

Xavier Garcia Peroy

Software design for a Smart Lock System

for Home Automation

School of Technology

2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Theseus

https://core.ac.uk/display/38138144?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 1(39)

VAASAN AMMATTIKORKEAKOULU

UNIVERSITY OF APPLIED SCIENCES

Degree Program in Information Technology

ABSTRACT

Author Xavier Garcia Peroy

Title Software design for a Smart Lock System for

Home Automation

Year 2016

Language English

Pages 39

Name of Supervisor Smail Menani

The idea that motivated this thesis work was to design a smart lock system and

access control. This system was designed to control the access to a room using

portable devices such as mobile phones or tablets. Its principal objective was to

create a basic, but functional prototype that could be placed in a real room, and be

implemented and integrated easily without much modifications of the doors’

structure, yet accomplish its purpose.

To achieve this goal the work was divided in two separate parts the hardware part

and the software part. This thesis focuses on the Software part. All progresses

made and final results were obtained after using a design, implementation and test

method. Working closely and in constant feedback with the hardware part, the

programs and code developed has been always tested with the hardware to ensure

that the right results were obtained and required modifications were made if need-

ed.

In general, the project was carried out as follows. First the documentation process

was completed and then, the devices, the coding languages and tools were select-

ed. Next, the designing process was accomplished where the basic structure of the

programs was developed and created. After that, the implementation and testing

process were simultaneously done to perfect the result and obtain the best solution

possible.

This process was completed when the real working prototype was obtained. The

device successfully connected to a self-designed smartphone app and controlled

the access to the room. The prototype could be mounted on a demonstration door

to show how it is supposed to work in the real application. In general, all the main

goals were achieved although some rectification and improvements are still to be

studied more in depth and be applied on future expansions.

CONTENTS:

CONTENTS: ... 2

LIST OF FIGURES AND TABLES: ... 3

1. INTRODUCTION ... 4

2. THEORETICAL STUDY AND ANALYSIS .. 6

2.1 The microcontroller Atmega32: ... 7

- I/O pins configuration and handling: .. 8

- USART: ... 8

- Interrupts: .. 9

2.2 HC – 05 Bluetooth module: .. 9

3. IMPLEMENTATION ... 11

3.1. Basic configurations and initializations: .. 13

3.2 AT configuration instructions: ... 17

3.3 Smart Lock mode: ... 19

4. APP DEVELOPMENT ... 23

5. SYSTEM TEST... 32

6. CONCLUSIONS ... 36

LIST OF REFERENCES ... 38

Printed books:.. 38

Electronic publications: ... 38

Internet URL sources: .. 39

 3(39)

LIST OF FIGURES AND TABLES:

Figure 1: Structure of the system .. 6

Figure 2: Functions.h example ... 11

Figure 3: Flowchart of the microcontroller’s code .. 12

Figure 4: Basic configurations and initializations structure 13

Figure 5: Pin configurations ... 14

Figure 6: Interrupt configurations ... 15

Figure 7: USART initializations ... 16

Figure 8: AT mode structure .. 17

Figure 9: AT check function .. 18

Figure 10: Smart lock mode structure ... 19

Figure 11: Smart lock mode implementation .. 22

Figure 12: ISR code ... 22

Figure 13: App code’s flowchart .. 24

Figure 14: App Inventor programming block ... 26

Figure 15: Android Application’s Screen 1 and Screen 2.................................... 27

Figure 16: Breadboard test ... 33

Figure 17: PCB protoype ... 34

file:///C:/Users/Xavier/Dropbox/UdL/Thesis/Thesis_SMARTLOCK_XavierGarciaPeroy.rtf%23_Toc450140790
file:///C:/Users/Xavier/Dropbox/UdL/Thesis/Thesis_SMARTLOCK_XavierGarciaPeroy.rtf%23_Toc450140791
file:///C:/Users/Xavier/Dropbox/UdL/Thesis/Thesis_SMARTLOCK_XavierGarciaPeroy.rtf%23_Toc450140795
file:///C:/Users/Xavier/Dropbox/UdL/Thesis/Thesis_SMARTLOCK_XavierGarciaPeroy.rtf%23_Toc450140797
file:///C:/Users/Xavier/Dropbox/UdL/Thesis/Thesis_SMARTLOCK_XavierGarciaPeroy.rtf%23_Toc450140800
file:///C:/Users/Xavier/Dropbox/UdL/Thesis/Thesis_SMARTLOCK_XavierGarciaPeroy.rtf%23_Toc450140802

1. INTRODUCTION

The thesis underlying idea is based on access control and physical area automa-

tion system. The physical area could be for example a laboratory, an office or a

house. The developed smart lock system is meant to control and interact with a

door to access a room using a smart device as interface. The principle idea is to

develop an electronic system that can control the door state and modify it, using a

personal electronic device such as a smartphone or a tablet.

The thesis project main goal is to try to create a functional prototype that can be

installed in a real door and successfully allow the user to interact and modify the

door’s state using a smart device. This solution should be secure, cheap and sim-

ple, as well as versatile to allow implementation on different actuators and physi-

cal areas.

The door lock developed in this thesis is a project carried out by two students.

Therefore, the reporting work has been split in two different parts: the software

part of the system and the hardware part. This thesis work focuses on the software

part of the smart door lock including the android application

This work is divided in several different chapters:

Chapter 2 focuses on the programming theory, the bases of the elements of the

thesis and on the analysis carried out to find the components and the most conven-

ient programming methods for the best outcome.

The following chapter, Chapter 3, describes and explains the code implemented

on the door lock and explains the logic behind the developed software solution.

Chapter 4 develops the idea of the android app, explains how it works, its features

and possible upgrades.

Chapter 5 explains the system tests carried out through the developing process to

check the functionality of the smart lock device. Further, it describes the results

observed after the testing controls.

 5(39)

The last chapter, Chapter 6, presents the conclusions of this thesis and points out

possible extensions and improvements that could be added to the system.

2. THEORETICAL STUDY AND ANALYSIS

Before starting the design of the code and its implementation, it is important to

analyse the problem to be solved and to figure out the best elements to complete

the work. From the software point of view it attention needs to be paid on how

these elements will communicate, transfer the desired data between them to con-

trol the system. The elements chosen must fulfil all requirements of the work, yet

allowing including new features to be added to this initial system. Another im-

portant characteristic to analyse are the offered facilities apart from the program to

have access to useful references and guides. The best possible elements for this

project should be simple to use though powerful enough to reach the thesis pur-

pose.

The basic structure from the software point of view of this work is shown in the

following diagram:

Figure 1: Structure of the system

As it is shown, two important devices control the smart lock: the microcontroller

and the Bluetooth module. They have to be carefully selected to fulfil the re-

quirements of the work. The most important aspects to while selecting are to find

and to understand the communications between them as well as its simplicity and

performance in an embedded compact system. The elements must be also easily

 7(39)

accessible in the market and none expensive to create an easily repeatable system

that can be implemented in the cheapest way possible.

2.1 The microcontroller Atmega32:

The microcontroller selected was the Atmega32 of the AVR family. The principal

advantages of this microcontroller compared to other possibilities such as 8051,

PIC or ARM families microcontrollers is that their performance is really good for

a reasonable low price and that it is one of most used microcontrollers for embed-

ded systems design and implementation. This fact generates a big community of

developers, guides and references behind it, really useful for starting working with

it. This family of microcontroller is completed with great free developing tools

that make the software design and the code implementation really simple and

smooth.

The basic characteristics of this chip are described in the introduction chapter on

the microcontroller’s Datasheet:

“The ATmega32 provides the following features: 32Kbytes of In-System

Programmable Flash Program memory with Read-While-Write capabili-

ties, 1024bytes EEPROM, 2Kbyte SRAM, 32 general purpose I/O lines,

32 general purpose working registers, a JTAG interface for Boundaryscan,

On-chip Debugging support and programming, three flexible Tim-

er/Counters with compare modes, Internal and External Interrupts, a serial

programmable USART, a byte oriented Two-wire Serial Interface, an 8-

channel, 10-bit ADC with optional differential input stage with program-

mable gain (TQFP package only), a programmable Watchdog Timer with

Internal Oscillator, an SPI serial port, and six software selectable power

saving modes.” (ATmega32(L) Complete Datasheet, page 4)

Furthermore, this microcontroller was suitable and appropriate for this project be-

cause it offers many facilities when trying to work with a Bluetooth module. As it

is so widely used, a lot of manufacturers design and produce modules that are

specifically meant to communicate via USART serial communication with this

kind of chips and therefore, are very adaptable to this microcontroller in particu-

lar. In general the AVR microcontroller has all the aspects required in this work

and more, hence it can complete all the requirements and allow future expansions

to be made without the need to change the ATmega32 or any other device.

For this thesis, the microcontroller programming will focus mainly on three mod-

ules or aspects of the device: I/O pins configuration and handling, USART serial

communication and Interrupts.

- I/O pins configuration and handling:

For this application there will be at least 6 output pins required: one input pin for

the interruption and two for the serial communication. The device has 44 Pins,

however only 32 of them can be used as input or output pins. These pins have a

highly important role in this project, as they control, for example, the mode of the

Bluetooth module, the door strike state or the notification LEDs among others.

These output pins are the reason how the microcontroller, more precisely how the

whole smart lock system controls the peripheral devices acts and states that will

give information and interact with the user, making the desired actions possible

e.g.: to unlock the door.

- USART:

USART stands for Universal Synchronous Asynchronous Receiver/Transmitter.

This is the default mode normally used by the AVR microcontroller. Changing the

values in some of the calibration data in the EEPROM in the Atmega32 serial

module can work either in USART mode or in UART mode (Universal Asyn-

chronous Receiver/Transmitter). The main difference between both serial com-

munication modes is that the Synchronous method has its transmitted data

clocked. The clock is either recovered from the data itself or sent as an external

signal. The transferred data synchronizes with system clock system, allowing the

communication run under higher baud rates making all the communications se-

curer thanks to the guaranteed timing synchronizations.

This serial communication hardware part of the microcontroller allows the AVR

to transmit and receive data serially to and from other devices. Its principal char-

acteristic is that it does not require a separate PIN for the serial clock. An agreed

baud rate is pre set in both devices and used to sample the read and transmit lines.

 9(39)

Normally USART communications use the RS_232 logic levels and control sig-

nals to communicate with other devices, therefore using the normal AVR Pin log-

ic levels from 0V to 5V converters should be used. In this application this conver-

sion will not be required between the AVR microcontroller and the Bluetooth

module, because both use the AVR pin logic levels and they can be directly con-

nected.

To allow the interfaced devices to properly communicate, a suitable pre set baud

rate must be found. The baud rate is the rate at which information is transferred in

a communication channel. In the serial port context, “9600 baud rate” means that

the serial port is capable of transferring a maximum of 9600 bits per second (pre-

setting that every baud equals a bit).

It is important to have a known and stable system clock. The USART clock is de-

rived from the AVR’s system clock and is used to sample the Rx line and set the

Tx line at precise time intervals in order to maintain the communication.

On the ATMEL’s Atmega 32 datasheet provides a table of common baud rates,

system clocks and error percentages, which are a useful and helpful guide in order

to choose a specific pair of values.

 - Interrupts:

Interrupts allow external events, such as inputs coming from the I/O pins or pe-

ripheral devices, or internal events (such as counter temporizations, etc.), to trig-

ger a certain group of instructions at any required time. These events require the

immediate attention of the microcontroller. If one of these interruption events oc-

curs, the microcontroller stops its current executing instructions and executes an

Interrupt Service Routine (ISR), which gathers the code required for that particu-

lar event. Once this routine is concluded the microcontrollers gets back to its pre-

vious step in the previous executed code.

2.2 HC – 05 Bluetooth module:

The other important device in this smart lock is the Bluetooth module. The mod-

ule chosen is a developed and integrated module named HC – 05 Bluetooth SSP

module. This module is specifically designed to work with Arduino boards or mi-

crocontrollers and it is implemented in a way to become easy to use outside the

box.

It consists of a fully qualified Bluetooth V2.0+EDR (Enhanced Data Rate) 3Mbps

Modulation with a complete 2.4GHz radio transceiver and a baseband. The mod-

ule incorporates a Cassira CSR Bluecore 04-External Chip Bluetooth system with

a CMOS technology and an Adaptive Frequency Hopping Feature.

The most remarkable Software features are:

∙ Its default baud rate is set at 38400 bauds/second, with 8 data bits, one

stop bit and no parity bits. It supports 9600, 19200, 38400, 57600, 115200,

230400, 460800 baud rates.

∙ Auto-connection to the last device on power as default setting.

Using the Bluetooth module AT mode completes the configuration of the module.

This mode allows the user to send specific formatted commands that change in-

ternal parameters of the module allowing him to set them as required. To start the

module under the AT mode, the Key pin (Actually the PIO11 on the chip) must be

powered before the VCC that powers up the chip is set to HIGH. Once this mode

is initialized the AT commands can be send. All the AT commands must be fol-

lowed by “\r\n” in order to perform a successful configuration of the module. If

the command worked properly the module is going to answer with “OK\r\n” in

case of f commands not ending with a question mark. For this kind of question or

information in demanding commands the module will respond with the demanded

information followed by “OK\r\n”.

 11(39)

3. IMPLEMENTATION

As stated earlier, Atmega32 microcontroller from Atmel is selected to implement

the embedded system of the smart lock.

There are three main parts on the program: the basic configurations and initializa-

tions, the AT configuration instructions and the smart lock mode.

All these parts use functions defined in the library called “functions.h”, developed

to make the programming procedure simple and to set a clear and easily under-

standable structure to the main program. Some of these functions in this header

file are based on the Atmega32 programming method explained on the previous

mentioned Atmega32’s datasheet or in other resources given from the company

for the USART communication. Other functions are designed to solve specific

problems that are needed due to the characteristics of the problem. The rest are

used in the AT configuration mode to send the appropriate commands to the BT

module. All of them are important in some part, yet some of them need one an-

other to make the solution run appropriately. In this header file are some global

constant variables definitions such as the microcontroller working frequency;

FCU set to 8MHz, the baud rate and others.

Figure 2: Functions.h example

Before explaining the code in detail a flowchart of the basic algorithm of the pro-

gramming code is included to have an overview of the system operation:

Figure 3: Flowchart of the microcontroller’s code

 13(39)

3.1. Basic configurations and initializations:

The code starts with some initializations of variables and registers and the mod-

ules needed in the application. The next schema shows their order and all the ini-

tialization required:

The first step in this configuration and initialization process is to set the I/O pins

and Ports registers. The system has six output pins and no input pins, because all

the inputs are used in the USART communication or in the external interrupt for

the inside button. The six outputs are divided between PORTA where the elec-

tronic switch that controls the door strike is located, pin PA0, the three notifica-

tion LEDs, power LED on PA1, access permitted LED on PA2 and access denied

LED on PA3, and PORTC where the power Pin of the HC – 05 module and the

KEY pin are connected.

START

I/O pins initialization

Set ports register

Set external interrupts register

Enable interrupts

Enable serial communications

Set USART registers

Infinite

Loop

Figure 4: Basic configurations and initializations structure

To set one of the microcontrollers pin as an input or/and output the Data Direction

Register of every Port should be set. A “1” will set the pin as output while a “0”

will leave it as input. Once the DDR is initialized, it would be interesting to set all

outputs to a low level to have a clear starting point for all the peripherals. To do

that modification the port pin configuration of both pin sets, A and C, is required.

“1” will set the output pin value to high and “0” will set it low. To begin all pins

will be set to low.

This method to set output pins low and high will be used throughout the code to

control all the peripherals such as the door strike or the notification LEDs.

Next picture depicts how it is programmed in the solution:

Figure 5: Pin configurations

After the I/O pins have been configured, next step is to allow interrupts. An exter-

nal interrupt is used to allow a button inside the room to open the door every time

it is pressed. This button is connected to INT0 interrupt pin (PD2). First step is to

include the AVR interrupt header, “avr/interrupt.h”, which has the required de-

fined ports and registers and a function necessary to work with interrupts. After

this and using the same procedure as before, pin PD2 must be set as an output.

Once PD2 is set, the next step is to allow external interrupts registers and fuses to

be accessible and modifiable; for this the General Interrupt Control Register must

be set to 1. It is important to configure this when the interrupts will trigger. In the

following all the possible options are presented:

- The low level of INT0 generates an interrupt request.

 15(39)

- Any logical change on INT0 generates an interrupt request.

- The falling edge of INT0 generates an interrupt request.

- The rising edge of INT0 generates an interrupt request.

The hardware structure of the system sets the resting state of the INT0 pin as

LOW. The best option therefore would be to set the interrupt trigger on the rising

edge; this will make the door open every time the button is pushed. This selection

complemented by a debouncing capacitor implemented on the hardware part will

make the button reliable. For selecting this option the datasheet of the microcon-

troller provides the next register configuration: set ISC01 and ISC00 to “1”.

Figure 6: Interrupt configurations

Last configuration step for external interrupts is to call a function placed at the

AVR interrupts library called “sei()”. This function is a method implemented by

Atmel that enables global interrupts on the system and allows the interrupts to

trigger the ISR code whenever needed.

After all pins have been configured and the external interrupt for the indoor button

has been initialized, the last module to be enabled is the USART communication.

The first issue to settle when starting with this module is to decide the configura-

tion parameters of the module and the serial communication. They are settled as:

38400 Baud rate, 8 data bits, 1 stop bit, and 0 parity bits. Once these values are

known, the Atmega32 microcontrollers provides a highly interesting table that

shows the error margin and the UBRRH/UBRRL registers value for every pair of

values of baud rate and the oscillator frequency.

The combination chosen is:

 - Baud rate: 38400.

 - Oscillation frequency: 8MHz.

 - UBRR: 12.

 - Error: 0,2%.

To get the configuration chosen, some registers must be modified and configured

beforehand. In order to set the 8 data bits, the registers UCSZ0 and UCSZ1 must

be set to one, as well as the register USEL to allow writing all the registers. After

that, the Rx and Tx communication lines must be enabled. This is achieved by set-

ting the RXEN and TXEN register to one. By default, the communication starts

with no parity and one stop bit, so there is no need to make any modifications for

these features to be on. All these configurations values for the registers and inter-

nal variables are described on the internal table on the Atmega32 datasheet’s

USART chapter included on the references of this work.

All these configurations are made using a function called usartInit():

Figure 7: USART initializations

 17(39)

3.2 AT configuration instructions:

This block of code is a very simple part of the program and it is only meant to be

compiled and executed if, due to some hardware problems, the HC – 05 Bluetooth

module must be replaced with a new one that has different pre set values. This

block will just make the wireless communication device enter the AT mode, de-

scribed in the theoretical discussions held in the previous chapter, and allow the

microcontroller to modify some of its parameters. For now, there is only one pa-

rameter that needs to be modified: the communication baud rate. As explained be-

fore, if the microcontroller and the BT module have different baud rates the com-

munications between them is impossible and consequently change the messages

transmitted and received to senseless strings.

Therefore, the structure of this part of the code will remain as follows:

For both purposes a function inside the functions library has been created. Both

functions have the same structure. They start sending the desired AT command in

its required format, followed by “\r\n”. For checking if the AT mode works cor-

rectly the command to be used is “AT”. On the other hand, for setting the specific

baud rate the AT command is “AT+UART=<baud_rate>,0,0”. Then, the micro-

controller waits for the answer of the module and if the message is: “OK”, the

function returns true, if not false.

In the main code this feedback is used to light up the working led for one second,

allowing the user to see if the commands have been received correctly. This is

START

Check if AT mode works correctly

Set BT module’s baud rate to 38400 baud/sec

END

Figure 8: AT mode structure

done to receive feedback between the user and the device without requiring a seri-

al monitor to follow the communication.

The next figure shows the function that sends the AT command to the module to

check if it is working correctly:

Figure 9: AT check function

 19(39)

3.3 Smart Lock mode:

 This is the main working mode of the application and the most important part. In

this part of the code the working loop is defined and the automation of the smart

lock is executed. A diagram of the working process is shown next:

 Figure 10: Smart lock mode structure

Send message to the app:

“PASSWORD_ACCEPTED”

Power up deny LED (Pin PA3)
Power up allow LED (Pin PA2)

Power up door strike’s electronic

switch (PA0) Wait 4 seconds

Wait 4 seconds Power down deny LED (Pin

PA3)

Power down allow LED (Pin PA2)

Power down door strike’s electron-

ic switch (PA0)

START

Variables definitions

Internal password setting

Power up the HC – 05 module (Pin PC0)

Power up the working LED (Pin PA1)

Send message to the app:

“PASSWORD_DENIED”

PW received is equal

to internal PW (Com-

paring function)

(Compare

Wait until password is received

(USART register is full and can be saved)

Setting the right format to the received password

FALSE TRUE

The Smart Lock mode starts creating helping variables to be used in the entire

working mode: one string contains the internal password that will control and ver-

ify the permission on the door, and two more string variables will be used inside

the loop for verifying purposes, as they will store the password received from the

app to perform the authentication process.

After these variables are defined, the microcontroller starts powering up the work-

ing LED to let the user know that the Smart Lock mode is running. At the same

time, it powers up the Bluetooth module to enter the normal functioning mode and

allow communication via UART with the Atmega32.

Then, the infinite loop starts and as a result the application, too. The first function

to be executed is the function designed to receive strings via the USART commu-

nication. This function uses an interrupt or register condition that stalls the Rx

(USART reading line) register until RXC is complete to copy its content to a

string. It continues doing this until the receiving buffer is no longer full and the

entire message is received. The characters are received one by one and stored by

using pointers into an array to contain the full message received.

Then, once the full message received from the BT module is stored in the memory

of the microcontroller, some functions from the predefined “string.h” library are

used to ensure a suitable format of the message in order to be compared with the

internal password of the system. This step is very important, as the received in-

formation format, using the UART functions, can change depending on the exe-

cuting time and on the communicating devices. This extra information must be

excluded from the received message to ensure a proper message format. For ex-

ample, there could be “\r\n” sent after some messages. Thanks to this function the

password information always has to start with the symbol “:” and finish with “.”.

The information between this two signs, “:” included but “.” not, will be the one

used in the verification process. This ensures that the message will always have

the same kind of format and is recognizable and comparable for the microcontrol-

ler. If this step is lacked the communication can sometimes become messy and

makes the system act erratically and randomly.

 21(39)

Once the message is received and well formatted, the comparison with the internal

password is performed. Using a string comparing function the program decides

whether the message received is correct and therefore, the door must be opened or

the access denied. This comparison is carried out by a simple character-to-

character comparison function that compares the internal password and the for-

matted received message.

If the comparison results are correct, the A0 output where the door strike is placed

and the A3 output where the allow LED is connected are going to be powered to

HIGH for 4 seconds. This time can be modified depending on the door and the

characteristics of the room and users. Then, the microcontroller will send via the

USART communication, more precisely via the Bluetooth module, the message

“PASSWORD_ACCEPTED” to the app. This message is useful to monitor

whether the door has received the message. While the door strike is powered the

door can be pushed and the user can enter. After this time the door will be locked

again, but in case it was opened the same door strike will allow it to close without

needing it to be powered, just due to the physical construction of the strike. If the

comparison, on the other hand, results to be incorrect the door strike will remain

locked and the red LED will be set as HIGH for 4 seconds. Then the microcon-

troller will send via the USART communication the message “PASS-

WORD_DENIED” to the app, with the same purpose as before.

After this process the cycle goes back to the password receiving point to wait for a

new password entry and to restart the entire smart lock mode again.

The next image shows how all the different functions are called and how this part

of the code is structured. The password has been hidden for security purposes,

however the following figure should still easily describe all the steps just men-

tioned before and give insights on how the process is driven inside the eternal

loop as well as how all the different functions implemented in the solution’s li-

brary are ordered to perform the objective of this smart lock system.

Figure 11: Smart lock mode implementation

Aside from this loop, the external interrupt allowed in the configuration part is

always active and hence, can be triggered at any point during both running modes.

The INT0, PD2 pin, is always connected to the normally LOW press button. This

button can be pressed at any time and the interrupt ISR code will be triggered and

starts. This code is similar to the code executing the control loop to verify the

password received; the only exception is the missing feedback message to the app.

This means whenever the indoor button is pressed the door is unlocked for 4 sec-

onds. This is a simple but convenient way of opening the door from inside without

the need to use a smart device.

Figure 12: ISR code

 23(39)

4. APP DEVELOPMENT

This fifth chapter focuses on the Android control app that will interface the door

lock automation system and the ideas involved around it.

The developed app will be the users’ interface with the door and is crucial in the

project. The app must be capable of verification of the users’ identity by using a

password authentication process and to connect the smartphone or tablet to the

Bluetooth module to send the correct password to the microcontroller and to re-

ceive feedback back from the smart lock. These four functionalities are the basic

parts of the app to let the user communicate with the lock system. Further, this

application should be able to have some kind of database where the users and

passwords of the system are stored and consulted if required. Another important

functionality of the system is the constant feedback with the user. The app must

include a text notify or label that constantly informs the user of the latest function

or step performed and allow him to see if something in the process went wrong,

for example if the Bluetooth module has not been reached and the connection was

cancelled. This information is useful in the developing process, too; because it

gives important insights of the internal process.

The app must be simple and operate quickly so the opening process does not re-

quire too much time. The number of interactions with the user should be reduced

to a minimum. Less information demands leads to a simpler and more efficient

app that will allow the user to open the door in the fastest and smoothest way pos-

sible. For these goals, the graphical interface has only few buttons and elements

and is highly user friendly.

For a better and clearer view of the applications’ main functioning processes, a

general flowchart of the applications functioning way is included. In the following

scheme it is possible to observe the steps and verifications the app must complete

to open the door.

Figure 13: App code’s flowchart

 25(39)

Before starting with the app itself it needs to be said that the developed app in this

work is neither the definitive nor the complete option. This app was developed

after the prototype device was obtained to have a better simulation of the whole

system and to get a demonstration door working. Unfortunately, due to the lack of

time and knowledge only a first simple solution was designed. The app was de-

veloped by using a tool designed by MIT University that introduces programmers

to the android app designing world with simple but powerful graphical tool. As

described on the tool’s webpage:

“MIT App Inventor is an innovative beginner's introduction to programming

and app creation that transforms the complex language of text-based coding

into visual, drag-and-drop building blocks. The simple graphical interface

grants even an inexperienced novice the ability to create a basic, fully func-

tional app within an hour or less.” (MIT App Inventor Web Page)

Through the simplicity of the app and its user friendliness the user is able to fa-

miliarize with it quickly. Therefore it is not surprising that nearly 3 million users

all around the globe such as educators, governments, product designers, research-

ers and all kind of entrepreneurs and app builders use it.

This programming tool is divided in two different parts. The first one is the graph-

ical designer part where all the elements that the user will see and interact with are

placed and settled. In this part the application allows the developer to choose be-

tween wide ranges of already predefined objects and elements that cover almost

every need during the app development. These objects vary from a button to a

Bluetooth client and can be configured and modified to satisfy all required needs.

The second part is the programming part where a prospering and intuitive graph-

ical programming environment is provided. There, the functionalities and actions

of the app are defined by using a simple and versatile block configuration that al-

lows the user to have a clear and intuitive view of the developed code structure.

Depending on the included elements in the graphical environment part some func-

tions and methods will be provided while others are not therefore, only some ac-

tions will be performable.

http://appinventor.mit.edu/explore/about-us.html

When programming with this interface proper names to all the elements of the app

should be given. This will make the programming task much easier and compre-

hensible, and moreover allow other programmers to understand the developed

code easier and faster.

An example of these blocks is presented in the next figure:

Figure 14: App Inventor programming block

This tool offers a QR code from which the application can be downloaded onto

any Android mobile phone. It also gives the possibility to build and download the

.apk installer. Having this installer, any installation protocol is possible such as

creation of an webpage charged with the file allowing the user to enter the page

and obtain the app or a QR code can be created and placed next to the door to let

users scan and download the installer, etc. Having this simple .apk installer opens

a lot of possibilities to the download procedure that can be implemented in the

smart lock system.

Thanks to this tool the first approach to the app was obtained. This “Door lock”

basic app could successfully connect to the Bluetooth module of the device, send

the password to it and receive the device’s feedback messages. In addition, it

could correctly interact with the Bluetooth module and change its current state as

the user desired.

 27(39)

Once this app was loaded some improvements were made to start get more securi-

ty features such as the decisions regarding who can use the door lock and other

features.

The app has two screen/interfaces: the login screen and the Bluetooth control in-

terface, which allow the user to open the door.

The first one to be loaded after opening the application is the login screen. This

screen has a simple username and password login system that allows the user to

enter his or her credentials to verify if he or she has permission to access the room

where the door lock is placed. For this first approach the app has only access to an

internal database with only few registered users. The database can be configured

when developing the app and users can be added. This gives some difficulties to

administrate all users in the system and to add new users to the database, because

a new app must be created each time the system administrator wants to add a new

user or simply wants to change some information of an existing one. The best so-

Figure 15: Android Application’s Screen 1 and Screen 2

lution to the login interface problem would be to create a complete internet server

database with the students’ numbers and password to administrate there which

students, teachers or lab workers are allowed to enter the room. This database

could be managed by the system administrator allowing him to have an extensive

control of who has the right to access any room at any time, including possible

future expansion like allowing him to have an access register to know who was in

each room at which time and for how long.

Focusing more on the login screen design, one notices, it is formed by several el-

ements: two text boxes and labels where the user will set his account name and

password, as well as one button that allows the user’s data validation and a check

box that saves the users’ information for more convenient usage. Also, even if it is

not on screen a tiny database is included to save the users information to let the

save login button work.

The basic idea of this screen is that the user inputs his or her username and pass-

word and it clicks the login button to validate them. On the one hand, if these two

inputs are included in the authorized database of the system the user is allowed to

jump to the next screen. On the other hand, if the username and password are not

recognized the next screen will not pop up and an error message will appear under

the login button. Another feature is the save login check box. If it is activated

when the user clicks the login button, the app will remember this information and

saves it in the text box for the next time the user opens the app.

The second and more complex screen is in charge of the Bluetooth communica-

tion with the smart lock to have control over the current state.

The BT control screen is formed by few different elements distinguished in two

buttons: One to open the door and another to disconnect the Bluetooth connection.

A picture to make everything simply more user friendly and four text tags to dis-

play information about the connection status. There are also three non-visible el-

ements, a notify, a Bluetooth client and an internal clock.

 29(39)

The working way is quite more complex than the login screen. When this screen

starts the first thing occurring is the app checking if the Bluetooth module of the

smartphone or tablet is turned on. If it is not a notify pops up with a message ad-

vising the user to turn the Bluetooth on in order to continue with the door control

process. After that, the user has to go back to the screen and restart again, this

time with the Bluetooth in the device activated. If the Bluetooth module is on, the

BT client of the application automatically connects to the MAC address of the HC

– 05 module of the smart lock. If this connection is done correctly the status label

is changed to “Door lock BT connected” and if not to “Door lock BT not connect-

ed”, to advice the user to reload again the login screen to start over. Normally, if

all the steps are correctly followed and the Door lock is close enough to the mo-

bile system, the Door lock will automatically connect to the BT module.

This automatic connection only to the MAC address of the Bluetooth device is

done for security purposes. If someone wants to know the message that is trans-

mitted from the app to the system he or she will not be able to connect to the app

or any other device that can read and show the password. This is a first step to

block anybody except the project developers to know the internal password de-

signed for the communication between the app and the smart lock. More security

could be added by encrypt communication to improve the communication connec-

tion restrictions. A good idea is to encrypt the password in the microcontroller and

in the app code designed to further restrict who has access to the password.

Once the app and the module are connected the “Open Door” button can be used.

When clicked, the button makes the app send an internal defined password to the

Atmega32 microcontroller internal software to the smart lock. The smart lock, as

explained before, will verify this password and will act consequently to the mes-

sage received.

Then, the app awaits the feedback to inform if the door has been successfully

opened or not. For now, the app only shows the received message in the infor-

mation labels to inform the user that the smart lock successfully received the

password. The idea for further extensions of the code is to use the received infor-

mation to monitor the processes of the Smart Lock as previously mentioned. If the

message is received the smart lock system has unlocked the door and access is

available. It is a good way to let the app and the control system know that the

password has been sent after the “Open Door” button was actually pressed and

arrived at the smart lock to modify its state.

The basic idea behind the first app is to check if the user has the right to send the

password to the door, and once this authentication has turned out to be true all the

steps necessaries to send the password and unlock the door strike start. For now,

the system is closed and secures, because the only communication channel for the

app is done via Bluetooth with the HC – 05 module. As soon as the internet data-

base is included in the system, the app need to include more security restrictions

in the log in process to avoid external non authorized users to enter the database

and change the access rights of the users in the system.

The developed app has a high performance and is efficient enough for its main

purpose. The app needs around seven to nine seconds from when it is first started

till the door is finally opened, in case the credentials of the user have already been

saved in the system. The user only needs to press two buttons, the login button

and the open door button to open the door. The most consuming part of the pro-

cess is the direct connection of the mobile device with the Bluetooth module,

however this part cannot be avoided as it gives the system a very important boost

in its security control and performance. In general, this first app approach

achieves the overall goals set. It is simple, yet fast and clear to the user.

After all these explanations it would be interesting to analyse how the app impacts

the system and if the android system requires any specifications to run it. The app

needs little memory to be installed in the system, only 1,30Mb. It has no need for

any specific permission to be run or access to any data source or Internet connec-

tion. The app showed to not recognisably affect the energy consuming rate or no-

ticeable slow down the system performance of the device even though it was al-

ways running in the background.

 31(39)

In general and as already commented before, the app is really simple and fits all

android systems. The only real restriction to the correct functioning is the necessi-

ty of a Bluetooth module in the android device. Using a Google test it was ob-

tained that the app could be installed on 100% of phones that have an actually

working Bluetooth module and exactly 100% of all Android mobile phones pre-

sent in the Google App Store, giving the whole system a wide range of controlling

devices and possibilities to interact with the door.

5. SYSTEM TEST

This chapter shows all the requirements needed to test the system and to have a

functional prototype from the software point of view. It also explains the results

obtained when the system was tested possible and changes that could fit the sys-

tem.

The testing process was made in two steps. First a breadboard test was carried out

to see if the code and all the hardware structure worked fine together. After the

PCB prototype was designed and checked, it was implemented into a demonstra-

tion door.

First and only step from the software side of the project was to program the mi-

crocontroller. As it was already mentioned before, Atmel Studio 7 was used to

build the code into the Atmega32 and an AVRISP mkII programmer was used to

allow the communication between the PC and the microcontroller. To make this

procedure easier, an AVR Universal Board was used to interface the Atmega32 in

the first testing attempts. Using the ISP port of this board it was simple and quick

to charge programs into the microcontroller memory without needing complex

connections or external systems.

There are two main concerns to ensure a good programming performance.

First one is the selection of an appropriate ISP clock frequency. The AVRISP

mkII supports ISP frequencies from 51 Hz up to 8.0 MHz. To ensure a good

communication when using the ISP programming interface, the ISP clock fre-

quency must not exceed the limit target device frequency supported. For this mi-

crocontroller the internal clock frequency is always ¼. (The maximum ISP clock

frequency depends on the device system clock, internal clock division, etc.)

The second concern is the configuration of the system clock and clock options.

The datasheet of the microcontroller is included in the chapter “System Clock and

Clock Options” where a lot of tables and information cover all possible clocks,

oscillators and crystals that the microcontroller could use. It is interesting to

know the meaning of all the registers and fuses but, while using the Atmel Studio,

 33(39)

it will not be necessary to change these values one by one. The program offers a

Clock setting option in the device-programming menu where the system clock can

be specified without needing to enter all fuses in detail.

This project, as shown in the hardware structure part, uses an 8MHz external crys-

tal oscillator. In order to configure this kind of crystal clock the “Ext. Crys-

tal/Resonator High freq: Start-up time: 1K CK + 0 ms” option must be selected in

the device programming menu clock fuses options.

After these configurations were established, tests were carried out with different

components and different options to get the best performance.

Figure 16: Breadboard test

The only problem found in the testing attempts was the unusually and randomly

USART communication which when not done correctly, the device does not rec-

ognize the door password. The reason for this problem is probably a margin of

error in the communication due to the values of frequency and baud rate selected.

This little margin can on really few occasions lead to miscommunication between

the Bluetooth module and the MCU and change the password. Modifying some

internal parameters and avoiding too complicated passwords will reduce the error

possibility.

The first test was successful and the system worked as it was designed too.

After the first breadboard test was carried out, an integrated design was imple-

mented to have a single board system that could be easily installed in the door.

The Smart lock can be programmed and reprogrammed easily due to the imple-

mented ISP port. This port facilitates the software development for the system and

supports several trials and demos in an easy and practical way only using the

AVRISP mkII programmer and the Atmel Studio.

Figure 17: PCB protoype

The PCB and other technical details are explained in more detail in the hardware

part of this work. After it was finally designed and operative, the software solu-

tion was charged to the AVR microcontroller and tested.

 35(39)

When tested the PCB successfully accomplished the purpose of this project. The

only thing differing from the breadboard test was the feedback message “PASS-

WORD_ACCEPTED” or “PASSWORD_DENIED” was not received by the app.

This could be a problem should be solved when further extensions are developed.

After some research and trying to find the reason of this malfunction a highly

probable reason was pointed out for the mismatch between the two tests. The only

difference between the prototype and the breadboard system is the system clock.

When using the universal board the microcontroller is provided with a compact

full oscillator that works as system clock. In the prototype a crystal resonator is

used. This difference could have made the clock system in the prototype unstable

and lead to failure of feedback messages, since the use of the USART serial

communication got more complex. Tests were made to see if the prototype would

work with an oscillator and showed that when removing the system

microcontroller and replacing it with the AVR universal board the message was

received correctly. As a result, next prototypes and implementations of the system

should include a full oscillator to solve the problem and have feedback messages

in the app to be able to use the information in future expansions.

6. CONCLUSIONS

The Smart lock system that is developed in this thesis is successfully achieved.

The main objective of the thesis is to design and manufacture an operational pro-

totype that can be in real conditions. The full operation of the developed prototype

requires only a power socket or an external battery of 12 volts. This prototype is

developed with the aim to keep it as simple as possible and to make it repeatable

and expandable for other interested students and projects for further development.

Another important goal is to use as few components as possible to keep the sys-

tem producing process as cheap as possible.

The process of developing the work was completed as stated in the requirement of

the project. After the research and the planning part, the whole system is designed

and structured allowing both sides HW and SW of the project to start implement-

ing the proper solutions and resources for every element of the work.

In particular the software solutions designed in this part of the project is success-

fully implemented on an android mobile phone and can manage and remotely con-

trol the smart lock system via Bluetooth communication channel. The onboard

microcontroller and the Bluetooth module are set up to communicate successfully.

The transmission of information between the user interface app and the smart lock

device is carried out correctly, allowing the authentication process to run in the

desired way and so enabling the smart device to act consequently through the ac-

tuator of the system, the door strike. Also, on the other part of the software solu-

tion, the basic android app could successfully connect the HC – 05 BT module

and the android device and send the proper information to open the door in a se-

cure way, taking care of the user permissions and access rights.

After all the work, as commented in the previous chapter, one small uncompleted

functionality is still present in the prototype and needs to be taken into account in

the next development and improvements of the project. The feedback messages

sent from the microcontroller to the app should be improved and modified as ex-

plained before to have more control over the process.

 37(39)

The main idea behind the design of this prototype is to facilitate a base and a start-

ing point to all the students in VAMK that want to keep on improving and ex-

panding the work as much as possible and as best as possible, to get a really com-

plete and functional system.

The main concerns in further implementations would be to improve security, for

example by encrypting the internal password of the system or by improving the

apps’ log in screen, and creating a database with users that will allow a real im-

plementation of the door access control and set bases for the creation of a moni-

toring system. Also including other functionalities to the board would be an inter-

esting idea to try to include more verification possibilities and to improve the sys-

tem in order to automatize the authentication steps.

LIST OF REFERENCES

Printed books:

Barnett Cox, Barnett O’Cull (2004). Embedded C Programming and the Atmel

AVR. Clifton Park. Delmar Cengage Learning.

Williams, Elliot (2013). Make: AVR Programming: Get under the hood of the

AVR microcontroller family. USA. Maker Media.

Trevennor, Alan (2012). Practical AVR Microcontrollers: Games, Gadgets, and

Home Automation with the Microcontroller Used in the Arduino. USA. T+A.

Electronic publications:

Phung, S.L (2008-2015). Getting Started with C Programming for the ATMEL

AVR Microcontrollers. Version 2.0.

Camera, Dean (2015). AVR Programming Methods. Source:

www.fourwalledcubicle.com.

Camera, Dean (2015). Using the USART in AVR-GCC. Source:

www.fourwalledcubicle.com.

Camera, Dean (2015). Interrupt Driven USART in AVR-GCC. Source:

www.fourwalledcubicle.com.

Datasheets:

ATmega32/L Datasheet (2011). Atmel Corporation. USA. www.atmel.com.

AVR069: AVRISP mkII Communication Protocol (2006). Atmel Corporation.

USA. www.atmel.com.

http://www.fourwalledcubicle.com/
http://www.fourwalledcubicle.com/
http://www.fourwalledcubicle.com/
http://www.atmel.com/
http://www.atmel.com/

 39(39)

Internet URL sources:

AVR C Programming:

 - http://www.nxp.com/files/training/doc/dwf/AMF_ENT_T0001.pdf

AVR External Interrupts C Programming:

 - http://www.avr-tutorials.com/interrupts/avr-external-interrupt-c-programming

USART guides:

 - http://maxembedded.com/2013/09/the-usart-of-the-avr/

 - http://extremeelectronics.co.in/avr-tutorials/using-the-usart-of-avr-

microcontrollers/

HC – 05 modules guides and explanations:

 - http://www.tec.reutlingen-university.de/uploads/media/DatenblattHC-05_BT-

Modul.pdf

- http://www.robotshop.com/media/files/pdf/rb-ite-12-bluetooth_hc05.pdf

- http://www.martyncurrey.com/arduino-with-hc-05-bluetooth-module-at-mode/

http://www.nxp.com/files/training/doc/dwf/AMF_ENT_T0001.pdf
http://www.avr-tutorials.com/interrupts/avr-external-interrupt-c-programming
http://maxembedded.com/2013/09/the-usart-of-the-avr/
http://extremeelectronics.co.in/avr-tutorials/using-the-usart-of-avr-microcontrollers/
http://extremeelectronics.co.in/avr-tutorials/using-the-usart-of-avr-microcontrollers/
http://www.tec.reutlingen-university.de/uploads/media/DatenblattHC-05_BT-Modul.pdf
http://www.tec.reutlingen-university.de/uploads/media/DatenblattHC-05_BT-Modul.pdf
http://www.robotshop.com/media/files/pdf/rb-ite-12-bluetooth_hc05.pdf
http://www.martyncurrey.com/arduino-with-hc-05-bluetooth-module-at-mode/

