

Laura Meskanen-Kundu

Making Data Accessible: An Overview of
Interactive Data Visualization Using D3.js as
Applied to a Scientific Dataset

Making a Static Visualization Interactive

Helsinki Metropolia University of Applied Sciences

Engineering

Media Engineering

Thesis

19 April 2015

 Abstract

Author(s)
Title

Number of Pages
Date

Laura Meskanen-Kundu
Making data accessible: An overview of interactive data visuali-
zation using D3.js as applied to a scientific dataset
Making a static visualization interactive

40 pages
19 April 2015

Degree Bachelor of Engineering

Degree Programme Media Engineering

Specialisation option Digital Media

Instructor(s)
 Kari Salo, Principal Lecturer

Technology is moving at a very fast pace, but data is still represented as tables, static
graphs and infographics that do not create an impact on the population at large. Excluding
the scientific and educational communities, to the common individual information should be
displayed in an entertaining manner.

This project set out to fulfill this goal by using known technologies from D3js, design guide-
lines, CSS3 animations, and HTML5 elements to real scientific data from the United States
National Climate Data Center. The final product is a one page web application displaying
3,000,000 years of global temperatures in a visual format. The data was plotted using
D3js, made interactive with JavaScript and laid out using Twitter Bootstrap.

What can be concluded is that it is possible to create interactive content with current tech-
nologies, but the process is still only achievable after extensive study of the technologies
involved. Further development has to be made for data interactive tools to become easier
to use and to produce large-scale interactive web applications involving data display and
analysis. The advancement of interactive visualizations are also relevant as studies have
shown that engaging lectures lead to a statistically significant higher average on unit ex-
ams compared with traditional didactic lectures. This could be hypothesized to be the
same for interactive data and this was confirmed by a small questionnaire.

Keywords D3.js, scientific data, interactive web application, JavaScript,
HTML5, CSS3

Contents

Abbreviations, Acronyms and Terms 1

1 Introduction 1

2 Web Programming 4
2.1 Short History of Web and Web Programming 4
2.2 What is Web Programming Today 6

2.2.1 Mark-up of Today: Focus on JavaScript 7
2.2.2 Best Practices in JavaScript 10
2.2.3 Layout and Design: Focus on Designing for Data 10

2.3 Reasons for Choosing D3.js in this Thesis Project 14

3 D3.js 17
3.1 Methods in D3 18
3.2 Vector Graphics: Focus on SVG 19
3.3 D3 Selections 20
3.4 Data-Joins 20
3.5 Scaling and Axes in Charts 21
3.6 Loading External Data 23
3.7 Adding interactions and Animating 23

4 Creating a One Page Web Application 24
4.1 Methods and Materials 24

4.1.1 Phase One: Researching for a Dataset 24
4.1.2 Phase Two: Formatting the Dataset 27
4.1.3 Phase Three: Multiple Temperature Data onto a Single Graph 30
4.1.4 Phase Four: Creating Interactions and Mouse Events 31
4.1.5 Phase Five: Styling and Appearance 34
4.1.6 Phase Six: Final Touches and Uploading to Remote Server 35

4.2 Results and Discussion 36

5 Conclusion 40

References 41

Abbreviations, Acronyms and Terms
API (Application Program Interface)

Set of commands, functions, routines, tools and protocols

which programmers can use when building software. An API

expresses a software component in terms of its operations,

inputs, outputs, and underlying types. When used in the con-

text of web development, an API is typically defined as a set

of Hypertext Transfer Protocol (HTTP) request messages,

along with a definition of the structure of response messag-

es, which is usually in an Extensible Markup Language

(XML) or JavaScript Object Notation (JSON) format.

Big Data

“Data of a very large size, typically to the extent that its ma-

nipulation and management present significant logistical

challenges.” [58.]

Cascading Style Sheets (CSS)

Used to format the layout of web pages, they can be used to

define text styles, table sizes, and other aspects of web pag-

es that previously could only be defined in a page's HTML

[17].

Code Libraries

In computer science, a library is a collection of implementa-

tions of behavior, written in terms of a language, which has a

well-defined interface by which the behavior is invoked [1].

Data abstraction

Reduction of a particular body of data to a simplified repre-

sentation of the whole. Abstraction, in general, is the process

of taking away or removing characteristics from something in

order to reduce it to a set of essential characteristics.

Data cleansing

The process of detecting and correcting (or removing) cor-

rupt or inaccurate records from a record set, table, or data-

base. Used mainly in databases, the term refers to identify-

ing incomplete, incorrect, inaccurate and/or irrelevant parts

of the data and then replacing, modifying, or deleting this

dirty data or coarse data.

D3.js (Data-Driven Documents)

D3.js is a JavaScript library for manipulating documents

based on data. D3 helps bringing data to life using HTML,

SVG, and CSS. D3’s emphasis on web standards gives the

user the full capabilities of modern browsers without tying

yourself to a proprietary framework, combining powerful vis-

ualization components and a data-driven approach to DOM

manipulation. [4.]

DOCTYPE

A document type declaration, or DOCTYPE, is an instruction

that associates a particular SGML or XML document (for ex-

ample, a webpage) with a document type definition (DTD)

(for example, the formal definition of a particular version of

HTML).

Document Object Model (DOM)

The Document Object Model is a platform- and language-

neutral interface that will allow programs and scripts to dy-

namically access and update the content, structure and style

of documents. The document can be further processed and

the results of that processing can be incorporated back into

the presented page. [25.]

Font-end

Front-end is a term used to characterize a program interface

or service relative to the initial user of this interface or ser-

vice. In this case the user can be a human or a program and

front-end is the interface a user interacts directly. [3] For ex-

ample a front-end is a text editor on a device where a user

inputs data.

Framework

Describes a given structure of "how" code should be present.

It is more like a code-template, along with some helpers, and

constructors to solve and simplify a specific problem or bring

architecture in "order". Examples, "Backbone", "AngularJS"

and "Batman" [26; 34.]

gitHub

GitHub is a web-based revision control hosting service for

software development and code sharing.

HyperText Markup Language (HTML)

A set of standards, a variety of SGML, used to tag the ele-

ments of a hypertext document. It is the standard protocol for

formatting and displaying documents on the World Wide

Web [12]. The publishing format for the web, including the

ability to format documents and link to other documents and

resources [11].

HyperText Transfer Protocol (HTTP)

The standard protocol for transferring hypertext documents

on the World Wide Web [13]. Allows for the retrieval of linked

resources from across the web [11].

JavaScript (ECMAScript)

A programming language commonly used in web develop-

ment and originally developed by Netscape. While JavaS-

cript is influenced by Java, the syntax is more similar to C

and is based on ECMAScript, a scripting language devel-

oped by Sun Microsystems. It is used to add dynamic and in-

teractive elements to websites [18]. ECMAScript and JavaS-

cript can be used interchangeably.

jQuery

JavaScript library that uses CSS selectors to access and

manipulate HTML elements (DOM Objects) on a web page.

It provides a companion UI (user interface) framework and

numerous other plug-ins [27].

Linter

Lintering is the process of running a linter program that will

analyze code for potential errors. Linter is now applied ge-

nerically to tools that flag suspicious usage in software writ-

ten in any computer language.

Mock-up

A scale or full-size model of a design or device, used for

teaching, demonstration, design evaluation or promote. It is

sometimes the result of wireframes. It is a working sample

built for reviewing format, layout, content, testing or display-

ing.

Same-origin policy

In computing, the same-origin policy is an important concept

in the web application security model. Under the policy, a

web browser permits scripts contained in a first web page to

access data in a second web page, but only if both web pag-

es have the same origin. An origin is defined as a combina-

tion of an URI scheme, hostname, and port number. This

policy prevents a malicious script on one page from obtain-

ing access to sensitive data on another web page through

that page's Document Object Model. [36.]

Sublime Text 3

Sublime Text is a cross-platform text and source code editor,

with a Python application programming interface (API). Sub-

lime Text is proprietary software. Its functionality is extenda-

ble with plugins. Most of the extending packages have free-

software licenses and are community-built and maintained.

SVG (Scalable Vector Graphics)

Description of a vector image in Extensible Markup Lan-

guage (XML). Any program such as a web browser that rec-

ognizes XML can display the image using the information

provided in the SVG format.

Tuts+

An online education website and membership focused on

creative skills.

Twitter Bootstrap

Bootstrap is a free and open-source collection of tools for

creating websites and web applications. It contains HTML-

and CSS-based design templates for typography, forms, but-

tons, navigation and other interface components, as well as

optional JavaScript extensions.

Uniform Resource Identifier (URI)

A kind of “address” that is unique to each resource on the

web [11].

Web programming

Web programming, also known as ‘web development’, “is a

broad term for the work involved in developing a web site for

the Internet (World Wide Web) or an intranet (a private net-

work). Web development can range from developing the

simplest static single page of plain text to the most complex

web-based Internet applications, electronic businesses, and

social network services. A more comprehensive list of tasks

to which web development commonly refers may include

web design, web content development, client liaison, client-

side/server-side scripting, web server and network security

configuration, and e-commerce development.” [10.]

Wireframes

A design tool used in web development. It is a visualization

tool for presenting proposed functions, structure and content

of a website. It is typically created in black and white or

shades of grey, using placeholders for images. Wireframes

avoid the visual design of the site and are more concerned

with the organization of the content and features.

World Wide Web Consortium (W3C)

The World Wide Web Consortium (W3C) is an international

community that develops open standards to ensure the long-

term growth of the web [15].

1

1 Introduction

Technology is moving at a very fast pace and breakthroughs are happening daily. Why

then is data still being represented in ways that have not quite progressed fast enough

for current standards in the information era? Figures are still being represented in ta-

bles, static graphs and infographics. These are inactive in nature and do not allow the

observer to interact with them. Progress has run from analyzing data with mathematical

models and placing them into different variations of non- or color-coded graphs and

tables. While this, in most cases, is still practical and sufficient in higher educational

and scientific communities the population at large prefers a more entertaining means. A

bigger picture has to be seen when it comes to displaying information. The world has

moved on from reading and observing to seeing and interacting. Individuals grab infor-

mation when it is given in a format that allows them to play with it. The world has

moved to touch technologies, access to information is growing and so is the demand

for interesting ways of displaying it. Transitioning from paper to the Internet with inter-

active content interest has spiked on infographics and information in general. In figure

1 Google trends displays the search interest of the word infographic and how interest

has peaked from 2009. In figure 1 numbers represent search interest relative to the

highest point on the chart. If at most 10% of searches for the given region and time

frame were for "info," we'd consider this 100. This doesn't convey absolute search vol-

ume. So does data analysis have to progress in the same pace, from simple graphs to

on screen graphics and even special effects?

2

Figure 1: Search interest relative to the highes search volume. Copied and modified
from Google trends. [46.]

This change is being made by new web based coding libraries (ready made implemen-

tations of behavior in a certain programming language) allowing anyone with

knowledge of programming to create interactive content of analyzed data. [1] One great

example of a front-end library is D3.js that allows anyone with sufficient knowledge of a

few well-known technologies to create powerful and robust graphical forms and visuali-

zations that can be customized. [2.] Other libraries include Dygraphs, ZingChart, jqPlot,

jpGraph, Highcharts, Crossfilter, Flot, and Raphaël [5]. Technologies are clearly being

developed to fill this void in current data visualization practices.

This paper is going to focus on D3.js and its ability to create a highly interactive one-

page web application displaying open source scientific data on earth’s temperature

measurements 3 million years to present day [7; 8; 9]. This involved using a large da-

taset that cannot be considered big data by current standards, but that subjugated to

similar problems that would come with big data. Nevertheless, the aim was to see how

far current technologies have come in creating an interactive experience from raw data

points that will be interesting, accessible and useful to the general public. This was

measured with a questionnaire at the end of running the application and results are

available to the public. This thesis project set out to solve the current lack of interactive

online data visualization, which is a problem for the average consumer wanting a quick

and fun way to consume quantitative information. The aim was to produce an entertain-

Term “infographic” searched according to Google trends

3

ing one-page web application with current technologies that would also be informative

and more conveying than a traditional static graph.

4

2 Web Programming

To understand this interactive web application built in D3.js and the scientific data ana-

lyzed, the intricacies of D3.js and web programming must be known. Thereby basic

concepts and building blocks are presented in the first few sections. Web programming

is one of these key elements in creating current interactive data visualizations. Also

known as front-end programming, this is the creation of a web site for the Internet

(World Wide Web) or an intranet (a private network) that is at simplest a static single

page of plain text or as complex as a web-based Internet application. [10.] The follow-

ing sections will go in-depth into the apprehending of this field of programming.

2.1 Short History of Web and Web Programming

“Tim Berners-Lee invented the World Wide Web in 1989, about 20 years after the first

connection was established over what is today known as the Internet” [11]. As a soft-

ware engineer at CERN (particle physics laboratory near Geneva, Switzerland) he

wanted to tackle the problem of exchanging data and results by scientists around the

world. He documented what was to become the World Wide Web and made a proposal

of specifications and set of technologies that would make the Internet truly accessible

and useful to people (figure 2). In this proposal lies the three fundamental technologies

that remain the foundation of today’s web: HTML: HyperText Markup Language, URI:

Uniform Resource Identifier and HTTP: Hypertext Transfer Protocol. In April 1993 the

World Wide Web technology was available for anyone to use on a royalty-free basis.

5

Figure 2. Sir Tim Berners-Lee’s proposal on 12th March 1989. Image copied from
World Wide Web Foundation [11].

The web started its growth, with engineers and scientists using it, but it was realized

that for the web to reach its full potential its underlying technologies had to be stand-

ardized. This is how in 1994 Tim Berners-Lee founded the World Wide Web Consorti-

um (W3C) to find consensus around the specification and guidelines [11]. What came

next were the hobbyists, as well as not quite specialized programmers, who started

trying new graphical ways of building webpages. This was the cave man era of the web

where everything was wild and free. The web consisted mostly of static sites with small

hacks and tweaks to make cool things happen. Some are still online and functioning,

such as warnerbros.com/spacejam/movie/jam.htm [14]. As seen these were mostly

flashy unreadable pages constructed with tricks and hacks to make everything fall into

place.

Even though the Internet has progressed far when looking into the past, there are still

frontiers to cover. The 1990’s might have been the cave man era of the Internet, but

now it is the Wild West with progress being slow. Web programming relies on the tech-

6

nologies that use W3C’s specifications, and unfortunately these are implemented and

propagated slowly into browsers and servers. The major difficulties of the twenty-first

century are not the lack of specifications, but the absence of their implementations in

technologies web programmers rely on. [16.] With the rapid growth of the web with over

1 trillion public pages (in 2008) and 1.7 billion people on the Web (in 2009), and not

fully understanding how all the pieces work together, the Web Science Trust (WST)

was started. With the future looking promising, as more and more devices are connect-

ed, it is still far from reaching its full potential. [11.]

2.2 What is Web Programming Today

Web programming can be split into two major groups: client-side and server-side cod-

ing. Client-side coding consists of what is mostly observed about the web and what the

user sees clearly in a web browser. These technologies include HTML, CSS to JavaS-

cript and graphics. Server-side coding on the other hand includes technologies such as

Java, PHP, Python and Scala. Client-side coding is executed and stored on a local

client, whereas server-side code is not available to a client and is executed on a web

server. In other words, the server-side is more hidden to the user as code is running

elsewhere, while the client-side gets executed on a user’s local machine. [10.]

Web based technologies have developed rapidly and the knowledge base is huge

when it comes to mastering the art. The importance of the three fundamental technolo-

gies that started it all (HTML, URI and HTTP) is crucial. New on the scene are CSS

(cascading style sheets) and JavaScript. Also the knowledge of cross-browser, cross-

platform, cross-device functionality, accessibility, templates, CMS, web frameworks,

different programming languages, usability and performance testing are part of today’s

web programming. The world has moves away from hobbyist front-enders to profes-

sionals who need to know the nitty-gritty, outs and ins of what it means to develop a

front-end interface. It is a great task and a challenging one in the ever-developing in-

dustry. In figure 3 one can see the fast development of technologies. This graph is a

great example of how programmers have to know at least a little about everything and

a lot about nothing.

7

Figure 3. Timeline of web technologies from 1990-2009. Courtesy of Felipe Micaroni
Lalli [10].

2.2.1 Mark-up of Today: Focus on JavaScript

There are three key elements or pillars of front-end development today. These can also

be called the best practices when it comes to mark-up and coding for the web. Firstly

there is the separation of presentation, content and behavior. Secondly, mark-up

8

should be well formed, semantically correct and generally valid. Thirdly, JavaScript

should progressively enhance the experience. [19.]

The first component of any web page is the tag-based mark-up language HTML and it

always defines the structure and outline of a document. The second component is the

presentation information contained in CSS. CSS describes all presentation aspects of

the page via a description of its visual properties. Finally JavaScript code enhances the

overall user and browser-based experience through attaching to events and controlling

the behavior layer. [19.]

The key difference with the early days of the web to modern times is the amount of

JavaScript that can be found on websites. Robert Ward and Martin Smith already pre-

dicted this in their paper “JavaScript as a first programming language for multimedia

students” in 1998, when they reported experiences and findings on the first delivery of

JavaScript modules and the future the web offers graduates: [20, 250.]

“…it seems that that the Web is now becoming the prevalent delivery medi-
um for multimedia products and Web development a main area of employ-
ment for multimedia graduates…” [20,250]

JavaScript was introduced in 1995 with the Netscape Navigator browser to add pro-

grams into web pages. Even though its name might suggest a connection to Java it has

little to nothing in common with it. If anything JavaScript is more like C and similar

name was inspired by marketing considerations, rather than good judgment. After the

adoption outside of Netscape a document to standardize the language was published

called the ECMAScript standard. [22; 23, 857] ECMAScript and JavaScript can be used

interchangeably and are names for the same language. There have been many ver-

sions of JavaScript, with ECMAScript version 3 dominating in 2000-2010. Propositions

on version 4 where made and abandoned in 2008 and today developers are writing

version 5 code which is supported by all major browsers (see figure 3). While tradition-

ally JavaScript has been thought of as a client-side language, it can be used in data-

bases, such as MongoDB and CouchDB, for scripting and querying. [21,6.] Netscape

introduced an implementation of the language for server-side scripting with Netscape

Enterprise Server in December 1994, soon after releasing JavaScript for browsers [45,

2]. Only now after a decade has it picked up interest in implementations such as

9

Node.js that is a powerful environment for programming JavaScript outside of the

browser.

JavaScript is an interpreted, object-based, event-driven programming language em-

bedded into HTML pages. It has a built-in object based hierarchy and it is untyped, so

variables and types do not have to be declared. It contains the full range of operators,

logical operators and supports functions, but not procedures. “It uses dynamic binding

so object references are checked only at run-time… It has a full range simple data

types, and supports local and global variables but does not support user-defined data

types. It supports the concept of uni- and multidimensional arrays (although elements

are actually instances of an inbuilt Array object)…” [20,250.]

Figure 4: The difference between a library and a framework explained very simply.
Copied from programcreek.com [35.]

It is important to note that no one writes pure JavaScript anymore and most program-

mers rely on libraries and frameworks. This is because advanced JavaScript program-

ming can often be very difficult and time-consuming to work with. For example the

complex handling of browser differences is a good reason why a lot of JavaScript

(helper) libraries have been developed to deal with these difficulties. The two terms

library and framework are overlapping words that have common characteristics. Even

though the question is highly subjective, it can be said that frameworks give a structure

of "how" programmers should present their code and library is a toolkit, which highly

abstracts different layers [34]. Simply put a library slots into an existing architecture and

adds specific functionality, while a framework gives an architecture such as a file struc-

ture that is meant to be followed and as such meant to handle all common require-

ments [26]. The difference can also be defined by the “inversion of control”. This

means, when calling a library, the coder is in control. However with a framework, the

10

control is inverted: the framework calls the coder, (see figure 4). All the control flow is

already in the framework, and there is just a bunch of predefined white spots that can

be filled out with own code. A library on the other hand is a collection of functionality

that can be called. [35.] In this study libraries have been used and some of the most

popular JavaScript libraries are jQuery, Prototype and MooTools. All of these have

functions for common JavaScript tasks like animations, Document Object Model (DOM)

manipulation, and Ajax handling. In section 4 it is explained how jQuery and D3.js have

been used to implement functionality within this project. [27.]

2.2.2 Best Practices in JavaScript

Even without being an advanced programmer there are some best practises to take

into account when writing JavaScript. Many opinions are out there and search results

come up with multitudes of links. The reading of credited sources such as w3schools,

code.tutsplus and some frameworks readme’s are a great starting point. There are

some pillars of practices that include avoiding global variables, declaring local varia-

bles, placing declarations on top, initializing variables, never declaring numbers, strings

or Boolean objects, avoiding the use of newobject(), being aware of JavaScripts quirky

automatic type conversions and its funny ‘===’ comparison instead of ‘==’ comparison

operator that converts (to matching types) before comparing. Also using parameter

defaults avoids breaks in code. Ending switches with defaults and avoid using eval()

altogether is good practice. [37.] Tuts+ has an even longer list of good points and ex-

planations for each in their “24 JavaScript Best Practices for Beginners” post from June

2009 [39]. Isobar’s “Front-end Code Standards & Best Practices” also offers a compre-

hensive guide to overall best practices in HTML, CSS and JavaScript. [19.]

2.2.3 Layout and Design: Focus on Designing for Data

Equal to code is the layout and design of a webpage. The word design comes from the

Latin word designare, which means to mark out, devise, or choose. Designing for web

is its own unique ballgame when compared to print. Print involves seeing, while web is

seeing the doing. This means that the responsibility of a web designer is to lead the

user through the website that is the doing. “The experience of a website is defined by

the interaction the user has with it.” [28, 8.]

11

The design process can be defined in six stages: defining goals and strategy, research,

information architecture, sketching, wireframes and mock-ups. Defining goals and

strategy involves asking questions such as “Why does this website need to exist?” A

designer should be able to define the goal of the website. Research is done to under-

stand what visitors to a site might be expecting and it can be helpful to create scenarios

and characters for the process. Information architecture goes deeper into designing the

structure of a website before considering the visuals. This is providing optimal naviga-

tion paths in getting from point A to point B intuitively. In this stage developers come to

early usability testing and it runs all the way to wireframes and mock-ups. Wireframes,

prototypes, and mock-ups are to explore different design options and functionality for

the site. It allows making changes before writing code and creating graphics. This is

important as no one wants to write code again realizing its un-usefulness. [28, 11-20.]

Even though web design is thought of as being completely separate from traditional

design, it still has basic elements that follow it closely. For example, just like any other

form of design, there is a grid, which is an organizing principle in graphic design. It is

ingrained into current practice and design education. In “Making and Breaking the

Grid”, by Timothy Samara, various grid layouts are explored, which have been used for

centuries and are still as fresh and used in modern day websites. Bootstrap, a CSS

library, is an example where a 12-grid layout and its knowledge is key to building web-

sites with the technology. [29, 8-9,88-89.]

To design means to plan. The process of design is used to bring order from
chaos and randomness. Order is good for readers, who can more easily
make sense of an organized message… good design … changes with time.
It is apparent that style and fashion are aspects of design that cannot be
ignored. [30,1.]

As in the legendary design bible “The Elements of Graphic Design” all the traditional

elements can also be seen in online websites. These include understanding space,

unity, page architecture, color and type [30]. To be able to design great sites, it is cru-

cial for a web programmer to also understand something about design even if they

have not gotten a degree in it. The fundamentals of design come into play when coding

any project meant be of convenience to its users. “But the success of a page is only as

good as the power with which it communicates and the effortlessness with which it

does it.” [30, 201.] As a great example of creativity and following traditional graphic

12

design principles James Cheshire mapped the world’s population in figure 5. “Omitting

any shorelines or country boundaries, he drew horizontal latitude lines that zigzag up-

ward in black according to the population at that spot, with spikes at major cities col-

ored gold. The approach highlights Earth’s densest areas—crowded Asia stands out

particularly—more clearly than a table of numbers ever could.” [40.]

Figure 5: James Cheshire mapped the world’s population in a new way. Copied from
popular Science (2014) [40.]

In a 2014 study on how designers design for data it was found through observation that

“designers would first draw high-level elements of their design such as the layout and

axes, followed by a sketching in of data points based on their perceived ideas of data

behavior” [31, 19]. What was most interesting was that the designers’ inference about

the data was often inaccurate. As would be expected, to design well for data designers

have to spend a substantial amount of time in understanding its intricacies. This was

also visible in the study as “the amount of data exploration and manipulation was relat-

ed to the level of a designer’s experience working with data”. Inexperienced designers

“data encodings remained unchanged until assumptions about data behavior were

shown to be incorrect”. [31, 20.] It was noted that designers have a critical need to be

able to define and modify data abstractions, but unfortunately these types of tools are

still in their infancy. Currently the only way to minimize ineffective or incompatible visu-

alizations in the planning and implementing phases is by understanding data behavior

and structure early on in the design process. Unfortunately this can be tough as visual-

13

ization creation tools, for example NoPumpG, SAGE and Tableau, make importing data

easy, but tend to limit the design space. Visualization programming environments, for

example Processing, D3.js, Protovis, VTK, can produce sophisticated, flexible, and

creative visualizations, but they require skill and time to learn. [31, 19.] Currently the

need for “data abstraction tools that attempt to provide the freedom to explore alterna-

tive interpretations of data, including alternative data structures and deriving new data”

is missing in the arsenal of tools for creating data visualizations for today’s audiences.

[31, 22] This might be the reason why data is still represented in the static representa-

tions forms as expressed in the introduction of this paper.

Figure 6: Diagram to help in the choosing of a form. Copied from King (2014) [2], Cre-
ated by Dr. Andrew Abela, marketing professor and dean, Catholic University of Ameri-
ca in Washington, D.C.

A good quote about the importance of data visualization as expressed by Edward R.

Tufte in The Visual Display of Quantitative Information:

Excellence in statistical graphics consists of complex ideas communicated
with clarity, precision, and efficiency… Graphics reveal data. Indeed

14

graphics can be more precise and revealing than conventional statistical
computations. [32, 13.]

There are some key elements to designing good visualizations with data. The visualiza-

tion should show the data as best it could. It should “induce the viewer to think about

the substance rather then about methodology, graphic design, the technology of graph-

ic production” or anything else. It should not distort what the data has to say and pre-

sent many numbers concisely and make large datasets coherent. Good visualizations

encourage the eye to compare different pieces of data and reveal the data at several

levels of detail, from overview to fine structure. What is shown has to serve a clear pur-

pose with description, exploration, tabulation or decoration. It also needs to be “closely

integrated with the statistical and verbal descriptions of a data set.” [32, 13] Interesting-

ly enough even in 1982 John W. Turkey realized that the lack of quantitative skills of

professional artists was a cause for graphics that lie. This is because mostly designers,

with education in fine art, have done this task, generally with no experience with the

analysis of data and statistics. [32, 79.] The core skill is the knowledge of raw mathe-

matics along with a visual eye. Discerning among the multitude of statistical methods

requires knowledge and learning how different types of data behave and are best rep-

resented. Dr. Andrew Abela’s model in figure 6 helps designers in choosing a form for

data, but the rest is up to the knowledge of the designer. To make the most use of the

diagram, Lauri Nummenmaa’s book on statistical methods explores distinct data analy-

sis methods and calculations. It explains the idea behind statistics from collecting rele-

vant data in order to make predictions of the population. It also explains what is a sig-

nificant enough dataset that it can be compared to its real population. It goes into de-

pendent and independent variables in datasets and what is significant enough correla-

tion continuing to explain statistical mathematical models and probabilities. As an ex-

ample, in section 4 that describes the thesis project in more detail, two curves have

been displayed to give the user an opportunity to observe two sets of data in one

graph. [33, 3-10,284.]

2.3 Reasons for Choosing D3.js in this Thesis Project

D3 was published in 2011 and it quickly becoming a popular tool for creating data visu-

alizations online, but it was not the first or only tool out there. Most importantly I chose

D3 for the project as it had a number of example code blocks and books available. It

15

was important to be able to have some references and ideas on what was possible to

accomplish when it came to making online data visualizations. This was the first time

delving into this subject and as such needed all the support I could get. Also choosing

a challenging project was personally important and D3 was definitely this with the flexi-

bility of doing everything and customizing where needed. The other options out there

that could battle with D3js included less known and newer libraries such as zingCharts,

dygraphs and highcharts. Thinking now highcharts and zingCharts would have been

better choices for this project to create the most amount of interaction and animation

within the graph with less writing. Interactivity is inbuilt in these libraries while in D3js it

has to be written. [59.] Nevertheless D3 ended up being a good challenge for the

amount of literature on the topic. Other choices included jqPlot, jpGraph, Crossfilter,

Flot, and Raphaël. jgPlot was small and did not have much to offer when it came to

customization, jpGraph was PHP based and since this was not a strong skill it was

marked off. Crossfilter is an extension library for D3 to explore large multivariate da-

tasets and therefore would still require building the visualization in D3. Flot is modest

with their documentation being very limited and example base small. Raphael is a

small JavaScript library that works with vector graphics on the web, but it also lacked

enough examples. Table 1 below shows the most important features in each when

compared to the needs of the thesis project. A more thorough chart can be found

online. [59.]

Table 1: Chart on JavaScript data visualization libraries (mentioned in this section).
jpGraph not given values because it is a PHP library and Crossfilter is an add-on. Modi-
fied from Wikipedia [59].

Library
Line

graph
support

License
Interactivity Rendering Technologies

Mouse
over

on-
Click

HTML
Canvas SVG VML

D3 Yes BSD-3 Yes No No Yes No

zingCharts Yes
Free with

a link
Yes Yes Yes Yes Yes

dygraphs Yes MIT Yes Yes Yes No No

highcharts Yes
License

required
Yes Yes No Yes Yes

jqPlot Yes
MIT or

GPLv2
Yes Yes Yes No No

jpGraph - - - - - - -

16

Crossfilter - - - - - - -

Flot Yes MIT Yes Yes Yes No No

Raphaël Yes MIT Yes No No Yes No

For now D3 is the most known library and noted for its flexibility. It works seamlessly

with existing web technologies, and can manipulate any part of the document object

model (DOM). It is as flexible as the client side web technology stack (HTML, CSS,

SVG).

“This gives it huge advantages over other tools because it can look like an-

ything you want, and it isn’t limited to small regions of a webpage like Pro-

cessing.js, Paper.js, Raphael.js, or other canvas or SVG-only based librar-

ies.” [60.]

What D3 has is great documentation, examples, community, and the accessibility of

Mike Bostock. These have all played major roles in its rise to prominence. With all

great libraries there are also drawbacks. One major one is, also clearly visible in this

thesis project, the DOM manipulation being extremely slow for large numbers of entries

and SVG performance limitations when dealing with large quantities of elements. An-

other handicap is the high learning curve, but with great community support, learning is

much easier than with less known and documented libraries. To conclude D3 is not “a

graphics library, nor is it a data processing library. It doesn’t have pre-built charts that

limit creativity. Instead, it has tools that make the connection between data and

graphics easy.” [60.]

17

3 D3.js

The D3 library is extensively used in the project that is part of the 4th section of this pa-

per. It was first developed by Stanford graduate student Mike Bostock in 2011, along

with his advisors Jeffery Heer and Vadim Ogievetsky. The library is a freely available

extension of JavaScript and the basic idea behind D3 was to provide a way to join data

with elements on a web page and then manipulate the elements based on that data.

[2.] The library enables the developer to directly set the attributes of graphical elements

in SVG (vector based graphics written with code) according to data [2, 6]. It uses SVG,

HTML5, CSS and JavaScript to power visualizations (see figure 7).

Figure 7: The core web based technologies that power working with D3 and make it an
easier tool to learn [60].

It is important to comprehend what D3 is not a tool for. It is not the tool for figuring out

the best method of displaying data or the story a data has to tell. Only after figuring out

the data set, its intricacies and story does the library come in handy. Also the library is

not for scraping data off the web. For such work Python has a couple of libraries that

work. This tool is also not good for sorting through data or doing basic data analysis.

Because D3 has a high learning curve, it is not built for quickly making bar charts,

maps, or other standard charts. The tool was designed to be powerful and robust, thus

to be used in creating multitude of graphical forms and to have full flexibility in the cus-

tomization process. [2, 8.]

Also important is to note that D3.js is there to help tell a story. Section 2.2.2 explains

the process of creating a story from information with layout and design. To design with

data is to design data in mind. The steps to creating an amazing looking data visualiza-

tion are for example the following: 1) Ask a question that can be answered with data.

For example, how long is the average lifespan of people in the world? Or, how much on

average are nations in debt around the world? There are many places to look for data

18

and some of these are the United Nations, the World Bank, the International Monetary

Fund, and the Organization for Economic Co-operation and Development (OECD). 2)

Gather the data into a usable format and prepare it for processing. This might involve

scraping data from an existing API or from Excel charts and making sure there are no

missing values because those are hazards for analyzing or visualizing a given dataset.

This is called data cleansing and some techniques include examining the validity of

measurements, accuracy of a measurement, syntax errors in measurements, missing

values, consistency of measurements making sure that they fall between a reasonable

space and uniformity (measured in same units). There are many more methods and

tools to use in searching for these data mishaps. [41.] 3) Pre-analyzing data to see

what graphing model is best suited (see figure 4 and section 2.2.3 for reference). Also

model the data quickly in other tools (for example Excel) to see a glimpse of it in differ-

ent formats. 4) Start to plan the visualization and possible animations that are wanted

in order to help the future user understand the story of the given dataset. 5) Work in

D3.js starts and the coding begins. In the sections that follow D3 is shortly gone

through.

3.1 Methods in D3

D3.js offers a lot of different methods in working with data. There is a list below taken

from the libraries API reference pages on gitHub [42]. Behaviours allow dragging and

zooming of DOM elements created by D3. The core is where the data is places into

selected DOM elements, where transitions are created, data loaded, colors added to

the visualization and all the standard techniques used in getting the data onto the

HTML page. Geography, as the name suggests, is part of map visualizations. Geome-

try can create voronoi-, quadtree-, polygon- and hull layouts. Layouts can create sev-

eral standard graphs without much coding on a programmer’s part. There is a standard

histogram layout, pack (recursive circle-packing), partition (node tree into a sunburst or

icicle), traditional pie chart, stack, tree, and treemap (display a tree of nodes). [4.]

Scales lets a developer work with continuous input domains, such as numbers, discrete

input domains, such as names or categories or time domains. SVG binds visual ele-

ments to data and the DOM. The time method has its own group as it allows, for exam-

ple, time format conversions and placing of intervals.

• Behaviours — reusable interaction behaviors

19

• Core — for example selections, transitions, data, localization, colors

• Geography — project spherical coordinates, latitude and longitude math

• Geometry — utilities for 2D geometry, such as Voronoi diagrams and quadtrees

• Layouts — derives secondary data for positioning elements

• Scales — converts between data and visual encodings

• SVG — utilities for creating Scalable Vector Graphics

• Time — parse or format times that can compute calendar intervals

On the API pages developers can also find how arrays are used, about bundle layouts,

chord layouts, cluster layouts and about colors. There is information also about

namespaces, importing data in different formats (json and CSV), math that can be

done on data and even tutorials.

3.2 Vector Graphics: Focus on SVG

There are two types of graphics: vectors and rasters. A raster image is made up of pix-

els that can only be of a certain color and that together form an image in known formats

such as JPG, GIF and PNG. A good way of testing if an image is a raster image is by

zooming into it. If it starts to become “pixelated” the viewer start to see the building

blocks of squares of one color. Then it is a raster image. A vector image is a mathe-

matical model that tells a computer what shapes it contains. It is the computers task to

tell the pixels on the screen to render themselves according to these instructions.

Therefore a user can zoom into a vector image indefinitely without any pixilation. [2.]

Figure 8: creating three SVG circles. Copied from King (2014) [2]

20

SVG is a vector format that has been standardized for the web and works on all major

browsers except for Internet Explorer 8 or earlier. It can be written in a human-readable

programming language that is a lot like HTML. It contains opening tags and closing

tags, parents, children, and in fact when building a webpage, SVG can be inserted di-

rectly into the HTML and the graphic will appear in the browser. In figure 8 above illus-

trates an example snippet of how an SVG circle can be created. Ellipses, polygons,

lines, paths, and SVG text can easily be created. Also SVG has a slew of style proper-

ties that can be used for designing graphics. Some of these are color and transparen-

cy, stroke properties, drawing order and groups and transformations. Because of its

web standard status SVGs can be assigned classes and then styles in CSS. [2.]

3.3 D3 Selections

To place data into a web page, D3 has to be given an element to select and place that

information into. There are two methods for this: d3.select() and d3.selectAll().

d3.select() selects one element at a time and creates a selection out of the first match it

finds in the DOM. Importantly D3 always employs CSS selectors to make selections,

and the created SVG elements should also have CSS selectors to style and select

them. Selections return arrays that can be assigned to variables. D3 uses the same

type of chaining as jQuery making it easier to do multiple things in sequence to a selec-

tion. It is also possible to append and remove selections. The method that is more used

then any is d3.selectAll() and it creates a selection of multiple elements. The power lies

in the fact that it can create a selection of elements that does not exist. Selections only

become useful when they are used with Data-Joins.

3.4 Data-Joins

Data-Joins is joining data with something and these are elements on a web-page.

When using the magical combination of data() and enter() on a selection, it creates a

new object for every point in the dataset (see figure 9 for a diagram of the methods in

action).

21

Figure 9: Data-Joins in action. Modified from King (2014) [2]

To create even more powerful code, a programmer can use anonymous function to

access bound data. There are conventions when using anonymous functions to access

this bound data. Firstly an argument always takes an argument d and it has a special

meaning. For each of the elements in a selection, d represents the bound data point.

D3 also gives access to the index of each data point within the data array by introduc-

ing another argument to the anonymous function - i. These methods are at the heart of

any D3 project. [2.]

3.5 Scaling and Axes in Charts

Scaling is convenient in D3 as it allows setting up a function that essentially maps data

to pixels. These scales can be linear, logarithmic or ordinal (mapping non-numeric val-

ues to pixels). Even though most math can be done in pure JavaScript and scales are

not necessary, they make programming easier. As an example, if specifying

d3.scale.linear().domain([0,10]).range([10,100]) it means to take an array inside

.domain() and mapping it to the array in .range() in a linear way. Figure 10 shows this

graphically. The range scales the data points so they are displayed on the chart from

minimum to maximum according to the element they are to place into. The domain is

the minimum and maximum of the actual dataset.

22

Figure 10: Scaling an array by domain and into a range linearly. Copied from King
(2014) [2]

To keep data neatly organized, smart margin conventions are used. To create these

there is a method with four properties. The SVG element that contains all the data

points is given margins in terms of width and height. An example of this can be found in

the API references for D3 in github, and figure 11 tries to explain it in a graphical for-

mat.

Figure 11: margin convention in D3. Copied from: King (2014) [2]

The axes in D3 are created by calling the generator for axes. To do this a function is

defined and initialized with d3.svg.axis(). The axes can be customized and there are

plenty of ways to do this accessibly in the API references. Finally to add ordinal scales

use the same domain() and range(), but instead apply them to d3.scale.ordinal(). With

23

the map() method in JavaScript it is possible to act on arrays and reorganize them or

even extract subsets of them with relative ease, dumping them into a new array. [42.]

3.6 Loading External Data

D3 can handle many formats for data except the richly formatted spreadsheet files, .xls

and .xlsx. Below is a table of the formats excepted by D3. In section 4 .json is used,

and the method to get to the data is d3.json(). To access these datasets on a local ma-

chine a developer needs to set up a local server. D3 interprets that data, and process-

es requests asynchronously. [2; 42.]

Table 2: Table showing the different formats of data that D3 is able to parse.

Format Function Description

.txt d3.text() Plain text file

.csv d3.csv() Comma-separated values

.tsv d3.tsv() Tab-separated values

.json d3.json() JSON blob

.html d3.html() HTML document

.xml d3.xml() XML document

3.7 Adding interactions and Animating

This is what makes this technology different from earlier generation graphing methods.

It allows the display of data in a canvas on a web page and this technology is funda-

mentally interactive. This means that basic user interactions can be introduced using

standard browser events. [43.] To specify animations (or other transitions) are done

with the .transition() method, followed by a chain describing the end result. It can in-

clude any DOM transformation and the only things to worry about are “the values to

transition from and to, the duration of the animation, and any delay that should happen

before the animation starts.” [44.]

24

4 Creating a One Page Web Application

4.1 Methods and Materials

For this thesis paper a one page application was created in order to test the current

technologies involved in producing interactive data visualizations. The application was

constructed in six distinctive phases. Firstly, a proper dataset had to be found and

somehow data displayed onto the viewport of the browser. Second, the data was con-

structed into a format that can be read by D3js and inputted into a D3 SVG element

creating a graph. Thirdly, multiple datasets had to be plotted onto the built JavaScript

graph function. Fourth, came the building of interaction and the logic of clicks and tran-

sitions from one state to another. Fifth, was the styling of elements and the built of in-

teractions to be responsive on a wide range of devices. The sixth and final step was

putting everything together, deploying everything onto a server with any finishing

touches the app needed. [47.]

The project was built using D3js, but also employing jQuery and Twitter Bootstrap

where needed. Google fonts along with Bootstrap gave a simple stylish layout. Social

media buttons in the footer where provided in order to get questionnaire responses

from the general public about the visualization application. CSS3 animations where

also used and HTML5 written as the DOCTYPE entails in the main index.html. For the

execution of all these technologies a development environment had to be built to house

sufficient testing and debugging utilities. The terminal was used for initiating a local

HTTP server as well as keeping version control. A gitHub repository was created to

have access to the project from any machine. Coding was done mostly in Sublime Text

3 with the help of linters for debugging. Custom JSON, JavaScript and CSS were the

building blocks and the backbone was with the known technologies of D3, Bootstrap

and jQuery.

4.1.1 Phase One: Researching for a Dataset

In phase one data was scouted for, researched and a prospective plan on how to dis-

play it was contrived. This was a time consuming process that involved exploring the

Internet for open data and for figures that would be relevant and interesting to a wide

25

audience. Many datasets like CREO’s extinction of species dataset were a prospect,

but in the end these where left to be devoured for a later date [6]. When coming across

Bintanja and van de Wal’s (2008) scientific report of 3,000,000 of years global tempera-

tures according to Ice Volume (δ18O) [8], it seemed perfect for an interactive visualiza-

tion. Not only was it challenging to understand, but it also seemed the kind of data a

common person might be interested in.

Now only if it was in a format that could be understood.

If searching for data was a challenge, converting it into an understandable visualiza-

tion, and planning the intricacies around how it could be implemented with current

technologies, was even harder. Discerning the data implied reading up on geography,

glaciology, climatology and sedimentology. The dataset implies an understanding of

the fields and goes deeper into earth’s historical eras and phases. The measurements

were based on a “comprehensive ice-sheet model and a simple ocean-temperature

model”, that were “applied to marine benthic oxygen isotopes (LR04 stack)”. [8] This

allowed the extraction of three-million-year mutually consistent records of surface air

temperature, ice volume, and sea level. To create a more simplistic view of the large

dataset of 30,000 data rows only surface air temperature (Tsurf (changed to sTemp in

json)) and deep-ocean temperature (Tdo (changed to tDo in json)) were used. It is to

note, “the reconstructed atmospheric surface air temperatures apply to all subarctic to

arctic land masses (including continental shelves) north of about ~45N.” [8] In figure 12

we can see core samples that are 1 million years old and see clearly changes in cli-

mate in the hues of the ice. Sediment core, taken with a gravity corer by the research

vessel POLARSTERN in the South Atlantic; light/dark-colored changes are due to cli-

mate cycles of the Quaternary; basis age of the core is about 1 million years (length of

each segment is 1 meter).

26

Figure 12: Sediment core, light/dark-colored changes are due to climate cycles. Taken
by: Dr. Hannes Grobe, Geosciences (Marine Geology and Paleontology) [48.] Copied
from Wikipedia [49]

Marine benthic oxygen isotope (LR04 stack) is part of the marine isotope stages (MIS)

and tells about the alternating warm and cool periods in the earth's paleoclimate. The-

se stages are deduced from oxygen isotope data from deep-sea core samples. Stages

are either even numbers with high levels of oxygen-18 representing cold glacial periods

or odd numbers representing warm interglacial intervals. Estimations of climate “are

derived from pollen and foraminifera (plankton) remains in drilled marine sediment

cores, sapropels, and other data that reflect historic climate; these are called proxies.”

Cesare Emiliani’s pioneering work of the 1950s gave rise to the MIS timescale. It is

now widely used in archaeology and other fields to express dating in the Quaternary

period (the last 2.6 million years), as well as providing the fullest data for paleoclimatol-

ogy or the study of the early climate of the earth. [49] The LR04 stack measures the

ratio of stable isotopes, 18O:16O (oxygen-18:oxygen-16), from corals, foraminifera and

ice cores. The definition is, in "per mil" (‰, parts per thousand):

𝛿!"Ο =

!"!
!"!

𝑠𝑎𝑚𝑝𝑙𝑒
!"!
!"!

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
− 1 ∗ 1000%

Here the standard is a known isotopic composition. [50.]

27

After understanding the scientific dataset a way to exhibit data on a webpage had to be

found. This involved researching about the methods involved in parsing data in D3.

Section 3.6 describes the different methods. After trying out a few, the top candidate

became JSON for its flexibility and ease of use with JavaScript. In the next section and

in figure 13 the intricacies of employing this format onto the given dataset is explored.

4.1.2 Phase Two: Formatting the Dataset

The large dataset was studied in Excel format in the first phase, but in order to manipu-

late it in D3 it had to be converted into a format that can be parsed. This became the

next challenge. The dataset had to be edited with only the relevant inputs intact and

produce a valid output. With over 30,000 rows of data and 9 columns, this was not a

task to be done by hand. Conversion was going to involve time no matter what format

was picked. In the end because JavaScript natively reads JSON, it became the format

of choice. In section 3.6 and figure 12 alternate ways of inputting data into D3 are illus-

trated. Fortunately an online tool for converting data into one of several web-friendly

formats (including HTML, JSON and XML) was found. [55] Also it was helpful that its

clipboard memory was not restricted and could fit the entire dataset. With it, valid JSON

was produced into a single object file with 30,000 rows.

28

Figure 13: Phase one code where testing of loading of a dataset was rendered onto a
page. Screen capture of first initial code commit [47.]

This large JSON was now going to have to be loaded from an external file because it

was impossible to place it directly into the HTML page with 30,000 rows. Because of

“same-origin policy” restrictions that are built into modern browsers, loading JSON from

an external file required the running of a local server. When trying to develop locally

these security restrictions will open a security exception. Currently there are two ways

to solve this: 1. Change security for local files in a browser (access page as

file:///example) or 2. Run files from a local server (access page as

http://localhost/example). [36.] For this project the second method was used. The run-

ning of a local Python built-in HTTP server was executed with a terminal calling “python

-m SimpleHTTPServer” in the project repository directory. After this it seemed to print

out nicely all the elements within the file and the output looked like one long paragraph

without any spaces or punctuation (see figure 13, above).

As JSON was nicely being printed from the external file, it was time to move to more

challenges. Next came the implementation of an SVG graph with only one column of

<script(type="text/javascript">(
((((((((((((//load(external(data:(
((((((((((((d3.json("../json/300000years_of_temperatures.json",(function(error,(json)(
{(
((((((((((((((((if((error!=null)(return(console.warn(error);(
((((((((((((((((dataSet(=(json;(
((((((((((((((((visualizeit(dataSet);(
((((((((((((});(
((((((((((((function(visualizeit(dataSet){(
((((((((((((((((
d3.select("body").select("div").data(dataSet).enter().append("span").text(functio
n(d,(i){(return(d.Tdo(});(
((((((((((((};(
((((((((</script>(

29

data within the given JSON file. Next D3 needed to know where in the object to take

the data from and what domains to give it when plotting. This was a big learning curve

and several hours were spent reading example code and monkeying code in. In the

end revelation struck with the result of a single line graph with data used from deep

ocean temperatures. [51.]

…"

var"line"="d3.svg.line()"

"""".x(function(d)"{"return"x(d.Time);"})"

"""".y(function(d)"{"return"y(d.Tdo);"});"

"

var"svg"="d3.select("body").append("svg")"

"""".attr("width","width"+"margin.left"+"margin.right)"

"""".attr("height","height"+"margin.top"+"margin.bottom)"

"""".append("g")"

"""".attr("transform",""translate(""+"margin.left"+"",""+"margin.top"+"")");"

…"

function"visualizeit(data){"

""""x.domain(d3.extent(data,"function(d)"{"return"d.Time;"}));"

""""y.domain(d3.extent(data,"function(d)"{"return"d.Tdo;"}));"

"

""""svg.append("g")"

"""""""".attr("class",""x"axis")"

"""""""".attr("transform",""translate(0,""+"height"+"")")"

"""""""".call(xAxis);"

"

""""svg.append("g")"

"""""""".attr("class",""y"axis")"

"""""""".call(yAxis)"

"""""""".append("text")"

"""""""".attr("transform",""rotate(H90)")"

"""""""".attr("y","6)"

"""""""".attr("dy","".71em")"

"""""""".style("textHanchor",""end")"

"""""""".text("Temperature");"

"

""""svg.append("path")"

"""""""".datum(data)"

"""""""".attr("class",""line")"

"""""""".attr("d","line);"

30

Figure 14: Data printed onto an SVG element with the help of D3 and code clipped
from the relevant part. Screen capture of the second phase [47.]

As seen in figure 14 the data displayed nicely when D3 was given a clear understand-

ing where to pick up the data points. Here a variable line is told that x is Time and y is

deep ocean temperatures. When loading the data the SVG element is told to rotate on

its axis -90 degrees to compensate for the fact that in computer graphics the origin is

always the top left corner. For humans origin is displayed in the bottom left corner. The

result was as in figure 14 a line graph with the correct axis representing the domain of

deep ocean temperature values of 3 million years. In the next phase multiple data val-

ues are plotted.

4.1.3 Phase Three: Multiple Temperature Data onto a Single Graph

To compare visually deep-ocean temperature relative to present (degC) and atmos-

pheric surface air temperature relative to present (degC), a multi-line graph had to be

coded. The web had nice examples of this, but as with anything they were not perfect

fits with the data at hand. [52.] A time taking task was getting measurements from the

object and creating the right domains for the x and y. Finally the lines were plotted in a

single group element with color being the defining factor in splitting the two data varia-

bles (see figure 15).

Figure 15: Output of the third phase of getting 60,000 points to show up on an SVG
element. Screen capture of the second phase with multiple data [47]

31

As with all project, there were difficulties. The dataset chosen was quite large with

60,000 data points to create a curve from. As expected the loading of data created a

substantial lag when loading the page with so much for the browser to draw. This be-

came a huge problem throughout the next phases of development.

4.1.4 Phase Four: Creating Interactions and Mouse Events

Creating interactions and mouse events was the most time consuming phase. How to

create interaction and change an SVG graphic according to clicks and mouse events?

An initial starting screen had to be built with the logic that when a button was clicked it

would load a graph with the data from the scientific dataset would appear. This was

only the beginning as phase four ended up becoming the most time consuming of all

the phases with bugs popping up after each new line of code. Time engrossing was

creating loops of rendering animations within the D3 logic. Because of the rendering

slowness of the large dataset, multiple smaller JSON files were made which where

sections of the whole. This allowed for the illusion that the whole dataset was all the

time being scrolled but actually a new dataset was loaded after an external popo-

ver.json file gave a Boolean variable to do so. A graph is animated once it is called by a

runner function and popovers displayed with data transferred from an existing JSON

file. This can be seen in more detail when reading the code clips in listing 1 and 2. A

carousal effect was at first created with logic for a back button, but this was abandoned

once noticed that the logic became too complex to execute in the required time for this

thesis.

32

$(".start").click(function() {
begin();
});

function begin() {
$(".start").off("click");
$(".relative").hide();
var figure = $("#svgGraph");
figure.fadeIn(1000);
if(first) {
 firstRun("../json/1.json");
 first = false;
} else {
 runner("../json/1.json");
}
function firstRun(jsonFile) {
d3.json(jsonFile, function (error, data) {
 if (error != null) return console.warn(error);
 fillColorDomain(data);
 temperatures = generateTempColors(data);
 setAxisDomains(data);
...
function rotate() {
$("#svgGraph").hide();
$(".relative").show();
$(".btn").click(function() {
 $("#svgGraph").show();
 begin();
});
…
function fillColorDomain(data) {
function runner(jsonFile) {
//load external data:
d3.json(jsonFile, function (error, json) {
 if (error != null) return console.warn(error);
 visualizeit(json);
});

Listing 1: Code clipping representing the runner function that switches between json
files. For the full code check out gitHub.com/laurames/d3-and-data [47].

With the help of jQuery the popover and runner functions could be constructed. The

idea was to have all elements of the page already within the initial DOM structure and

be called by JavaScript when needed. Unneeded elements would be hidden while the

ones that where displayed were shown with CSS. HTML elements were given anima-

tions for a feel of transitions between stages of the visualization. Information of the

presentation was in an external JSON file that could be read when needed.

33

$.getJSON("../json/popovers.json", function(data) {
popoverJson = data;
});
var popover = fillPopover(1);
popover.data("page", 1);
popover.show();
}
function fillPopover(cur) {
var popover = $("#popover-static");
var popoverButton = popover.find('.btn-popover');
popoverButton.unbind("click");
var current = cur.toString();
var json = popoverJson[current];
popover.find("p").text(json.content);
popover.find(".popover-title").text(json.title);
popover.find(".popover").removeClass().addClass("popover " +
json.placement);
popover.css({"left": (json.x * width / 100), "top": (json.y * height /
100)});
if('last' in json) {
 popoverButton.on("click", function() {
 var nextPage = popover.data("page") + 1;
 loadNext(nextPage);
 popover.data("page", nextPage);
 });
}
if(!("end" in json)) {
 popoverButton.on("click", function() {
 popoverNextHandler(cur);
 });
} else {
 popoverButton.text("Start over");
 popoverButton.unbind("click");
 popoverButton.on("click", function() {
 rotate();
 popoverButton.text("Tell Me More");
 popover.hide();
 })
}
popover.data("current", cur);
return popover;
}
function popoverNextHandler(current) {
var current = $("#popover-static").data("current");
fillPopover(current + 1);
}
function loadNext(page) {
runner("../json/" + page + ".json");
}

Listing 2: The code above gives a clearer understanding of how the popover function
actually has the logic of how views are being carouseled. The logic was for elements to
appear and disappear based on the popovers.json file that gets loaded and the Boole-
an value checked for what comes next. [47]

The major problem that arose in this phase was animating the large dataset without

causing tearing. The execution of the animation gets called and the wrong interpolation

of points might be the cause for this tearing phenomenon. For a smoother transition a

custom interpolator function could be built in the future to test the scenario. Unfortu-

nately the time constraint has not allowed this so far. Another hypothesis might be that

because of the amount of points within the dataset the SVG drawing is slower than the

34

animation transition permits. The problem might also be highly linked to large taxing of

processing power and this problem is common when working with big data. As with the

first appearance of the term in 1997 by scientists at NASA, big data was described in

the context of the problems they faced with it. For the scientists the amount of data was

so large that they had the problem of visualizing it and ran into problems with the limita-

tions of physical memory and great taxing of the capacities of the computer. In this the-

sis project the tearing might be linked to a similar fault in the optimization and large-

ness of the dataset taxing the browsers rendering capacity. In the browser application

tearing might happen as a result of the large amount of taxing on the browser’s pro-

cessing power to draw all the required SVG elements according to the given data

points. [58.] The problem persists within the current implementation of the visualization

during the writing of this thesis, but investigation is being done to fix the transition effect

when moving from one JSON file to the next.

4.1.5 Phase Five: Styling and Appearance

CSS styling of the application was done using Twitter Bootstrap. It is a “sleek, intuitive,

and powerful front-end library for faster and easier web development.” [53.] Currently it

is the most popular HTML, CSS, and JS library for developing responsive, mobile first

projects on the web. This can be seen as in March 2015, it was the most-starred pro-

ject on GitHub, with over 78,000 stars and more than 30,000 forks. Furthermore its

compatible with the latest versions of the Google Chrome, Firefox, Internet Explorer,

Opera, and Safari browsers. It allowed for quick creation of buttons, popovers, and

following a grid system by means of following good design principles.

35

Figure 16: The page layout of the first initial starting screen of the one page application
to visualize 3 million years of earth’s temperature data.

The development of the initial page of the application had to be simple enough to at-

tract users to click on starting the visualization (see figure 16). It also had to be in-

formative about what the application is. All essential information was placed in the

three split text column design and links were provided for the dataset and question-

naire. Sharing buttons to Facebook and Twitter were arranged in the footer to give the

option for anyone to share the data and possibly provide more responses to the ques-

tionnaire. As of now a significant number of responses have not been given to the

questionnaire to draw ample conclusions for this thesis, but from the one’s received

hypotheses have been drawn in 4.2. The questionnaire statistics have been made pub-

lically available for anyone to view once the questionnaire is answered and submitted.

It will be interesting to see if the visualization in the long run has a positive impact or

goes unnoticed.

4.1.6 Phase Six: Final Touches and Uploading to Remote Server

Final touches involved tweaking the CSS styling of the layout and the visualization’s

information popovers. The final code was pushed to gitHub and the project uploaded

onto a server for future viewing by anyone. The JSON files were checked to make sure

they displayed the desired data and they were put through an online validator. Small

changes were made to main.css, runner.js and popovers.json to correct bugs and ty-

36

pos. Lastly, the application was tested by running it from a remote server and made live

on the World Wide Web. [56.]

4.2 Results and Discussion

The produced application was a challenge to create from the perspective of implemen-

tation, but the results produced a fun and engaging data visualization. The one-page

application (shown in figure 17) fills the void of today’s need for interactive data visuali-

zations and the problem of displaying large datasets to the common public. It can be

said that a possible solution to displaying large datasets is to split data into relevant

smaller chunks and stitching them together with data injection when called. This pre-

vention of data overload was solved by not showing all values in one go, but by anno-

tating the different portions of the dataset. As a positive consequence this makes the

data intuitive for assimilation for the user. The interactive method used to display the

otherwise inaccessible dataset also opens the application to a wider audience.

Figure 17: Capture of the application showing interactive information in a popover from
the Piacenzian age: 3 million – 2.58 million years ago.

In a study done by Cynthia J. Miller, Jacquee McNear & Michael J. Metz, on a compar-

ison of traditional and engaging lecture methods, it was found that “engaging lectures

led to a statistically significant higher average on unit exams compared with traditional

didactic lectures (8.6% higher, P < 0.05)”. More importantly it was discovered that en-

37

gaging improved long-term retention of learned information. [54.] Thus more engaging

and interactive content should be the future of displaying information and providing

data to the general public. Unfortunately further studies have to be made in the field of

visualization for big datasets to move from using conventional tools, such as, tables or

Excel. It was found that even with today’s tools interactivity can be programmed, but

the required learning curve is significant enough to put even professionals off the task.

Tools such as D3 are the first building blocks to creating an ecosystem where anyone

can start building interactive special effects visualizations, but more development is still

needed for higher-level tools.

Figure 18: Gender and age distributions of the respondents to the survey after viewing
the visualization. [57]

As stated in the introduction, a small survey of 17 responses was collected that con-

sisted of people who had heard about the visualization through a Facebook post or

word of mouth. The 17 responses where from the initial first three days the visualization

was online. The respondents fit into three age categories between 18-25, 26-35 and

46-55. There was almost an equal amount of female and male responses in the sample

group. It is due to note that the survey is open to the public and to new responses even

after the submitting of this thesis. The results are also visible to anyone who takes the

38

questionnaire. Even though the take was not significant enough to make a conclusions

of the population at large it can give a direction for a hypothesis. [57.]

Figure 19: Graphs showing the results of the survey on the effectiveness of the visuali-
zation. [57]

The small sample group who answered the survey suggests that engaged learning

compared to traditional didactic learning is superior in getting information across. This

correlates with study on traditional and engaging lecture methods mentioned previous-

ly. [54.] As seen in the graphs above 76.5% said that the visualization was more effec-

tive in conveying the information than a traditional graph. Furthermore 47% said they

learned from the visualization (yellow graph scale 4 and 5). Also 58.8% said that the

visualization made them more interested in the topic and that they might research it on

39

their own time (blue graph scales 4 and 5). It is also noteworthy that 58.9% said that

the visualization was a fun experience (red graph scales 4 and 5). The sample size

being so small a hypothesis can only be formulated suggesting that interactive visuali-

zations really are more effective in conveying information to the public at large when

compared to normal static graphs. [57.]

40

5 Conclusion

An interesting effect to note from this study is that general population assumes that

global temperatures have been rising steadily during the geological time frame of 3

million years to present. While human influence has affected global temperatures

slightly the earth is still below average temperatures compared to the overall average

within the time frame displayed in the data. Results like these come to light when data

can be seen and perceived in an interactive context. The large scientific dataset of

Bintanja and van de Wal’s (2008) scientific report called 3,000,000 Years Global Tem-

peratures according to Ice Volume (δ18O) [8] is hard to grasp when looked at in a ta-

ble, but comes to light when split into respective earth ages, plotted and visualized. The

future of data visualization has to move from its static roots to interactive content. The

project conducted for this paper indicated that while interactive content can be pro-

duced with current technologies, advances have to be made for such visualizations to

become accessible to masses. Also the small sample that answered the questionnaire

in time for the writing of this thesis suggests that on average people were more inter-

ested in the information displayed interactively than when conveyed conventionally in

static form. To conclude, data is knowledge, knowledge is power and sharing of power

leads to peace. Even though the mission of this project was to study possibilities of

creating interactive content with large datasets it has to be acknowledged that data is

still not reaching the average consumer in an understandable form. Presenting data in

a consumable format can have the next profound impact on the world.

41

References

1 Library (computing) [online]. Wikipedia; March 2015.
URL: http://en.wikipedia.org/wiki/Library_%28computing%29. Accessed 24 March
2015.

2 Ritchie S. King & Addison-Wesley. Visual Storytelling with D3: An Introduction to
Data Visualization in JavaScript. Pearson Education; 2014.

3 Margaret Rouse. DEFINITION front-end [online]. WhatIs.com; May 2006.
URL: http://whatis.techtarget.com/definition/front-end. Accessed 8 July 2014.

4 Mike Bostock. D3js.org [online]. URL: http://d3js.org/. Accessed 6 December
2014.

5 The 37 Best Tools for Data Visualization [online], CB Creative Blog; Nov 11,
2014. URL: http://www.creativebloq.com/design-tools/data-visualization-712402.
Accessed 2 March 2015.

6 American Museum of Natural History [online]. Accessing the CREO extinctions
database. URL: http://creo.amnh.org/pdi.html#access. Accessed 2 March 2015.

7 National Climate Data Center [online]. National Oceanic and Atmospheric Admin-
istration, Climate Reconstruction. URL: http://www.ncdc.noaa.gov/data-
access/paleoclimatology-data/datasets/climate-reconstruction. Accessed 2 March
2015.

8 Bintanja, R. and R.S.W. van de Wal. North American ice-sheet dynamics and the
onset of 100,000 year glacial cycles [serial online]. Nature 2008;454:869-872.
URL:ftp://ftp.ncdc.noaa.gov/pub/data/paleo/contributions_by_author/bintanja2008
/bintanja2008.txt. Accessed 5 November 2014.

9 NASA. GLOBAL Land-Ocean Temperature Index in 0.01 degrees Celsius
[online].
URL: http://data.giss.nasa.gov/gistemp/tabledata_v3/GLB.Ts+dSST.txt. Ac-
cessed 2 November 2015.

10 Web development [online]. Wikipedia; April 2 2015].
URL: http://en.wikipedia.org/wiki/Web_development. Accessed 22 March 2015.

11 World Wide Web Foundation. History of the Web [online].
URL: http://webfoundation.org/about/vision/history-of-the-web/. Accessed 22
March 2015.

12 HTML [online]. Dictionary.com.
URL: http://dictionary.reference.com/browse/html. Accessed 22 March 2015.

13 HTTP [online]. Dictionary.com.
URL: http://dictionary.reference.com/browse/HTTp?s=t. Accessed 22 March
2015.

42

14 Reilly Lucas. 17 Ancient Abandoned Websites That Still Work [online].
URL: http://mentalfloss.com/article/53792/17-ancient-abandoned-websites-still-
work. Accessed 12 March 2015.

15 The World Wide Web Consortium (W3C) [online].
URL: http://www.w3.org/. Accessed 12 March 2015.

16 Alexis Deveria and Lennart Schoors [online]. Browser support; February 2015.
URL: http://caniuse.com/. Accessed 12 March 2015.

17 CSS [online]. TechTerms.
URL: http://techterms.com/definition/css. Accessed 5 March 2015.

18 JavaScript [online]. TechTerms.
URL: http://techterms.com/definition/javascript. Accessed 5 March 2015.

19 Front-end Code Standards & Best Practices [online]. Isobar; 2014
URL: http://isobar-idev.github.io/code-standards/. Accessed 9 April 2014.

20 Martin Smith & Robert Ward. JavaScript as a First Programming Language for
Multimedia Students. ITiCSE '98 Proceedings of the 6th annual conference on
the teaching of computing and the 3rd annual conference on Integrating technol-
ogy into computer science education: Changing the delivery of computer science
education. September 1998; 249-253.

21 Haverbeke Marijn. Eloquent JavaScript: A Modern Introduction to Programming.
Second edition. No Starch Press; 2014.

22 ECMAScript [online]. wikipedia.com; March 2015.
URL: http://en.wikipedia.org/wiki/ECMAScript#cite_note-Zakas-6. Accessed 11
March 2015.

23 Nicholas C. Zakas. JavaScript for Web Developers. Third edition. John Wiley &
Sons; 2012.
URL: http://read.uberflip.com/i/113144-javascript-for-web-developers/44. Ac-
cessed 13 December 2014.

24 Document Object Model (DOM) [online].January 2005.
URL: http://www.w3.org/DOM/. Accessed 21 March 2015.

25 Browser Object Model [online].July 2012.
URL: http://en.wikipedia.org/wiki/Browser_Object_Model. Accessed 19 January
2015.

26 Sanderson Steven. Rich JavaScript Applications – the Seven Frameworks
(Throne of JS, 2012) [online]. Steven Sanderson’s blog; 1 August 2012.
URL: http://blog.stevensanderson.com/2012/08/01/rich-javascript-applications-
the-seven-frameworks-throne-of-js-2012/. Accessed 19 April 2015.

27 JavaScript Libraries [online]. W3schools.
URL: http://www.w3schools.com/js/js_libraries.asp. Accessed 21 March 2015.

43

28 Jeremy Osborn, Jennifer Smith & the AGI Creative Team. Web Design with
HTML and CSS: Digital Classroom. Wiley Publishing, Inc; 2011.

29 Timothy Samara. Making and Breaking the Grid: A graphic Design Layout Work-
shop. Rockport publishers, Inc; 2005

30 Alex W. White. The Elements of Graphic Design: Space, Unity, Page Architec-
ture, and Type, Second Edition. Allworth Press; 2011

31 Alex Bigelow, Steven Drucker, Danyel Fisher & Miriah Meyer. Reflections on How
Designers Design with Data. AVI '14 Proceedings of the 2014 International Work-
ing Conference on Advanced Visual Interfaces. May 2014; 17-24

32 Edward R. Tufte. The Visual Display of Quantitative Information: Second Edition,
fifth printing. Graphics Press LLC; 2001

33 Lauri Nummenmaa. Käyttäytymistieteiden tilastolliset menetelmät. Julkaisukau-
punki: Tammi; 2009

34 What is the difference between a JavaScript framework and a library? [online].
StackOverflow; 18 Febuary 2015,
URL: http://stackoverflow.com/questions/11576018/what-is-the-difference-
between-a-javascript-framework-and-a-library. Accessed 19 April 2015.

35 Library vs. Framework? [online]. Programcreek.com.
URL: http://www.programcreek.com/2011/09/what-is-the-difference-between-a-
java-library-and-a-framework/. Accessed 19 April 2015.

36 Same-origin policy [online]. March 2015.
URL: http://en.wikipedia.org/wiki/Same-origin_policy. Accessed 10 March 2015.

37 How to run things locally [online]. Theo Armour; Sep 2011.
URL: https://github.com/mrdoob/three.js/wiki/How-to-run-things-locally/_history.
Accessed 07 February 3015.

38 JavaScript Best Practices [online]. w3schools JavaScript tutorials.
URL: http://www.w3schools.com/js/js_best_practices.asp. Accessed 29 January
2015.

39 Jeffrey Way. 24 JavaScript Best Practices for Beginners [online]; Jun 2009.
URL: http://code.tutsplus.com/tutorials/24-javascript-best-practices-for-beginners-
-net-5399. Accessed 30 January 2015.

40 Katie Peek. World population mapped as peaks and valleys: one of our 15 favor-
ite recent data visualizations [online]. Dec 2014,
URL: http://www.popsci.com/world-population-mapped-peaks-and-valleys. Ac-
cessed 23 February 2015.

41 Data cleansing. Wikipedia; March 2015.
URL: http://en.wikipedia.org/wiki/Data_cleansing. Accessed 24 March 2015.

44

42 D3. Js API Reference.
URL: https://github.com/mbostock/d3/wiki/API-Reference. Accessed 24 March
2015.

43 Mike Dewar. Getting started with D3. Published by O'Reilly Media, Inc.; 2012

44 Scott Becker. Learning D3 Part 3: Animation & Interaction [online]. July 2012.
URL: http://synthesis.sbecker.net/articles/2012/07/10/learning-d3-part-3-
animation-interaction. Accessed 22 March 2015.

45 Server-Side JavaScript Guide [online]. Netscape Communications Corporation;
1998.
URL: http://docs.oracle.com/cd/E19957-01/816-6411-10/contents.htm. Accessed
21 March 2015.

46 Web search interest: infographics – Wordwide 2004, present [online]. Google
Trends.
URL: https://www.google.com/trends/explore#q=infographics. Accessed 16
March 2015.

47 Laura Meskanen-Kundu. d3-and-data [online]. March 2015.
URL: gitHubhttps://github.com/laurames/d3-and-data. Accessed 15 April 2015.

48 Dr. Hannes Grobe [online]. Alfred Wegener Institute.
URL: http://www.awi.de/People/show?hgrobe. Accessed 1 April 2015.

49 Marine isotope stage [online]. Wikipedia; April 2015.
URL: http://en.wikipedia.org/wiki/Marine_isotope_stage. Accessed 6 April 2015.

50 Carol Kendall. Resources on Isotopes. Fundamentals of Stable Isotope Geo-
chemistry. URL: http://en.wikipedia.org/wiki/%CE%9418O. Accessed 6 April
2015.

51 Line Chart [online]. D3 examples. URL: http://bl.ocks.org/mbostock/3883245.
Accessed: 6 April 2015.

52 Multi-Series Line Chart [online]. D3 examples. URL:
http://bl.ocks.org/mbostock/3884955. Accessed 5 January 2015.

53 Twitter Bootstrap [online documentation].
URL: http://getbootstrap.com/. Accessed 3 December 2014.

54 Cynthia J. Miller, Jacquee McNear, Michael J. Metz. A comparison of traditional
and engaging lecture methods in a large, professional-level course. Advances in
Physiology Education [serial online] 2013; 37(4):347-355.
URL: http://advan.physiology.org/content/37/4/347. Accessed 3 April 2015.

55 Shan Carter. Mr. Data Converter [online]. URL: https://github.com/shancarter/Mr-
Data-Converter. Accessed 4 February 2015.

56 Laura Meskanen-Kundu. 3 Million Years Of Earth Temperatures. April 2015.
URL: http://3milyears.lauramk.me/. Accessed 19 April 2015.

45

57 Laura Meskanen-Kundu. How was "3 million years of Earth Temperatures"?
[online]. March 2015.
URL: https://docs.google.com/forms/d/1IO_pfpqdK3F--9ZTX762PH-
QWgYs1B2YfXkWsuXHbqs/viewanalytics. Accessed 17 April 2015.

58 Gil Press. 12 Big Data Definitions: What's Yours? [online]. March 2014.
URL: http://www.forbes.com/sites/gilpress/2014/09/03/12-big-data-definitions-
whats-yours/. Accessed 17 April 2015.

59 Comparison of JavaScript charting frameworks [online chart]. Wikipedia; April
2015.
URL:http://en.wikipedia.org/wiki/Comparison_of_JavaScript_charting_frameworks
. Accessed 19 April 2015.

60 Drew Skau. Why D3.js is So Great for Data Visualization [online]. January 2013.
URL: http://blog.visual.ly/why-d3-js-is-so-great-for-data-visualization/. Accessed
19 April 2015.

