

Implementation of a Registry Management

Component for Mobile Sampling Service

Henrik Toivakka

Bachelor’s thesis

October 2015

Business Information Systems

Option of Software Development

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Theseus

https://core.ac.uk/display/38129944?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

TIIVISTELMÄ

Tampereen ammattikorkeakoulu

Tampere University of Applied Sciences

Tietojenkäsittely

Ohjelmistotuotanto

TOIVAKKA, HENRIK:

Implementation of a Registry Management Component for Mobile Sampling Service

Opinnäytetyö 49 sivua, liitteitä 3 sivua

Marraskuu 2015

Opinnäytetyön tavoitteena oli toteuttaa rekisterinhallintakomponentti liikkuvaan näyt-

teenottojärjestelmään Mylab Oy:lla. Yritys valmistaa laboratoriojärjestelmiä Suomessa.

Komponentti on osa suurempaa palvelintoteutusta, joka asennetaan asiakkaille ympäri

Suomea. Palvelintoteutusta hallinnoidaan rekisterinhallintakomponentin kautta.

Opinnäytetyön tarkoituksena oli parantaa kykyä hallita mobiilipalvelua, luoda hallittava

laiterekisteri ja tehdä mahdolliseksi laajentaa palvelua tuleville asiakkaille. Opinnäyte-

työn toimeksiantona oli mahdollistaa laitteiden pääsynhallinta ja rekistereiden hallinta

web-käyttöliittymän kautta. Komponentin on tarkoitus olla luotettava ja käytettävä tuo-

tantoympäristössä.

Toteutus koostuu JAX-RS-standardiin perustuvasta, REST-pohjaisesta, www-sovellus-

palvelusta ja yhden sivun -arkkitehtuuriin perustuvasta web-sovelluksesta. Www-sovel-

lus on toteutettu käyttäen tekniikoita Jersey, EclipseLink MOXy ja EclipseLink JPA.

Web-sovellus on toteutettu käyttäen tekniikoita AngularJS ja Twitter Bootstrap. Toteutus

on paketoitu yhdeksi asennuspaketiksi, joka voidaan asentaa suoraan asiakkaalle.

Projekti täytti kaikki vaatimukset ja on asennettu asiakkaan tuotantoympäristöön syksyllä

2015. Tuotosta käyttää yrityksen sisällä toimivat rekisterin ylläpitäjät. Projekti antoi ar-

vokasta tietoutta ohjelmistokehityksen metodeihin ja kokemusta seuraavien versioiden

tuottamiseen palvelusta.

Avainsanat: terveydenhuollon tietojärjestelmä, yhden sivun -arkkitehtuuri, rekis-

terinhallinta, Jersey, AngularJS

ABSTRACT

Tampereen ammattikorkeakoulu

Tampere University of Applied Sciences

Degree Programme in Business Information Systems

Option of Software Development

TOIVAKKA, HENRIK:

Implementation of a Registry Management Component for Mobile Sampling Service

Bachelor's thesis 49 pages, appendices 3 pages

November 2015

The objective of this thesis was to implement a registry management component for a

mobile sampling service at Mylab Oy. The company is a major manufacturer of

healthcare information systems in Finland. The component is a part of a server imple-

mentation that is installed for customers around Finland. The service installed for the

customer is administrated through the registry management component.

The purpose of this thesis was to make administration of the mobile sampling service

more intuitive, create a manageable device register and make it possible to expand the

mobile service for future customers. The requirements set for the registry management

component were the ability to control device access and administrate registries through

web user interface. The component should be reliable and usable in production environ-

ment.

The implementation consists of a JAX-RS RESTful web service and an AngularJS single-

page application. The web service is implemented with technologies such as Jersey,

EclipseLink MOXy and EclipseLink JPA. The single-page application is implemented

with technologies such as AngularJS and Twitter Bootstrap. The implementation is pack-

aged into a single install file ready to be deployed to a customer.

The project met all the requirements given and was installed to the customer’s production

environment in the autumn 2015. The implementation will be used by the registry admin-

istrators from within the company. The project gave valuable knowledge for the future

development and experience for implementing the next iterations of the application.

Key words: healthcare information systems, single-page application, registry

management, Jersey, AngularJS

4

CONTENTS

1 INTRODUCTION ... 8

2 SERVER ARCHITECTURE .. 10

2.1 Apache Tomcat .. 10

2.1.1 Public Tomcat ... 10

2.1.2 Private Tomcat .. 11

2.2 Components of the mobile sampling service ... 11

2.2.1 Mobile sampling applications ... 12

2.2.2 Router component ... 12

2.2.3 Service components .. 12

2.2.4 Registry management component ... 13

2.2.5 Registry management domain ... 14

2.3 PostgreSQL .. 15

2.3.1 Configuring database .. 16

2.3.2 Roles .. 16

2.3.3 Schemas, tables and views .. 17

2.3.4 Users .. 18

2.3.5 Transactions .. 18

2.3.6 Optimistic concurrency control ... 19

3 ANGULAR.JS WEB APPLICATION .. 20

3.1 AngularJS single-page application .. 21

3.1.1 Utilization of AJAX .. 22

3.1.2 MVW architecture ... 23

3.1.3 Bidirectional data binding ... 24

3.2 The principles of the AngularJS implementation 24

3.2.1 Controllers ... 24

3.2.2 Directives .. 25

3.2.3 Services ... 27

3.3 Angular-translate ... 28

3.4 UI-Bootstrap .. 29

3.5 Testing ... 29

3.6 Twitter Bootstrap ... 30

3.7 Discussion of AngularJS development .. 31

4 JAX-RS RESTFUL WEB SERVICE .. 32

4.1 Web Service techniques ... 32

4.2 Message formatting .. 32

4.2.1 EclipseLink MOXy ... 33

5

4.3 Jersey ... 34

4.4 Accessing Database ... 35

4.4.1 EclipseLink JPA .. 36

4.4.2 Usage of EntityManager ... 38

4.4.3 Connection Pooling ... 39

4.5 Logging .. 40

4.5.1 Apache LOG4J2 .. 41

4.6 Testing ... 41

5 PROJECT TOOLS .. 44

5.1 Maven .. 44

5.1.1 Dependency management ... 44

5.1.2 Deploying AngularJS application ... 44

5.1.3 Installing the application ... 45

5.2 Mercurial .. 45

5.2.1 Version control workflow ... 46

DISCUSSION ... 49

REFERENCES .. 50

APPENDICES .. 51

6

ABBREVIATIONS AND TERMS

TAMK Tampere University of Applied Sciences

cr credit

LIS Laboratory Information System

ACID Atomicity, Consistency, Isolation, Durability

API Application Programming Interface

VPN Virtual Private Network

SOAP Simple Access Object Protocol

REST Representational State Transfer

RESTful Service Web Service built with REST architecture.

Service Component Service providing interface between mobile applications and

the laboratory information system.

CRUD Create, Read, Update, Delete. Database actions, which define

what is being done with the data.

XML Extensible Mark-Up Language

ORM Object Relational Mapping

DAO Data Access Object

DAL Data Access Layer

AJAX Asynchronous JavaScript and XML

JAX-B Java Architecture for XML-Binding

SAX Simple API for XML

JAX-RS Java API for RESTful Web Services

JPA Java Persistence API. Application programming interface for

abstracting database queries.

Component Part of a greater implementation

SPA Single-Page Application

DOM Document Object Model

Framework Reusable library of code. Provides abstracted functionality to

make development easier.

Use case Action performed by someone to achieve a goal. Used to im-

age how the product is used.

Open Source Source-code under free license.

7

Duty Sampling Sampling procedure where the samples are taken in between

sampling rounds and in acute cases.

Round Sampling Sampling procedure where the samplers go through all units

in the hospital and take samples from the patients. Happens

every few hours.

SSL Secure Sockets Layer. Cryptographic protocol.

Registry Administrator The person administrating the registry of devices, services and

print label definitions.

Tomcat context An URL-address where to find the deployed web application

in the Tomcat container.

8

1 INTRODUCTION

The principal of the thesis is Mylab Oy, a major manufacturer of laboratory information

systems (LIS) in Finland. The system produced by the company is used in major hospitals

and laboratories around Finland.

Mylab also has smaller products and innovations, of which most are developed to support

the main business. One of them is the mobile sampling service, an integrated component

to the laboratory information system. The mobile sampling service is used to take blood

samples from the patients, but technically it is not restricted to only blood samples.

The service presents an accurate information of the samples and the sampling vessels in

a mobile device. The information is important, because the sampler needs to know what

samples are ordered and how they are taken from the patient. There are different kind of

tests that can be done to a sample and they require samples to be taken in specific ways.

The mobile sampling service also makes sampling more accurate as the sample is in-

stantly checked out after the sampling operation, giving an accurate sampling time. Get-

ting an accurate sampling time was not possible before. It helps laboratory workers to get

reliable results from the sample.

There is also a Bluetooth thermal printer that is used to print labels on the sampling ves-

sels. The labels are used to identify the samples in the laboratory. Prior to the service, the

information of the samples was on paper and the labels had to be printed before the sam-

pling operation could be started. The service speeds up the sampling procedure, thus mak-

ing the samplers work more efficient.

There are some problems with the mobile sampling service, which are becoming more

important to solve as the service is being deployed around Finland. The device registries

of the service are managed by hand, which makes it difficult to administrate the service.

Updating of the mobile sampling applications is done by hand so distributing the updates

to the customers is a burden. Controlling device accesses to the company network was

difficult as it was done by modifying a text file. The registry management component

brings solution to all of these problems.

9

The purpose of this thesis was to make administration of the mobile sampling service

more intuitive, create manageable device register and make it possible to expand the mo-

bile service for future customers.

The objective of this thesis is to implement a registry management application, which

contains a RESTful web service and a web user interface with the technologies used in

the company. Also techniques and project tools used are introduced to the reader.

The registry management component is a part of a server implementation that was in-

stalled to the customer in the autumn 2015.

10

2 SERVER ARCHITECTURE

The server architecture is introduced to bring some insight for the reader about the oper-

ational environment of the application. The registry management application is only a

part of the entire server implementation and it might be hard to understand the concept

without introduction to the other components of the server software.

The application is ran in a Linux-based server, which is located in a cloud computing

service. With the help of the cloud computing service, the system is more scalable and

easier to maintain. Cloud computing service allows taking regular snapshots, by which

the server can be recovered if something goes wrong.

2.1 Apache Tomcat

“Apache Tomcat™ is an open source software implementation of the Java Servlet, Ja-

vaServer Pages, Java Expression Language and Java WebSocket technologies. The Java

Servlet, JavaServer Pages, Java Expression Language and Java WebSocket specifications

are developed under the Java Community Process.” (Apache Tomcat Home, 2015.)

Tomcat is a lightweight and reliable HTTP web server software. It is very customizable

for different situations and can be used for many different purposes. Tomcat is used as a

container for the router, service and registry management components.

Tomcat was mainly chosen because it is lightweight and supports SSL-encryption. There

is lots of experience and knowledge of Tomcat in the company. The server contains two

Apache Tomcats, which are called tomcat-priv and tomcat-pub.

2.1.1 Public Tomcat

Tomcat-pub is exposed to the internet and it acts as a gateway to the company’s intranet.

Most functionality provided by Tomcat container is disabled in tomcat-pub. The purpose

is to provide secured connection and a routing service for the devices using mobile sam-

pling service.

11

The Tomcat is secured with SSL-encryption. Every device has a unique certificate, gen-

erated in the company. The Tomcat can’t be accessed from the Internet without a valid

certificate. By using a secured connection, the communication between the client and the

server is always encrypted. It also blocks all unwanted requests to the server.

2.1.2 Private Tomcat

Tomcat-priv is a container for service components and the registry management compo-

nent, which provide server-side functionality for the mobile sampling applications. It can

be accessed from the company’s intranet through static VPN-tunnel, therefore it does not

require a certificate.

2.2 Components of the mobile sampling service

Figure 1. A component diagram of the server architecture.

As can be seen in the Figure 1. the service consists of different components. Most of them

are dependent of the router component. However the mobile service is designed to be

modular in such a manner that the service components are not dependent of each other.

There is no limitation which components can be installed on the customer’s server.

12

2.2.1 Mobile sampling applications

A mobile sampling application is a client-side application located in a mobile device. The

application is the part of the service that uses the server and presents data to the end user.

It is used in clinical environment such as hospitals. There are different sampling applica-

tions for different sampling procedures, such as round sampling and duty sampling. The

sampling applications are developed on Android platform, but the service is designed to

support client applications on different platforms.

2.2.2 Router component

Router component is located in tomcat-pub and contains the routing logic of the service.

It is the most important component of the server. The purpose of the router is to receive

all incoming requests and check if they have access to the service components in the

server. A device can either have allowed or not allowed access to a service component.

The router redirects the traffic to the desired service component. In a nutshell, all it does

is receive a request, check the access status of the device and route the request to its

destination.

2.2.3 Service components

The business logic of the request happens in a service component. Every mobile sampling

application has a dedicated service component processing the incoming requests and que-

ries the laboratory information system for data. Service components can also read or gen-

erate application specific information, which can’t be acquired from the laboratory infor-

mation system. The purpose of the service component is to provide interface and process

the data for mobile sampling application, which increases the application performance in

the mobile device.

Library components are used to share code between service components. Code reusa-

bility is important when creating information systems because they tend to have code

overlap. Library components reduce the amount of work needed for implementations of

service components, if the same functionality is already implemented elsewhere. Registry

management does not use any library components, excluding Maven dependencies, thus

they are only briefly introduced.

13

2.2.4 Registry management component

Registry management component is becoming necessary for administrating the mobile

sampling service. The number of installed devices is increasing rapidly and it is becoming

very hard to administrate them by hand. Every customer has their own instance of the

server software, therefore the registry management is server-specific. It is independent of

any other component, even the router, and can be accessed through static VPN tunnel

from the company’s network. It is used to administrate the server software installed for

the customer.

As can be seen in the Figure 2. the registry management component consists of a JAX-

RS RESTful web service made with Jersey framework, an AngularJS single-page appli-

cation and uses PostgreSQL as the database.

The data of the customer’s devices, services, print label definitions and laboratory infor-

mation system interfaces is stored in the database and displayed through the AngularJS

application. The component allows the registry administrator to modify the displayed

data, distribute sampling application updates to the devices and control the device access.

Figure 2. A component diagram of the registry management component.

14

2.2.5 Registry management domain

The registry management domain model diagram can be found in the Figure 3. The ob-

jective of the domain model is to provide device access control, be able to administrate

print label definitions, device and service registries and distribute application updates to

the mobile devices with auto-update.

Device access control allows the administrator to take action in case of theft or any other

abuse of the service. The device access control was done before by modifying a text-

based list. However administrating it has become harder as the number of devices in the

service is incrementing.

All samples taken in hospital are marked with a label printed according to the print label

definition. Sometimes print labels have to be modified. The print labels are customer spe-

cific data.

The updating of the mobile sampling applications was done by hand before the existence

of the registry management component. The mobile applications can’t be found in any

app market such as Google Play Store or Apple Appstore. They were installed locally by

downloading the Android application package into device’s internal storage. The auto-

update requires information about the application and service versions. The update can

either be mandatory or voluntary depending on the importance. Mandatory updates are

distributed by incrementing minimum application version in the InternalService-object

which affects all devices attached to the service. Voluntary updates are distributed by

incrementing target application version in the DeviceAccessToService-object and af-

fects only the specific device. The objects are modeled in the Figure 3.

The purpose of the device groups is solely to make it possible to group devices, allowing

to see which unit and group they belong to. The groups are made after the units of a

customer, usually a hospital, and provide contact information of the person in charge.

15

Figure 3. Registry management domain model.

2.3 PostgreSQL

PostgreSQL is open-source database implementation used by many large companies

around the world. Being open-source and free is an advantage to look at, because it lowers

the maintaining costs. A database must provide security, reliability, stability and extend-

ibility. ACID-transactions, optimistic locking and connection pooling are necessary fea-

tures and most database providers implement those features by default. (PostgreSQL Ad-

vantages. 2015.)

There are two database choices in the company, which are PostgreSQL and Caché. The

reason for choosing PostgreSQL was because it is open-source, free to use and Caché is

not generally a good database choice for this kind of a project, because the amount of data

is not huge.

The database is the most persistent part of the application environment. A well-designed

and established database is important for an enterprise level application, because chang-

ing the database is awkward after the application has been deployed into production en-

vironment.

16

2.3.1 Configuring database

Database configuration affects the performance, security and reliability of the whole sys-

tem. Giving database users access only to the information needed is a good way to protect

a database. Performance can be improved by using connection pooling and indexing.

A database should be connectable from trusted hosts or only from localhost, therefore the

database cannot be queried without direct access to the server. The purpose is to create a

secure database, which can only be accessed from trusted hosts.

2.3.2 Roles

Database roles are generic groups which can be granted privileges to execute actions in

the database. Changing a role is reflected to all users under the role. A good practice is to

have only the needed privileges on the database role. If the application only reads data, it

should only have privileges to do that. If the role had privilege to insert data, it could lead

to unexpected security vulnerability.

Roles can prevent connections from unwanted locations. A role for database admin could

be assigned to be connectable only from the localhost. Connections from anywhere else

than localhost are blocked.

CREATE role persistence_interface_user NOINHERIT;
CREATE role user LOGIN PASSWORD 'XXXXXXX' INHERIT;
GRANT persistence_interface_user TO user;

Figure 4. Example of creating database roles.

In Figure 4. there are two roles created. A role for accessing database tables and a role for

logging in to the database. It is optional to set a password for a role, but it is always

recommended for login roles. The role ‘persistence_interface_user’ is granted to the user,

so the user can login and access tables in the database.

17

2.3.3 Schemas, tables and views

A database schema can be thought as a container for logically grouped data. Schemas

provide extra level of security and a way to group data more effectively in the database.

Roles and users can be granted access to different schemas.

Tables are the structured collection of data in the schema. Tables consist of rows and

columns, where the actual data can be found. Table cells may contain any basic type data

or references to other database tables.

Views are pre-made queries to the database, which query the data every time they are

called. The advantage of views are that they provide extra security as they can be set to

read-only mode and consist of the cells from other tables. (PostgreSQL 9.4.4 Documen-

tation. 2015.)

CREATE SCHEMA persistence_interface;
GRANT USAGE ON SCHEMA persistence_interface TO persistence_interface_user;
ALTER DEFAULT PRIVILEGES IN SCHEMA persistence_interface GRANT SELECT, UPDATE,
INSERT, DELETE ON TABLES TO persistence_interface_user;

Figure 5. Example of creating a database schema.

In Figure 5. database schema is created. Privileges are granted to a role created in Figure

4 in such a manner the users possessing the role can access the schema. The role is also

granted with select, update, insert and delete privileges on all tables on the schema. After

creating the schema, the tables and views can be created to the database. A good practice

for development is to have SQL-scripts for quickly formatting the database and filling it

with test data if needed. For this project there is a script for recreating all tables and views.

Example shown in Figure 6. only contains script for one table. There is also a database

dump file used for populating the tables with test data.

18

-- Drops table, if it exists --
DROP TABLE IF EXISTS persistence_interface.client_application;

-- Creates the table and its unique indexes --
CREATE TABLE persistence_interface.client_application (
 id SERIAL NOT NULL,
 name VARCHAR(30) NOT NULL CHECK (name <> ''),
 version INT NOT NULL,
 download_url VARCHAR(100) NOT NULL,
 CONSTRAINT pk_client_application PRIMARY KEY(id));
CREATE UNIQUE INDEX ui_unique_application_version ON
persistence_interface.client_application (name, version);

-- Grants the database user privileges to the table's sequence --
GRANT USAGE, SELECT ON SEQUENCE persistence_interface.client_application_id_seq TO
xxx;

Figure 6. Example script for creating a database table.

2.3.4 Users

It is generally a good practice to have different database users for different purposes in

database. A database should have one root user that creates the database, but does not

have access to the schemas. There should be a user for creating schemas and tables and it

should have privileges to modify data in that particular schema. This is done to prevent

harmful actions in the database in case of a security breach. Lastly there are users who

can read and modify data, but can’t change the table structure. These privileges are gen-

erally granted by creating roles for them. For example there could be 3 database users for

different service components that all have a role ‘persistence_interface_user’.

2.3.5 Transactions

Transactions are a way to make sure the data stays intact between operations in the data-

base. It prevents multiple operations to be done at the same time by locking other users

out while executing a transaction. Reading database should be kept as light as possible

while in transaction, because it locks other users out while reading. However only inserts,

updates and deletes need a transaction since they modify the data. Read operation does

not modify the data, so a transaction is not needed. Good practice is to have one complete

operation within one transaction as that leaves less space for transaction failure. Transac-

tion usually fails when the given parameters are either out of bounds or invalid.

19

A failed transaction rolls the database state back to where it was in the beginning of the

transaction. After a failure the next transaction in the queue is executed. However there

is a problem with transactions, when two users are modifying the same data at the same

time. Both users want to change the data, but neither of users know about the other user

modifying the data. There is a possibility this could break the application or corrupt the

data. (R.Elmasri & S.Navathe 2004, 558-564).

2.3.6 Optimistic concurrency control

Optimistic concurrency control (optimistic locking) is a unique serial column in the data-

base table, which can be used to track the version of the table. After every successful

transaction the serial number is incremented to let next transaction know the data has been

updated. If there are two transactions changing the same table, the latter gets rejected

because the serial number has changed after the first transaction. In this case the data in

the client application needs to be updated to reflect the database changes. The purpose of

optimistic locking is to ensure that the data of user A is never overwritten by user B

without the users being aware of it. (R.Elmasri & S.Navathe 2004, 599-604).

There are also other ways to do concurrency control, but the idea behind optimistic lock-

ing is to read, validate and write in one phase. It is called optimistic because it is assumed

there is not much interference during transactions. However if interference happens often,

optimistic locking might not be the best choice.

20

3 ANGULAR.JS WEB APPLICATION

The user interface is required to be web-based and work on all common browsers. It is

supposed to present data in visual form to a registry administrator. The goal is to allow

the registry administrator to administrate devices, applications, print label definitions and

services. It is also used for device access control and distributing application updates. The

user interface is designed for professional use and has high learning curve for some fea-

tures, like distributing updates.

The user interface is implemented using AngularJS framework and open-source libraries

such as UI-Bootstrap and Angular-translate. The styling is done with Bootstrap CSS-li-

brary. The implementation relies on frameworks because it reduces the amount of code

maintenance.

AngularJS is an open-source framework maintained by Google and community of devel-

opers and corporations. AngularJS is used to create rich internet applications (RIA). It

is quick and simple to develop and very extensible framework allowing to create func-

tionality for web sites. AngularJS was chosen because of its popularity and being open-

source framework.

Figure 7. User interface in mobile view.

21

Figure 8. User interface in desktop view.

In Figures 7-8 is shown the user interface in mobile and desktop views.

3.1 AngularJS single-page application

Single-page application (SPA) is a web application with the purpose of providing better

user experience than traditional web applications. The difference between a single-page

application and a traditional web application is that the single page application is initially

loaded from the server and fragments of the application are refreshed with AJAX every

time action is executed in the user interface. The initial load of the application is slower,

but after that a single-page application works faster than a traditional web application.

The advantage of using single-page application architecture is noticed when using the

application in a slower network as the architecture reduces the amount of requests to the

server and only fragment of the page is loaded at the time. In large-scale applications,

22

SPA increases the server performance because most of the computing is done in the client.

However in this scenario the server load is not an issue, but it should be taken in consid-

eration for future.

The disadvantage is the need for JavaScript support in the browser. However all modern

browsers support JavaScript and have it enabled as default. Navigation in the application

breaks the browser history in some cases and that must be taken in consideration as user

might want to use forward/back buttons in the browser.

The navigation problem is resolved by ngRoute-module of the AngularJS. It provides

JavaScript routing for the application, which uses URL-paths for the navigation. The Ja-

vaScript routing works inside Tomcat container by using #-symbols in the URL-path after

the Tomcat context path changes to the AngularJS application’s path.

3.1.1 Utilization of AJAX

AJAX is term for using combination of HTML, DOM, HTTP requests and formatted

messaging techniques together. It works in the background, so user will not notice its

presence. All most common web browsers support it. It enables dynamic exchange of

data with the server in small fragments. The purpose of AJAX is to improve load times,

lower network traffic and increase usability as only fragment of the application is loaded

when the state changes.

AJAX is used for all HTTP-requests in the AngularJS application. It creates dynamic

feeling for the end-user as the data updates every time an action is executed. AJAX is

used through an in-built $http-service of the AngularJS.

Every HTTP-request in the application goes through the function shown in Figure 9. The

function is used for creating custom requests to the server and handles the outcome with

either success or error –functions. On success, the data is resolved and returned to the

controller. On error, the data is rejected and an error message is broadcasted to the con-

trollers. The function is called from a service, which implements the actual requests. The

function shown in Figure 10. calls the http-function and stores the data to the master store,

where it can be loaded to the controllers.

23

function http(url, method, payload, errorMessage, headers) {
 var defer = $q.defer();

 $http({
 method: method,
 url: url,
 data: payload || {},
 headers: headers || {}
 })
 .success(function(success) {
 defer.resolve(success);
 })
 .error(function(error, status, headers, config) {
 defer.reject(error);
 $rootScope.$broadcast('HttpErrorEvent', status, errorMessage);
 });
 return(defer.promise);
}

Figure 9. Example function used as the base for all requests going through the client.

function getDevices(url) {
 return api.connect(url, 'GET').then(function(response) {
 self.store.devices = response;
 });
};

Figure 10. Example function from the HTTP-service.

3.1.2 MVW architecture

Model-View-Whatever is a paradigm used by the AngularJS community. MVW is an

architectural pattern for implementing user interfaces. The great thing about MVW is that

it does not limit the developer to one pattern, but allows using whatever suits the situation.

The purpose of architectural patterns is to make code easier to maintain and develop by

keeping business and presentation logic separate.

In this project the approach used is Model-View-Controller. The model is located in the

RESTful service component and it is retrieved to the StoreService. Controller loads the

model and it is shown in the view. Actions in the view trigger actions in the controller,

which manipulate the data and send it back to the RESTful service. The data can also be

manipulated with custom directives injected to the view.

24

3.1.3 Bidirectional data binding

Bidirectional data binding is one of the most notable features of AngularJS. It reflects the

data instantly to the model from the view and likewise, when the data in model is modi-

fied, it is reflected back to the view. Bidirectional data-binding creates dynamic feeling

to the web application as input and actions are instantly noticed in the application state.

It brings some problems for usability as it may confuse the user and make room for errors.

Sometimes users are confused when the model updates instantly, because other websites

do not function that way. However it is hard to change built-in features in a framework,

so the restrictions were taken in consideration when choosing the framework.

3.2 The principles of the AngularJS implementation

AngularJS application consists of different modules that have different purposes. Some

of the most basic modules are controllers, directives and services.

3.2.1 Controllers

In the Figure 11. is shown a simple AngularJS controller. The controller inherits from the

ParentController that has functions and attributes shared between all controllers. The

ParentController was found as a good practice to keep the code overlap in minimum and

to reduce the overall size of the controllers.

The controller has native AngularJS providers as dependencies. There are also a custom

services as dependency that contain application business logic. The dependencies are in-

jected to the controller by the AngularJS $injector service. It is called dependency injec-

tion. (AngularJS Dependency Injection, 2015.)

The controller contains mostly user interface logic and the injected services contain the

logic for communicating with the RESTful web service. In the last lines of the Figure 11.

the application data is retrieved from the StoreService when initializing the controller.

The purpose of StoreService is to store all application data temporarily, so the views can

be loaded instantly for the user. The data is updated when the user performs an action in

25

the user interface. In the Figure 12. is shown an example of using functions and attributes

from the controller in the HTML-view.

app.controller('AccessMonitoringController', ['$scope', '$controller',
'StoreService', 'URLFactory', function($scope, $controller, StoreService, urls) {

 // Extends from the ParentController.
 // ParentController contains functionality shared between all controllers.
 $controller('ParentController', {$scope: $scope});

 // Initialize variables

 $scope.selectGroup = function(group) {
 $scope.selectedGroup = group;
 };

 $scope.isSelectedGroup = function(group){
 return $scope.selectedGroup === group;
 };

 $scope.selectAll = function() {
 $scope.selectedGroup = {};
 };

 // Get data from StoreService for populating the views.
 $scope.store.clientAccess = StoreService.store.clientAccess;
 $scope.store.devices = StoreService.store.devices;
 $scope.store.groups = StoreService.store.groups;

}]);

Figure 11. Example of simple AngularJS controller.

<ul class="list-group">
 <li ng-click="selectAll()"
 class="list-group-item"
 ng-class="{ active : isSelectedGroup(group) }">
 {{ "menuItems.allItems" | translate }}

 <li ng-repeat="group in store.groups"
 ng-click="selectGroup(group)"
 class="list-group-item"
 ng-class="{ active : isSelectedGroup(group) }">
 {{ group.groupName }}

Figure 12. Example of using controller functions in the view.

3.2.2 Directives

A directive is an AngularJS specific marker on a DOM element. The directive tells An-

gularJS HTML compiler to attach functionality of the directive into the DOM element.

26

AngularJS code stays clean when hiding reusable code behind a directives. Directives

should be designed as reusable components because they can be used many times in an

application.

In Figure 13. is search component, used in multiple views. The directive returns a ren-

dered component to the view. The directive is given the information about the list the

search is made from, the property being searched and a callback function as an attribute.

In Figure 14 is shown the template, which is rendered to the actual view in the place of

mark-up shown in Figure 15.

Figure 13. Example of AngularJS search bar directive.

app.directive('searchBar', function() {
 return {
 // Restricts the directive to Element-only
 restrict: "E",
 // Directive template
 templateUrl: "backend/templates/components/search/component.search.bar.html",
 // Get attributes from the view
 scope: {
 list: "=", // Gets the list where to search from
 property: "@", // Property to search
 callback : "&callback" // Callback function
 },
 link: function(scope, element, attrs) {
 // Initialize variables
 scope.isVisible = false;
 scope.search = '';

 scope.selectItem = function(item) {
 scope.callback({ listObject : item });
 scope.search = undefined;
 };

 scope.$watch('search', function(value) {
 if(!value) {
 scope.isVisible = false;
 } else {
 scope.isVisible = true;
 scope.search = value;
 }
 });
 }
});

27

<div class="input-group" id="search">
<!-- Double because of a bug in the Bootstrap.css -->
<span class="glyphicon glyphicon-
search">
 <input type="text"
 maxlength="30"
 class="form-control"
 placeholder="{{ 'menuItems.searchPlaceholder' | translate }}"
 ng-model="$parent.search"
 popover="{{ 'menuItems.searchPopOver' | translate }}"
 popover-trigger="mouseenter">
</div>
<ul class="list-group search-overlay" ng-style="elementWidth" ng-show="isVisible">
 <li ng-show="results.length == 0" class="list-group-item">

{{ "searchComponent.noItemFound" | translate }}: {{ search }}

 <li class="list-group-item"
 ng-click="selectItem(device)"
 ng-repeat="device in (results = (list | filter : search))">
 {{ property !== undefined ? device[property] : device }}

Figure 14. Search bar template

<search-bar
 list="store.labels"
 property="name"
 callback="select(listObject)">
</search-bar>

Figure 15. Example of using the search bar directive.

3.2.3 Services

AngularJS services are used to share functionality across the application. They are in-

jected to the application by using dependency injection. The service object is derived

from provider recipe. There are different recipes on top of the provider recipe, but only

service and factory recipes are used in the project. Services are singletons, which means

that there is only one instance of the object in the lifetime of the application. (AngularJS

Providers, 2014.)

The StoreService is shared between all controllers and delivers the data retrieved from

the RESTful web service to the controllers. Difference between StoreService and the

ParentController is that ParentController extends the controller with its functions and at-

28

tributes. However the functions of the StoreService are only usable from within the con-

troller, they are not defined in the same context as the controller. In Figure 10. is shown

a function for retrieving device data that is located in the StoreService. The function can

be called by any controller the StoreService is injected in.

In Figure 9. the http() –function is the base function for all HTTP-requests in the applica-

tion. The function is called from the StoreService, which creates custom requests with the

function.

The difference between service and factory recipes is that service returns instance of the

invoked function. Factory recipe returns the value returned by invoking the function.

3.3 Angular-translate

Angular-translate is a library component used for localization in AngularJS applications.

Localization is not a requirement, but it is a thing that should be taken in consideration in

the early development. Using localization enables usage of different languages within the

application, which is important in Finland because of its bilingualism.

Implementing localization with angular-translate happens by using angular-translate di-

rective in the controller or in the view. In the Figure 16. error message is translated with

the AngularJS directive. The directive translates the text automatically, when the lan-

guage is changed.

In the Figure 17. error message is translated by using the directive within the controller.

In this scenario the translated string is used to inject custom error messages, if any errors

occur on the server. Both ways of using the directive are applicable in certain situations.

The actual translations are located in translation files containing key-value pairs for the

translations. Translation files are in JSON-format.

29

<span class="help-block red-text"
 ng-show="forms.deviceForm.deviceid.$error.unique">
 {{ "formValidation.uniqueError" | translate }}

Figure 16. Example of using angular-translate directive in the view.

var errorMessage = $translate.instant('errorMessages.genericDeleteMessage');

Figure 17. Example of using angular-translate directive in the controller.

3.4 UI-Bootstrap

UI-Bootstrap is a library for AngularJS and it contains native AngularJS components for

Bootstrap. Some of the Bootstrap components require Bootstrap’s JavaScript-library,

which is not used in this project because there is AngularJS already.

The library has little use in the project, because the generic components it provides do not

work in the desired way. UI-Bootstrap components have been used as placeholders in the

development and they have been replaced with tailored components over time.

3.5 Testing

AngularJS is designed with testability as one of the design philosophies. JavaScript code

has really good expression power, but is also challenging to debug as the compiler does

not give any exact information about errors. JavaScript code should be tested carefully

before deployment into production environment.

Testing can be either done by having a person to test the use cases. It can be a burden

after the application has been tested a few times. There is a way to implement unit testing

for AngularJS application by using the Jasmine framework. Jasmine is a behaviour-driven

JavaScript testing framework used to test individual actions. (AngularJS Unit Testing,

2015.)

On the AngularJS side of the project unit testing is not implemented and the testing the

user interface is done by hand. This decision was made because of limited time resources.

However, the unit tests are focused on the REST interface. Testing the server ensures the

30

database will stay intact because it will not permit any faulty actions. It prevents the pos-

sible bugs from user interface to have any impact on the database.

3.6 Twitter Bootstrap

Twitter Bootstrap is Twitter’s HTML, CSS and JavaScript –framework for mobile first

responsive web pages. In this project the HTML and CSS libraries are used. Responsivity

on the web application is not required, but it is still implemented for future purposes.

Bootstrap was chosen because it is popular and widely used framework in the industry. It

has consistent theme and can be modified with the Bootstrap customize tool (Bootstrap

Customize, 2015). Components can be brought to the AngularJS with the module called

UI-Bootstrap or they can be refactored to support AngularJS.

Best features of Bootstrap are the grid system, consistent theme and the component

library. It enables ability to rapidly develop user interface using placeholders that also

work on mobile devices.

The grid system is a powerful tool for creating responsive layouts. The system uses rows

and columns for dividing the content for different screen sizes. One row may contain up

to 12 columns, which can be stacked for smaller screens. The rows and columns are con-

trolled with predefined classes, and mixins for more semantic layouts. (Bootstrap CSS,

2015.) Examples of mobile and desktop user interfaces made with Bootstrap can be found

in Appendices 4-7.

Consistent theme and component library enable development without touching the CSS-

styles. The developer can focus on the functionality of the application and the layout can

be polished and customized later. The purpose of focusing on functionality is to get fast

results while creating prototypes or pushing new features out.

31

3.7 Discussion of AngularJS development

AngularJS is simple and rapid to develop in the beginning of the project. Developing

becomes considerably harder when doing something not in tutorials or the official docu-

mentation. The AngularJS documentation is comprehensive, but there are a lot of poor

examples and the naming conventions are sometimes confusing.

Whole application can be made modular by using directives and providers. Using com-

ponents will reduce the amount of bugs as the bugs have to be solved only once from the

component’s code. There are a lot of community created libraries for AngularJS, making

development simple, but many of them are not production quality.

Most problematic part of the AngularJS is the design principal, where developer has to

maintain the HTML and the JavaScript code at the same time. Having the code in two

places makes maintaining difficult.

MVW architecture is useful, however the disadvantage it creates is pretty obvious. There

needs to be certain coding conventions so the code stays readable to everyone. Every

feature implemented should be done with same syntax and function structure. AngularJS

syntax is basically JavaScript, but it has little do with native JavaScript. Even though

AngularJS has some problems, it can still be currently considered as one of the best Ja-

vaScript frameworks.

32

4 JAX-RS RESTFUL WEB SERVICE

The RESTful service is implemented with the Jersey framework. It also uses EclipseLink

MOXy to generate JSON-formatted messages and EclipseLink JPA to access the Post-

greSQL database. In nutshell, the service receives a request, executes the database actions

and generates a response.

4.1 Web Service techniques

Generally there are two popular approaches for implementing an application program-

ming interface for feeding data to a client-side application. Simple Object Access Pro-

tocol is a protocol for applications to exchange data with each other over a network.

SOAP is used for sending messages through Hypertext Transfer Protocol (HTTP) or Sim-

ple Mail Transfer Protocol (SMTP) protocols into a single address, and the receiving web

service processes the message. (Simple Object Access Protocol (SOAP) 1.1. 2000.)

There is a modern alternative for SOAP called Representational State Transfer

(REST), which is a better choice for a single-page web application. REST is a set of

conventions on how to use HTTP. (Bill, B. 2010, 4-6). REST uses URL-paths and HTTP-

methods for navigating in the API, which makes the API cleaner and easier to understand.

In this project REST architecture is used.

4.2 Message formatting

The most common message formats are XML and JSON, both widely used in web ser-

vices. Difference between them is that XML is a markup language syntax and JSON is a

way to present objects. JSON is specifically developed to be used with JavaScript and is

a more lightweight option than XML. Advantages of XML is that it represents the data

better since it has attributes and is more structured, but comes with a downside of being

more complex and needs more resources to be manipulated. In Figures 18 and 19 there is

the same array of users in different syntaxes to show the contrast.

In the registry management component only JSON is used because JavaScript can parse

it natively. The AngularJS client consumes the data as JSON. However JAX-B can handle

both formats without additional code.

33

{
 users: [
 {
 "name" : "foo",
 "age" : 21
 },
 {
 "name" : "bar",
 "age" : "35"
 }
]
}

Figure 18. Example of JSON syntax. An array of users.

<?xml version="1.0" encoding="UTF-8"?>
<users>
 <user>
 <name>foo</name>
 <age>21</age>
 </user>
 <user>
 <name>bar</name>
 <age>35</age>

</user>
</users>

Figure 19. Example of XML syntax. Same array of users as in Figure 18.

4.2.1 EclipseLink MOXy

MOXy is the EclipseLink’s implementation of the JAX-B specification. JAX-B specifi-

cation stands for Java Architecture for XML-Binding. It provides object-mapping for

XML and JSON documents, which can be used to marshal or unmarshal formatted mes-

sages. Marshalling stands for generating a document from the object-mapping and un-

marshalling stands for consuming the message into the object-mapping. The object-map-

ping presents a message as tree-based organization and content of the document.

Meet-in-the-middle is a technique offered by MOXy which enables mapping a document

into Java-classes and avoid static coupling with a single schema. It brings flexibility to

generating messages in the server.

34

MOXy uses SAX as its XML parsing method, which is one of the most efficient ways to

parse XML-documents in Java. Being reliable, efficient and flexible JAX-B fits perfectly

into server-side application as a message formatter. It also works perfectly well with other

libraries such as EclipseLink JPA as the same classes can be used for message unmar-

shalling and database operations. (EclipseLink MOXy Documentation, 2013).

In Figure 20. there is an example of configuring MOXy into Maven’s project object model

–file (pom.xml). As shown in Figure 23. MOXy uses JAX-B’s annotations to produce

JSON/XML. @XmlRootElement –annotation defines the root element of the generated

document. @XmlElement –annotation maps another object into the produced document.

The object may be a POJO (Plain Old Java Object) annotated with JAX-B annotations or

any basic data type.

<dependency>
 <groupId>org.glassfish.jersey.media</groupId>
 <artifactId>jersey-media-moxy</artifactId>
 <version>2.3.1</version>
</dependency>

Figure 20. Adding MOXy dependency to the project.

4.3 Jersey

Jersey is the reference implementation of the Oracle’s JAX-RS specification. JAX-RS is

the Java API specification for creating RESTful Web Services. The purpose of the REST-

ful Web Service is to expose objects in the database for a client-side application. This can

be done with Jersey, by exposing URL-paths that can be consumed by the AngularJS

client.

The content is retrieved from the API by sending HTTP-request to an exposed URL-path.

HTTP-request must be defined with HTTP request methods. For example sending a GET-

request could retrieve all data from the context path or only one object by id.

As shown in Figure 21. the methods contain the business logic of the application. In this

scenario the method is invocating GenericDaoImpl-class to query the entity manager for

data. The @Produces-annotation specifies what format the data is returned in. There can

be multiple formats configured and then the client can decide what is returned by using

HTTP headers. @Path-annotation specifies the context path the resource can be found

35

from. The data is wrapped into Response-object, which adds HTTP-headers, a status code

and a link to the object into the server’s response. (Jersey Representations and Re-

sponses.)

@GET
@Path("applications/{id: \\d+}")
@Produces(MediaType.APPLICATION_JSON)
public Response getApplication(@PathParam("id") int id) {

 EntityManager entityManager = factory.createEntityManager();

 GenericDaoImpl<ClientApplication> impl =
 new GenericDaoImpl<ClientApplication>(entityManager,ClientApplication.class);

 ClientApplication application = impl.findOne(id);

 UriBuilder uri = uriInfo.getAbsolutePathBuilder();

 return Response.ok()
 .link(uri.build(application), LINK_PARENT)
 .entity(application)
 .build();
}

@GET
@Produces(MediaType.APPLICATION_JSON)
@Path("applications")
public Response getAllApplications() {

 EntityManager entityManager = factory.createEntityManager();

 GenericDaoImpl<ClientApplication> impl =
 new GenericDaoImpl<ClientApplication>(entityManager, ClientApplication.class);

 List<ClientApplication> clientApplications = impl.getAll();

 UriBuilder uri = uriInfo.getAbsolutePathBuilder();

 return Response.ok()
 .link(uri.build(clientApplications), LINK_PARENT)
 .entity(clientApplications)
 .build();
}

Figure 21. Example of exposed GET-paths in Jersey-class.

4.4 Accessing Database

The HTTP-verbs trigger CRUD-actions in the Data Access Layer of the RESTful ser-

vice. The data access layer simplifies the access to the database by having a layer of ap-

plication logic abstracting raw SQL-queries (Bill, B. 2010, 19-21). Each of the HTTP

36

verbs has its own meaning, for example sending a HTTP-request with POST method in-

vocates insert() in the GenericDaoImpl. Data access layer can also abstract other func-

tionality like findByName or simply register.

Data Access Object (DAO) is an object handling the database query logic. DAO is an

implementation of the data access layer. It uses JPA objects mapped to the relational da-

tabase as a container for the data. This is called Object-Relational Mapping (ORM). It

protects the database from SQL-injections, vulnerabilities and allows the developer to

handle database contents in the code.

In Figure 22. is shown an interface which all data access objects in the project have im-

plemented. There is one generic implementation of the interface, but if more complex

functionality is needed in the interface, it must be overwritten. Example usage of the im-

plemented class is found in Figure 21.

public interface GenericDao<E> {
 public E insert(E e);
 public E update(long id, E e);
 public void delete(long id);
 public List<E> getAll();
 public E findOne(long id);
}

Figure 22. Interface specifying CRUD-functions.

4.4.1 EclipseLink JPA

EclipseLink JPA is the reference implementation of JPA 2.0 specification. JPA is used to

create link between the Java application and the database, creating a object-relational

mapping. It also supports file and NoSQL databases, but in this project PostgreSQL is

used as a relational database. (EclipseLink JPA Wiki, 2015.)

The benefit of using JPA is the ability to abstract database from the application and ex-

pose the data as Java objects. The queries can be done with SQL, but the preferred way

to use JPA is to either use Java Persistence Query Language (JPQL) or prepared state-

ments. In prepared statements the query is predefined, and the query is executed when the

prepared statement is called (EclipseLink JPA Wiki, 2015).

37

In Figure 23. is shown a configured JPA object. The @Entity-annotation specifies that

the object is an entity. The @Table-annotation specifies the queried table. The @Prima-

ryKey-annotation configures primary key handling of the database. In this case the pri-

mary key is generated from sequence, which is an incrementing value in the database.

Database columns are specified with the @Column-annotation. All existing columns do

not have to be annotated if they are not used within the application, which makes JPA

very flexible to use. JPA uses accessors and mutators to access the class attributes and

does not work without them. In this example there are also junction tables annotated with

@OneToMany and @OneToOne. The junctions are references to other tables. The ap-

plication-entity is attached to a service entity and an access entity.

@Entity
@Table(name = "persistence_interface.client_application")
@PrimaryKey(validation=IdValidation.ZERO)
@XmlRootElement
public class ClientApplication implements Serializable {

 @Id
 @GeneratedValue(generator="clientApplicationSeq")
 @SequenceGenerator(
 name="clientApplicationSeq",
 sequenceName="persistence_interface.client_application_id_seq",
 allocationSize=1)
 private long id;

 @Column(name = "name")
 private String name;

 @Column(name = "version")
 private int version;

 @Column(name = "download_url")
 private String url;

 @OneToMany(mappedBy="application")
 private List<ServiceAccess> access;

 @OneToOne(mappedBy="application",
 cascade={CascadeType.MERGE, CascadeType.DETACH})
 private InternalService externalService;

 @XmlElement
 public long getId() {
 return id;
 }

 public void setId(long id) {
 this.id = id;
 }

 // More setters/getters
}

Figure 23. Example of a JPA Object annotated with JAX-B & JPA annotations.

38

It is also possible to use the same class to query data and produce XML/JSON with JAX-

B. This reduces code overlap, since everything can be found within one class.

4.4.2 Usage of EntityManager

The core of the EclipseLink JPA is the EntityManager-class. The purpose of the class is

to implement the ORM-layer into the application that holds the information of the objects

in the database. The EntityManager can then be queried for data in the application layer.

EntityManager is instantiated from the class EntityManagerFactory. EntityManagerFac-

tory should be instantiated only once in the lifetime of the application, because the oper-

ation is database specific. EntityManager is equivalent to a database connection and can

be instantiated for every operation separately.

The greatest problem of using JPA is keeping the EntityManager-class up to date. When

queries are made through JPA, only the query data is updated and the rest of the object-

mapping stays unchanged. Sometimes when handling objects with references to other

tables, the data in the EntityManager’s data may differ from the actual data located in the

database. This must be kept in mind when writing the application code and handling

transactions.

The EntityManager can be kept in sync with the database by persisting the data every

time an action in data access object is executed by using the flush() -method. Nonetheless

the operation takes more resources, but ensures every change is stored in the database.

In the Figure 24. is shown a method for updating data. Reference of the object that is

going to be updated is queried from the entity manager. The new object is merged into

the reference of existing object. The changes are persisted to the database. The updated

object is returned so it can be sent back to the client as response. The action happens

within a transaction, which blocks all other users from modifying the data at the same

time.

39

@Override
public E update(long id, E e) {

 // Begin transaction
 entityManager.getTransaction().begin();

 // Get reference of the object
 E referenceToExistingObject = entityManager.getReference(type, id);

 // Merge incoming object to the existing object
 referenceToExistingObject = entityManager.merge(e);

 // Persist the changes to the database
 entityManager.flush();

 // Commit transaction
 entityManager.getTransaction().commit();

 // Close the entity manager
 entityManager.close();

 return referenceToExistingObject;
}

Figure 24. Example use of the EntityManager.

4.4.3 Connection Pooling

Connection pooling is a term used for maintaining a cache of database connections, which

can be reused when a database connection is needed. It enhances the performance of da-

tabase queries as opening and maintaining a connection for each request is very resource

and time consuming operation. If all connections are being used, a new connection in-

stance is made and added to the pool. (Tomcat JDBC Pool, 2015.)

In a nutshell, it decreases the time to get the query done and reduces the amount of com-

puting power needed to perform an operation. In a web application, connection pooling

increases performance slightly as every request to the RESTful service needs individual

database connection.

The connection pool is configured in Tomcat's context configuration file as shown in the

Figure 25. The pool is given a certain size and it is configured to release abandoned con-

nections. The connections are validated before using, just to ensure they work correctly.

40

Connection pool is taken to use in the JPA’s configuration file, shown in the Figure 26.

The application needs to know which transaction API and JPA providers are used as well

as which JPA objects are available.

<Resource
 name="jdbc/postgres" <!-- resource name -->
 auth="Container"
 type="javax.sql.DataSource"
 factory="org.apache.tomcat.jdbc.pool.DataSourceFactory"
 initialSize="34" <!-- initial size of the pool -->
 maxActive="377"
 maxIdle="233"
 minIdle="89"
 timeBetweenEvictionRunsMillis="34000"
 minEvictableIdleTimeMillis="55000"
 validationQuery="SELECT 1"
 validationInterval="34000"
 testOnBorrow="true" <!-- Validates the connection when it’s retrieved -->
 removeAbandoned="true"
 removeAbandonedTimeout="55"
 username="yyy"
 password="xxx"
 driverClassName="org.postgresql.Driver"
 url="jdbc:postgresql://127.0.0.1:5432/carein_server"
/>

Figure 25. Example of connection pool configuration in Tomcat’s context.xml.

<persistence-unit name="response" transaction-type="JTA">
 <jta-data-source>java:/comp/env/jdbc/postgres</jta-data-source>
 <provider>org.eclipse.persistence.jpa.PersistenceProvider</provider>
 <class>fi.mylab.server.system.model.label.Label</class>
 <!-- List of JPA objects in the project -->
 ….
</persistence-unit>

Figure 26. Example of connection pool configuration in JPA’s persistence.xml

4.5 Logging

In case of an error, logging is an important feature in the server software that can let the

server administrator know what caused the problem.

Disk space is an important thing to keep in mind as the log files might grow in size over

the time and fill the server’s hard drive. If the disk space suddenly runs out, the server

crashes. A good solution is to set a maximum size for the log files and append the files

after the limit has been reached. Writing logs to a different disk partition is also a good

practice.

41

In healthcare systems, saving patient data is illegal without a permission from govern-

ment, so obviously any request containing patient data must be carefully examined before

logging any information. Timestamps, device identifiers and any exceptions that might

have been resolved during the request may be logged without special permissions.

4.5.1 Apache LOG4J2

LOG4J2 is a logging framework for Java applications. It provides a good performance,

support for multiple APIs, automatic configuration reloading, filtering the log events,

support for plugins and property support (Apache LOG4J2 User’s Guide, 2015).

By using a logging framework, it is easy to keep log files consistent and clean. The frame-

work also takes care of performance and disk space issues. The ability to configure log-

ging at class and event level ensures that only the important things are logged at the given

time. The logger can be configured to debug-mode in the run time to display more detailed

logs. It is also possible to log different things into different files or a database. (Apache

LOG4J2 User’s Guide, 2015.)

In this project, info and debug-logs are written into separate files. Logging is turned off

as default. It is used mostly for development purposes as it slightly reduces the perfor-

mance of the application.

4.6 Testing

Testing a server-side application is sometimes difficult, because the application needs the

server infrastructure around it to work properly. Running tests in the project build phase

is impossible, if the application does not work without a database and a web container. It

is possible to mock them, but mocking means that the software will not be tested in pro-

duction-level environment.

This problem was solved by creating a tester application, which is executed against a

deployed web application. This way, the application can be tested in the environment it

is supposed to be in without any mock objects, and the real functionality is exposed to the

tester.

42

Benefits of a well implemented test suite are huge. The tests define how the code must

work, so there will be less bugs. The code can be tested at any time because the testing is

automatized. Refactoring code becomes easy, because the functionality of the software

can always be tested with the test suite.

Writing a good test suite requires lots of planning and precise use cases that can be turned

into writable tests. The difference between a use case and a test is quite simple. Creating

a use case starts from the top-level of abstraction and writing a test starts from the bottom-

level abstraction. Abstraction in this context refers to the viewpoint how the software is

being looked at. It could be looked from the end users view (top-level abstraction) or the

technical point of view (bottom-level abstraction).

When writing a test, there must be a defined use case. The use case is split into smaller

aggregates until the needed level of abstraction is achieved. Writing tests can start when

the aggregates are simple enough to be expressed in the code.

For example, there is a use case for installing a device, which requires many actions in

the REST interface. A use case has to be split into single operations which can be imple-

mented in the code, like inserting and updating a device object. After the functionality to

insert and update have been implemented, the test for installing a device can be written

completely. The created case could be used in higher level abstraction then.

The purpose of the tester application is to make testing simple and efficient. Every time

code is changed, the tests can be run without an effort. As shown in Figure 27. the meth-

ods are quite thin and test they the functionality of the REST interface. Everyone should

be able to contribute to testing and be able to write tests.

Writing and contributing in testing was made easy by writing a framework, which con-

tains built-in tools like object factories. The utility class contains CRUD-actions for every

exposed REST-path. The core of the test framework is Jersey Client API, which is used

to create HTTP-requests to the server. The assertion and running is done with JUnit

framework.

43

@Test
public void addDeviceTest() {

 ClientDevice request = DeviceFactory.getDeviceInstance();

 ClientDevice response = utility.addDevice(request);

 assertEquals(request.getAndroidId(), response.getAndroidId());
 assertEquals(request.getName(), response.getName());
 assertEquals(request.getCertificateName(), response.getCertificateName());
 assertEquals(request.getCertificateExpiration(),
 response.getCertificateExpiration());
 assertEquals(request.getInstallDate(), response.getInstallDate());
}

Figure 27. Example of test method in the tester framework.

Testing can also be done with any HTTP-client capable of sending customized requests

to the server.

44

5 PROJECT TOOLS

Repeating same steps or using inefficient tools might slow down the project workflow.

Good project tools improve the ability to work and help with documenting the project and

communicating with the team.

5.1 Maven

Maven is a tool for project management and comprehension. It is mature tool and has

support for almost any kind of Java project. Maven can generate documentation and re-

ports. It also manages dependencies, builds the project and runs tests on the project from

central piece of information, called project object model (Maven documentation, 2015).

Maven was chosen as the build tool, because it has plugins to work with the Tomcat. With

the Tomcat plugins it is possible to deploy an application to the Tomcat container, which

creates a lean workflow for building and testing the project.

5.1.1 Dependency management

The purpose of dependencies is to make sure every resource used in project is present

when building or running the application. Otherwise the application would crash, because

the called code does not exists in the application’s context. Dependencies can either be

from frameworks or independent libraries. Dependencies are important because they

eliminate the need of checking every resource between builds.

Maven has global repository containing tons of different dependencies. A developer can

also create local repository for private libraries, which can be then managed across dif-

ferent projects. This encourages to write reusable code, which can be used in different

projects. Dependencies are managed in POM-file of the project.

5.1.2 Deploying AngularJS application

One of the greatest concerns of the project was where to place the AngularJS code.

Tomcat natively supports JavaServer Pages technology, but that was not an option, since

AngularJS was chosen as the user interface framework.

45

The solution to this problem was to place AngularJS code to the project’s /webapps/-

directory, so it is found inside the war-package after building the project. When deployed,

the AngularJS application can be found in the web application’s root context path. This

way the application stays in one package and is easier to manage. Other solution would

have been to deploy the AngularJS application to another context path in the Tomcat, but

the installation would have not been as simple.

5.1.3 Installing the application

Compiling Java web application differs from normal Java application. The file format

used is WAR instead of JAR. Web application must be deployed to the Tomcat container

before it can be ran. The application can be deployed either manually from Tomcat Man-

ager or by copying it into the Tomcat’s /webapps/ -directory. Deploying can also be au-

tomated with Maven plugin, shown in Figure 28, which deploys the web application au-

tomatically after the build is done. After the deployment the web application can be ac-

cessed with any web browser or an HTTP-client.

<plugin>
 <groupId>org.apache.tomcat.maven</groupId>
 <artifactId>tomcat7-maven-plugin</artifactId>
 <version>2.1</version>
 <configuration>
 <url>http://localhost:8080/manager/text</url>
 <server>localhost</server>
 <path>/path</path>
 </configuration>
</plugin>

Figure 28. Example of configuring Tomcat 7 Maven-plugin.

5.2 Mercurial

Version control is very important in enterprise-level software development. The code

must be safe and recoverable in case of emergency. Also the ability to view the past revi-

sions of the code can be useful. Mercurial is used from the command line, because com-

mands can be given much more precisely and it is a plugin-free environment.

46

5.2.1 Version control workflow

// Make sure we are in default branch

C:\Development\projects\project_A>hg update default

// Check updates from the server

hg inc

// Pull incoming changes to the local master branch

hg pull

// Update the working files

hg update

// Create new branch for JIRA issue

hg branch JIRA01

// Initial commit on branch

hg commit -m "JIRA01 branch created"

Figure 29. Begin working with a JIRA issue.

Implementing an issue starts with checking version control and creating new branch for

the issue shown in Figure 29.

// Changes in the code

// Check the current status of the files

hg status

// Adds new files and removes removed files in single command.

hg addremove

// Can be used instead of addremove, to add a single file

hg add

// Commit changes

hg commit -m "JIRA01 [MESSAGE]"

Figure 30. Working with the project.

In Figure 30. is shown working with branch. Keep track of the changed files and commit

the changes, when ready.

47

// Move to default branch

hg update default

// Check if the default branch has been updated while working

hg inc

If there are any changes:

// Pull the changes into local master

hg pull

// Update working files

hg update

Merge the default branch to the issue’s branch:

// Move to the issue branch

hg update JIRA01

// Merge the default branch

hg merge default

/**** Resolve conflicts if there are any ****/

// Commit merging the branches

hg commit -m "default merged to JIRA01"

Merge development branch to the default branch:

// Update back to the default branch

hg update default

// Merge changes

hg merge JIRA01

/**** Resolve conflicts if there are any ****/

hg resolve --list

hg resolve -m [conflicting_file]

// Commit merge

hg commit -m "JIRA01 merged to default"

// Push new files to the remote repository

hg push --new-branch

Figure 31. Finishing an issue. Commit changes to the upstream.

Finishing an issue is bit more complicated because conflicts might occur when there are

multiple developers working on the same application. Workflow shown in Figure 31. is

designed to prevent conflicts by checking the version control status before pushing or

48

pulling anything. The updates are pulled from the repository and merged in the local de-

fault branch. In this stage the conflicts are resolved in the local branch, so they do not

spread out to the Mercurial’s upstream. After the changes from the default branch and

from the local branch are successfully merged, the changes can be pushed to the upstream

successfully.

49

DISCUSSION

The requirements set for the implemented component should be capable of controlling

device access, be able to distribute updates and administrate device, print label definition

and service registries. The software met the requirements and all features were success-

fully implemented.

The registry management component will be published as a part of the server implemen-

tation and installed to the customer in the autumn 2015. The new server software will

replace the old one, but they are ran concurrently until the new software is completely

verified. The registry management component is only a small part of whole server soft-

ware, but I found it as a good subject for a thesis, because it was simple enough to expose

from the rest of the server software.

The component helps other employees of the company in their work. The auto-update

feature reduces the amount of visitations to the customers, because it removes the need

for physically installing new versions of the sampling applications. Being able to check

devices and services from registry improves the quality of life for everyone, because the

text files containing the data are not needed anymore. Device access control creates extra

layer of security for the service.

There are plans to improve the registry management component. In the next version the

registry is expanded to include more peripherals and user data. More features are added

to sort and control the data in the user interface. The component is intended for internal

use only at the company, however there are plans to let customers have access to the user

interface and control their own devices.

Most difficult part of the work was to learn the technology stack the company uses. The

technology stack might need some reconsideration in the future. The mobile service is

capable of working with components implemented with different technologies, so that

leaves room for testing other solutions.

50

REFERENCES

AngularJS Dependency Injection, 2015. Read 07.07.2015

https://docs.angularjs.org/guide/di

AngularJS Providers, 2014. Read 07.07.2015

https://code.angularjs.org/1.2.28/docs/guide/providers

AngularJS Unit Testing, 2015. Read 07.07.2015

https://docs.angularjs.org/guide/unit-testing

Apache LOG4J2 User’s Guide, 2015. Read 08.07.2015

http://logging.apache.org/log4j/2.x/log4j-users-guide.pdf

Apache Tomcat Home, 2015. Read 07.08.2015

http://tomcat.apache.org/

Bill, B. 2010. RESTful Java with JAX-RS. O’Reilly Media, Inc. Read 01.07.2014

Bootstrap Customize, 2015. Read 07.08.2015

http://getbootstrap.com/customize/

Bootstrap CSS, 2015. Read 21.08.2015

http://getbootstrap.com/css/

EclipseLink MOXy Documentation, 2013. Read 12.05.2015

https://wiki.eclipse.org/EclipseLink/UserGuide/MOXy

EclipseLink JPA Wiki, 2015. Read 07.05.2015

https://wiki.eclipse.org/EclipseLink/Examples/JPA

Jersey Representations and Responses. Read 10.07.2015

https://jersey.java.net/documentation/latest/representations.html#d0e6616

Maven Documentation, 2015. Read 10.09.2015

https://maven.apache.org/guides/index.html

PostgreSQL Advantages. 2015. Read 10.10.2015

http://www.postgresql.org/about/advantages/

PostgreSQL 9.4.4 Documentation. 2015. Read 08.10.2015

http://www.postgresql.org/docs/9.4/interactive/index.html

R. Elmasri. S. Navathe. 2004. Fundamentals of Database Systems. Pearson Education,

Inc. Read 22.08.2015

Simple Object Access Protocol (SOAP) 1.1. 2000. Read 22.07.2015

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

Tomcat JDBC Pool, 2015. Read 09.09.2014

https://tomcat.apache.org/tomcat-7.0-doc/jdbc-pool.html

https://docs.angularjs.org/guide/di
https://code.angularjs.org/1.2.28/docs/guide/providers
https://docs.angularjs.org/guide/unit-testing
http://logging.apache.org/log4j/2.x/log4j-users-guide.pdf
http://tomcat.apache.org/
http://tomcat.apache.org/
http://getbootstrap.com/customize/
http://getbootstrap.com/css/
https://wiki.eclipse.org/EclipseLink/UserGuide/MOXy
https://wiki.eclipse.org/EclipseLink/Examples/JPA
https://jersey.java.net/documentation/latest/representations.html#d0e6616
https://maven.apache.org/guides/index.html
http://www.postgresql.org/about/advantages/
http://www.postgresql.org/about/advantages/
http://www.postgresql.org/docs/9.4/interactive/index.html
http://www.postgresql.org/docs/9.4/interactive/index.html
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
https://tomcat.apache.org/tomcat-7.0-doc/jdbc-pool.html

51

APPENDICES

Appendix 1. Registry management desktop layout in English

52

Appendix 2. Registry management layout - label view

53

Appendix 3. Access Monitoring View

54

55

56

57

