

José Manuel Alarcón Roldán

Establishing Guidelines for Medical Device

Software Development Using Agile - Case:

Start-up’s Infant Apnoea Monitor

Helsinki Metropolia University of Applied Sciences

Master’s Degree

Health Business Management

Master’s Thesis

29 December 2015

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Theseus

https://core.ac.uk/display/38134756?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 Abstract

Author
Title

Number of Pages
Date

José Manuel Alarcón Roldán
Establishing Guidelines for Medical Device Software Develop-
ment Using Agile: Start-up’s Infant Apnoea Monitor

54 pages + 1 appendix
29 December 2015

Degree Master’s Degree

Degree Programme Health Business Management

Instructor Thomas Rohweder, Dr (Econ), Principal Lecturer

Software has become a prominent part of modern medical devices. In order to ensure
safety of patients and users of medical devices, health authorities around the world have
produced a number of regulations that control the development, manufacturing and sales
of medical devices. Software which is part of a medical device must meet the same safety
and quality requirements as the device itself.

In Europe, Directive 2007/47/EC regulates the development and manufacturing of medical
devices. International standardization organizations have produced harmonized standards
such as IEC 62304 – medical device software – software life cycle processes to assist the
manufacturers of medical devices in obtaining regulatory approvals.

In recent years a new way to develop software known as Agile has emerged. Agile meth-
ods are based on an iterative and evolutionary software development life cycle. Although
regulators do not mandate what software life cycle should be used, most of the regulations
and standards assume a linear life cycle, such as waterfall.

The Agile practices emerge from a common set of values and principles, such as quality of
the software, productivity of the development teams and customer satisfaction. In this the-
sis we discuss how these values align with those of health authorities and regulators
around the world.

In this thesis we Introduce the Agile SW development practices in the context of a medical
device company. We will analyze the European Medical Device Directives and internation-
al standards. We then propose a set of guidelines for the development of medical device
software based on Agile practices while complying with the international standards.

Keywords Agile, Medical Device Software, MDD, Software Develop-
ment Life cycle, IEC 62304

Contents

1 Introduction 1

1.1 Case context 1

1.2 Business problem, objective and intended outcome of this thesis 2

1.3 Research design 3

2 Agile SW Development Practices in the Context of Medical Device Software
Development 6

2.1 Agile vs. plan driven development life cycles 6

2.2 Agile values, principles and practices 9

2.2.1 Manifesto for Agile Software Development 10

2.2.2 Agile principles 12

2.2.3 Agile principles in the context of medical device software 14

2.2.4 Agile practices in the context of medical device software 14

2.3 Summary of the conceptual framework 15

3 Analysis of the Medical Device Directives and Standards 18

3.1 Definition of Medical Device 18

3.2 EU MD Directives 19

3.2.1 Classification of medical devices 20

3.3 Medical Device Software 22

3.3.1 Regulatory goals, values, principles and practices 22

3.4 Standards, technical reports and guidance documents 24

3.4.1 Standards applicable to medical device software 25

3.4.2 Guidance documents 27

3.5 Summary 28

4 Guidelines for the Development of Medical Device SW 30

4.1 Introduction 30

4.1.1 Vision based baby monitor 31

4.1.2 Software safety classification of the baby monitor 32

4.2 Guidelines for the software development process 33

4.2.1 Software development plan 34

4.2.2 Software development life cycle model 35

4.2.3 Software development activities 37

4.3 Guidelines for the software maintenance process 40

4.3.1 Software maintenance plan 40

4.3.2 Problem and modification analysis 41

4.3.3 Modification implementation 41

4.4 Guidelines for the risk management process 41

4.5 Guidelines for the software configuration management process 42

4.5.1 Identification of configuration items 42

4.5.2 Change control 43

4.5.3 Configuration status accounting 43

4.6 Guidelines for the software problem resolution process 43

4.7 Summary of the guidelines for the creation of medical device software 45

5 Conclusions 47

5.1 Summary of the thesis 47

5.2 Limitations and future research 48

5.3 Evaluation of the thesis 49

5.3.1 Objective vs outcome 49

5.3.2 Reliability and validity 50

References 52

Appendices

Appendix 1. Industry experts interviews 1

1

1 Introduction

A medical device is any instrument or apparatus used to diagnose, prevent or treat a

medical condition. Medical devices vary in complexity, from a simple bandage to life

sustaining equipment or sophisticated imaging devices such as MRI scans (Council

Directive 2007/47/EC).

In order to minimize the risks that the usage of medical devices may impose to human

health, manufacturing and merchandizing of medical devices is regulated by the

competent authorities (e.g., the Food and Drug Administration in the US or the

European Commission in Europe).

The number of medical devices functions performed by software is increasing greatly. It

is not uncommon to find nowadays medical devices that are implemented purely by

software. The safety regulations that apply to traditional medical devices apply also to

the medical device software. Harmonized standards and guidelines exist to help

manufactures of medical device software to comply with the requirements of these

regulations.

During the last years a new way to develop software has appear known as Agile (Agile

Alliance, 2013). It started as a niche concept on small areas of the software industry

but it has quickly gained traction and it is nowadays used in several software

development contexts. For Agile to be widely used in the medical device software

industry it has to be adapted to fit the needs of this unique context.

In this thesis we will propose guidelines for the software development process for a

new devices manufacturer willing to enter the medical device market. These guidelines

will be based on Agile methodologies while complying with the medical device safety

regulations.

1.1 Case context

Circular Devices Oy (hereafter “the case company”) is as recently established company

that develops consumer electronics products with a focus on protection of the

2

environment, responsible sourcing of raw materials and production. They are

developing PuzzlePhone, a modular, upgradeable and repairable smartphone.

Alongside with PuzzlePhone, they are working on a vision based infant apnoea monitor

intended to help on the prevention of Sudden Infant Death Syndrome (SIDS).

SIDS is defined as the sudden death of an infant less than 1 year of age that cannot be

explained after a thorough investigation is conducted, including a complete autopsy,

examination of the death scene, and a review of the clinical history. SIDS is the leading

cause of death in otherwise healthy infants 1 to 12 months old (National Centre for

Chronic Disease Prevention and Health Promotion, 2015).

The vision based infant apnoea monitor being developed uses machine vision

algorithms to detect the baby’s respiratory movements and monitor his respiratory

frequency. If there's no breath for a set number of seconds (a condition called apnoea)

it produces an alarm to alert parents or other caregivers.

1.2 Business problem, objective and intended outcome of this thesis

Any device which primary function is, as defined by its manufacturer, to prevent,

diagnose or treat a medical condition is considered as a medical device. Therefore, it

must comply with the relevant medical device regulations before it can be sold

(MEDDEV 2. 4/1 Rev. 9 2010).

The infant apnoea monitor being developed by the case company is being advertised

as a device that helps in the prevention of SIDS. Therefore, it must fulfil the

requirements set by the competent authorities for medical devices. These apply both to

the hardware and to the software components of the device.

The objective of this thesis is to produce a set of guidelines that the case company

should follow when developing its medical device software. We will study the European

Medical Device Directives (MDD’s) that regulate the development of medical devices

and analyse the international standards and industry guidelines concerning medical

device software.

The intended outcome of this thesis is a set of guidelines covering all phases of the

software creation process (including development, maintenance, configuration and risk

3

management) based on Agile that fulfils the safety and performance requirements set

for medical device software. We will focus on the European market although most of

what is being proposed here would be easily adapted to comply with the requirements

from other regions regulators, such as the FDA in the US.

1.3 Research design

As we discussed earlier in this chapter, this thesis address a real business problem

faced by the case company: the infant monitor being developed will be sold and

advertised as a device that helps in the prevention of SIDS. Any device which primary

function is to treat or prevent a medical condition is considered a medical device and

hence it must comply with the safety and quality requirements set by regulators. These

requirements apply to all the components of the medical device, including its software.

The objective of this thesis is to propose a set of guidelines for the software

development process based on Agile methodologies while complying with the safety

and quality requirements for medical devices. For the production of these guidelines,

we will first study in depth the legal framework and standards that apply to medical

device software. These guidelines will be shaped as well by the best practices

identified during a literature review of published case studies from companies that

apply Agile when developing medical device software as well as from insights obtained

from the industry experts being interviewed.

The figure below represents the different steps of the research design used in this

thesis:

4

Figure 1.1 - Research design of this thesis

5

This study begins with the definition of the business problem of the case company as

previously described. We will then introduce the Agile software development concepts

and perform a literature review of some case studies in which Agile has been

previously introduced in medical device software companies. We will study the relevant

European Medical Device Directives, the corresponding international standards used to

assess compliance as well as industry guidelines that assist medical device

manufactures on the implementation of these standards. Some industry experts will be

interviewed to understand how they apply Agile practices at their organizations, what

Agile practices enhance safety and quality when developing medical device software

and what hurdles they found when adopting Agile practices. After that, a software

development process proposal will be presented. The purpose of this proposal is to

serve as a guideline for the case company for the development of its own medical

device software in a way that it benefits from the productivity and software quality

improvements achieved when using Agile methods while demonstrating compliance

with the medical device regulations.

6

2 Agile SW Development Practices in the Context of Medical Device

Software Development

2.1 Agile vs. plan driven development life cycles

Software development teams are under pressure to develop and deliver software faster

not only meeting their customer’s requirements but exceeding them. Traditional plan-

driven, document intensive, software life cycles such as Waterfall or V-Model, where

planning of the software requirements is being done up front, followed by architectural

design, module design, implementation, testing, system integration and validation,

which each of these steps being done following a sequential order, make it very difficult

and costly to accommodate to changes during the latest phases of the development

process.

Figure 2.1 - Waterfall life cycle model

In a sequential development life cycle, each activity is performed in a certain, fixed

order. The next one is not started before the previous one is completed (e.g.,

requirements definition precedes architectural design; hence the requirements need to

be fully defined before the design of the architecture can start, and so on).

Iterative software development appeared to offer a solution by aiding faster

development of systems. In an iterative life cycle, these activities are performed several

times during the development process. In an evolutionary life cycle, a system is

developed in a number of consecutive builds. An evolutionary strategy is similar to an

7

incremental strategy in that after each iteration, an increment of the system is being

delivered, but differs in acknowledging that the user needs are not fully understood and

all requirements cannot be defined up front. In this strategy, user and system

requirements are partially defined at the early stages of the development. Then they

are refined in each successive build. Agile is a subset of these iterative techniques

(Agile Alliance, 2013).

The flow diagram below illustrates the evolutionary approach as described by AAMI in

their TIR45:2012:

Figure 2.2 - Evolutionary life cycle model

The evolutionary approach puts a bigger emphasis on customer feedback, which is an

essential component of Agile. In this model, there is a preliminary requirement analysis

followed by an initial, high level design and architecture definition which is “just enough”

to get started with the version build cycle. This cycle is being repeated until the

customer is satisfied or we run out of time or money (whichever occurs first).

Agile was developed in response to quality and efficiency concerns present in existing

software development methodologies. Agile bring benefits to software development

teams in the following areas (Association for the Advancement of Medical

Instrumentation, 2012):

 Continuous focus on safety, risk management and delivering customer value

through backlog prioritization, planning practices and customer feedback

8

 Continuous assessment of quality through continuous integration and testing

 Continuous improvement of the software development process through

retrospectives and team accountability

 Continuous focus on “getting to done” and satisfying quality management

stakeholders through the regular completion of activities and deliveries

It is apparent that any organization, including those developing software in a highly

regulated and controlled environment such as a medical device context, can benefit

from these improvements. Because Agile initially grew from the IT industry where

human safety and risk management were not of primary importance, there are some

concerns about Agile compatibility with the regulated world of medical device software

development. Fortunately, as we shall discuss later in this chapter, the fundamental

nature of Agile is to be adaptable to the context in which it is being utilized,

encouraging its practices to be adapted to this particular context in ways that they are

compatible with the needs of the safety-critical medical device software development

world.

Agile methodologies (Scrum, Extreme Programming, Kanban, etc.) are made of Agile

practices, such as sprint planning, daily stand ups, product backlog, pair programing

and so forth (Mc Hugh et al., 2012).

Agile methodologies such as Scrum and XP are becoming increasingly popular in

traditional software development projects. Some case studies exist where Agile

practices have being used when developing software for safety critical applications

(Drobka et al., 2004), (Grenning, 2001). These cases studies show a significant

improvement in the productivity of the team and in the quality of the software being

developed when compared to plan-driven software development projects. However,

Agile methods present certain challenges for highly regulated industries, such as the

production of documentation and verification of the traceability from end product to

customer requirement.

9

2.2 Agile values, principles and practices

Agile software development is a set of values, principles and practices that self-

organizing teams use to quickly and regularly deliver software that provide value to

their customers. It follows an incremental and evolutionary life cycle. Agile puts a

bigger emphasis on collaboration between the development team, the customer and

other stakeholders. Agile recognizes the need to adapt its practices to the context in

which software is being developed.

Agile software development utilizes a completely different paradigm to that of traditional

software development processes. This new way of developing software is rooted in a

set of values, principles and practices that guide Agile teams when performing their

work.

Values are abstract, universal concepts that all members of the team believe provide

value to the team as a whole: it is not how any member of the team behaves what

matters, but how individuals behave as part of a team. It is important that the team

adapts its behaviour to its values. Values don’t provide concrete advice on what to do

in software development. Values held by the team shape its practices in ways that

benefit the team needs.

Practices are the common procedures and the routines that the team follows in a

regular basis when developing software. Practices are the visible artefacts of the way

the team works. Practices are evidence of values. Just as values bring purpose to

practices, practices bring accountability to values. Practices are clearly stated. They

are defined to address a real life software development problem (for example, lack of

communication, poor quality of the code, lack of code reviews, etc.). Practices are

highly situated and should be considered in the particular context of the team.

Principles bridge the gap between values and practices. Principles are a set of domain-

specific guidelines for finding practices in harmony with the values of Agile. While the

statement of the practices is intended to be clear and objective, understanding how to

apply the practices in a given context might not be obvious. These principles give a

better idea of what the practice is intended to accomplish (Beck 2004).

10

2.2.1 Manifesto for Agile Software Development

The Agile values are captured by the Agile Manifesto (Beck et al. 2001)

We are uncovering better ways of developing software by doing it and

helping others do it. Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on the right, we value the items

on the left more.

The Agile Manifesto is a clear, powerful and provocative statement of the values that

drive Agile software development. The values of this manifesto can seem to be

contradictory to those of the regulated world of medical device software. However,

when interpreted correctly, they enhance the value of quality management systems

required by regulations and standards: The goals of Agile are to provide benefits in the

quality of the product, improve the product’s effectiveness and increase the productivity

and predictability of the development team.

The last phrase of the Agile Manifesto “while there is value in the items on the right, we

value the items on the left more” provides a vital qualification of the Agile values. Many

of those that oppose to the use of Agile on safety critical software development inferred

that the word “over” here means “instead of”, leading to the incorrect conclusion that

Agile practices required no documentation, no processes and so on. Or that regulations

required things that are not “Agile”. Thoughtful consideration of this phrase is essential

to the proper application of Agile when developing medical device software in order to

find the proper balance of what is valued.

11

Individuals and interactions over processes and tools

This value recognizes that skilled people working well together will produce good

software and that processes and tools are useful but insufficient. Effective processes

and tools will help a good team perform even better. But no amount of processes and

tools will help a poor team perform well.

Software development is a creative process; hence developers and designers have to

be allowed to think, to create and to solve problems. Good software can’t be produced

by following processes and check-lists alone.

A criticism to this value is that it might lead to a lack of discipline. That could be true if

this value would be taken to the extreme. However, if applied with balance it can lead

to an even better discipline. Formal processes and support tools bring discipline to a

software development process when they codify behaviors that the team consider

important. This kind of discipline is useful for bringing consistency to the way the team

work together. However, this can lead to negative output if the team doesn’t feel

responsible of the processes, leading to processes that are misunderstood or ignored.

Working software over comprehensive documentation

This value recognizes that working software is the ultimate deliverable, the best

indicator of progress and the best way to assess whether the needs of the customer

are being satisfied. Documentation is necessary and useful but it is of little value if it

doesn’t come together with working software. Documentation, when clear and

sufficient, helps the team in developing a good software product. It also helps external

stakeholders evaluating the completeness and quality of the software that has been

delivered.

Agile can’t be used as an excuse to not producing the needed documentation. Agile

values and specially the principle of “mutual benefit” has to be applied to ensure that

valuable documentation that benefits both the team and external stakeholders is

produced and that wasteful documentation is eliminated.

Customer collaboration over contract negotiation

12

This value recognizes that collaboration with a customer who is engaged in the

development process is more likely to deliver software that meets the customer’s

needs. Contracts alone cannot guarantee that the team will produce software that

fulfills the customer’s requirements. However, clear contracts are useful to establish a

common understanding and to set reasonable expectations. Inflexible contracts can

hinder innovation, which is essential when developing a new software product.

In medical devices software development it can be challenging to determine who the

customer is. Medical software can be used by multiple users and it is typically part of a

wider system. Moreover, the software definition will evolve over time. It is important to

establish a customer role in the development team and mechanism that support

emergent product definition.

Responding to change over following a plan

This value recognizes that change is inevitable in new product development and should

be embraced as a good and useful thing. Plans alone are not enough to ensure that a

good product will be delivered.

In Agile software development, planning occurs at different levels during the product

development life cycle, from a coarse-grained plan to a detailed one as the features are

being implemented. This sequential planning allows the team to incorporate feedback

and make adjustments as software is being developed; minimizing waste in form of

very detailed up-front plans in case radical and unexpected changes occur that impact

greatly the software being developed.

It is important to define planning mechanisms and to establish feedback mechanisms

to demonstrate effective control of changes.

2.2.2 Agile principles

The principles behind the Agile manifesto are:

 Our highest priority is to satisfy the customer through early and continuous

delivery of valuable software.

13

 Welcome changing requirements, even late in development. Agile processes

harness change for the customer's competitive advantage.

 Deliver working software frequently, from a couple of weeks to a couple of

months, with a preference to the shorter timescale.

 Business people and developers must work together daily throughout the

project.

 Build projects around motivated individuals. Give them the environment and

support they need, and trust them to get the job done.

 The most efficient and effective method of conveying information to and within

a development team is face-to-face conversation.

 Working software is the primary measure of progress.

 Agile processes promote sustainable development. The sponsors, developers,

and users should be able to maintain a constant pace indefinitely.

 Continuous attention to technical excellence and good design enhances agility.

 Simplicity--the art of maximizing the amount of work not done--is essential.

 The best architectures, requirements, and designs emerge from self-organizing

teams.

 At regular intervals, the team reflects on how to become more effective, then

tunes and adjusts its behaviour accordingly.

14

In the next section we will discuss how these principles align with the special needs of

medical device software development.

2.2.3 Agile principles in the context of medical device software

There are many publications that describe the principles of Agile software development

in the context of traditional, non-regulated software development. Here we will

introduce a list of principles that are relevant in the context of medical device software

development, as described by the Association for the Advancement of Medical

Instrumentation in their TIR45:2012 Guidance on the use of AGILE practices in the

development of medical device software (Association for the Advancement of Medical

Instrumentation, 2012):

 Apply incremental and evolutionary lifecycle concepts

 Define what DONE means

 Deliver customer value, with the highest priority features first, through collabora-

tion between the team and the customer

 Accept that customer needs and requirements are likely to change throughout

the project and accommodate to this change in an effective and efficient way

 Manage project risks through increased visibility and team accountability

 Empower the teams to become self-organized and to manage the daily tasks

 Seek for technical excellence in the software through high-quality designs and

verification practices

 Reflect and adapt the process at regular intervals to constantly improve quality

and efficiency of the work

 Satisfy business stakeholders, both internal and external

2.2.4 Agile practices in the context of medical device software

The fundamental nature of Agile is to be adaptable to the context in which it is being

applied. The following summarizes the Agile practices relevant to the development of

15

medical device software gathered from various Agile methodologies (Scrum, XP, etc.)

They have been grouped according to the software development phase that they apply:

 Product definition: product vision/vision statement, product backlog,

epic/stories/use cases/personas, backlog management, planning poker

 Product implementation: emergent/evolutionary design, refactoring,

architecture spikes, coding guidelines/standards, test driven development

(TDD), continuous integration, daily builds/automated builds, frequent

delivery/frequent releases, unit testing, story testing/executable requirements,

and test automation

 Project execution: time boxing/fixed increments length, release planning,

increment planning, daily planning, definition of done, and velocity/burn

down/burnup charts

 Team organization: self-organizing teams, team roles, team size, scrum of

scrums and sustainable pace

 Team collaboration: stop-the-line/information radiators, co-location, pairing,

reflections/retrospectives, and collective ownership

2.3 Summary of the conceptual framework

Agile software development is based on a set of values, principles and practices that

self-organizing teams use to quickly and regularly deliver software that provide value to

their customers, in an evolutionary and incremental manner.

Values are abstract, universal concepts that all members of the team believe provide

value to the team. It is important that the team adapts its behaviour to its values.

Values held by the team shape its practices in ways that benefit the team needs.

Practices are the common procedures and the routines that the team follows in a

regular basis when developing software. Practices are evidence of values. Practices

are clearly stated. They are defined to address a real life software development

problem. Practices are situated and should be considered in the particular context of

the team.

16

Principles bridge the gap between values and practices. Principles are a set of domain-

specific guidelines for finding practices in harmony with the values of Agile. These

principles offer a better idea of what the practice is intended to accomplish.

The table below summarizes the values, principles and practices that define the ways

of working of an Agile software development team in the context of medical device

software development:

Table 2.1 - Agile values, principles and practices

Values Principles Practices

Individuals and
interactions over
processes and
tools

Incremental and
evolutionary lifecycle

Product definition: product vision/vision statement,
product backlog, epic/stories/use cases/personas,
backlog management, planning poker.

Working software
over comprehen-
sive documenta-
tion

Definition of DONE Product implementation: emergent/evolutionary
design, refactoring, architecture spikes, coding guide-
lines/standards, test driven development (TDD), con-
tinuous integration, daily builds/automated builds, fre-
quent delivery/frequent releases, unit testing, story
testing/executable requirements, and test automation

Customer collab-
oration over con-

tract negotiation

Deliver customer val-
ue, with the highest
priority features first,
through customer col-
laboration

Project execution: time boxing/fixed increments
length, release planning, increment planning, daily
planning, definition of done, and velocity/burn
down/burnup charts

Responding to
change over fol-

lowing a plan

Embrace change of
customer needs
throughout the project

Team organization: self-organizing teams, team
roles, team size, scrum of scrums and sustainable
pace

Manage project risks
through increased vis-
ibility and team ac-
countability

Team collaboration: stop-the-line/information radia-
tors, co-location, pairing, reflections/retrospectives,
and collective ownership

Empower the teams to
become self-organized
and to manage the daily

17

tasks

Seek for technical ex-
cellence in the software
through high-quality
designs and verification
practices

Reflect and adapt the
process at regular inter-
vals to constantly im-
prove quality and effi-
ciency of the work

Satisfy business
stakeholders, both
internal and external

18

3 Analysis of the Medical Device Directives and Standards

3.1 Definition of Medical Device

A medical device is defined as an instrument, apparatus, implant, in vitro reagent, or

similar or related article that is used to diagnose, prevent, or treat disease or other

conditions, and does not achieve its purposes through chemical action within or on the

body (which would make it a drug) (U.S. Food and Drug Administration, 2014).

Medical devices can vary greatly in complexity ranging from a simple bandage or

dressing to a pacemaker, cochlear implant or a life sustaining medical ventilator.

In Europe, Directive 2007/47/EC defines a medical device as: “Any instrument,

apparatus, appliance, software, material or other article, whether used alone or in

combination, together with any accessories, including the software intended by its

manufacturer to be used specifically for diagnostic and/or therapeutic purposes and

necessary for its proper application, intended by the manufacturer to be used for

human beings for the purpose of:

 Diagnosis, prevention, monitoring, treatment, or alleviation of disease

 Diagnosis, monitoring, treatment, alleviation of, or compensation for an injury or

handicap

 Investigation, replacement, or modification of the anatomy or of a physiological

process

 Control of conception

This includes devices that do not achieve their principal intended action in or on the

human body by pharmacological, immunological, or metabolic means—but may be

assisted in their function by such means” (Council Directive 2007/47/EC).

This definition includes explicitly the term “software”, whether used alone or in

combination. This is an important remark, since now the definition includes not only the

embedded software which is part of a medical device, but also standalone software

19

that runs on off-the-shelf computer hardware such as personal computers,

smartphones, tablets and even smart watches.

The manufacturing and commercialization of medical devices is a regulated activity.

The manufacturer of medical devices must comply with the requirements set by the

regulatory agencies of the geographical areas where it intend to market its devices (the

FDA in U.S., European Commission in Europe, etc.).

Medical devices must not endanger the safety or health of the patient or the caregivers.

The manufacturer of a medical device must ensure:

 Safety

 Suitability for the intended use

 Performance and reliability

In the following section we will introduce the legal framework that regulates the

manufacturing and commercialization of medical device in Europe, its safety

classification and the certification process.

3.2 EU MD Directives

In Europe the following directives define the rules that regulate the safety and

performance of medical devices:

 Council Directive 90/385/EEC regarding active implantable medical devices

 Council Directive 93/42/EEC concerning medical devices

 Council Directive 98/79/EC regarding in vitro diagnostic medical devices

These three main directives have been supplemented over time by several modifying

and implementing directives, including the last technical revision brought about by

Directive 2007/47 EC.

20

They aim at ensuring a high level of protection of human health and safety and the

good functioning of the Single Market by eliminating technical barriers to trade and

dispel the consequent uncertainty for economic operators.

The government of each Member State must appoint a competent authority

responsible for medical devices. The competent authority (CA) is a body with authority

to act on behalf of the member state to ensure that member state government

transposes requirements of Medical Device Directives into national law and applies

them. The CA reports to the minister of health in the member state. The CA in one

Member State has no jurisdiction in any other member state, but exchanges

information and tries to reach common positions.

The European Commission provides a set of guidelines to help medical device

manufactures in the implementation of these directives (European Commission 2015)

The guidelines aim at promoting a common approach by manufacturers and Notified

Bodies involved in the conformity assessment procedures according to the relevant

annexes of the directives, and by the Competent Authorities charged with safeguarding

Public Health.

3.2.1 Classification of medical devices

The classification of medical devices in the European Union is outlined in Annex IX of

the Council Directive 93/42/EEC. There are basically four safety classes, ranging from

low risk to high risk.

 Class I (including Is & Im)

 Class IIa

 Class IIb

 Class III

The purpose of establishing a classification scale is to ensure an adequate level of

supervision and validation based on the potential risk that patients or caregivers could

be exposed when using the device, since it wouldn’t be feasible or economically viable

to impose the strictest controls to each and every medical device.

21

The authorization of medical devices is guaranteed by a Declaration of Conformity.

This declaration is issued by the manufacturer itself, but for products in Class Is, Im,

IIa, IIb or III, it must be verified by a Certificate of Conformity issued by a Notified Body.

A Notified Body is a public or private organisation that has been accredited to validate

the compliance of the device to the European directive. Medical devices that pertain to

class I (on condition they do not require sterilization or do not measure a function) can

be sold purely by self-certification.

The European classification depends on rules based on the following:

 The medical device's duration of body contact

 Invasive character

 Use of an energy source

 Effect on the central circulation or nervous system

 Diagnostic impact

 Incorporation of a medicinal product

The European Commission has published a guidance document to help medical

devices manufacturers and notified bodies in the application of the classification rules

defined by the Council directive 93/42/EEC. This document provides advice when

using the classification rules and illustrates them with practical examples.

When interpreting the classification rules manufactures should bear in mind the

following:

 It is the intended purpose that determines the class of the device and not its

particular technical characteristics

 It is the Intended use and not the accidental use of the device that determines

its class

 It is the Intended purpose assigned by the manufacturer to the device that

determines it class and not the class assigned to other similar products

22

 A device that is part of a system may be classed as a device on its own right

rather than classifying the system as a whole

 Accessories of medical devices are classified in their own right separately from

the device that they are used with

 General purpose devices that are used in combination with medical devices are

not considered medical devices

Certified medical devices should have the CE mark on the packaging, insert leaflets

and other marketing material or documentation. The packaging should also show

harmonised pictograms and EN standardised logos to indicate essential features such

as instructions for use, expiry date, manufacturer, sterile, don't reuse, etc.

3.3 Medical Device Software

As previously stated, the legislation that regulates the manufacturing and

commercializing of medical devices in Europe apply as well to the software

components of medical devices. In particular, Directive 2007/47/EC which amended

the definition of the term “medical device” used in Directives 90/385/EEC and

/93/42/EEC. Recital 6 of Directive 2007/47/EC, states that “it is necessary to clarify that

software in its own right, when specifically intended by the manufacturer to be used for

one or more of the medical purposes set out in the definition of a medical device, is a

medical device. Standalone software for general purposes when used in a healthcare

setting is not a medical device.”

In the following section we will highlight the motivation behind medical device software

regulations and the objectives that competent authorities seek to achieve with said

regulations.

3.3.1 Regulatory goals, values, principles and practices

Regulatory agencies are responsible for protecting the health of patients, caregivers

and others by assuring the safety, security and efficacy of medical devices.

Regulatory goals are to provide benefits on the following areas:

23

 Quality: correctness of the product, reliability, free of defects

 Safety: identification and mitigation of safety risks to patients and users

 Effectiveness: delivering value to the patient and users, satisfying customers’

needs

The regulatory values and principles can be derived from the regulations, standards

and guidelines. The following are some principles that are relevant when developing

medical device software:

 Established and controlled design and development processes are

essential when producing high quality software. The level of control and the

amount of effort devoted to it should be decided based on the intended use and

the level of safety associated with the software being developed

 Software verification and validation must be conducted throughout the

development of the software regardless the chosen life cycle model

 Quality systems must be put in put in place to ensure that the software meets

the customer requirements with the best level of correctness and free of

defects. Quality rely on management control, professional work and

professional training

 Documentation is necessary to demonstrate compliance to regulations, to

facilitate the maintenance, investigation of software problems and to evaluate

software for those devices requiring regulatory approval

 Planning is essential to ensure a high quality and an efficient implementation of

the software product. Risk management activities should be conducted as part

of the software development activities

The software development practices that are encouraged by the regulatory perspective

can be grouped in categories based on the problem that they attempt to solve:

 Patient safety and risk management: identification of risk scenarios, risk

mitigation, verification to assess the remaining risks in a software product

24

 Quality planning: management controls, planning of the software development

environment, team development and training

 Documentation: document controls, configuration management and change

controls

 Software definition: user requirements, design requirements and definition of

system and software interfaces

 Software design: architecture design, detailed design, implementation and

design change management

 Verification and validation: design reviews, peer reviews, unit, integration and

system testing and user validation

Regulations and standards do not usually specify how these activities must be

performed. This allows manufacturers to design their own practices in a way that suits

their needs best and aligns with their own ways of working and culture while

maintaining conformity with regulatory principles.

Once we have outlined the motivations and objectives behind the directives that

regulate medical devices, we will next introduce the standards and technical reports

that help manufacturers of medical device to comply with those regulations.

3.4 Standards, technical reports and guidance documents

As discussed in section 4.2, manufactures of medical devices must comply with the

relevant EU directives for their devices. A set of harmonized standards exists to assists

manufacturers with achieving compliance. Although it is not compulsory to follow these

standards, vendors who do so will find easier to demonstrate compliance.

Guidance and technical reports help medical device manufactures and regulatory

authorities in assessing the classification of medical devices. They provide guidance in

the application of standard practices during the medical device development process.

25

3.4.1 Standards applicable to medical device software

There are a number of harmonized standards, each of them setting requirements for

compliance in a given area (development process, risk management, quality

management, etc.). These are the most relevant harmonized standards for medical

device software development:

 IEC 62304:2006, Medical Device Software - Software life cycle processes

 ISO 14971:2007, Medical Devices - Application of risk management to medical

devices

 ISO 13485:2003, Quality management systems - Requirements for regulatory

purposes

 IEC 62366-1:2015 Medical Devices - Part 1: Application of usability engineering

to medical devices

The most relevant standard for the development of medical device software is IEC

62304:2006. This standard defines the requirements for the software life cycle

processes during the software development and maintenance phases.

This standard defines a framework of life cycle processes for the safe development and

maintenance of medical device software. The standard identifies processes, activities

and tasks that have to be carried out during the development and maintenance phases

in order to demonstrate compliance. Each life cycle process is divided in a set of

activities and these are further decomposed into individual tasks.

The standard assumes that medical device software is being developed and

maintained within a quality management system and a risk management system. For

risk management, the standard IEC 62304 requires the manufacture of medical device

software to comply with ISO 14791.

The standard requires that a software development plan must be documented and

followed. However, the standard does not impose the use of any particular life cycle

model. Manufactures of medical device software are free to choose and adapt any life

cycle model that better suits their needs and current practices as long as the

26

processes, activities and tasks defined by the standard are being performed and

documented within their life cycle.

The standard identifies two additional processes considered essential for developing

safe medical device software: software configuration management process and

software problem resolution process.

The figure below shows the software development process activities as described by

the standard:

Figure 3.1 - Overview of SW development processes and activities as defined in IEC 62304

The standard considers the maintenance of the medical device software as important

as its development.

The figure below describes the software maintenance processes and activities:

27

Figure 3.2 - Overview of SW maintenance processes and activities as defined in IEC 62304

A controlled and strict maintenance process needs to be in place in order to avoid

incidents due to incorrect servicing or maintenance of the device, including software

updates and upgrades.

3.4.2 Guidance documents

Various organizations including regulators, notified bodies and industry associations

produce guidance documents to help manufacturers of medical devices with the

interpretation of the regulations and the application of the standards. The technical

information reports and guidance documents relevant for the development of medical

device software include the following:

 AAMI TIR45:2012, Guidance on the use of AGILE practices in the development

of medical device software

 MEDDEV 2.4/1 Rev.9 June 2010, Medical Devices - Classification of medical

devices

 MEDDEV 2.1/6 January 2012, Medical Devices - Qualification and

Classification of standalone software

 NB-MED/2.2/Rec4 Software and Medical Devices

28

 IEC/TR 80002-1:2009, Technical Report-Medical device software-part 1:

Guidance on the application of ISO 14971 to medical device software

 General Principles of Software Validation; Final Guidance for Industry and FDA

Staff

For the purpose of this thesis, the most relevant document is the technical information

report AAMI TIR45:2012 produced by the Association for the Advancement of Medical

Instrumentation.

This technical information report provides recommendations for complying with

international standards and with medical devices regulations when using Agile

practices to develop medical device software. It also provides guidance to adapt Agile

practices to fit the unique needs of medical device software development.

This technical information report describes first the Agile perspective, explaining its

goals, values, principles and practices. It then goes on to describe the goals, values,

principles and practices that define the regulated world of medical device software

development. Most of the Agile values and principles align very well with those of the

regulatory perspective while others might provide some challenges. This document

also provides medical device software manufacturers with recommendations on how to

align the values and principles of both perspectives in a supportive manner.

3.5 Summary

Medical software development process is regulated by the competent authorities of the

areas in which the software product will be marketed and taken into use. Standards

and guidelines exist to assist development teams in the certification process.

The standard IEC 62304:2006 provides a conceptual framework that covers the

complete software development and maintenance phases. It identifies the processes,

activities and tasks that are carried out when developing medical software; it describes

the sequence and dependencies between activities and it identifies the milestones at

which deliveries are verified. The standard requires that a software development plan

exists and it is being followed. It does not mandate the usage of any concrete life cycle

model, implying that development teams should adapt the one that best fits their needs

29

and the existing practices of their organizations (e.g., regarding the usage of quality

and risk management systems).

The table below summarizes the requirements set by the standard IEC 62304:2006

grouped by categories:

Table 3.1 - Software development process requirements as specified by IEC 62304:2006

Quality management Demonstrated by compliance with ISO 13485

Risk management Demonstrated by compliance with ISO 14971

SW development process  Development and maintenance planning

 Requirement analysis

 Architectural design

 Detailed design

 Unit implementation and verification

 Integration and integration testing

 System testing

 Releasing

 Risk management process

 Configuration management

 Problem resolution

 Change management

The technical information report TIR45:2012 provides recommendations for complying

with international standards (i.e., IEC 62304:2006) and with medical devices

regulations when using Agile practices to develop medical device software. It also

provides guidance to adapt Agile practices to fit the unique needs of medical device

software development teams.

30

4 Guidelines for the Development of Medical Device SW

4.1 Introduction

As discussed in the previous chapter, the standard IEC 62304:2006 mandates that

certain activities have to be performed and documented during the software

development and maintenance phases. It does not mandate, however, in which

sequence these activities should be performed.

The standard IEC 62304, Section 5.1.1, requires that the medical device software

manufacture choose and define their software development life cycle. Although the

structure of the standard is heavily based on a Waterfall model, it does not impose the

use of any particular life cycle model.

In this chapter we will propose a number of guidelines for the development of medical

device software following an Agile approach. We will provide guidelines for the

software development process, the software maintenance process, the software risk

management process, the software configuration management process and the

problem resolution process. These guidelines are based on the Agile practices we

introduced in Chapter 3 and the recommendations provided by the Association for the

Advancement of Medical Instrumentation in their TIR45:2012.

We will propose an evolutionary and iterative development life cycle. We will discuss

how the development activities are defined in ways that the proposed processes

comply with the requirements set by the medical devices regulations and relevant

harmonized standards.

The processes and activities proposed here are expected to be used by the case

company software engineering team as guidance when developing and maintaining

their medical device software. The Agile principle reflect and adapt must be observed

in order to adapt the process at regular intervals to constantly improve the quality and

efficiency of the work.

31

4.1.1 Vision based baby monitor

The device being developed by the case company Circular Devices is a vision based

baby monitor that detects the baby’s breathing movements and triggers an alarm if the

movements stop. It is a stand-alone, dedicated device. Its hardware consists on an

embedded microprocessor, a dual camera, infrared light emitting diodes used for

illumination under dark operation conditions (night vision) and various input and output

devices to control its operation and to produce acoustical and visual alarm signals.

Software is a fundamental part of the medical device being developed. Software is

responsible for detecting and monitoring the baby’s breathing movements using

machine vision algorithms, measuring his respiratory frequency and producing an

alarm if there's no breath for a set number of seconds, a condition known as apnoea.

The diagram below shows a high level overview of the software architecture and the

main components of the system:

32

Figure 4.1: SW architecture diagram

At the bottom of the SW stack we find the Core OS layer which main components are

the Linux kernel, the C library, camera drivers, audio drivers, graphics and display

drivers and network stack. Most of these components are being developed by the open

source community or by the respective device manufactures (e.g., camera drivers).

The case company does not actively develop any of these components but it might

submit to the upstream projects bug fixes or modifications made to them. For these

components, the case company apply the SOUP maintenance plans and risk

management process described later in this chapter.

The next layer in the software stack is the Middleware layer. This layer is comprised of

software libraries that provide certain specialized functionality, such as the OpenCV

computer vision library, OpenGL graphic acceleration and various virtual machines and

interpreters such as Java and Python. Most of these components are either open

source or developed by their respective manufactures (e.g., Java is being developed

by Oracle). The case company adds extra functionality at this layer by implementing its

own machine vision algorithms. For the components being developed outside of the

case company the SOUP processes apply. For those components being actively

developed by the case company, the full development, maintenance and risk

management processes described later in this chapter need to be followed.

The top layer in the software stack is the Application layer. This layer is made of the

high level applications that implement the full functionality of the device (e.g., the

apnoea monitor). There are some other applications such as logging to keep track of

any occurrences of apnoea as well as a messaging application that can be used to

send alarms to other devices such as mobile phones or tablets. Any helper applications

used for tracing and debugging during the development process belong to this layer as

well. These applications are fully developed by the case company. The full

development, maintenance and risk management processes apply to the components

in this layer.

4.1.2 Software safety classification of the baby monitor

According to the Recommendation NB-MED/2.2/Rec4 Software and Medical Devices

(Co-ordination of Notified Bodies Medical Devices 2001), depending on the intended

use by the manufacturer, medical device software can be

33

a) a medical device or an accessory to a medical device, which must be CE-

Marked, or

b) a component and integral part of a medical device, which cannot be CE marked

in its own right, but which is covered by the conformity assessment of the

medical device of which it forms a part or

c) None of the above and therefore not covered by the Medical Devices Directives.

In our case, the software being developed falls under the second category since it is a

component and integral part of the baby monitor, which is a medical device.

The case company intends to place the vision based baby monitor in the market as an

infant or child apnoea monitor, which according to the Annex IX of the Council Directive

93/42/EEC and MEDDEV 2. 4/1 Rev. 9 would be classified as a Class II medical

device.

The standard IEC 62304:2006 requires that the manufacturer assigns to each software

system a software safety class (A, B or C) according to the possible effects on the

patient, operator or other people resulting from a hazard to which the software system

can contribute.

 Class A: No injury or damage to health is possible

 Class B: Non-serious injury is possible

 Class C: Death or serious injury is possible

The standard will require stricter risk management activities and higher levels of

documentation for software systems with a higher safety class.

4.2 Guidelines for the software development process

A software development process defines the activities that are to be performed when

developing a software product. The standard IEC 62304 requires manufacturers of

medical device software to define and follow a development process when developing

34

their software products. In this section we will outline the proposed software

development process based on Agile practices.

4.2.1 Software development plan

A software development plan must be created and updated regularly. This plan must

include a reference to the software development life cycle model being used. The

software development plan shall describe:

 The processes used when developing the medical device software

 The deliverables of each activity and task

 Traceability between system requirements, software requirements, system tests

and risk control measures implemented in software

 Software configuration and change management

 Software problem resolution process

This plan must be kept up to date as the development proceeds. It must include

references to system design and system development plans. The software

development plan must include integration and testing plans. It shall cover as well

software verification, risk management and documentation planning. Certain supporting

items, such as development tools, chosen software settings, etc. which might impact

the way the medical device software works shall be included in the development plan

as well.

In a sequential life cycle, such as waterfall or V-model, this planning will be naturally

performed at the beginning of the process, before the software development begins. In

an evolutionary life cycle model such as the one being proposed, planning activities are

being performed at different layers of abstraction throughout the whole project lifetime,

as we will discuss in the next sections.

35

4.2.2 Software development life cycle model

The software development life cycle being proposed is based on an emergent and

evolutionary model. It makes use of proven Agile techniques and practices and adapts

them to the particular needs of a medical device software development context.

Figure 5.1 provides a high level view of the proposed life cycle￼ (Schwaber and

Beedle, 2002):

Figure 4.1 - SW development life cycle model based on Scrum

A “product backlog” consisting of “user stories” is created and its items are then

arranged based on their priority. The “product owner” owns the backlog and he is

responsible of updating and prioritizing it. At the beginning of each development

iteration or “sprint”, the development team will go through the product backlog and will

pick up the highest priority user stories to be worked on next. These stories will form

the “sprint backlog”. The sprint backlog will be then further decomposed on tasks that

developers can process during the sprint. These tasks include software design,

implementation, integration, testing, verification, documentation, etc. Each day there is

a “daily stand-up” meeting where the team members discuss their progress, identify

any impediments and choose their next work tasks. At the end of the sprint, a “sprint

review” is carried out where the team demonstrates the stories that have been

completed during the sprint to the product owner and any other interested stakeholder

(i.e., customer or marketing representative). The sprint review demonstrations are a

36

mechanism to gather continuous feedback from users. They serve as a tool for

continuous requirements verification and validation by reducing the risk of incorrect

requirements definition during the early phases of product development. The product

owner accepts or reject these stories based on their completeness against the team’s

“definition of done”. Accepted stories are marked as completed while rejected ones are

taken back to the product backlog for re-prioritization. The team performs a “sprint

retrospective” meeting where they learn about how the team worked during the sprint

and those areas that require improvement are identified.

Process flow

The figure below describes the timeline of the development activities and the

abstraction layers of the proposed software development process:

Figure 4.2 - development process timeline

The product development starts with the conception phase in which key product

features are being identified. These features are then written in the form of user stories.

User stories capture software features from an end-user perspective. The user story

describes the type of user, what they want and why. A user story helps to create a

simplified description of a requirement (Rouse, 2015). Following a preliminary analysis,

these user stories are then prioritized in the product backlog. After that the first iteration

or sprint can commence. In this first iteration the work consists mainly on a high level

design of architecture and system core. A number of iterations are then performed until

the system is deemed completed. These iterations consist of software architecture,

detailed design, implementation, testing, integration, verification and documentation

37

activities and tasks. The output of these iterations are then grouped together to form a

“release”, where further verification, validation, testing and integration is being

performed.

4.2.3 Software development activities

The standard IEC 62304 defines a software development process model with a well-

established set of activities necessary to develop medical device software. The figure

below illustrates how these activities are being performed when following an Agile life

cycle such as the one being proposed:

38

Figure 4.3 - Mapping IEC 62304’s activities into Agile life cycle as defined by AAMI TIR45

At the top of the figure are the activities defined by IEC 62304. The bottom part of the

figure shows how those activities are executed in an incremental and evolutionary life

cycle model. When following such development life cycle, these activities are

performed several times at different levels of abstraction.

In the proposed life cycle, we find four layers of abstraction: the project layer, which

consists of the whole set of activities needed to deliver a finished software product; The

release layer consists of the activities needed to create a usable product, wherever

meant to be used by the end user or for internal purposes only; The increment layer

consists of the activities needed to create a set of useful functionality, although not

necessarily a complete product; the story layer consists of the activities needed to

create a small piece of functionality. The time span of these abstraction layers goes

from the whole lifetime of the software product (project layer), three to six months for a

release, two to four weeks for an increment and one to three days for one story.

Next we will describe in more details how the software development activities defined

by IEC 62304 are being performed at the different layers of abstraction in our

development life cycle:

Software development planning

In the proposed development life cycle, software development planning is done at

multiple layers. At the project layer, planning consists on the high-level activities of

project management such as project scoping, forming the team, allocating resources

and organizing the project into releases. At the release layer, planning addresses the

mid-level activities of project management, such as scoping the release, scheduling the

development activities within the release, defining integration points of the software and

the rest of the system and organizing the release into increments. At the increment

layer, planning addresses the low level activities of project management, such as

scheduling and planning the low level activities, defining low level integrations points

with other subsystems and organizing the increment into stories. At the story layer,

planning addresses detailed team and individual planning, such as allocating tasks to

individual team members, planning the execution of daily activities and tracking

progress.

39

Feedback occurs within and between all layers of planning: during the daily stand-up

meeting, developers share with the rest of the team what has been accomplished since

the last daily meeting and bring up any issues that might be blocking their progress;

during the sprint retrospective, the team reflect on how they are doing and find ways to

improve.

Software Requirements analysis

Software requirements analysis occurs at two layers. At the project layer, software

design inputs and specifications are processed and prioritized forming the initial

product backlog which consists of high level definitions of the software

requirements. At the story layer, detailed specifications of the software are created.

Software Architectural design

Software architectural design is being done at two layers of abstraction. At the project

layer, a high level architectural work happens (either by allocating a complete

increment to establish the architectural infrastructure as illustrated in figure 5.2 or by

defining smaller development tasks dedicated to architectural work not related to any

specific story). At the story layer detailed architectural design emerges by following

Agile principles such as simple design and refactoring.

Software Detailed design, unit implementation and verification

Software detail design and software unit implementation and verification occur at the

story layer. Following the Agile concepts of simple design and refactoring, detailed

designs emerges as code is being produced. By following a test-driven development

methodology, unit tests are written and executed at the same time than the code is

being developed.

Software Integration and integration testing

Software integration and integration testing occurs at three layers of abstraction. At the

story layer, software is being integrated into the rest as the system as code is being

developed by using a continuous integration system. By following test-driven

development methods, the integration is tested as the pieces are being put together. At

the increment layer, test-driven development is used to integrate and test individual

40

stories as they are completed to create a complete set of related functionality. At the

release layer, the integration of the complete sets of functionality provided by the

different increments forming the release is then tested.

Software System testing

Software system testing occurs at three layers of abstraction. At the story layer, a test

or other verification methods is created as the software requirement is defined. This

test might be executed at the story layer or later at the increment or release layers

when other required elements of the system are being integrated. At the increment

layer, tests defined by the stories are executed or new ones are created to verify

requirements related to subsystem integrations. At the release layer existing tests are

executed once again or new ones are created to verify system level integration

requirements.

Software Release

Software release activities are performed at the release layer.

4.3 Guidelines for the software maintenance process

The Standard IEC 62304 requires a software maintenance process to be established in

addition to the software development process. The software maintenance process

needs to be followed when performing software maintenance activities such as fixing

defects, implementing change requests or when adding new software functionality

(software upgrades) after the software product has been released to end users.

This section describes the software maintenance process in the proposed Agile

software development life cycle.

4.3.1 Software maintenance plan

A software maintenance plan has to be established for conducting the software

maintenance activities described in section 4.4.1, figure 4.2. This maintenance plan

should include the following:

41

 Procedures for receiving, documenting, evaluation, resolving and tracking

feedback arising after the release of the medical device software

 Criteria to determining whether the feedback is considered to be a problem

 Use of the software risk management process

 Use of the software problem resolution process

 Use of the software configuration management process

 Process to evaluate and implement upgrades, bug fixes, patches and

obsolescence of SOUP

4.3.2 Problem and modification analysis

As part of the software maintenance process, any software defect or change request

has to be analysed following a problem resolution process as described in section 5.6.

4.3.3 Modification implementation

After a software defect has been analysed and it has been found that it needs fixing or

a change request has been approved for implementation, we shall follow the same

Agile software development process as described in section 5.2. Software fixes or

change requests items are added to the product backlog, with a clear marking (such as

[BUG:XXX] or [CR:YYY] prefix in their title) to indicate that they originate from a defect

report of change request. They are then prioritized together with the rest of items in the

backlog. From here on the development activities don’t differ substantially whether they

correspond to new functionality or defect fixing and change request (other than in the

later cases the fix has to be sufficiently documented in the defect tracking or change

management tools).

4.4 Guidelines for the risk management process

The standard ISO 14971 defines the application of risk management to medical

devices. The case company develops medical device software that belongs to risk

class A or B.

42

When developing medical device software, the manufacturer must identify the software

items and potential causes that could contribute to a hazardous situation, including:

 Incorrect or incomplete specification of functionality

 Software defects in the identified software item functionality

 Failure or unexpected result from SOUP

 Hardware failures

 Reasonably foreseeable misuse

If a failure of SOUP used in the medical device software is a potential cause to a

software item contributing to a hazardous situation, any publicly available anomaly list

should be reviewed to identify any possible sequence of events that could lead to a

hazardous situation.

A risk management file must be maintained listing all potential causes of the software

item contributing to hazardous situations. The sequence of events that lead to

hazardous situations must be documented on this file as well.

4.5 Guidelines for the software configuration management process

The standard IEC 62304 requires a software configuration management process to be

established when developing medical device software. Configuration items include

developer tools, compilers, IDE, operating systems, testing tools, integration tools,

Software of Unknown provenance (SOUP) and so forth.

4.5.1 Identification of configuration items

A mechanism to uniquely identify configuration items and their versions must be

established. SOUP items are identified by a name, their manufacturer and a unique

identifier such as version number or release date.

A system configuration list must be created that lists all the configuration items and

their respective versions for a given software product release.

43

4.5.2 Change control

Configuration items must be changed only in response to an approved change request.

The changes must be implemented as specified in the CR following the development or

maintenance processes including appropriate verifications tasks. It is important to be

able to trace any changes to configuration items.

4.5.3 Configuration status accounting

The history of changes to configuration items must be kept. It should be possible to

retrieve the exact version of each configuration items for a given software product

release. The consistent use of software version management and continuous

integration tools can greatly simplify this task.

4.6 Guidelines for the software problem resolution process

A software defect tracking tool has to be configured and taken into used to track

feedback originating both internally and from end users. The use of such tool serves as

well as a mean to documenting the problem resolution analysis and fixing processes.

By using unique identifiers (such as the bug or CR id’s), It also helps in tracking the

sections of the source code being modified in order to address the defect or change

request and to trace it during the rest of the development activities until it is finally

made available to internal or end users as part of a software release.

Each software problem report must include the following:

 Type (example: corrective, preventive, or adaptive to new environment)

 Scope (example: size of change, number of device models affected, supported

accessories accepted, resources involved, time to change)

 Critically (example: effect on performance, safety or security)

The software maintenance process must be followed when implementing defects fixing

activities as described in section 5.3.3

44

The figure below illustrates the software problem resolution process flow:

Figure 4.4 - Problem resolution workflow

Some of the key principles of Agile software development are improvement, reflexion,

quality and safety. Hence an integral part of the problem resolution process consists on

reviewing the problems trends, understand what the root causes behind these

problems are and adapt the software development processes and practices in order to

minimize defects and improve quality and safety. This reflexion occurs both at the

story layer during the daily stand-up meetings and at the increment layer during the

team’s retrospective meeting.

Regulators, end users of the software product and any other affected parties must be

informed of the existence of the problem. Once a corrected version of the software has

45

been released it must be made available to existing users with instructions on how to

apply the upgrade.

4.7 Summary of the guidelines for the creation of medical device software

Creating medical device software consists not only on developing the software as such

but also the maintenance of the software during the product life cycle, configuration

management, risk management and problem resolution process once the product has

been placed into the market. In order to comply with the EU directives regulating the

development and manufacturing of medical devices and being granted certification for

the final product, certain activities have to be performed and documented during all

these phases of the medical device software creation.

The mind map below summarizes the guidelines being proposed:

Figure 4.5 - Guidelines for the medical device software creation

46

In this chapter we have outlined a set of guidelines that the case company should

follow when creating medical device software to ensure compliancy with the existing

medical device regulations. These guidelines are based on Agile practices that

enhance the safety, quality and performance of the software being created. These

guidelines have been presented grouped according to the phase of the software life

cycle that they apply. The software development activities that have to be performed to

comply with the standard IEC 62304:2006 have been mapped to the relevant

development phases in an evolutionary and iterative life cycle such as the one being

proposed here.

47

5 Conclusions

This chapter summarizes the work done in this thesis. We will describe the limitations

of this thesis and outline the next steps the case company would need to complete

before it can place into the market the medical device under development. We will

conclude with an evaluation of this thesis by comparing it outcome against the

objective described in Chapter 2. We will as well discuss about the reliability and

validity of this thesis.

5.1 Summary of the thesis

The case company, Circular Devices Oy, is developing a vision based infant apnoea

monitor that is intended to be used for the prevention of the Sudden Infant Death

Syndrome (SIDS). As discussed in Chapter 4, any device which primary function is, as

defined by its manufacturer, to prevent, diagnose or treat a medical condition is

considered as a medical device. Therefore, it must comply with the relevant medical

device regulations before it can be sold (MEDDEV 2. 4/1 Rev. 9 2010). These

regulations apply to all the components of the medical device, including its software. In

Europe, Directive 93/42/EEC defines the rules that regulated the safety and

performance of medical devices. Directive 2007/47 EC introduced the last technical

revisions to Directive 93/42/EEC.

International organizations such as the International Standardization Organization

(ISO) and the International Electrotechnical Commission (IEC) have published a

number of harmonized standards to help manufacturers of medical devices to comply

with the international regulations. The standard IEC 62304:2006 Medical device

software -- Software life cycle processes defines the requirements for the software life

cycle processes during the software development and maintenance phases. The

standard identifies processes, activities and tasks that have to be carried out during the

development and maintenance phases in order to demonstrate compliance.

Although the standard IEC 62304:2006 does not impose the use of a particular life

cycle, its layout and organization is heavily influenced by a waterfall, sequential

software development life cycle. The Association for the Advancement of Medical

Instrumentation (AAMI) have published a document titled Guidance on the use of Agile

48

practices in the development of medical device software to address the challenges and

particularities faced by manufacturers of medical device software when following Agile

methods in the medical device environment.

The case company needs to define its own software development practices in a way

that they comply with the European directives regulating the development of medical

devices by following the international standards mentioned above. This is the business

problem that this thesis sought to solve.

In this work we followed the research steps described in Chapter 2:

First we reviewed a number of case studies that discuss the benefits and challenges

faced by established medical device manufacturers when introducing Agile

methodologies into their software development teams. One interesting observation was

that most of the challenges the authors described had to do with the changes Agile

introduced into their current ways of working and corporate cultures rather than having

difficulties demonstrating compliance to the standards during audits. The benefits of

Agile methods in terms of software quality, productivity and team motivation were

apparent. We outlined the Agile values, principles and practices in the context of

medical device software.

After that, we analysed in depth the medical device software standards and industry

guidelines on the use of Agile. We then carried out semi-structured interviews with

industry experts to get insights on how their organizations have introduced Agile

methodologies for the development of medical device software.

We concluded this work by proposing an evolutive and iterative software development

life cycle and proposing a set of Agile software development practices that the case

company can use as guidance when developing the medical software for its infant

apnoea monitor.

5.2 Limitations and future research

This thesis presents a number of limitations and opportunities for future research. First

of all, there are geographical limitations: this thesis focuses on the requirements set by

regulators for the commercialization of medical devices in Europe. However, the

49

international standards and industry guidelines used in this theses (such as IEC

62304:2006 and AAMI TIR45:2012) are widely recognized by regulators elsewhere in

the world (i.e., FDA in the United States). As a future research, we should study the

regulations for medical devices in the other geographical areas where they case

company intent to sell the device. We should ensure that our software development

practices fulfil those requirements and adapt them when necessary.

There are also limitations in scope: this thesis focuses on the software part of a new

medical device, concretely on the software development process used when

developing medical device software. In order to obtain certification for the new medical

device, the complete device has to fulfil the quality and safety requirements set by

regulators for medical devices. Quality and risk management processes need to be

defined and follow during the development of all parts of the medical device. A future

research would include the development of a set of work instructions for the

development and assembly of the hardware components of this medical device.

Focusing on the software development process being proposed in this thesis, the

natural next steps would be to perform a number of development iterations or sprints to

validate and improve it. As we discussed in Chapter 5, the Agile principle reflect and

adapt must be observed in order to adapt the process at regular intervals to constantly

improve the quality and efficiency of the work.

5.3 Evaluation of the thesis

5.3.1 Objective vs outcome

The objective of this thesis was to propose a set of software development guidelines

based on Agile practices that the case company can follow when developing medical

device software in order to comply with the EU Medical Device Directives. After

analysing in depth the medical device regulations, the relevant harmonized standards

and industry guidelines alongside with the insights gained from semi-structured

interviews with industry experts, we proposed a number of Agile software development

practices for each of the phases of the software creation process addressed by said

standards (i.e., software development plan, life cycle model, software development

activities, software maintenance process, risk management, software configuration and

problem resolution).

50

As mentioned earlier when discussing the limitations of this thesis, it would have been

beneficial to perform a number of iterations to better refine and adapt the practices

being proposed here to the actual environment and needs of the case company.

5.3.2 Reliability and validity

In order to ensure the trustworthiness of this research, we will apply the model

proposed by Guba (1981). In this model, the author of qualitative inquiries must

consider the following four criteria when conducting their studies: credibility,

transferability, dependability and confirmability (Shenton, 2004).

Credibility

In a qualitative study, credibility means that the findings of the study are congruent with

reality. Credibility is one of the most important factors in establishing trustworthiness

(Lincoln and Guba, 1985).

In this thesis credibility is being achieved by utilizing well defined research methods

such as semi-structured interviews, performing literature reviews of the relevant

documents, such as regulations, standards, industry guidelines and published case

studies and following clear research steps as described in depth in Chapter 2.

Transferability

Transferability is concerned with the extent to which findings of one study can be

applied to other situations (Merriam, 1998).

In this study transferability is achieved by reviewing a sufficient number of cases

studies where Agile software methodologies are being used in medical device

organizations; by utilizing principles, values and practices commonly used and

acknowledged by the Agile community and by performing interviews with industry

experts with different roles from organizations where Agile has been taken into use

when developing medical device software.

Dependability

51

Dependability is the equivalent to reliability in a quantitative study. Reliability is based

on the assumption of replicability or repeatability. Since in a qualitative study it is

impossible to measure the same thing twice, dependability is used to ensure that the

study could be repeated although not necessarily to obtain the same results.

In this study, dependability is being ensured by defining a clear research design

process and research steps as it has been discussed in Chapter 2.

Confirmability

Confirmability refers to the degree to which the results could be confirmed or

corroborated by others.

In this study confirmability is being achieved on one hand, by describing the way the

research process has been performed in as much detail as possible. On the other

hand, confirmability is achieved by acknowledging the limitations of the research as it

was discussed in details earlier in this chapter.

52

References

Association for the Advancement of Medical Instrumentation (2012) Guidance on the

use of agile practices in the development of medical device software

Agile Alliance (2013) What is Agile Software Development? 8th June 2013 Retrieved

from https://www.agilealliance.org/agile101/what-is-agile/ [Accessed: 4th April 2015].

Beck, Kent, & Beedle, Mike, & van Bennekum, Arie, & Cockburn, Alistair, &

Cunningham, Ward, & Fowler, Martin, & Grenning, James, & Highsmith, Jim, & Hunt,

Andrew, & Jeffries, Ron, & Kern, Jon, & Marick, Brian, & Martin, Robert C., & Mellor,

Steve, & Schwaber, Ken, & Sutherland, Jeff, & Thomas, Dave. (2001) Manifesto for

Agile Software Development. Retrieved from http://Agilemanifesto.org/. [Accessed:

26th May 2015].

Drobka, J., Noftz, D., & Raghu, R. (2004) Piloting XP on four mission-critical projects.

IEEE Software, 21(6), 70-75.

Emergo Group (2010) Is my product a medical device? Retrieved from:

http://www.emergogroup.com/resources/articles/determining-device-classification

[Accessed: 20th June 2015].

European Commission (2007) Directive 2007/47/EC of the European parliament and of

the council. 5 September 2007. Retrieved from: http://eur-lex.europa.eu/legal-

content/EN/TXT/?uri=CELEX:32007L0047 [Accessed: 15th June 2014].

European Commission (2015) Medical Device Guidance Documents. Retrieved from:

http://ec.europa.eu/growth/sectors/medical-devices/guidance/index_en.htm#meddevs

[Accessed: 15th June 2015].

European Commission, DG Health and Consumer (2010) MEDICAL DEVICES:

Guidance document - Classification of medical devices. MEDDEV 2. 4/1 Rev. 9 June

http://agilemanifesto.org/

53

2010. Retrieved from: http://ec.europa.eu/consumers/sectors/medical-

devices/files/meddev/2_4_1_rev_9_classification_en.pdf [Accessed: 15th June 2015].

Grenning, J. (2001). Launching Extreme Programming at a ProcessIntensive

Company. IEEE SOFTWARE November/December 2001.

Guba, E. (1981) Criteria for assessing the trustworthiness of naturalistic inquiries

Articles ERIC/ECTJ Annual Review Paper. June 1981, Volume 29, Issue 2, pp 75-91.

Humble, J., Farley, D. (2011) Continuous Delivery. Addison-Wesley.

Leffingwell, D. (2007) Scaling Software Agility. Addison-Wesley.

Lincoln, Y., Guba, E. (1985) Naturalistic inquiry, Sage Publications.

Mc Hugh, M., Mc Caffery, F., Casey, V., Pikkarainen, M. (2012) Integrating Agile

Practices with a Medical Device Software Development Lifecycle. EuroSPI 2012

Conference.

National Center for Chronic Disease Prevention and Health Promotion (2015) About

SUID and SIDS Retrieved from: http://www.cdc.gov/sids/aboutsuidandsids.htm

[Accessed on 1st September 2015].

Rouse, M. (2015) User Story Definition. Blog post, February 2015. Retrieved from

http://searchsoftwarequality.techtarget.com/definition/user-story [Accessed: 15th June

2015].

Schwaber, k., Beedle, M. (2002) Agile Software Development with Scrum. Prentice

Hall.

Shenton, A. (2004) Strategies for ensuring trustworthiness in qualitative research

projects. Education for Information 22 (2004) 63–75 63 IOS Press.

Shields, P., Rangarjan, N. (2013) A Playbook for Research Methods: Integrating

Conceptual Frameworks and Project Management. New Forums Press.

54

Subramaniam, V., Hunt, A. (2006) Practices of an Agile Developer. Pragmatic

Bookshelf.

U.S. Department of Health and Human Services -. U.S. Food and Drug Administration.

(2014) Is The Product A Medical Device? Retrieved from

http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/Overview/ClassifyY

ourDevice/ucm051512.htm [Accessed: 14th June 2015].

U.S. Food and Drug Administration (2002) General Principles of Software Validation;

Final Guidance for Industry and FDA Staff. January 11, 2002. Retrieved from:

http://www.fda.gov/RegulatoryInformation/Guidances/ucm085281.htm [Accessed: 20th

June 2015].

http://media.pragprog.com/titles/pad/PAD-pulloutcard.pdf
http://media.pragprog.com/titles/pad/PAD-pulloutcard.pdf

 Appendix 1

1 (4)

Industry experts interviews

Interviewee #1

Company: GE Healthcare

Title: Lead Software Engineer

Position: Epic Owner / Team Lead

Total work experience: 15 years

Date: 1 August 2015

Below is a summary of the interview organized by the SW development topics that

were discussed during the theme interview.

SW life cycle and SW development methodologies

GE Healthcare uses an iterative SW life cycle. However, some activities such as final

validation and verification, design transfer to manufacturing and clinical pilots in

hospitals are being performed sequentially after the other R&D activities have been

completed.

GE follows Agile practices. There are some challenges when following Agile though.

For example, it is nearly impossible to do content pruning or to drop features of a

medical device (i.e., you just can’t sell a patient monitor lacking ECG functionality).

Also schedules are really tight in the medical device industry because of the way the

purchases process typically works in hospitals: budget allocation for new equipment

might be done even before the device has been developed. Once the purchase is

done, the devices must be supplied on the agreed time and it must contain all the

features. Delays on the delivery of the device caused by SW must be avoided.

SW validation and verification (V&V)

SW verification at GE Healthcare tests that the device works as specified. The SW

verification is being done incrementally as the SW is being developed. GE follows a

test driven development (TDD) process. Integration testing is being done incrementally

 Appendix 1

2 (4)

within the sprint and as part of the release activities. All tests results at all development

layers are logged and documented for future reference during certification or audits.

SW validation checks that the SW meets it intended use. SW validation is carried out in

increments during the development process of the device by clinicians at hospital. They

use prototype devices as secondary devices so that they can evaluate how they

perform compared to the current equipment.

At the very end of the development process and before “design transfer to

manufacturing”, a final round of thorough verification and validation (V&V) is then

carried out. For this phase some of the same tests produced during the development

are re executed as well as new ones to minimize the chances of defects being found

after manufacturing has started.

Safety classification

Each of the features or functions of the device receive a safety classification based on

the level of control needed to ensure safety and effectiveness of the device.

The highest classification of each of the functions that the device implements will

determine the classification of the device itself.

Risk and change management

During the SW R&D, the team must identify and list all the possible SW hazards that

might cause harm to the patient. Each hazard is assigned a probability (likelihood that

the hazard occurs), a visibility (if the hazard occurs, will it be visible to the clinicians?)

and the harm it can cause (e.g., skin burn). A risk classification is then done using

these three parameters as inputs.

The mitigation of the risk will depend on its classification. For some, it will be enough to

implement some additional safety features by software. Other will require mitigation by

hardware. In any case, risk has to be mitigated as far as it is feasible and reasonable.

In the case that there is no way a risk could be completely mitigated, a warning must

be placed on the user manual of the device.

Roles and team organization

 Appendix 1

3 (4)

GE Healthcare follows an Agile approach when it comes to team organization and roles

definition. It uses roles and artifact somehow similar to those found in Scrum but using

its own terminology: a “Lead System Designer” (Product Owner in Scrum) is

responsible for the content and prioritization of the product backlog. He is the contact

between the team and marketing and sales organizations as well as clinicians working

on the development of the device. An “Epic Owner” is responsible for the end to end

functionality and performance of a certain application of function performed by the

device (i.e., The Epic Owner for ECG measurement in a patient monitor device is

responsible for everything related to ECG “skin to screen”, meaning from sensors that

are attached to the patient and acquisition modules all the way up to data visualization

on the device’s screen). The team is self-organized with work being divided in “sprints”

(usually three weeks). The content of the sprint is agreed between the team and the

Lead System Designer during the sprint planning meeting. Within the sprint, the team

has daily scrum meetings. The scrum master helps the team on the daily work activities

and help solving any obstacles the team might encounter while doing their work.

Interviewee #2

Company: GE Healthcare

Title: Research Engineer

Total work experience: 20 years

Date: 15 August 2015

This interview was focused on the Agile Software Development Life Cycle (SDLC) used

at GE Healthcare.

GE Healthcare has developed its own Agile SDLC based on various regulations and

international standards: MDD 93/42/EEC, 21 CFR Part 820, IEC 62304:2006 and

FDA’s General Principles of Software Validation (GPSV).

The purpose of the SDLC is to protect patient and users of medical devices and

maintain public safety by ensuring that the software is safe, effective and that risks are

at an acceptable level.

 Appendix 1

4 (4)

The SDLC developed by GE Healthcare support many SW development

methodologies. A dedicated “Work instruction” exists that provide guidance to the use

of Agile SDLC.

The SDLC must address the requirements for risk management of medical devices.

GE Healthcare performs formal design reviews (FDR) at regular intervals to ensure that

the SW being developed fulfils the requirements set by regulators for medical device

software. There are three FDR during the SW development process, each focusing on

different aspects of the process. During these formal reviews, the development team

and other stakeholders (including management) evaluate aspects such as the software

architectural design, software requirements, software design, unit implementation and

unit testing, software verification, etc. During the last FDR, the SW release and SW

maintenance are evaluated as well as the final design validation.

In an iterative and evolutionary life cycle such as Agile, these design reviews are being

performed accordingly in an iterative manner and at different depths during the SW

development process.

