application, as described by the client:

ID Description Priority

1 Receive Low-Energy Bluetooth transmissions 1

2 Parse transmissions into human readable values 1

3 Differentiate between measurements based on ATT UUIDs 1

4 Store the data on the phone in a persistent way (JSON) 1

5 Display the collected data on the screen of the phone 1

6 Draw trends of the collected data 2

7 Alert the user for measurements exceeding the limit values

(sound or visual alert)

2

8 Synchronise the offline storage to online media 2

9 Post the collected data on Social Media if allowed 3

10 Based on the collected data, search and offer people with sim-

ilar traits

3

Table 2 - Functional Requirements

The focus of the functions was decided by the priority given to them in this table.

15

4.2 Functional Specification

From the requirement specification, the following use case table was drawn up for

the application:

Case Precondition Input Description Expected result Exception

1 Log in user Application

started.

User credentials Get the user from online

media or offline storage (if

no internet).

User logged in. Previ-

ous session loaded

from file or from

online media.

User not found.

Bad credentials.

User profile does

not exist.

2 Discover

ring

Application

started.

Physical address of

found device.

Start bluetooth discovery to

pair the ring to phone.

Return paired device. No suitable

device found.

3 Setup ring Ring paired. UUIDs of listened

services and char-

acteristics.

Set the Client Configuration

Characteristics for the char-

acteristics to ”notify”.

Ring automatically

broadcasts when char-

acteristic is changed.

Service/chara-

cteristic is not

found.

4 Listen for

characteristic

CCCs set on

ring.

UUID of character-

istic and returned

value.

The phone is in standby un-

til the ring sends notifica-

tion about a characteristic.

Then poll the value.

Get byte array value of

characteristic.

Characteristic is

not found. Data

not returned.

5 Save

Measurement

Characteristic

change got.

Byte array value of

characteristic.

Format the byte array to the

correct format according to

the type of measurement.

Save human readable

value for the measure-

ment type.

Unexpected

number format.

6 Save to file File system

available and

new value re-

ceived.

User profile and list

of measurements.

Save the updated list of

measurements into JSON

file on the phones filesys-

tem for the user.

Values succesfully

saved.

Profile does not

exist for user. No

access/permission

for filesystem.

7 Sync offline

storage with

online media

Internet availa-

ble and new

value received.

User profile and list

of measurements.

Save the updated list of

measurements into online

storage for the user.

Values succesfully

updated online.

Profile does not

exist for user. No

internet access.

8 Display

value

New value

saved.

Latest

measurement.

Display the latest measure-

ment on the phone screen if

it is the requested measure-

ment type.

Value displayed

succesfully.

Null value re-

ceived. Unex-

pected format re-

ceived.

9 Draw trend Measurement

type available.

Currently displayed

measurement type.

Draw a trend from the cur-

rently requested measure-

ment type for the requested

time period.

Trend succesfully

drawn.

Measurement

type is empty or

not existing. Time

period is invalid.

10 Post data

online

Permissions for

Social Media

available.

Selected value for

measurement type.

Post a message on selected

Social Media page about

latest measurement results.

Message posted

succesfully.

No permission to

post online.

Table 3 - Use Case Table

16

4.3 Modular diagram

The modular or package diagram shows the associations between the main compo-

nents of the application. Each package represented can have multiple classes inside

them. The following diagram (Figure – 1 Package diagram) is drafted based on the

requirements of the application and the conventions of Android development:

Views Activities

ViewModels StorageHelper

BluetoothGatt Phone storage

Online storage

Figure 1 - Package Diagram

The Views on the picture are the collection of XML files which are translated by

the operating system into user viewable objects. They describe the viewable objects

in human readable UTF-8 string format. The Views are dependent on their corre-

sponding Activities, who are serving as the connector to the application logic. They

are used to handle the inputs and outputs from and to the Views, and process the

data before sending them towards the ViewModels. The ViewModels can also send

information to the Activities, for example when a value is received via the Blue-

tooth.

ViewModels serve as the representation of the data in the application. The Meas-

urements incoming from the rings via the BluetoothGatt classes are initialized as

ViewModels of their corresponding type, and saved into lists on the phones

memory. Afterwards, these lists are saved into the active users Profile (which is

also represented as a ViewModel), and then they are sent to the Storage Helper

classes, which as their names suggest, serve as a mediator between the memory and

the physical or online storage. Information is translated here into a JSON format,

and saved into the hard drive o the phone, or synchronised to the online media.

17

4.4 GUI design

The following GUI mock up (Figure 2 – GUI Plan), which was used to plan the

application layout and design, was received from the client:

The current design is simplistic and focuses on presenting easily readable data. The

main display shows the currently tracked health data value, along with a visual rep-

resentation of the status of the value (the heart is green if the value is in the accepta-

ble range, and turns red step by step when it is out of this range, finally getting fully

red in the danger zones).

Beneath the value display, a graph view shows the measured values the trend of the

health data for the last few minutes. This can alert the users about jumps in the

values.

An action bar is built into the top of the application. From here, the user can switch

the currently visually tracked data or change the settings of the application (change

the good/danger limits of the app, for example).

Figure 2 - GUI Plan (align left correctly the figure text)

18

5 APPLICATION DESIGN

5.1 Hardware

The hardware section of the project is called the Ting-E-Ling Ring. It is a small ring

worn by the user, which reads the previously mentioned health data, and uses a

Low-Energy Bluetooth technology to transmit these measurements to the smart de-

vices. The data is sent in ATT attributes to the phone. The topic of this thesis, the

phone application handling that data, only needs to care about receiving that data

and processing it afterwards.

5.2 Use case methods

Based on the functional specifications and the table of use case, the description of

each use case method was made.

The first step in using the application is to register a Ring to it. This can be done

automatically by scanning for Low-Energy Bluetooth devices in the vicinity with

the matching service and characteristic identifiers, or by selecting visible bluetooth

devices from the phone. The connection itself is made by the application, and it

notifies the user about errors, such as if the health services are not found on the

connected bluetooth device.

In case of multiple available bluetooth devices, the currenly connected one must be

unregistered from the application before a new one can be paired.

After registering the Ring, the software automatically listens to low-energy trans-

missions coming from it, and sorts the transmissions based on their type: Pulse,

Blood Pressure and Body Temperature. The measurements are immediately stored

on the Offline Storage of the phone in JSON files.

The user can select the currently displayed data type, which is viewable on the main

screen of the application. By default, it shows the latest data got from the ring. It

also draws a graph which visualises the trend of data in the past minutes.

19

Past time periods can also be selected for seeing raw measurements and drawing

trends about them.

If the phone has internet access, and the user gives the permission, it automatically

synchronises the offline storage to the online storage. It enables to access the data

from multiple smart devices and even give the possibility of remote monitoring of

the health of an individual for a doctor.

With internet access, the user can allow the application to post their collected health

information on an online social media, like Facebook or Tinder. With this, other

users of the Ting-E-Ling also can be found and get connected to the user. There can

be implications of directed search of partners with similar data, to find training bud-

dies, friends or even love interests.

The Actors identified for the project are:

 The User

 The Ting-E-Ling Ring

The main Functions identified for the application:

 Registering the ring

 Unregistering the ring

 Managing the ring

 Storing the data

 Querying the data

o Drawing trend from the queried data

o Posting the queried data on Social Media

 Synchronising the offline storage with the online storage.

20

Figure 3 shows the summary of the actors and functions of the project:

The user can register and unregister the ring, and manage the permissions given to

the application. The ring sends the data to the phone for Offline Storage. The Of-

fline Storage is then synchronised with the online storage. Data is queried by the

phone based on the currently viewed health information, and shown on the screen

and a trend is drawn from the past minutes measurements. The stored data then can

be posted on Social Media.

5.3 Data Description

Based on the research done in Chapter 2, the following attributes were collected to

describe any given measurement:

1. Name: the name of the measured physical data

2. Unit: unit of the data

3. Data type: the type which is used to store the value.

4. Minimum (Min): Minimum allowed value for the data (needed to set limits

on trending representations).

5. Maximum (Max): Maximum allowed value for the data (needed to set limits

on trending representations).

User

Online storage

Offline storage

Rebel ring

Register ring

Unregister ring Manage ring

Store data

Sync data

Query data

Draw trend

Post data

<<extend>>

<<extend>>

Figure 3 - Use Case Diagram

21

6. Good: a pair of values describing the healthy range of values.

7. Danger: a pair of values which sets the limits on low and high dangerous

values. The first value shows the lower danger limit (below is unhealthy),

the higher value shows the higher limit (above is unhealthy).

8. Value: the measured value.

9. Time: the measurement time.

These attributes are the basis of the model of the data represented in the application.

The actual values and limits which are not measured, are shown in the following

Table 4:

Name Unit Datatype Min Max Good Danger

Pulse bpm integer 0 350 50-90 40/160

Blood pressure (systolic) mmHg integer 0 300 90-119 80/140

Blood pressure (diastolic) mmHg integer 0 300 60-79 50/90

Body temperature °C floating point 20 60 35-37 35/38

Table 4 – Attributes of data

Minimum and maximum values are set within sensible ranges of values. The good

parameter is a pair of value, which shows the range of healthy values. The danger-

ous parameters show the lower and upper limits of unhealthy values.

5.4 Data Model

Based on the data described in the sub-chapter 4.4, the following model is drawn

up to describe any measurement and any measurement type:

Measurement {

/* The measurement holds the individual measurements and a timestamp. It is also

linked to the measurement type.*/

value: float; // the measured value coming from the ring

time: datetime; // the time of measurement, from coming from ring or the

time of transmission

}

MeasurementType{

/* The measurement type holds common information for measurements. */

name: string; // user readable name for type

unit: string; // unit of measurements contained in type

min: integer; // minimum sensible value for type

max: integer; // maximum sensible value for type

22

good: float[]; // range of values considered healthy

danger: float[]; // limits of values considered dangerous for health

measurements: Measurement[]; // list of measurements contained in this

type

}

Profile{

/* The Profile holds the different types of measurements for a given user. This is

the highest level of the data, and this will have the capability to save these lists.*/

 name: string;

 measurement_lists: MeasurementType[];

}

These basic data models were extended during the implementation according to

the needs.

5.5 Class diagram

Based on the data model and the functional specifications, the following figure (Fig-

ure 4 - Class Diagram) was drawn, containing the planned properties and functions

(both of them with their expected types) for each class. The classes are sorted into

their corresponding packages, and the associations between each class is marked.

23

Measurement

value: double
time: date

getValue():double

MeasurementType

max: integer
min: integer

name: String
unit: String

good: double
danger: double

service_uuid: UUID
characteristic_uuid: UUID

measurements: List<Measurement>

onServicesDiscovered(): void

Profile

measurement_lists:
List<MeasurementType>

name: String

BluetoothManager

bluetooth_adapter

StartScan

bluetooth_characteristic_list
bluetooth_service_list
activity
application_context

DisplayActivity

updateDisplay(): void

callback_list

StopScan

Initialize(): void

getTime():date

onCharacteristicChanged(): void

getName(): String
getLimits(): integer[]
getGood(): double
getDanger(): double
getService(): UUID
getCharacteristic(): UUID

getName(): String
getMeasurementLists():
List<MeasurementType>

displayToastMessage(): void

ActiveUser: Profile

ProfileSelectActivity

Initalize(): void

CreateNewProfile(): void
SelectProfile(): Profile

CreateProfileActivity

Initalize(): void
ReturnProfile(): Profile

JsonHelper

entity: Object

toJson(): JsonObject
fromJson(): Object

OfflineHelper

file: File

read(): JsonObject

jsonObject: JsonObject

write(): void

OnlineHelper

targetsite: String

download(): JsonObject

jsonObject: JsonObject

upload(): void

Figure 4 - Class Diagram

The lowest level of the application is the StorageHelper package. It includes three

class. The Online- and OfflineHelper classes are similar in functionality. They both

get a target (a site or a file), and with their functions they transmit the data to and

from the target. They both convert their data into JsonObjects, and send it into the

JsonHelper class, which job is to convert the received JsonObjects into Profile ob-

jects which are used within the application. Naturally, the process works in the re-

verse, when the application saves, Profile objects are converted into JsonObjects

and then uploaded or saved.

Profile objects keep information about the user currently using the application. The

hold all the MeasurementLists and Measurements associated with the user. The cur-

rent user is set within the application, and all new measurement will be associated

with his/her Profile. On creating a new user, a new Profile is created with empty

lists. On loading from the storage, the user is initialized with all the previously saved

24

informaton. The MeasurementType lists are loaded with the measurements, and

saved as BluetoothGattCallbacks. MeasurementTypes hold the corresponding list

of Measurement lists of their type, and they have special callback functions which

are used to set up the ring (for example, after service discovery, mark the charac-

teristics of measurements with the notifications, so the ring knows which charac-

teristics it needs to send broadcasts about) and listen to characteristic changes. Ac-

tive MeasurementTypes are saved in the BluetoothManager class, which is respon-

sible to initialize the Low-Energy Bluetooth, and keep track of the notifications of

each MeasurementType. It can also start or stop the discovery of new devices in

case there is no ring paired to the app. The three Activity existing with the applica-

tion are all connected to the rest of the software through the Profile class. The

application launches with the ProfileSelectActivity, where the user can pick the

Profile which will be used as the active profile. Or he/she can create a new, empty

profile through the CreateProfileActivity. After selecting the Profile, it is transmit-

ted to the DisplayActivity, which role is to keep the GUI up to date with the cur-

rently active MeasuremenType. It also keeps track of the active user. The functions

associated with display (such as Toast messages, deciding the color of the heart on

the screen and updating the value) all reside within this class.

5.6 Sequence diagrams

Expanding on the class diagram and the specifications, sequence diagrams were

drawn. Sequence diagrams are charts, which show the flow of information and life-

time of the objects in the project. Usually they show the flow from actor to actor,

with the classes in between where the data is passed through. The following three

diagrams (Figure 5, 6 and 7) were drawn for the projects more important sequences:

25

User
ProfileSelect

Activity

Start application

ProfileSelect
View

Show profiles

Profile selected

Display
Activity

startActivity(profile_name)

loadProfile(profile_name)

BLEHandlerBLEHandler

InitBluetooth(profile) InitalizeCallbacks()

Ting-E-Ling Ring
Ting-E-Ling

Ring
Measurement

Type

startDiscovery()

getServices()

setClientConfiguration()

Figure 5 – Startup Sequence

Th sequence in Figure 5 shows the functions which the application goes through

each startup. First the user is navigated to the ProfileSelectActivity. It searches for

the available profiles, and displays it on the ProfileSelectView, where the user can

select his/her profile. It will be used throughout the application. After profile selec-

tion, the DisplayActivity is loaded with the profile. It initalizes the Bluetooth, where

the MeasurementTypes are read from the profile and initalized as callback func-

tions. The Bluetooth then starts the discovery of devices. If a suitable ring is found,

it is paired, and a callback is sent to the MeasurementTypes, that they can scan for

services. Once the services are found, the MeasurementTypes loop through the

characteristics of the services, and set the Client Characteristic Configuration for

each desired characteristic. After this setup, the ring will automatically broadcast

characteristic updates.

26

Ting-E-Ling
Ring

Measurement
Type

Measurement

onCharacteristicChange(uuid,value)

parseValue(value)

new Measurement(value)

Profile

requestSave(measurement)

JsonHelper

new JsonHelper(profile)

Offline
Helper

save(profileJSON)

Online
Helper

Jsonize(profile)

save(path,profileJSON)

upload(site,profileJSON)

upload(profileJSON)

Figure 6 - Measurement save sequence

The sequence in Figure 6 shows the process, when the ring has a new measurement

ready. It broadcasts a message about a characteristic update, which the smart phone

picks up, since the CCC is set. The phone parses the value into usable format (inte-

ger or double), and initalizes a new Measurement object. The measurement is saved

into the MeasurementType-s list. Then, the user’s profile is notified about a new

measurement. The updated list of measurement is sent to the Profile object, which

then creates a new instance of the JsonHelper class. This class turns the whole Pro-

file object, and all of its subobjects into a JsonObject. It is then sends the JsonObject

to the OfflineHelper, which saves it into a .json file onto the phone’s offline storage

(it will prioritize saving onto the external drive, but if it is not attached, then it will

save into the internal storage). The default path is the Android/data/com.del-

ektre.tingeling/files folder. The default file name is the username plus ”_pro-

file.json”, for example Gergely_profile.json. After saving offline, the application

will check if there is internet connection and the online storage is enabled. It will

send the JSON format data to the selected site, where a webservice will pick up the

JsonObject, and handle the saving. The user gets no extra notifications about this

sequence process, since it can happen dozens of times in under a minute, with each

new measurement.

27

Ting-E-Ling
Ring

MeasurementTy
pe

Measurement

onCharacteristicChange(uuid,value)

parseValue(value)

new Measurement(value)

Display
Activity

displayValue(list,lastValue, goodLim,badLim)

Display
View

decideColor(lastValue,goodLim,badLim)

display(lastValue,color,list)

updateTrend(list)

Figure 7 - Update display sequence

The sequence (Figure 7) is started as well, when a new value is created. For details

the initial parts (ring sending data, MeasurementType creating a new Measurement

object) please refer to the previous sequence diagram (Figure 3). The Measure-

mentType object, after sending request to the Profile to save, forwards the new

Measurement object to the DisplayActivity, which handles functions related with

updating the GUI. The DisplayActivity gets the Good and Bad limits from the

MeasurementType, along with the value and the list of previous measurements, and

decides the color of the warning display with a formula. The decision is made by

the following way: if the value is within the range of Good values, the color is green.

If not, find the closest Good limit, substract the value from it, and take the absolute

value of the result. With this value, a percentage of green and red value mixture can

be calculated for the RGB color (red: (255 * base) / 100; green: (255 * (100 - base))

/ 100, blue is 0 always). After the color is set, send the value, the color, the list of

measurements and the latest measurement to the DisplayView. With the usage of

the GraphView library, a trend can be drawn from the list (the used measurements

are the last 200 by default). The latest value is displayed in the center of the heart

on the screen, and the color of the heart is modified to be the calculated color.

28

6 IMPLEMENTATION

The two major challenges in the implementation of the project were the Low-En-

ergy Bluetooth (BLE) connection and choosing the correct model of objects to use

for the data. Special consideration had to be taken for making the application re-

sponsive, and minimizing the amount of load it presents to the hardware.

6.1 Implementing the Bluetooth connection

The bluetooth code was seperated into two sections. The first section is the general

setup of the bluetooth interface, including the enabling of the adapter and setting up

the listeners. The second section was incorporated into the MeasurementType class,

since they receive the data individually from the different services. For this, they

are subclassing the BluetoothGattCallback object, which allows the Measure-

mentType class to be target of callbacks whenever the data with their service UUID

arrives on the bluetooth interface. For accessing these functions, the Measure-

mentType have to override its superclass’s 3 functions, which functions are shown

in Figures 8, 9 and 10.

The first function is called when the GATT transmission returns with a new status.

It provides the transmission, the status of the current transmission (most common

is success or failure, but there are several other statuses in between, like insufficient

authentication or request not permitted) and the new status (which can be con-

nected, connecting, disconnected and disconnecting).

For the application’s purpose, most important is to get the services after the Ting-

E-Ling Ring has connected to the smart phone. The discovery of the services must

be turned on constantly while the data transmission is happening.

29

Figure 8 - Connection state change function

Tthe measurement types were created as Bluetooth Callbacks, so they can be easily

notified when a new measurement concerning them comes in a transmission. When

the GATT fires the state change event, this functon checks the status and the new

state. If the connection is succesful, the device turns off the discovery of new de-

vices and starts to listen to service transmissions from the ring. The user is notified

about the state of the connection. The switch statement inside the callback function

provides an easily extendable platform if the need to handle different statuses arise.

The outer IF statement only should ever respond to GATT_SUCCESS and

GATT_FAILURE, so if there is some other status comes, we can see if there is a

problem.

The second step in getting the data is to set which characteristics are the application

is listening to in the transmission.

After the gatt.discoverServices()-command is issued, the event ”service discov-

ered” is fired when the application receives the GATT transmission which has any

services. With the GATT handle, the application can go through each service which

was included in the transmission. At this point, flags can be set in the service of

which characteristics is requested by the application. After setting these flags,

whenever the characteristic changes, it will issue a new event for the application.

30

Figure 9 - Service discovered function

For each measurement type, the application listens individually only for their ser-

vices. Once the service is found, it loops through the characteristics, until it finds

the expected one in the measurement type. Then it enables the notifications for the

characteristics, which enables the software to listen for the characteristic value

changes.

The third function to be overwritten is the mentioned characteristic change callback.

It is called whenever the previously mentioned event happens. Since the data is

transmitted in a binary format, it has to be converted to double. After this,a Meas-

urement object is initalized with the value and the current timestamp, and saved to

the MeasurementType’s list of values. After this, the displayed value is updated, if

the user is currently tracking it.

Figure 10 - Characteristic updated function

When a characteristic changes, the application receives the data in a byte array.

Since it is known, that the Ring sends the data in a single byte, unsigned integer

31

format, the application has no need to check the value besides getting it and saving

it into a new Measurement.

6.2 Graphical Layout

Based on the Graphical User Interface plan received from the client (see Figure 2

for reference), a straightforward and simple GUI was implemented to serve the pur-

pose of displaying the measurements to the user. The result did not go through many

iterations, and it roughly looked the same for the major part of the development as

in Figure 11.

Figure 11 - GUI Layout

The top action bar is used for the main interactive features. The heart in the focus

of the screen displays the currently selected value. It changes its color based on how

close the value is to the healthy range or the dangerous limits. The healthy values

are displayed as vibrant green, and the unhealthy values slowly turn into red color,

with the combination of the two colors in between.

6.3 Testing

For testing purposes, manual black-box testing was used. When a block of the ap-

plication was made with well seperated inputs and outputs, different inputs were

inserted into it, and the output was observed. Since the outputs were easily under-

standable, conclusions could be drawn about if the module is functoning properly,

32

or if it has some malfunctions, like running into exceptions or resulting in unex-

pected results.

The following main cases were tested for:

Switching between activities and passing variables between them

Problem #1: Objects cannot be simply passed with Intents.

Solution #1: Objects must implement the Serializable or Parcelable interface. Seri-

alizable objects are automatically serialized, which can be sent with Intents.

Parcelable is a configurable serialization (marhaling and unmarshaling in the jar-

gon) in Android development, with specific parts serialized. It is more desired than

the Serializable interface, since it generates less garbage in the memory.

Connection to Bluetooth Device

Problem #1: Checking if the handheld device is capable of Low-Energy Bluetooth

communication.

Solution #1: After researching, it was found out, that all devices are capable of BLE

transmissions, so checking for this problem is not necessary.

Problem #2: Establishing the correct communication type.

Solution #2: Initially, the standard Bluetooth libraries were used to try and make

the connection to the ring. After unsuccesful attempts, and research on the topic,

the BluetoothGatt and its dependent libraries were found, and used to provide cor-

rect results.

Problem #3: Data arriving from the Ring is encoded in byte arrays.

Solution #3: The Gatt libraries provide a characteristic converter to different stand-

ard formats, which can be used to convert the byte arrays, IF their expected standard

format (integer, floating point etc) is known already.

Saving and loading from JSON files

33

Problem #1: Converting from and to JSON files results in a very complicated code,

where nesting objects within objects often not clear and results in translation prob-

lems when converting back to objects.

Solution #1: The GSON library automatizes the conversion between Java and JSON

objects. It provides a standardized format for all objects to use, and shortens the

customized code parts significantly, increasing code readability.

34

7 SUMMARY

Since there was no previous experience in Android development and in wireless

communications, parts of the application challenged me to learn new things.

It was especially hard to get the Bluetooth communications right. At first, it was

challenging to use the normal Bluetooth connection of the phone, which of course

resulted in failure, as no transmissions came through that channel. After several

days, I realized the need for the Low-Energy Bluetooth and the ATT protocol.

A lot was learned about the usage of callback functions. I have used them before,

but never really relied on them too much. In Android development, they play a big

part, as a lot more responsive and interactive applications can be made with listen-

ing to every (necessary) event and interaction the user makes.

I got familiar with the general Android development architecture. This was an easier

area, since the structure is very similar to me, if not the same as the MVC model

which was used previously in web projects. The few little differences were, for ex-

ample, how the strings of the UI are preferred to keep in a seperate XML file and

that it is easier to create an interactive app than an interactive page, since there is

no need for JavaScript and the user interactions can be listened directly in the Ac-

tivity classes.

Finally, I learned a lot about documentation during the writing of this document. I

considered, and still consider, that to be one of my weak points, but I believe that I

have improved upon it significantly since the beginning of the development.

To summarise the experience, the topic of the project was really interesting, as it

included a bit of everything which I had already learned about, while it also offered

new areas in which I could improve my skills. I am sure that the knowledge I earned

during the development and documentation will come in handy during my future

career.

35

8 CONCLUSION

As said before, general awareness on personal health is increasing. The trends show

that there are more and more people acquiring some form of health-monitoring de-

vice. But as also mentioned, these devices are still bulky and often inconvenient for

everyday use. The Ting-E-Ling Ring aims to change that. It will offer a new level

of personal information ready at the most commonly used devices, while retaining

a small frame. The user can just put the Ring on IN the morning and ”forget about

it”. The smart device will take care of the rest of the work, enabling to track the

health status of its owner, alert him/her in case of problematic values, or even post

the user’s good health or regular workouts online. This can also promote health in

a higher number of people.

To improve the Ring the possibilities are numerous. There might be future iterations

with more diverse sensors and even smaller hardware.

For the Android application and my personal knowledge, I plan to look into the

Widgets of Android OS. I believe the application would benefit from a widget, so

the user can use it in an even more convenient way. This would also provide an area

for me to learn about. There might be usage for remote tracking as well, primarily

for doctors, who can be alerted automatically if their patients’s ring sends alarming

information. It could even provide an easy connection between the doctor and the

patient!

For my closing words, I believe, that if people will continue to be interested in their

health (which of course, is everybody’s concern), the Ting-E-Ling Ring has a fu-

ture. It offers what people are looking for in a convenient way, at their fingertip.

36

9 LIST OF REFERENCES (FIX ACCORDING TO ANOTHER

EMAIL)

(1) Bluetooth.org: Generic Attribute Profile (GATT). (2016). Forrás:

Bluetooth.org:

https://developer.bluetooth.org/TechnologyOverview/Pages/GATT.aspx

(2) Attribute protocol and Generic Attribute Profile (2016). https://epxx.co/.

Forrás: https://epxx.co/: https://epxx.co/artigos/bluetooth_gatt.html

(2) Practical Clinical Skills: Blood Pressure Measurement. (2016). Retrieved

from Practical Clinical Skills:

http://www.practicalclinicalskills.com/blood-pressure-measurement.aspx

(4) WebMD: First Aid - Body Temperature. (2014. November 14). Forrás:

WebMD: http://www.webmd.com/first-aid/body-temperature

(5) WebMD: Heart Disease Center - Pulse Measurement. (2014, September 9).

Retrieved from WebMD: http://www.webmd.com/heart-disease/pulse-

measurement

(6) WebMD: Hypertension/High Blood Pressure Health Center - Know Your

Numbers. (2014. July 27). Forrás: WebMD:

http://www.webmd.com/hypertension-high-blood-pressure/guide/diastolic-

and-systolic-blood-pressure-know-your-numbers

