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The purpose of this thesis was to reduce the test run times in interoperability testing. Carrier 
Aggregation, a functionality of LTE-Advanced, increases test run times. In this thesis, the 
redundancy in test cases and it’s reduction was studied. 

The test measurements were conducted with an external interferer for better repeatability. The 
test cases were designed to be as comprehensive and as close to the actual interoperability cases 
as possible. To study the redundancy in Carrier Aggregation measurement results, four test cases 
were designed. 

Redundancy was found in Carrier Aggregation tests. In these cases, the test results are 
interchangeable with other results and do not need to be separately measured. According to the 
findings, the test run times were reduced by 69 % for a product in R&D phase. The evaluation of 
reduction was based on test plan. 
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PÄÄLLEKKÄISYYDEN VÄHENTÄMINEN LTE CA 
IOP PERFORMANCE –TESTAUKSESSA 

Opinnäytetyön tavoitteena oli interoperability-testauksen vaatiman testien ajoajan vähentäminen. 
LTE-Advancediin sisältyvä Carrier Aggregation lisää testien ajoaikaa. Opinnäytetyössä tutkittiin, 
onko testitilanteissa päällekkäisyyttä, jonka voi jättää erikseen mittaamatta. 

Työ toteutettiin suorittamalla mittauksia ulkoisesti tuotetuilla häiriöillä toistettavuuden 
parantamiseksi. Testitilanteet suunniteltiin mahdollisimman kattaviksi ja vastaamaan 
mahdollisimman tarkasti todellista interoperability-tilannetta. Testeiksi valikoitui 4 tilannetta, 
joiden avulla Carrier Aggregationin mittatuloksien päällekkäisyyttä voitiin arvioida. 

Carrier Aggregation –testeissä löytyi päällekkäisyyttä, joka voidaan jättää erikseen mittaamatta. 
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1 INTRODUCTION 

In 2013, the first commercial Long Term Evolution – Advanced (LTE-A) network 

was launched in South Korea. It is continuation to the evolution of wireless mobile 

technologies as a response to growing demand for coverage and capacity of 

mobile data services. 

The total number of mobile subscriptions is predicted to go from 7.1 billion in 2014 

to 9.5 billion in 2020, of which 90 % will be mobile broadband. Mobile phone data 

is estimated to grow 40 % each year in the same time span. Penetration of LTE 

is expected to be over 70 % of world’s population, while 90 % of the world’s 

population over 6 years old are expected to have a mobile phone. [1] 

 

 

 

Figure 1. Expected data traffic growth per device in petabytes from 2010 to 
2020. [1] 

 

To meet the growing demand for mobile data, 3GPP introduced a new feature 

called Carrier Aggregation (CA) in Release 10, a technical document describing 
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the new feature, in 2009 [2]. In CA more frequency resources are allocated to 

mobile user in order to meet the growing demand for mobile data. 

This thesis focuses on downlink CA, i.e. traffic from network to user equipment. 

Although uplink CA was introduced in Rel-10 as well, it’s not equally deployed. 

Developing uplink CA test procedure will be topical in a couple of years, but it is 

not in the scope of this thesis. Downlink CA is being actively developed and 

deployed by both network providers and user equipment manufacturers. 

As always, new technology requires R&D. Quality products need thorough testing 

throughout the R&D process. As new test cases are being adopted, the necessity 

of each should be evaluated to avoid unproductive procedures. In this thesis, the 

redundancy of testing is researched in order to reduce the testing effort. 

The addition of CA band configurations increases the test burden for R&D phase 

significantly, as it is not enough to measure reception only at specific frequency 

but with frequency combinations as well. The redundancy in the results of these 

measurements is evaluated. 

Test device manufacturers and mobile phone manufacturers have published 

white papers where the theory behind the technology is studied, e.g. [1], [2], [12], 

and [15]. White papers are reliable source of information as manufacturers are 

usually actively participating in the writing of specifications for technologies. 

3GPP publications are used widely, e.g. [25] and [29]. 3GPP publishes the actual 

specifications used by the industry. Along with the white papers and 

specifications, books about relevant technologies and businesses were used as 

well, e.g. [3], [7] and [9]. A few times magazines of relevant domain were used 

as reference material due to their popularizing approach to explaining 

mathematics, e.g. [28]. 

In the next chapter, previous mobile technology generations are presented and a 

structure of LTE network is presented. In the Chapter 3, the air interface of LTE 

is introduced to better understand sensitivity, band configurations and basics of 

tests conducted in this thesis. 
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In the Chapter 4, interoperability testing's purpose to find internal interference that 

degrades reception is laid out. Carrier Aggregation increases the tested spectrum 

and possibly introduces new phenomena. Necessity of tests and 

interchangeability between test results are considered. Calculation for the most 

economic measurement is presented. 

In the Chapter 5 test plan is formed, and 4 test cases are designed to find out 

whether there is redundancy in testing. Nonlinear distortion used in the 

measurements is explained. Transceiver block diagram and device setup in test 

stack are introduced. Sensitivity search as a test case is explained. 

In the Chapter 6 the measurement setups, results and observations are 

presented. Measurements are conducted with FDD bands, so applying the 

results for TDD bands is considered. Validity of the measurements is evaluated. 

In the end, plan for implementation based upon Chapter 6 findings is presented. 

Steps to successfully implement the reduction are presented and argumented. 
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2 EVOLUTION OF CELLULAR NETWORKS 

2.1 2nd generation mobile telecommunications technology 

In GSM and GPRS, GSM EDGE radio access network (GERAN) consists of base 

transceiver stations (BTSs), see Table 1 and Figure 3. The BTS is controlled by 

radio network controller (RNC). Time division multiple access (TDMA) is used as 

access scheme. Mobile equipment (ME) connects to the BTS. A network of BTSs 

is called GERAN, and GERAN connects to the core network. In GSM, circuit 

switching is used. GPRS uses circuit switching for real time services (e.g. phone 

calls) and packet switching for data services. GSM is referred to as 2G and later 

introduced GPRS is also referred to as 2.5G. [3], [4] 

2.2 3rd generation mobile telecommunications technology 

In UMTS technologies, a user equipment (UE) connects to a NodeB (NB), which 

is controlled by a radio network controller (RNC), see Table 1 and Figure 3. An 

access network of NBs is called UTRAN [5]. In Rel-99 and Rel-4, GSM’s TDMA 

was replaced by wideband code division multiple access (WCDMA) as access 

scheme [4]. In Rel-5 and Rel-6, high-speed packet access (HSPA) was 

introduced [4]. Both circuit switching and packet switching are used in UMTS [6]. 

IP address is allocated upon establishing data service and released upon closing 

the service [6]. MAC protocol layer, which is responsible for scheduling physical 

layer for UE, is located in the RNC in UMTS and in the NB in HSDPA [7], [8]. 

2.3 4th generation mobile telecommunications technology 

In 2008, 3GPP published Rel-8, the first specification for evolved packet system 

(EPS). In the EPS, core network, access network and user equipment are 

specified, see Table 1 and Figure 3. They are referred to as the EPC (evolved 

packet core), E-UTRAN (evolved universal terrestrial radio access network) and 

UE, respectively [9]. See Figure 2. In 2009, additions such as MIMO and public 

warning system were introduced in Rel-9 [10]. 
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The term E-UTRAN is used to describe the base station and the network side of 

LTE, and E-UTRA (evolved universal terrestrial radio access) is used to describe 

the LTE air interface [9]. In the next chapter, the air interface is described in more 

detail. 

The EPS utilizes packet switching for all services. IP address is allocated upon 

device switch on and released upon device switch off [6]. In the EPS basic 

architecture, the UE connects to the EPC over E-UTRAN. See Figure 2. [11] 

 

 

Figure 2. Basic EPS architecture. [11] 

 

EPC consists of 4 elements: HSS, S-GW, P-GW and MME. [11], [12] 

• Home subscriber service (HSS) is a database that manages user and 

subscriber information. It handles user authentication and access 

authorization. 

• Serving gateway (S-GW) routes IP packets of UE between the EPC and 

E-UTRAN. Between EPC and the eNB, there is S1-interface. 

• Packet data network gateway (P-GW) connects the EPC to outside IP 

networks. P-GW is responsible for IP address allocation. 

• Mobility management entity (MME) tracks and pages idle UEs and deals 

with mobility and security in E-UTRAN. 

EPC was designed to support E-UTRA, but also other radio access technologies 

(RAT) and handovers between them are supported. The EPC is fully backwards 

compatible with GERAN and UTRAN access technologies. The EPC is also 
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compatible with IP based non-3GPP specified access technologies, e.g. WiMAX, 

WLAN, CDMA2000 and fixed networks. [11] 

E-UTRA uses single carrier frequency division multiple access (SC-FDMA) for 

uplink and orthogonal frequency division multiple access (OFDMA) for downlink. 

In downlink, high modulation schemes (up to 64QAM), large bandwidths (up to 

20 MHz) and spatial multiplexing (up to 4x4) are utilized. This allows Rel-9 

specification to achieve one of the main goals set for 4G: theoretical peak data 

rate is 75 Mbps in uplink and 300 Mbps in downlink. In Rel-10, peak data rate 

reaches 600 Mbps with 8x8 spatial multiplexing, and with maximum bandwidth of 

100 MHz, 3 Gbps is reached. [13] 

Another main goal for E-UTRAN was flatter network architecture. Significant 

change to GERAN and UTRAN is the absence of separate controllers in E-

UTRAN. The functionality of controllers is mainly shifted to the evolved NodeBs 

(eNB). In Figure 3, the controller between base station and core network is 

therefore missing, and its functionality is spread to the bordering equipment. The 

eNBs connect via X2-interface to each other and via S1-interface to the EPC. 

With distributed intelligence E-UTRAN is faster in connection setup and 

handover. [13] 

Having MAC layer in the eNB is also an advantage gained by distributed 

intelligence. Scheduling physical channel between UE and the eNB is 

responsibility of the eNB, making communication and decisions quicker. Time in 

which the eNB evaluates radio channel quality and decides modulation and 

coding scheme, prioritizes QoS requirements for UEs, and informs UE which 

radio resources were being allocated to it takes only 1 ms. Connection is fast to 

adapt to environment and requirements. [6] 
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Figure 3. Architecture of generic mobile network. Relation between the parts of 
the network, itemized in Table 1, depicted. [6] 

Table 1. Cellular network generations. [3], [4], [5], [6], [9], [11] 

Technology GSM GPRS WCDMA LTE 

Network system GSM GPRS UMTS EPS 

Generation 2G 2.5G 3G 4G 

Core network 

switching 

Circuit Circuit/ 

Packet 

Circuit/ 

Packet 

Packet 

Base station BTS BTS NB eNB 

Controller Yes Yes Yes No 

Access network GERAN GERAN UTRAN E-UTRAN 

Multiple access 

scheme 

TDMA TDMA WCDMA OFDMA/ 

SC-FDMA 

Device ME ME UE UE 
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3 LONG TERM EVOLUTION AIR INTERFACE 

3.1 ITM-Advanced requirements and 3GPP specification 

In 2010, ITU decided to allow marketing Rel-8 and Rel-9 as 4G, although they 

technically do not meet the original requirements set for 4th generation mobile 

technology specified in ITM-Advanced in ITU-R [14]. The technology that actually 

meets the requirements is specified in Rel-10 and is called LTE-Advanced [2]. In 

2010, ITU-R evaluated 3GPP’s suggestion, and decided it fulfills the 

requirements for ITM-Advanced [15]. 

ITU-R specified key features for IMT-Advanced as follows: [16] 

• Peak data rate of 100 Mbps for high mobility and 1 Gbps for low mobility 

in downlink and 675 Mbps in uplink. 

• Peak spectral efficiency for downlink 15 bit/s/Hz with 4 antennas and 

uplink 6.75 bit/s/Hz with 2 antennas. 

• Scalable bandwidths up to 40 MHz. 

• User plane latency (time between IP packet at UE/the eNB IP layer and IP 

packet at the eNB/UE IP layer) less than 10 ms. 

• Support for high speed vehicular mobility up to 350 km/h. 

• Compatibility with other radio access systems. 

• Worldwide roaming capability. 

3GPP specified key features for LTE-Advanced as follows: [13] 

• Peak data rate of 3 Gbps for low mobility in downlink and 1.5 Gbps in 

uplink. 

• Peak spectral efficiency for downlink 15 bit/s/Hz with 4x4 MIMO and 30 

bit/s/Hz with 8x8 MIMO. 

• Bandwidth configuratins of 1.4, 3, 5, 10, 15 and 20 MHz and with Carrier 

Aggregation up to 100 MHz. 

• User plane latency 10 ms. 
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It is evident that LTE-A does not only meet the requirements of ITM-A but also 

exceeds them. 

3.2 Resource allocation 

3.2.1 LTE bands 

As LTE is evolution of UMTS, the frequency bands of UMTS are usable for LTE 

as well. Because LTE-A is an evolution of LTE, LTE-A uses same frequency 

bands as well. Of all specified LTE bands, usable bands for UE are country 

specific. [12] 

There is overlap in spectrum with legacy technologies, but in these cases LTE is 

capable of coexistence [9]. These so called legacy bands are actively being freed 

for LTE [17]. Multiple channel bandwidths were specified to take better advantage 

of the existing gaps in spectrum [9]. ITU-R specified low bands for coverage and 

high bands for capacity [9]. See Appendix 1. 

3.2.2 Channel numbering 

Channel numbers can be regarded as spectrum notation. Frequency can be 

directly converted to channel number, by which allocated channel center 

frequency is informed to UE. The channel numbers by which spectrum is 

allocated are named E-UTRA Absolute Radio Frequency Channel Number 

(EARFCN) with numbers ranging from 0 to 65535. Channel raster is 100 kHz. [9] 

During testing, EARFCN is used instead of frequency to control the connection. 

One frequency can be used in many bands, but EARFCNs are unique. [18] 

3.2.3  Radio frames 

LTE has designated bands for Time Division Duplex (TDD) and Frequency 

Division Duplex (FDD) modes. FDD and TDD are consistent modes. Both utilize 

similar framework, e.g. OFDMA in downlink, SC-FDMA in uplink and sub-frame 

structure. [9] 
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FDD divides uplink and downlink traffic to different frequency bands, and is 

therefore paired. Bands for downlink and uplink traffic are fixed, making FDD 

suitable for symmetrical traffic, e.g. phone calls (voice over LTE, or VoLTE). 

Between the bands there is spacing called guard bands to prevent interference. 

[9] 

In the time domain, traffic is based on radio frames. Radio frame type 1 is used 

in FDD, see Figure 4. 10 ms frame is divided into 10 sub-frames of 1 ms, each 

further divided into 2 slots of 0.5 ms. Each slot contains 7 OFDM symbols. [9] 

 

Figure 4. Radio frame type 1 (FDD). Radio frame is divided in its components in 
time domain. [19] 

 

TDD divides uplink and downlink traffic in respect with the time domain. TDD uses 

one band for uplink and downlink traffic, and is therefore unpaired. There is no 

need for uplink and downlink to be symmetrical. This makes TDD more adaptable 

to reallocate radio resources. [9] 

Radio frame type 2 is used in TDD, see Figure 5. 10 ms frame is divided into 2 

half-frames of 5 ms, both further divided into 5 sub-frames of 1 ms. Sub-frames 

consist of 2 slots of 0.5 ms. TDD has 3 special fields: DwPTS, GP and UpPTS, 

with total length of 1 ms. Special fields are used flexibly for longer guard period, 

control information and payload. [9] 
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Figure 5. Radio frame type 2 (TDD). Radio frame is divided in its components in 
time division. [19] 

 

3.2.4 Resource blocks 

Resource block is the minimum entity in frequency domain allocated to UE. 

Resource block is a set of 12 subcarriers in frequency domain and 1 slot in time 

domain, see Figure 6. As 1 slot contains 7 OFDM symbols, resource block is a 

grid of 12 subcarriers and 7 OFMD symbols. A single grid item is called resource 

element, occupying 1 subcarrier for 1 OFDM symbol. Since spacing between 

subcarriers is 15 kHz, the minimum allocated bandwidth is 180 kHz. [9] 

A number of resource blocks in 1 RB steps is allocated to UE every 1 ms 

according to the cell traffic and UE needs [9]. Transmission bandwidth can 

therefore be anything between 180 kHz and 20 MHz in 180 kHz steps [9]. For 

uplink, the RBs are contiguous unlike in downlink, where RBs need not be 

adjacent [12]. 

E.g. 5 MHz channel has 25 RB at maximum. As each RB contains 12 subcarriers 

of 15 kHz, the total occupied bandwidth is 4.5 MHz. This leaves 0.5 MHz for guard 

bands. See Table 2 for more examples. 
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Figure 6. Resource grid for (a) uplink and (b) downlink. Resource block consists 
of 7 symbols and 12 subcarries. Slots are similar in uplink and downlink. [19] 

 

Table 2. Transmission bandwidths. [12], [13] 

Bandwidth (MHz) 1.4 3 5 10 15 20 

Number of RB 6 15 25 50 75 100 

Number of subcarriers 72 180 300 600 900 1200 

Transmission bandwidth (MHz) 1.08 2.7 4.5 9 13.5 18 

 

Narrow bandwidths were specified to enhance the usage of legacy bands [18]. 

Because adjacent-channel interference limits are stricter than in-band 

interference limits, it was not possible for operator to buy a 10 MHz channel with 

top 5 MHz overlapping with a channel of another operator, and only assign RBs 

from the 5 MHz that doesn’t overlap [18]. Therefore the ability to buy small piece 

of spectrum enhances the efficiency of spectrum usage. For an interesting read, 

see [20]. 
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3.3 Uplink multiple access scheme 

Single carrier frequency division multiple access is the uplink multiple access 

scheme that was designed to optimize range and power consumption [19]. SC-

FDMA has low peak-to-average ratio [19]. This is beneficial for mobile device due 

to lower power consumption. 

QPSK, 16QAM or 64QAM is mapped to a constellation. Data is projected to I- 

and Q-axes at M times faster than SC-FDMA symbol rate, see Figure 7 top left. 

This leads up to having M consecutive symbols with 66.7 µs/M duration (SC-

FDMA symbol length is 66.7 µs), see Figure 7 top middle and top right. These M 

data symbols are then converted to frequency domain with DFT, see Figure 7 

bottom left. DFT sampling rate is chosen so that M data symbols, with the length 

of 66.7 µs, is fully represented in frequency domain with M DFT bins. The faster 

the data rate, the wider the bandwidth. The process is illustrated in Figure 7. [19, 

21] 

 

Figure 7. SC-FDMA signal generation. The projection of symbols at I/Q axes in 
top left picture and resulting I- and Q-graphs. Symbol length is 4 times the SC-
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FDMA symbol length, incorporating 4 data symbols into one SC-FDMA symbol. 
[19] 

 

After the conversion, the M baseband DFT bins are shifted to the entire wanted 

bandwidth, see Figure 7 bottom middle. As opposed to having one data symbol 

per one subcarrier, SC-FDMA symbol carries the information of all the input data 

symbols. [19], [21] 

Amplitude and phase of DFT bins are no longer directly relative to the original 

data symbols. Subcarriers are time-invariant during the symbol duration, 

representing time-variant data symbols. This means that M bins, representing M 

data symbols, are invariant for 66.7 µs. [19], [21] 

Then SC-FDMA symbols are converted back to time domain with inverse DFT 

and cyclic prefix is inserted to the beginning of the transmission, see Figure 7 

bottom right. End of each symbol is duplicated to the beginning to the symbol. 

Cyclic prefix is a guard period used to prevent multipath problems. Copying cyclic 

prefix that is longer than the delay spread, inter-symbol interference can be 

overcome totally. Using cyclic prefix causes 7 % reduction in data rate. Although 

the data rate is fast, the symbol rate isn’t. If SC-FDMA symbol is partially lost, the 

missing data is still available during the whole symbol duration. [19], [21] 

3.4 Downlink multiple access scheme 

Downlink multiple access scheme was designed to optimize receiver complexity 

and flexible resource allocation [9]. OFDMA signal generation is simpler than that 

of SC-FDMA as can be seen from Figure 8. OFDMA is based in OFDM 

technology with main difference being OFDMA’s ability to dynamically allocate 

resources for users [19]. For this function, features from TDMA are incorporated 

in OFDMA [19]. 
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Figure 8. SC-FDMA and OFDMA signal generation. Procedures unique to SC-
FDMA and common with OFDMA are separated. [19] 

 

In OFDMA, orthogonal subcarriers are deployed over transmission bandwidth 

[19].  In frequency domain, each subcarrier’s spectrum is a sinc function, and 

orthogonality in subcarriers means that x-intercept point for sinc function lies at 

adjacent subcarrier’s vertex, see Figure 9. Subcarriers don’t interfere, and 

spectrum is used more efficiently because the lack of need for guard bands. High 

data rate stream can be divided into multiple low data rate streams, each on 

separately modulated subcarrier [19]. 

 

Figure 9. Orthogonal subcarriers with ∆f. As orthogonality requires, the spectrum 
of a specific subcarrier has ∆f between vertex and x-intercept point and with next 
subcarrier’s vertex. [30] 
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Because orthogonality enables denser placement of subcarriers, frequency-

selective fading is easier to deal with. Fading is on wider band than single 

subcarrier that is affected. Signals are equalized by interpolating neighboring 

reference signals. Another feature increasing robustness is the usage of cyclic 

prefixes similar to SC-FDMA. [9] 

QPSK, 16QAM or 64QAM data is mapped to constellation. M adjacent 15 kHz 

subcarriers are modulated with M data symbols, each symbol modulating specific 

subcarrier for 66.7 µs. Signal is turned to time domain with IFFT, resulting to M 

time-domain symbols. Cyclic prefix is added before transmission. [19] 

 

 

Figure 10. OFMA AND SC-FDMA signals in time domain. Empty gaps between 
the symbols are actually filled with cyclic prefixes. [19] 

 

As now can be seen, the foremost difference between SC-FDMA and OFDMA is 

precoding used in SC-FDMA that unites M data symbols into 1 single-carrier 

symbol for 66.7 µs, where amplitude and phase of original data symbols no more 

correlate directly with SC-FDMA symbols unlike in OFDMA, whose symbols are 
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formed with directly modulating subcarriers with data symbols. Symbol time and 

subcarrier frequency spacing have the following dependency 

∆1 = 	 134 																																																																						(1) 

where ∆1 = 15	789 and 34 = 66.7	μs. The empty gaps between symbols in Figure 

10 are used for cyclic prefixes. [19] 

 

3.5 Downlink physical channels 

In LTE downlink, there are PDSCH, PDCCH, PCFICH, PHICH, PBCH and PMCH 

and primary and secondary synchronization signals and reference signals. [12] 

• PDSCH (physical downlink shared channel) is the actual payload. These 

channels can be dynamically allocated between users in time domain and 

can be individually modulated and coded. 

• PSCCH (physical downlink control channel) is channel used by the eNB 

to control UE. It notifies resource allocation, modulation and coding 

scheme. Unlike PDSCH, PDCCH is mapped to resource elements as 

opposed to resource blocks. 

• PCFICH (physical downlink format indicator channel) is used to help UE 

to detect PSCCH. 

• PHICH (physical hybrid automatic repeat request indicator channel) is 

used by eNB to send ACK and NACK to the UE. 

• PBCH (or physical broadcast channel) is used to broadcast information 

needed during UE cell search. 

• PMCH (or physical multicast channel) is similar to PDSCH except it 

broadcasts to multiple users. 

• Reference signals are used in channel estimation, scattered evenly across 

resource grid to pre-defined resource elements. 

• Primary and secondary synchronization signals’ functions differ, but both 

participate in the cell synchronization and cell search. 
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Figure 11. Example of downlink mapping in FDD. [22] 

 

 

 

Figure 12. Example of downlink mapping in TDD. [22] 
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Figure 13. TDD downlink mapping in 3D. Each plate represents a resource 
element. [22] 

 

Spread of the control channels makes LTE robust. Therefore contiguous wave 

makes little damage to LTE transmission. LTE is far more sensitive to wide-band 

noise. In the later test cases, CW is not used as interferer per se for this reason. 

3 MHz AWGN signal and 5 MHz intermodulation product are used instead. 

3.6 Multiple input multiple output 

Multiple input multiple output, or MIMO, is a setup where more than one antenna 

are transceiving. MIMO systems consist of m transmit antennas and n reception 

antennas. MIMO setup is used for two main purposes: increasing data rate and 

increasing robustness. As a third MIMO technique, beam forming is used to 

increase the cell coverage by adjusting the radiation pattern. [22] 

Multi-antenna techniques are key features in LTE-A. LTE-A has 9 different 

Transmission Modes, or TMs, for downlink, each being a different MIMO setup. 

[22] 
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An increase in data rate is achieved by sending multiple data streams, or layers, 

over multiple antennas. When this technique is used to increase single user’s 

data rate, it is called single-user MIMO. When this technique is used to increase 

cell data rate, it is called multi-user MIMO. [22] 

Increase in robustness is achieved by sending identical layer over multiple 

antennas. Adding redundancy in such manner enhances S/R ratio. This is called 

transmit diversity. Transmit diversity is MIMO default mode, and a fallback option 

for more complex modes. Later in Chapter 6, measurements are executed in 

TM2. [22] 

3.7 Carrier Aggregation 

LTE-Advanced is designed to meet the throughput requirements by increasing 

the transmission bandwidth. Because LTE-A was supposed to be fully backwards 

compatible, bands specified in Rel-8 (and UMTS) were used. A reasonable 

method of increasing bandwidth is Carrier Aggregation (CA), a technique where 

downlink carriers are aggregated up to 100 MHz bandwidth. The LTE receiver 

can tune to only one LTE carrier, but LTE-A receiver can benefit from the 

aggregated component carriers (CCs) and eventually wider downlink bandwidth. 

See Appendix 2. [2]  

According to specification of TDD, bandwidths and amount of CCs are equal in 

uplink and downlink. In FDD, uplink and downlink can have a different number of 

CCs, with uplink having always less. Moreover, the carriers may vary in 

transmission bandwidth. Supported bandwidths for TDD and FDD are the usual 

1.4, 3, 5, 10, 15, and 20 MHz with adjustable amount of resource blocks. As 

maximum of 5 CCs can be aggregated, the total aggregated transmission 

bandwidth is 100 MHz. [24] 

Carrier aggregation can be divided into 3 categories according to carrier 

placement, see Figure 14: [24] 

• In contiguous intraband CA, CCs are neighbouring. Carriers merely seem 

to continue over wide bandwidth 
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• In non-contiguous intraband CA, CCs are within the same band but, as the 

name suggests, not contiguous 

• In the interband CA, CCs are on different bands 

 

Figure 14. Carrier Aggregation categories illustrated. [24] 

 

In CA, there are always primary component carrier (PCC) and secondary 

component carrier(s) (SCC(s)). PCC is responsible for maintaining the 

connection [24]. PCC is changed only during handover, SCCs are changed 

according to needs [24]. Carriers are on respective cell: PCC is on primary cell 

(Pcell) and SCC on secondary cell (Scell) [13]. 

According to 3GPP, one of the key measurements for UE is receiver reference 

sensitivity. Reference sensitivity is defined to be met with both carriers, 

regardless of which CC is PCC. In specification sheets, more detailed 

requirements are laid out [25]. Receiver sensitivity is discussed in more detail in 

Section 5.5. 
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4 RATIONALE FOR REDUCTION 

4.1 Interoperability testing 

A part of EMC is RF interoperability (RF IOP), the ability of different RF modules 

to operate in close proximity without causing degradation in performance [26]. 3rd 

harmonic of WCDMA 850 transmission landing on WLAN reception channel and 

degrading sensitivity, or increase in noise floor by display are exemplary IOP 

problems. IOP is in some contexts referred to as in-device coexistence, and 

usually the terms are used interchangeably. After interference is found it is 

suppressed or the source is isolated with different methods. 

It is not only transmitters that can cause interference in the device. All alternating 

currents with sufficiently high frequency have RF characteristics that can reduce 

performance. Therefore running e.g. a camera, a display or a wireless charger 

can produce electromagnetic fields within the device that can become induced in 

the receiver chain and reduce performance. Even if the modules themselves do 

not introduce high enough frequencies, their harmonics and intermodulation 

products can still disrupt the receiver. 

It is worth a notion that only the type of interference that degrades reception is of 

interest in IOP. A multitude of interfering signals might be found in the device but 

as long as it does not exceed the emission limits or disrupt the reception, the 

interference is not important. 

Although antennas are separately tested, IOP is the first measurement where 

device performance is tested with antenna in the configuration. While some in-

device interference problems might be caught in the earlier phases of testing, in 

IOP the antenna adds substantial variable. IOP is the first test where RX is 

connected to the antenna through which interference, e.g. wideband noise by 

display, might be induced. 
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4.2 Overlap in band configurations 

In IOP tests, LTE bands are tested multiple times with device-specific Carrier 

Aggregation configurations. This causes significant amount of overlap in tested 

LTE bands, but whether the information is redundant or not is another matter. 

IOP testing is not used to find malfunction in device’s CA performance but to find 

the interference from within the device that could possibly harm the reception. 

The configurations themselves are not what is tested but the interference that 

lands on their receivers. The effect of interference in the RX with Carrier 

Aggregation enabled is not well studied subject, and there are no tests done on 

whether the same bands should or should not be tested in multiple configurations 

to detect interoperability problems. 

Different CA configurations might lift different interference out even when 

measuring the same bands. Depending on the interference and band 

configurations, e.g. intermodulation distortion products from transmission and 

baseband harmonic might degrade reception. The overlap is redundant only if the 

additional tests do not provide additional information. Reducing redundancy is 

desired outcome but not on the expense of results’ comprehensiveness. 

4.3 Increase of test channels 

Measuring the performance of multiple receivers against multiple sources of 

interference leads to laborious testing effort. One of the longest measurements 

is with LTE technology because of fragmented band distribution and because 

LTE-A introduces multitude of configurations for Carrier Aggregation. 

In Equation 2 it can be seen that to the more component carriers there are present 

in the test, the more test channels are required, and the growth is exponential, as 

rs is in the power of k.  

To calculate the amount of test channels in CA configuration, see  

= = >? ∗ >4
A ∗ B ∗

5B − 16!

7! 5B − 1 − 76!
                                       526 
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m = number of  test channels in total 
rp = number of  test channels in primary carrier 
rs = number of  test channels in secondary carriers 
n = number of bands  in the original configuration 
k = number of aggregated bands in the test configuration 

 

To find the most economic test sequence for Carrier Aggregation, Equation 4 is 

examined. Equation 4 predicts that the number of aggregated carriers is the most 

critical factor in the number of total test channels. In Table 3 test channels of 4 

component carrier (4CC) configuration are calculated when the measurement is 

split down to 2 component carrier (2CC), 3 component carrier (3CC) and original 

4CC configuration. 

Table 3. Example calculation for channel reduction. 

Overall config \ 

Test config 

4CC - 4 carrier 
configuration 

- conf. split down to 
lower 
configurations 

- 20 channels at 
primary carrier 

- 5 channels at 
secondary 
carriers 

2CC 

 

1 200 

3CC 

 

6 000 

4CC 

 

10 000 

 

In Table 3 one can see that the shorter the configuration, the lesser the number 

of the test channels required. The most economical solution would be to measure 

all carrier aggregated configurations split down to 2CCs, and to use 2CC’s PCC 

test result to replace single carrier test result. 

The superior economic efficiency of 2CC over 3CC is more diverse than this 

calculation suggests. The test stack for 3CC is more complex, requiring additional 

equipment. Ability to avoid the acquisition costs for such device would mean 

notable savings. 
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5 TEST SETUP 

5.1 Plan for testing interchangeability of measurement results 

To reduce CA test burden in IOP, it should be studied if the test results are 

interchangeable in similar configurations and if differences between the tests 

should arise, which test case is the most comprehensive. In other words the 

redundancy of overlap is of interest. 

In the tests, narrow-band interferer is used for better validity. Although in most 

real life scenarios wide-band noise causes most of the trouble, handling such 

noise is somewhat difficult. CW as the source of interference is on the other hand 

more unambiguous as its behavior is easier to trace. Hence, narrow-band 

interference is exploited. Both wide-band and narrow-band interference occurs in 

devices, depending on the source. 

Single carrier and primary carrier are technically identical LTE connections. The 

results of similar distortion at single carrier and primary carrier should be 

compared to verify correspondence. If both measurements lead to similar results, 

overlap is redundant and only other is necessary to measure. This measurement 

is presented in Subsection 6.1.1. 

Secondary carrier is different to single carrier in theory because of the presence 

of uplink in single carrier. Alternating uplink frequency might lift up or override 

some interference. Testing in practice if there are some cases where single 

carrier and secondary carrier do in fact end up in different sensitivity results at the 

same carrier is presented in Subsection 6.1.2. 

If aggregated configurations are split down to shorter configurations, the effects 

must be carefully studied. As opposed to replacing singe carrier (SC) with PCC 

where no carriers are set apart from each other, splitting Carrier Aggregation 

configurations the interaction of now separated carriers will not be tested. There 

is a possibility to lose information by separating interacting carriers away from 

each other. Therefore, the tests must focus on examining whether or not there is 
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interaction between component carriers that will be lost after the connections are 

up separately. 

The effect of configuration on primary carrier sensitivity should be studied. 

Measuring sensitivity degradation of primary carrier with interferer in both 2CC 

and 3CC should reveal whether the configuration affects sensitivity. The test can 

be set up according to test in Subsection 6.1.1. Test is conducted in Subsection 

6.2.1. 

Similarly, the effect of separating downlinks must be carefully studied. Splitting 

downlinks to separate measurements leads to not testing secondary carriers’ 

downlinks effect on each other. If downlink traffic causes harmonics or 

intermodulation products that are induced after the filtering, separating them 

away from each other would prevent finding those interferences. Evaluation of 

interchangeability is based upon studying the similarity between the sensitivities 

in both cases, in Subsection 6.2.2. 

To find out whether the test results can be generalized, thorough testing must be 

conducted. The following 4 test cases are conducted 

1. An intermodulation product of interferer and uplink is placed on (primary) 

downlink frequency, and results of single carrier and primary carrier are 

compared. The similarity of degradation by intermodulation (IMD) products 

effect is studied. 

2. An interferer is placed on (secondary) downlink frequency and results of 

single carrier and secondary carrier are compared. The similarity of 

degradation by interferer is studied.  

3. An intermodulation product of interferer and uplink is placed on (primary) 

downlink frequency (as in test 1). The results of 2CC and 3CC are 

compared. The similarity of sensitivity plots are studied. 

4. SCC2 3rd harmonic (H3) with high and low downlink (DL) levels is tuned 

on SCC1 in 3CC configuration, and similarity between results with 2CC 

configuration without H3 from SCC2 is compared. 
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5.2 Nonlinear distortion 

A perfectly linear amplifier would have transfer function [32] 

EFGH5EIJ6 = 	 KL + KNEIJ																																					(3) 
Output signal is a linear function of input signal amplified by factor of c1 plus DC 

offset c0, see Figure 15. 

 

Figure 15. Linear amplifier. 

 

A linear amplifier will not introduce additional components to output, whereas 

nonlinear amplifier will generate components at output that are not present at 

input. Well-known example is the harmonic products of the input signal. The 

nonlinearity of the amplifier can be approximated with Taylor series [32] 

EFGH(EIJ) = PKJEIJJ
Q

JRL
=	KL + KNEIJ + KSEIJS + KTEIJT + KUEIJU …			(4) 

Nonlinear coefficients c2, c3, c4 etc. and input voltage raised to the 2nd, 3rd and 4th 

power, respectively, leading to nonlinear transfer function. A graph of a transfer 

function is no longer linear. From 4th term on, the coefficients are usually small 

enough to be ignored. 

KN = XY
XZ 

Z 

Y 

XY	KL	
XZ 
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To further illustrate the effects of the transfer function, let us consider input signal 

representing uplink signal and internal interferer [32] 

EIJ = [N cos5\N]6 + [S cos5\S]6 																											(5) 
Two components with amplitudes [J and angular velocities \J are introduced to 

nonlinear amplifier. Let us examine the output components of the first 3 term [32] 

EFGH(EIJ) = 	 KL + KNEIJ + KSEIJS + KTEIJT
=	KL + KN([N cos(\N]) + [S cos(\S]))
+ KS([N cos(\N]) + [S cos(\S]))S
+ KT([N cos(\N]) + [S cos(\S]))IJT
=	KL + KN([N cos(\N]) + [S cos(\S]))
+ KS ^[N

S + [SS2 + [NS2 cos(2\N]) + [SS2 cos(2\S])

+ [N[S (cos_(\N −\S)]` + cos_(\N +\S)]`a

+ KT ^b3[N
T

4 + 3[N[SS2 c cos(\N])

+ b3[ST4 + 3[NS[S2 c cos(\S]) + [NT4 cos(3\N]) + [ST4 cos(3\S])

+ 3[NS[S4 (cos_(2\N − \S)]` + cos_(2\N +\S)]`c

+ 3[N[SS4 (cos_(2\S − \N)]` + cos_(2\S +\N)]`]											(6) 
It should be clear by now that there are frequencies present at output that were 

not present at input. The components that are generated at the nonlinear amplifier 

are called harmonics, if the result signal is at integer multiple of fundamental 

frequency, or intermodulation products, if the result signal is at sum or difference 

frequency of integer multiple of fundamental frequencies [27].  
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Mapping some of the resulting intermodulation products on frequency domain are 

in Figure 16.  

 

Figure 16. Relevant distortion products. [28] 

 

Some IMD products cause extensive trouble for the receiver filtering because of 

the proximity in frequency plane, namely 21N C 1S and 21S C 1N in Figure 16. The 

IMD products that are used in this thesis are IM3 product and H3 which lands on 

reception channel. The power of the product is relative to the power of the input 

signal(s). With low input signal levels, the product will not cause degradation at 

receiver even on reception channel. 

5.3 Transceiver block diagram 

Although the interferer in IOP test cases is originated from modules inside the 

DUT, in this thesis the test case is designed for sufficient repeatability. In this 

thesis the interferer is introduced to the system from external signal generator, 

simulating internal interference. While the interferer from the modules can be on 

any frequency, with external signal generator selecting the interferer frequency is 

more particular. External interferer must pass through filters that internal 

interferers do not go through. In Figure 17 is a block diagram of transceiver. 
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Figure 17. Transceiver block diagram. [31] 

 

The interferer must pass through duplexer so interferer on either reception 

channel or transmission channel is most reasonable, as attenuation outside band 

pass is 60 dB. The first method of generating interference is to tune CW on 

reception channel. The second method is to tune the interferer on a frequency 

where the interferer itself does not degrade reception but only nonlinear 

distortion, e.g. intermodulation products, do. See Figure 18. Usable carrier 

configurations in this test have transmission in lower frequency than reception, 

see Appendix 2. When half way between lowest transmission frequency and 

lowest reception frequency lands on transmission channel, the configuration can 

be used for the setup.  

 

 

Figure 18. CW in frequency plane. In this exemplary setting, where band 3 is 
used, transmission is at low limit of uplink band, lowest channel in the figure. 
47.5 MHz higher there is CW, still on uplink band, thus passing through the TX 
filter to PA, in the middle channel of the figure. Another 47.5 MHz higher there is 

1710-1737.5 MHz 1757.5-1784 MHz 1805-1832.5 MHz 

47.5 MHz 47.5 MHz 

27.5 MHz 
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reception, the specific frequency that is being measured with the specific uplink, 
at highest channel in figure. Also the IMD lands on this same frequency. 

 

1ghi = 21jk − 1lm																																																							(7) 
CW is tuned to appropriate frequency and signal passes through duplex filter to 

transmitter’s PA, although small power levels might leak to LNA. At the PA output, 

UL and CW IMD products leak over the duplex filter to LNA, with ~60 dB 

attenuation according to duplexer specification. IMD product degrades sensitivity. 

This is so called reverse IMD phenomenon, see Figure 19. 

 

Figure 19. Reverse IMD phenomenon. 

 

Harmonics are generated at LNA. The passing signal produces harmonics that 

degrade the reception. 

5.4 Device setup 

The test setup is depicted in Figure 20. The basic setup is RCT and DUT that are 

connected via cable. RCT is Anritsu M8820C. A splitter is added to divide the 

RCT output signal between DUT and SA. 

An external Agilent E4438C ESG vector signal generator is coupled to the line. 

Between coupler and generator, there is filtering in order to filter out the DUT 

transmission from generator output. DUT transmission is at high output level and 

similarly to distortion at DUT PA, the two signals can cause intermodulation at the 

generator output. 

CW	 Transmission	

IMD	
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First filter from the coupler is 5 MHz tunable band reject filter, which is tuned to 

the transmission bandwidth with attenuation of ~60 dB. Second filter is a 

transmission band pass filter, which filters out the distortion products at reception 

channel that might still be generated at generator. Between the two filters, there 

is a 10 dB attenuator for impedance matching. 

 

Figure 20. Setup block diagram. 

 

Path attenuation between generator and DUT was measured to be approximately 

38 dB at relevant frequencies. Later, generator output level is the level reported 

at measurements. 

5.5 Sensitivity search 

In device test specification sheet [29], a reference sensitivity level test procedure 

is presented. The purpose of the test is 

RCT splitter

 

DUT 

SA 

10 dB att. 

gen. 

coupler 
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To verify the UE's ability to receive data with a given average throughput for a 
specified reference measurement channel, under conditions of low signal level, 
ideal propagation and no added noise. A UE unable to meet the throughput 
requirement under these conditions will decrease the effective coverage area of 
an e-NodeB. 

RCT downlink power is set to signal level declared in [29]. DUT transmission is 

at maximum level during the measurement. RCT sends blocks to DUT sufficiently 

large amount to get statistically valuable result. Throughput is then analyzed. 

Throughput should reach 95 %. Uplink and downlink signaling is set to QPSK and 

reference sensitivity limits for each bandwidth are set separately. Performance 

tests are usually run with 5 MHz (25 RB) bandwidth, as is the case also in this 

thesis. 

In sensitivity search the test procedure is slightly different. The downlink level for 

95 % throughput is iterated. RCT sends blocks to DUT which reports back how 

many blocks it received. RCT iteratively lowers the downlink power level until 

BLER is 5 %. The sensitivity search finds the receiver sensitivity floor where as 

the reference sensitivity level simply tests if the DUT passes the specification 

limits. 

Any internal interference leaking to receiver at reception channel would therefore 

be visible in sensitivity search where the absolute performance of the receiver is 

tested. When some sort of distortion is present, to reach 95 % throughput, RCT 

must raise the downlink level to restore the required S/N ratio. The peaks at 

downlink power are therefore sign of interference at that frequency. These 

interferers are traced in IOP, so they can be dealt with in order to improve the 

sensitivity. 

To make better sense of sensitivity search results, comparison with calculated 

reference sensitivity for 5 MHz bandwidth is useful (according to Table 2 

transmission BW is 4.5 MHz). In the exemplary calculations, noise factor NF is 

set to 9 dB, S/N is set to -1 dB, implementation margin IM is 2.5 dB, and diversity 

increases gain by 3 dB, see Figure 21. [9] 
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opqr = −174 + 10stuNL5∆16 + vw +
x

v
+ yz − {pI|							(8) 

 

 

Figure 21. Reference sensitivity budget for 5 MHz bandwidth. [9] 

 

The result is -100 dBm [9]. The actual measurements differ from calculated 

reference sensitivity because of device-specific NF and error correction 

algorithms that can tolerate lower S/N ratio. 
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6 MEASUREMENTS 

6.1 LTE and LTE-A 2CC comparison 

6.1.1 Comparing LTE SC to LTE-A PCC with IM3 as interferer 

In this test, CW (output level 20 dBm) was introduced to the system according to 

Figure 20. The CW frequency was selected in a manner where DUT transmission 

and CW generates an intermodulation product at reception frequency, see Figure 

18. Intermodulation distortion product was chosen for the test to ensure that the 

externally generated interferer is technically as close as possible to internally 

generated interferer. 

The signal level at the DUT was measured as -27.5 dBm which is in line with the 

path attenuation. For the signal to pass through the filtering, it is necessary to 

select CW at transmission frequency. Reception and transmission have fixed 

duplex spacing meaning that IMD3 product needs to be in the middle of the 

duplex spacing, see Figure 18. Using band 2, CW frequency of 1899 MHz 

reasonably fulfils requirements. When transmission is 1859 MHz and CW at 1899 

MHz, the intermodulation product appears at reception frequency 1939 MHz, see 

Equation 7. The frequencies are in Table 4. 

Table 4. Frequencies used in measurement in Subsection 6.1.1. 

Band Mode EARFCN DL DL (MHz) EARFCN UL UL (MHz) 

2 FDD 690 1939.0 18690 1859.0 

17 FDD 5790 740.0 23790 710.0 

29 FDD 9715 722.5 - - 

 

In the following Graphs, frequency is on x-axis and power level is on y-axis. Red 

lines are limits given in specification. 
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In Graph 1, there is visible degradation at band 2 sensitivity. 

 

 

Band configuration 2+17 with degradation in band 2 in Graph 2. 

 

Graph 2. Band 2 sensitivity in 2+17. Similar degradation to Graph 1 plot. 

 

Graph 1. Band 2 sensitivity. Clear degradation where IMD is present. 
Incidentally, a 5th order IMD product appears at low right in the plot.  
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Band configuration 2+29 with degradation in band 2 Graph 3. 

 

Graph 3. Band 2 sensitivity in 2+29. Degradation in sensitivity is similar to those 
depicted in Graph 1 and Graph 2. 

 

Within the limits of measurement accuracy and taking the varying nature of uplink 

into consideration, the sensitivity graphs are similar. Each measurement was run 

5 times for better validity. The plot is band 2 sensitivity with approximate 

sensitivity of -103 dBm. The sensitivity is clearly degraded at 1939 MHz, reaching 

-87 dBm at worst in SC case and -73 dBm at worst in 2CC cases. Also, at 

frequency 1952.5 MHz, an IM5 product of UL at 1872.5 MHz and CW degrades 

sensitivity, and even more visibly in CA case. 

When DUT is measured multiple times consecutively, the temperatures inside the 

DUT rises. The rise in temperature has complex effects on receiver, e.g. in filters’ 

frequency response. This has an effect on degradation. 

The degradation of sensitivity is close to identical in each measurement. The 

sensitivity degradation caused by out-of-band interfering signal is equally 

distinguishable regardless of the band configuration. LTE single carrier 

measurement results are interchangeable with LTE-A primary carrier 

measurement results in IOP. 
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6.1.2 Comparing LTE SC to LTE-A SCC with AWGN as interferer 

In this test, an AWGN with 3 MHz bandwidth (output level -82 dBm) is introduced 

to the system, according to Figure 20. AWGN was selected due to LTE’s 

tendency to be more vulnerable to wide-band noise than to CW, due to the spread 

physical channel grid in downlink. Band configuration in the test is 17+2, see 

frequencies in Table 5. The frequency of AWGN was selected to the middle of 

band 2 DL at 1960 MHz, so no intermodulation is present in this test. 

Table 5. Frequencies used in the first measurement in Subsection 6.1.2. 

Band Mode EARFCN DL DL (MHz) EARFCN UL UL (MHz) 

2 FDD 900 1960.0 18900 1880.0 

17 FDD 5825 743.5 23825 713.5 

 

Graph 4 shows band 2 sensitivity with degradation at 1960 MHz caused by 

AWGN interferer. 

 

 

 

Graph 4. Band 2 sensitivity with AWGN. Degradation caused by interferer is 
clear. 
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Graph 5 shows band 2 sensitivity degradation in 17+2 at 1960 MHz. 

 

Graph 5. Band 2 sensitivity in 17+2 with AWGN. Degradation is similar to Graph 
4. 

 

Each test was run 5 times for better validity. Sensitivity degradation in the AWGN 

frequency is similar in both cases, with sensitivity reaching -101.9 dBm at worst 

in both tests. The plots are close to identical: both have similar rippling throughout 

the band. The sensitivity degradation caused by in-band interferer is equally 

distinguishable regardless of the band configuration. 

However, along with 17+2 test it is necessary to repeat the measurement with 

17+4 where H3 of UL lands on secondary carrier’s reception channel. 

Frequencies are in Table 6. Specification gives separate requirements for such 

band configurations with similar phenomenon, see [29]. With up to 10 dBm lower 

sensitivity requirement for such bands, using secondary carrier test result 

interchangeably with single carrier result might lead up to losing significant 

interferer to the risen noise. Using AWGN level of -82 dBm it should verify whether 

the peak in plot is visible in aggregated configuration as clearly as in band 4 alone.  
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Table 6. Frequencies in the second measurement in Subsection 6.1.2. 

Band Mode EARFCN DL DL (MHz) EARFCN UL UL (MHz) 

4 FDD 2150 2130.0 20150 1730.0 

17 FDD 5825 743.5 23825 713.5 

 

In Graph 6, the effect of UL H3 is clearly perceivable. The secondary was 

measured on 3 primary channels (hence, 3 different frequencies), thus three plots 

with similar degradation at three frequencies. The sensitivity degradation is 1-2 

dB where harmonic is not directed to, and 5-6 dB where harmonic lands to.  

 

Graph 6. Configuration 17+4 with AWGN. UL third harmonics cause significant 
degradation in band 4 sensitivity. There are three peaks as PCC was set to 3 
different channels as SCC was measured, leading to 3 UL frequencies. 

 

In Graph 7, only band 4 alone was measured with same AWGN as used in 

previous measurement. As opposed to previous measurement, now the possible 

interferer is visible. The interchangeability between these results is nonexistent. 
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Graph 7. Band 4 sensitivity with AWGN. The degradation is nothing like in 
Graph 6. 

 

Using the same band configuration but changing primary from band 17 to band 4 

results in a plots in Graph 8 and Graph 9. As can be seen, the same carriers have 

different sensitivity when uplink frequency changes, compare Graph 6 and Graph 

8. 
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Graph 8. Configuration 4+17 with AWGN. The same bands as in previous 
measurement, but uplink was changed from band 17 to band 4. 

 

 

Graph 9. Band 4 with AWGN. Resulting plot is similar to that in Graph 4. 

 

The take on this one is that measuring sensitivity with only other band as primary 

may result in incompetent results. The possible distortion is lost in Graph 6, and 

the effect of harmonics is lost in Graph 8. While the distortion in Graph 6 is well-
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known harmonic, the cause might be any uplink originated interference, including 

IMD product. Therefore each secondary carrier is important to be measured with 

all possible uplinks. Configurations should be measured with switching primary 

and secondary bands. 

6.2 LTE-A 2CC and LTE-A 3CC comparison 

6.2.1 Comparing 2CC PCC to 3CC PCC with IM3 as interferer 

Using the results in Subsection 6.1.1, it is reasonable to assume that primary 

carrier sensitivity search results are interchangeable. Only difference between 

primary carrier on 2CC and 3CC is increased overhead, which should not have 

an effect on sensitivity. To confirm this assumption, a measurement was devised. 

According to test setup in Subsection 6.1.1, an intermodulation distortion was 

targeted at primary carrier reception frequency. Measurement configurations 

were 2+12 and 2+30 in 2CC and 2+12+30 in 3CC. Frequencies are presented in 

Table 7. In 3CC, to make test run time reasonable only the middle channel on 

both secondary carrier were measured. Only primary carrier is of interest but 

secondaries were measured to ensure they are active at all times. 

Table 7. Frequencies in measurement in Subsection 6.2.1. 

Band Mode EARFCN DL DL (MHz) EARFCN UL UL (MHz) 

2 FDD 690 1939.0 18690 1859.0 

12 FDD 5095 737.5 23095 707.5 

30 FDD 9820 2355.0 27710 2310.0 
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Graph 10. Band 2 sensitivity in 2+30. Degradation is similar to that in Graph 10. 

 

Graph 9. Band 2 sensitivity in 2+12. Degradation by IMD is clear. 
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Graph 11. Band 2 sensitivity in 2+12+30. Degradation is similar to that in Graph 
10 and Graph 11. 

 

The results in this case remind the results in Subsection 6.1.1. The results 

themselves are not comparable, as different DUT was used. Sensitivity plot 

shows clear degradation at suspected frequency, resulting plot to shift from 

approximately -105 dBm to -81.3 dBm at worst in 3CC case and from -105 dBm 

to -84 dBm at worst in 2CC cases. 

However, the variance in the degradation does correlate with measured transmit 

level, resulting in higher IMD level, and therefore in higher degradation in 

reception. In Table 8, the average measured transmitted level at channels 

corresponding to IMD is in Table 8. 

Table 8. Average transmit level. 

Band configuration Average measured 

transmitted level (dBm) 

2+12+30 23.3 

2+12 20.2 

2+30 20.2 
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2CC measured transmit level is approximately 3 dBm lower than in 3CC. 

Accordingly, degradation in 2CC is approximately 3 dB lower than in 3CC.  As 

can be seen in Equation 6, 1 dBm increase in uplink signal level leads to 1 dBm 

increase in IMD. The degradation in sensitivity is similar in both cases considering 

the uplink level. The possible interference at PCC is as visible in 2CC case as in 

3CC case, and similar results are expected with consistent uplink level. 

6.2.2 Comparing 2CC SCC to 3CC SCC 

The levels of DL signals are presumably low enough to not cause any 

degradation in other carrier’s reception. This is due to the networks tendency to 

try to use as little power as possible while still maintaining reliable connection. 

The possible information loss is caused by missing simultaneous DLs: the 

separation of CCs must be validated by testing their effect on each other. If DL 

signal at high level causes intermodulation products with internal interference or 

harmonics, they might be missed. 

See Table 9 for different interband carriers A, B and C in 3CC configuration 

A+B+C etc. and in 2CC configurations A+B, A+C etc. As stated in Section 6.1., 

sensitivity is measured with varying uplink (UL) frequencies in order to test if UL 

brings new distortions to DL frequency. Therefore, just like 3CC should be 

measured with each carrier as primary, and eventually with alternating UL 

frequency, also 2CC should be measured with each carrier as primary. 

If secondary carrier C lifts up interference at carrier B that is visible in 

configuration A+B+C, it is visible in configuration C+B, as C and B downlinks are 

similarly present at both cases and B is correspondingly secondary. The possible 

interference is present in both 2CC and 3CC configurations. 
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Table 9. 3CC configurations and corresponding 2CC configurations. 

 3CC 2CC 

1st primary A+B+C A+B A+C 

2nd primary B+A+C B+A B+C 

3rd primary C+A+B C+A C+B 

 

Interference is present in both cases, and tests are carried to verify that both 

configurations measure it equivalently. 

If 3CC configuration has better sensitivity than 2CC, interference might be lost. A 

test is carried out to test whether the secondary carrier sensitivity is identical in 

2CC and 3CC. Configurations 30+4 and 30+4+29 were chosen for test purpose. 

H3 of band 29 DL lands on upper limit of band 4. 

 

 

Graph 12. Band 4 in 30+4+29 and 30+4 with low DL power. 

 

In Graph 13, band 4 sensitivity from configurations 30+4+29 (left) and 30+4 (right) 

is depicted. DL level is -100 dBm for band 30 and -97 dBm for band 29. As can 

be seen, the sensitivity is similar in both cases. According to this plot, it’s 
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reasonable to assume that band 4 sensitivity is same with low DL power 

regardless of the configuration.  

 

 

Graph 13. Band 4 in 30+4+29 and 30+4 with high DL power. 

 

In Graph 14, similar plots as in Graph 13 is depicted. DL level is -27 dBm for both 

bands 30 and 29. Sensitivity degrades across the frequency range. Sensitivity in 

3CC is approximately 0.5 dBm worse than in 2CC. The change in the sensitivity 

is evident throughout the band, not only where H3 lands. 

Two conclusions can be drawn. On one hand, high DL causes perceivable 

degradation in the sensitivity. DL is high enough to possibly lift up interference. 

On the other hand, the risen sensitivity level by the DL might cover up some minor 

degradation. Because high DL levels such as in here are unlikely in realistic 

situations, the possibility of losing degradation peak in the risen sensitivity is more 

relevant setback.  

After considering the two possible speculations, the latter is weighted as more 

realistic. Lower priority is given to DL originated interference, and DL level is kept 

low in order to measure more precise measurements with other types of 
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interference. The SCCs can be divided away from each other, because in the 

unlikely event that SCCs affect each other, testing the possibility might cloak 

something more urgent. 

6.3 Applying the results to Time Division Duplex 

Test cases in chapter 6 were implemented with FDD mode. The results can be 

applied to TDD. PCC will not suffer from transmission originated interference, as 

transmission and reception on PCC are never simultaneous in TDD.  Therefore 

the problem depicted in Subsection 6.1.2 with H3 of transmission on RX is not 

topical for TDD. However in-band interference is as much of a problem for TDD 

carriers, so these carriers should be similarly measured. As CA configurations for 

present DUTs are mainly in intra-band category, measuring the band with only 

one DL is sufficient. 

Support for simultaneous reception and transmission for inter-band TDD band 

configuration is device specific. If CCs are on different bands and device does 

not support simultaneous RX-TX, aggregated downlinks are scheduled in unison. 

This means that device cannot receive at the same time it transmits. If 

transmission is never simultaneously active with SCC reception, it won’t be 

affected. According to test results in 6.2.2., the effect of DL is not worth 

mentioning. This means there is no actual need to measure TDD in CA 

configurations at all, and TDD bands can be tested as single carrier. 

If device does support simultaneous RX-TX for CA configuration, SCCs 

scheduling is independent from PCC. Transmission might affect secondary 

carrier’s reception. Assuming that all devices do support simultaneous RX-TX, 

same rules for TDD and regular FDD are applied. 

6.4 Evaluation of reliability 

The most notable compromise to reliability is caused by the inductive nature of 

the study. Problem of induction is ever-present, and there is little to do about it. 

Planning the tests in this study were crucial, and comprehensive measurements 

were conducted. In Subsections 6.1.1., 6.1.2., and 6.2.1. proofing that similar 
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phenomena happen across the measurements was easier to argument. 

Subsection 6.2.2. revealed to be especially tricky, as the point of the 

measurement was to prove that no other phenomenon happens. The results were 

as anticipated, and convincing arguments backed up the conclusion. All in all, the 

conclusions drawn from the measurements seem reliable and reduction 

legitimate.  
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7 IMPLEMENTATION OF REDUCTION 

Uplink frequency seems to be determinant factor when it comes to the possible 

visibility of interferer. Measuring reception channels with all relevant transmission 

channels seems necessary and sufficient measurement. Single carrier (SC) test 

results are interchangeable with primary component carrier (PCC) test results, 

when equivalent bands are measured. 3 component carrier (3CC) test results are 

equivalent with 2 component carrier (2CC) test results, when equivalent bands 

are measured in equivalent roles. 

By the following changes redundancy is reduced to minimum 

• SC is replaced with PCC 

• 3CC, 4CC and onwards is split down to 2CC 

Under the following conditions the previous changes are legitimate 

• PCC is used as SC result as such 

• All carriers that are configured as primary in 3CC are primary in 2CC as 

well. Same applies for secondaries 

• All SCCs affiliated with specific PCC in 3CC are affiliated with the said 

PCC in 2CC 

For sufficient accuracy, PCC carriers should be measured with a raster of 20 

channels (higher raster for PCC since each carrier is measured only once as 

PCC), and SCC carriers should be measured with a raster of 45 channels 

(precise enough considering time savings). Measurements are conducted with 5 

MHz bandwidth with full 25 RB. 

According to preliminary calculations, test run time of an exemplary product was 

reduced by 69 % compared to test run time with redundancy intact. 
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8 CONCLUSIONS 

In this thesis, redundancy of IOP test results were studied. Redundancy was 

defined with interchangeability: if a result from one test exposes the same or more 

interference as a result from another test, the results are interchangeable and the 

latter test can be left out. In order to research the redundancy of results, 4 test 

cases were devised. All tests aimed to find possible phenomena that would 

appear only on specific Carrier Aggregation configuration. Tests were ran 

according to test plan laid out in Section 5.1. 

In Subsection 6.1.1., a CW interferer was tuned on a frequency where the CW 

and the device uplink produced an intermodulation product. The IMD product 

landed on band 2. Band 2 was measured as such and as a primary carrier in 2 

different 2CC configurations. The degradation of sensitivity was similar 

regardless of the configuration. Therefore single carrier and primary carrier tests 

give similar results, and are therefore interchangeable. 

In Subsection 6.1.2., single carrier and secondary carrier results were compared. 

This was done by tuning CW directly onto the downlink channels. The results 

were different depending on uplink frequency. The third harmonic of primary 

carrier uplink was clearly perceiveable in secondary carrier in some cases. If 

uplink has this type of contribution to degradation, it could also cause degradation 

of different origin, that is to say degradation caused by two-tone nonlinear 

distortion. SCC must be measured separately. 

Because of the results in 6.1.1. and 6.1.2., the implementation of the reduction 

was done by leaving separate measurements for single carrier out and replacing 

the results with PCC results of the same band. This led to savings in test run 

times. 

In Subsection 6.2.1., interchangeability of primary carriers of 2CC and 3CC was 

studied using 3rd order intermodulation product as interferer. Tests were ran with 

2 different 2CC configurations and a 3CC configuration. The tests had a glitch 

because of the unstability in uplink power, but the numbers checked out. PCC 

results are interchangeable between 2CC and 3CC. 
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In Subsection 6.2.2., the significance of two simultaneous SCCs was studied. 

This was performed by conducting 4 different measurements: 2CC and 3CC with 

high and low downlink power. The bands were chosen in a manner where third 

harmonic from one secondary in 3CC would land on another secondary, in this 

case band 4. 2CC lacked the secondary that was the origin of the harmonic. In 

the low-power example, band 4 results were similar. In the high-power example, 

the sensitivity across band 4 in 3CC was decreased. The high-power example 

was evaluated of lesser significance. 

Because of the results in 6.2.1. and 6.2.2., the implementation of the reduction 

was done by replacing the results of 3CC configurations with the results of lowest 

common 2CC configurations. 
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