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This thesis introduces the behavior design of the Nao humanoid robot: a case of 

picking up the ball and throwing into the box. In this thesis, red ball recognition, 

strategy design for tracking the ball, picking up the ball and finding the box as well 

as the animation design are involved.  

 

In this thesis, Hough circle transform is utilized to detect the center of the ball pre-

cisely in the view of the robot in the vision system. In addition, probability theory 

is applied in designing and optimizing the strategy of picking up the ball autono-

mously. More importantly, the strategies of tracking the ball dynamically and cal-

culating the distance to the box are designed based on mathematical models. And 

key frames in timeline are used to design the animations. Therefore, the robot can 

achieve this project successfully. 

 

This project was completed by using Python in Windows platform. And Eclipse 

was used as the environment for programming Python. Besides, OpenCV and Py-

thon were used to recognize the red ball. In addition, Choregraph was used to design 

the animations and Matlab was used to find the location of the box. The robot is the 

newest Nao robot which is version 5. In this thesis, the implementation method was 

mainly software engineering which involves planning, developing, debugging and 

testing. 

 

Moreover, achieving the autonomy of the robot, which is to make the robot behave 

like a real human being, tends to be a popular field. And in this project, the robot 

achieves the ability of picking up the ball and throwing the ball into the box auton-

omously. And it can be concluded that mathematical theory support is very signif-

icant to achieve the autonomy of the robot. 
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1 INTRODUCTION 

1.1 Purpose of Thesis 

This thesis introduces design and implementation details about how to program the 

humanoid Nao robot to make it pick up a red ball and throw it into a box. The thesis 

is mainly about the strategies of finding the red ball and the landmark of the box, 

precise identification of the red ball and animation design with timeline. 

1.2 Overview Structure of Thesis 

This thesis consist of eight chapters. The first chapter introduces the background 

information and technical reviews of this thesis as well as the motivation of this 

thesis. The second chapter generally describes the overview structure of the Nao 

application, it explains the logical connection between each part of the application, 

and it explains different movements of the robot in this project. The third chapter 

presents the vision module of this application. In this chapter, the implementation 

details about how to achieve the precise recognition of the red ball is introduced. 

Then, Chapter 4 is the strategy design part which includes finding ball strategy and 

finding Nao mark strategy. Chapter 5 introduces the implementation details which 

contain setting the environment for Python, Eclipse and OpenCV, and animation 

design as well as a few codes explanation. Then, Chapter 6 provides the overview 

of future research, Chapter 7 is the conclusion of this thesis. 
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1.3 Brief introduction of Nao  

 

Figure 1. Humanoid Nao robot /1/ 

As shown in Figure 1, Nao is a 58-cm tall humanoid robot from Aldebaran Robot-

ics. These robots are medium-sized open architecture robots. This robot is able to 

move, recognize people and communicate with human beings. Now Nao robots 

tend to be more and more popular around world; Naos are being used around world 

for educational and research purpose in over 480 universities. /2/, /3/ 

The Nao robots communicate with the PC through a cable or wireless networks. In 

addition, different Nao robots can interact with each other by using infrared sensors, 

camera, microphone, wireless network and speaker. Besides, DCM conducts the 

communication between the devices of Nao such as the actuator and sensors. /3/ 

The Nao software is based on Gentoo Linux, and it supports all kinds of program-

ming language such as Python, C++, Java and .Net Framework. Besides, it also 

supports graphic-based Programming which makes the programming of this Nao 

robot easier. /3/ 
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1.4 Background of Humanoid Nao Robot Team in Botnia 

Since the Nao robot was chosen instead of Sony’s Aibo( puppy robot ) to be the 

official platform of RoboCup in August 2007, the Nao robot with humanoid ap-

pearance have become more and more popular and worth of study. So in 2014, two 

Nao robots V5 with H25 body type was bought by VAMK for educational and re-

search purpose. Therefore, the Botnia Nao robot team was set up and leaded by Dr. 

Liu Yang. Now, many applications have been completed successfully by the Botnia 

Nao robot team; e.g. the Nao robot can climb spiral stairs and play the Candy Crush 

game.  

1.5 Features of Nao Robot V5 

The height of Nao V5 is 57.4 and its width is 27.5 cm. And it weighs 5.4 kg.  Besides, 

a special plastic material is utilized for the body of the robot. And it has a 21.6V 

2.25 Ah battery that can be used up to 90 minutes for normal use and 60 minutes 

for active use. /3/,/4/,/5/ 

 

Figure 2. Nao H25 Features/6/ 
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More importantly, as shown in Figure 2, this robot has 25 total joints and many 

kinds of sensors, such as infrared sensors and ultrasonic sensors (sonars). /3/,/7/ 

1.6 Software of Nao Robot 

Nao supports Choregraphe, Naoqi and Monitor as development software. 

1.6.1 Choregraphe 

 

Figure 3. Choregraphe interface 

As shown in Figure 3, Choregraphe is a cross-platform application that can program 

the behaviors of the Nao robot through graphics-based programming. This software 

is suitable for beginners, since it makes program visualized and easier. 
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1.6.2 Monitor  

 

Figure 4. Monitor interface 

Monitor is a program that displays real-time data about the cameras and memory of 

the Nao robot. (Figure 4) Furthermore, this program can also be used to save images 

or videos inside the robot and transmit to the user’s PC. In addition, the value of the 

variables used by the Nao’s system can be monitored with this program. 

1.6.3 Naoqi 

Naoqi is the programming framework for programming Nao. This specific frame-

work contains parts such as parallel processing, resources management, synchroni-

zation, and event processing mainly required for robotics. Naoqi is a SDK written 

in C++ and it has the functions such as calling python or C++. /3/ 
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1.6.4 Webots 

 

Figure 5. Webots interface/8/ 

Webots is a simulator developed by Cyberbotics company for modelling, program-

ming and simulating many kinds of robots including the Nao robot. And it can be 

used to create virtual worlds for the Nao robots. /9/ 

1.7 Programming the Nao Robot 

Fortunately, each Nao’s software and software development tools are designed to 

have three different versions to make it suitable for Windows, Mac and Linux op-

erating systems respectively. Therefore, the user can program in Windows, Mac or 

Linux operating systems environment. 

First, Choregraph tends to be suitable for beginners who are not familiar with the 

programming. As shown in Figure 6, area 1 is the box library, and area 2 is the 

diagramming space. Area 3 is the menu screen. In the box library, there are all kinds 

of boxes written in Python listed by function. Then, the box in the box library can 

be dragged and dropped in the diagramming space. In addition, the input and output 

of the box can be connected as shown in Figure 6. Finally, by clicking the ”play” 

icon in the menu screen, the program runs, and the 3D Nao will move according to 

the program. And there is a video monitor embedded in this software, which can be 

used to check the view of the robot. 
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Figure 6. Program using Choregraphe 

Furthermore, Python and C++ can also be used in programming Nao. Python is an 

object-oriented, interpreter-based language. The advantage of the Python language 

is that it is able to quickly check the content being tested. On the one hand, Python 

can be used in Choregraph to edit the existing box or creating a new box with the 

function which is not supported by the existing boxes. On the other hand, Python 

can also be used to directly control Nao’s hardware through linking Naoqi or DCM. 

In addition, C++ can also be used to directly control Nao by linking Naoqi. In this 

project, Python was used to program the Nao robot. /3/ 

 

1.8 Communication Module 

Nao can communicate with PCs either a wired connection using an Ethernet cable 

or wireless connection using WI-FI. But in order to use the wireless network, the 

router which supports the DHCP function needs to be set up first. Once the robot is 

connected to the network, the Nao’s IP address is entered into the web browser, 

then the user can monitor the status of the Nao robot. 

Chroregraph can connect to the real robot through the IP address and the port of the 

broker of the robot. Namely, after clicking the “connect” icon, Choregraph can con-

nect to the robot. 
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Moreover, Python, C++ or other programming languages can also control the robot 

directly by using Naoqi, and it works as the user and Nao system communication. 

The Naoqi that executes on the robot is a broker. As shown in Figure 7, when Naoqi 

starts running, a preferences file called “autoload.ini” which defines which libraries 

it is supposed to load is loaded. In addition, each library contains modules which 

includes their methods./3/ /10/ 

 

Figure 7. The way that Naoqi executes/10/ 

1.8.1 Broker 

A broker is an object that has two main functions. First, it supports lookup services 

which is to find the corresponding modules and methods. Secondly, it provides net-

work access to enable the methods of attached module to be called from the outside 

the process. Moreover, the broker will run transparently, so normally, the user do 

not need to think about the broker. /10/ 

1.8.2 Proxy 
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Figure 8. Broker, modules and methods/10/ 

As shown in Figure 8, a proxy is an object that behaves as the module it represents. 

For example, if a proxy is created and a module and the IP address and the port of 

the broker is specified, an object containing all the methods of that module will be 

obtained. In addition, by calling the method, the robot will behave as the program. 

/10/ 

 

1.9 Environment for Using Python 

There is a considerable number of IDE which can be used to program Python, such 

as IDLE and eclipse. But in this project, Eclipse was used as the Python IDE. 

IDLE 
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Figure 9. IDLE interface 

IDLE is the Python IDE built with the tkinter GUI toolkit and it has two main win-

dow types, shell window and editor window as shown in Figure 9. /11/ 

 

Eclipse and PyDev 

Eclipse is an IDE which can be used to develop applications in all kinds of lan-

guages, such as Java. In addition, PyDev is a plugin that enables Eclipse to work as 

a Python IDE. So in this project, Eclipse was chosen to program the Nao robot. The 

interface is shown in Figure 10. /12/ 
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Figure 10. Eclipse interface 

 

1.10 Motivation 

The field of robotics is becoming more and more popular around the world. More 

importantly, the humanoid Nao robot is worth of being researched. There are lots 

of fields about the Nao robot that are valuable for researching such as vision system 

of robot, robotic kinematics as well as animation design. So it is really a good op-

portunity for me to improve my programming skills and broaden my horizons.  

Furthermore, many applications has been achieved by our Nao robot team at Botnia. 

For instance the Nao robot can even kick the ball. At that time, my supervisor sug-

gested me with the topic: programming the Nao robot to pick up the ball and throw 

it into the box. In this project, vision system and animation design was involved. In 

my view, this application is quite valuable. In the future, the robot can recognize 

and pick up any stuff to help human beings to collect different things at home.  
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2 STRUCTURE OF THIS NAO APPLICATION 

2.1 Flow Chart of the Whole Project 

Figure 11 is the flow chart of the whole project. First, the top camera of the robot 

was used to track the red ball. After finding the ball, the robot would squat and find 

the precise location of the ball. Then the robot would pick up the ball and check 

whether the ball was in hand. And if the ball was not in hand, the robot would find 

the ball again. And if the ball was in hand, the robot would check the temperature 

of its joints. Then the bottom camera was used to find the Nao mark of the box. 

Finally, the robot would walk towards the box and throw the ball into the box and 

say “I succeed”. 

start

Set camera to 
be the bottom 

camera

Adjust body 
posture

Find ball

Robot squats

Calculate 
precise 

location of 
the ball

Pick up the 
ball

Is ball in 
hand

Check the 
temperature of 

the body

Say ”I need 
to rest soon”

Say ”The 
temperature 

is ok”

Adjust body 
posture

Set camera 
to be the top 

camera

Raise head

Find 
landmark of 

the box

Move 
towards the 

box

Throw the 
ball

Say ”I 
succeed”

end

Yes

No

Temperature 

> 68℃ 

Temperature 

<=68℃ 

 

Figure 11. Flow chart of the whole project 

2.2 Behaviors 

In this part, some important behaviors of the robot in this project will be present. 
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2.2.1 Start animation 

Two start animations were designed in this project. First, the stand-initial posture 

was used to initialize the posture of the robot after it woke up from the rest posture, 

since the stand-initial posture is a good pose for transitioning to the next movement. 

The posture is as shown in Figure 12. 

Secondly, the go-initial posture was designed to adjust the posture of the robot be-

fore it starts walking or turning its body or doing the next movement. Since some-

times the robot cannot walk or do the next movement without reasons, after initial-

izing the robot with this posture, the robot can move easily. The posture is as shown 

in Figure 13. 

 

Figure 12. Stand-initial                 Figure 13. Go-initial 

2.2.2 Finding the Ball 

When Nao starts looking for the ball, it first will turn its head to search the position 

of the ball. Then the robot will turn its body to face the ball directly and then the 

robot will walk towards it. 

2.2.3 Squatting 

After the robot reaches the specific position, it will squat and turn its head to find 

the precise position of the ball. Since picking up this ball in this project needs an 
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accurate position of the ball, before picking up the ball, the accurate positioning of 

the ball is started. The squat posture is as shown in Figure 14. 

 

Figure 14. Robot squats 

2.2.4 Picking up the Ball 

After finding the precise location of the ball, the robot will use one hand to lift up 

the ball. The robot will stand up and check whether the ball is in hand. If the ball is 

not in hand, the robot will find and pick up the ball again. 

2.2.5 Finding the Box with Holding the Ball in Hand 

In this behavior, the robot will look for the Nao mark of the box and move towards 

the box. During that movement, it must hold and keep the ball in its hand. 

2.2.6 Throwing the Ball into the Box 

When the robot is in front of the box, it will raise its right arm and open its hand. 

Then the ball will drop into the box from the hand of the robot. Finally, the robot 

will say ”I succeed”. 
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3 VISION MODULE 

In order to pick up the ball successfully, the precise location of the ball in the robot’s 

view needs to be achieved. Although there is a method that can return the position 

of the ball, the value it returns is not precise enough to pick up the ball. So a vision 

module was created to return the coordinates of the center of the ball. In addition, 

by using the location of the ball, the robot is able to choose the best posture to 

increase the possibility of picking up the ball. 

3.1 Hardware Part for Vision Module 

In this section the definition of the ball and the specifications of robot’s cameras is 

presented in details. 

3.1.1 Definition of the Ball 

 

Figure 15. The red ball 

The ball shown in Figure 15 was used in this project. It is obvious that the color of 

the ball is red and the surface of the ball is smooth. Besides, the ball is hard and the 

diameter of the ball is 4.5 centimeters.  
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3.1.2 Comparison between Picking up a Hard Ball and a Soft Ball 

 

Figure 16. A red soft ball 

Based on testing, picking up a hard ball is more complicated than picking up a soft 

ball. First, the surface of the hard ball in this case is quite smooth, so even if the 

robot picks up the ball there still is the possibility that the ball will drop from its 

hand if the ball is not in the center of the hand. In addition, the ball will move to 

somewhere else out of robot’s sight easily even with a light touch of the hand of the 

robot while the robot is picking up the ball. Therefore picking up a hard ball toler-

ates smaller errors in finding the location of the ball. 

However, when it comes to picking up a soft ball, it seems to be easier. Since the 

shape of the soft ball can be changed, so it is easier to pick it up. Moreover, through 

increasing the strength of grasping the ball, the ball will not drop from its hand so 

easily, even if the ball is not in the center of its hand. Besides, the surface that the 

soft ball touched the ground is bigger than the hard ball, so the soft ball will not 

move easily with a light touch of robot’s hand when the robot is picking up the ball. 

Therefore picking up a soft ball accepts larger errors in searching for the location 

of the ball. 

3.1.3 Technical Overview of Cameras 

There are two cameras located in the forehead of the robot and those cameras sup-

port an up to 1280*960 resolution at 30 fps. The location of the top camera is nearly 

at the robot’s eyes level and the location of the bottom camera is at its mouth level. 

Figure 17 and Figure 18 shows the location of two cameras. 
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Figure 17. Side view of cameras/13/ 

 

Figure 18. Top view of cameras/13/ 

As shown in Figure 17, if the head of the robot keeps in that position, the vertical 

range of the camera is 47.64˚ for each camera. Figure 19 shows the range of head 

pitch angle which is up to 68 ˚. 
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Figure 19. Head pitch angle from side view/14/ 

Figure 20 is the diagrammatic schematic of the vision range of those two cameras 

with the movement of the head. With the bottom camera, the red ball can be recog-

nized when the distance between the ball and the feet is larger than 20 cm and 

smaller than 120 cm. In addition, with the top camera, as shown in Figure 20, the 

robot is supposed to look farther theoretically, but its view will easily be influenced 

by interferences such as lights and colorful objects on the wall. In this project, the 

bottom camera was used to search for the ball. But when it comes to looking for the 

Nao mark of the box, since the box is always very far from the position of the robot, 

the top camera was used to searching for the box. 
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Figure 20. Distance that Nao can watch with its cameras 

Table 1 is the data sheet of the cameras of the robot. 

Table 1. Data sheet of cameras/13/ 

 
 

3.2 Brief Introduction to OpenCV 

OpenCV is an open source BSD-licensed library that contains a considerable num-

ber of computer vision algorithms. It has C++, C, Python and Java interfaces and it 
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supports many operating systems such as Windows. In addition, OpenCV empha-

sizes on computational efficiency and focuses on real time applications. In this pro-

ject, OpenCV and Python were used to process the image. /15/, /16/ 

3.3 Overview Structure of the Vision Module 

 

Figure 21. Structure of the Vision module 

Figure 21 shows the steps to find the location of the ball in the robot’s view. 

3.4 Image Acquisition  

As shown in Figure 22, first, an object called “camProxy” of “ALProxy” was cre-

ated and the module which is “ALVideoDevice” was specified. This module is in 

charge of providing images from the video source. In addition, the resolution of the 

image was set to be VGA which means 640*480 pixel. The resolution of VGA is 

enough in this project, if the resolution is higher, the efficiency of image processing 

will be decreased. In addition, the color space of the image was set to be RGB, since 

when creating the image by using “fromstring”, this method only supports creating 

the RGB image. Then a vision module was subscribed to “ALVideoDevice”, be-

cause this vision module is remote, an array containing all the image data would be 

obtained by using a method which is “getImageRemote”. Finally, the image is 

saved as a PNG image on the local computer. The image obtained is as shown in 

Figure 23. 

Capture the 
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camera
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RGB color 
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Canny Edge Detection
Hough Transform 
to find the center 
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Figure 22. Code for image acquisition 

 

Figure 23. Original image 
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3.5 Capturing the Red ball in the Image 

Since the image has already been obtained from the robot’s camera, capturing the 

red color is needed. And if the red color is captured, it is easier to find the contour 

of the red ball in the image.  

3.5.1 RGB Color Space 

 

Figure 24. RGB color space/17/ 

As shown in Figure 24, the RGB color space is like a cube. RGB stands for red, 

green and blue respectively. All the other color are the combination of these three 

colors. For instance, if the color of a point in an 8 bit image is pure red, then the 

RGB value of this color is [255, 0, 0]. And if the color of a point in an 8 bit image 

is pure green, the RGB value of this color is [0, 255, 0]. But this color space is easily 

influenced by the interference such as sunshine and light. Since the same color in 

different intensity of light in the robot’s camera is different, this color space is not 

suitable for vision recognition. 
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3.5.2 HSV Color Space 

 

Figure 25. HSV color space/18/ 

Figure 25 shows the HSV color space, HSV stands for hue, saturation, value re-

spectively. The range of hue is from 0˚ to 360 ˚ and Hue represents all the color 

range. When the color is red, the hue value of this color is 0 and if the color is green, 

the hue value of this color is 120. In addition, saturation stands for the saturation 

level of the color. For instance, if the color is pure red, the saturation value of this 

color is 1. Moreover the value stands for brightness. For instance when value equals 

0, it stands for black color. More importantly, the value of HSV is the feature of the 

object, so it will not be influenced by the environment easily. Therefore, in this case, 

HSV image was used to capture the only red color. 

3.5.3 Transferring the RGB Color Space to HSV Color Space 

The HSV color space is suitable for vision recognition, but the image obtained is in 

the RGB color space. Therefore, the RGB color space needs to be converted to the 

HSV color space. There are formulas to convert the RGB value to HSV value. 

𝑉 = max⁡(𝑅, 𝐺, 𝐵)                            (1)  

𝑆 = {
𝑉−min⁡(𝑅,𝐺,𝐵)

𝑉
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑖𝑓(𝑉 ≠ 0)

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑖𝑓(𝑉 = 0)
                                                          (2) 
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𝐻 =

{
 
 

 
 

60∗(𝐺−𝐵)

𝑉−min⁡(𝑅,𝐺,𝐵)
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑖𝑓(𝑉 = 𝑅)

120 +
60∗(𝐺−𝐵)

𝑉−min⁡(𝑅,𝐺,𝐵)
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑖𝑓(𝑉 = 𝐺)⁡

240 +
60∗(𝐺−𝐵)

𝑉−min⁡(𝑅,𝐺,𝐵)
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑖𝑓(𝑉 = 𝐵)⁡⁡⁡

                                             (3) 

𝑖𝑓⁡(𝐻 < 0), 𝐻 = 𝐻 + 360                                                                                         (4) 

In this case, 0 ≤ 𝐻 ≤ 360, 0 ≤ 𝑆 ≤ 1⁡𝑎𝑛𝑑⁡0 ≤ 𝑉 ≤ 1                                        (5) 

But if it is an 8 bit picture, the value of HSV will be converted to be: 

𝑉 = 255 ∗ 𝑉                                       (6) 

𝑆 = 255 ∗ 𝑆                                                                                                            (7) 

𝐻 =
𝐻

2
                                                                                                                          (8) 

And in this case, the image obtained is an 8 bit RGB image. But in Opencv a pre-

defined method can be used to convert the RGB image to be the HSV image directly. 

First, the library called “cv2” and “numpy” is imported, then all the methods of 

Opencv can be called. In addition the image obtained from the robot’s view is read 

by using “imread()” method. Finally, the method “cvtColor()” was used to convert 

the image to be the HSV image. The first parameter of this method is the input 

image and the second parameter of the method is the type of conversion which is 

cv2.COLOR_RGB2HSV. The HSV image is as shown in Figure 26. 
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Figure 26. HSV image 

3.5.4 Capturing the Red Ball in the Image 

 

Figure 27. Taking one point from the red ball 

In order to find the threshold value of the red color in HSV, first the RGB value of 

that color needs to be obtained. So one point called p was taken, as shown in Figure 

27. The pixel coordinate of the point p is (465,229) and by using the pixel coordi-

nate of the point p, the BGR value of this point which is can be obtained in OpenCV. 

In OpenCV, only the BGR value of the point can be obtained. In addition, BGR 
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value means that the order of red value and blue value in the RGB value is inversed. 

Finally, the method cvtColor() was used to convert this BGR value to be HSV value. 

One piece of code about this can be found in Appendix 1. 

According to the HSV value, the lower threshold value and the upper threshold 

value was set. Many different threshold values were tried to capture the red color, 

eventually the best threshold value which were [109,90,90] and [129,237,237] was 

found. Finally, the method “inRange(inputImage, lower_threshold, upper thresh-

old)” was used to capture the only red color. The result is as shown in Figure 28. 

The red ball was captured successfully. 

 

Figure 28. Capturing the red ball 

3.6 Filter the Noise 

First, the Gaussian noise needs to be remove. And in this case, it was done with the 

function, cv2.GaussianBlur() and a Gaussian kernel was used. In addition, the 

Gaussian kernel acted as the low pass filter, so it can remove the high frequency 

noise. The width and height of the kernel was set to be 5*5. The code is as follows: 

blur = cv2.GaussianBlur(mask,(5,5),0) 
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The variable mask is the input image. 

Then there were still black holes in the area of the ball, if the black holes were not 

connected, then it would cause a problem in finding the edge of the circle. So the 

function, dilate(), was used to connect the black holes. But that function can exag-

gerate the shape of the circle so the function, erode(), was used to restore the shape 

of the circle. The code is as follows: 

kernel = np.ones((5,5),np.uint8)  

dilation = cv2.dilate(blur,kernel,iterations = 3) 

blur = cv2.erode(dilation,kernel,iterations = 3) 

 

The result is as shown in Figure 29. There are not black holes in the circle in the 

image. 

 

Figure 29. Image after filtering noise 
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3.7 Finding the Center of the Circle 

3.7.1 Canny Edge Detection 

First, the Canny edge detection was used to detect the edge of the circle, since it 

will facilitate finding a more accurate center of the circle. The Canny edge detection 

is a very popular edge detection algorithm. In addition, this algorithm is a multi-

stage algorithm and the first stage of this algorithm is reducing the noise. A 5*5 

Gaussian filter was used in that stage. Then the edge gradient and direction for each 

pixel in the image was calculated. Then the next stage was to remove any useless 

pixels which may not constitute the edge. Finally, the last stage was to decide the 

real edge of the image. In that stage, two threshold values which are minVal and 

maxVal were needed. Any edges with an intensity gradient more than the maxVal 

are definitely the edges and those with intensity gradient less than the minVal are 

sure to be non-edge. But those which are larger than the minVal and smaller than 

the maxVal are classified edges or non-edges based on their connectivity. If they 

are connected to “edge” pixel, they are considered to be edges, otherwise they are 

non-edges. As shown in the Figure 30, point A and B are edges and point C and D 

are non-edges. /19/ 

 

Figure 30. Canny edge detection 

But in Opencv, all those stages are done by one method, cv2.Canny(). As shown in 

the code, the first argument is the input image and the second and the third argu-

ments are minVal and maxVal respectively. The results is as shown Figure 31. It 

can be seen that the edges are detected perfectly. 
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edges = cv2.Canny(blur,50,300) 

 

 

Figure 31. Edge of the circle 

3.7.2 Hough Circle Transform 

After detecting the edge of the circle, the Hough circle transform was used to detect 

the center of the circle. First, the theory of the Hough transform was introduced. 

In polar coordinate, any circle and be expressed as: 

𝑥 = 𝑥0 + 𝑟 cos 𝜃                                                                                                     (9) 

𝑦 = 𝑦0 + 𝑟 sin 𝜃                                                                                                    (10) 

x and y are the coordinate of any point at the circle, and 𝑥0⁡𝑎𝑛𝑑⁡𝑦0 are the center of 

the circle. The r is the radius of the circle. In Hough circle transform, first, the center 

of the circle and the radius of the circle are assumed to be the given quantity. And 

with the angle θ changing from 0 to 360, the edge or the circle will be obtained. 

Therefore, inversely, if the coordinate of the each point on the circle and the radius 

of the circle are known, the coordinate of the center of the circle will be obtained 

with the angle θ changing from 0 to 360. And in this case, the edge of the circle was 
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known, so the center of the circle can be obtained by using this method. But this 

algorithm requires too much calculation which will decrease the efficiency of the 

code. Therefore, in OpenCV, Hough Gradient Method is used to detect the center 

of the circle, which makes the algorithm easier. 

Therefore, in OpenCV, all the algorithms were done by the method, cv2.HoughCir-

cles(). And the code is as follows: 

circles=cv2.HoughCircles(edges,cv2.cv.CV_HOUGH_GRADIENT,1,25, 

param1=55,param2=25,minRadius=10,maxRadius=0) 

 

The first argument of this method is the input image and the second argument is the 

method to be used to launch the Hough circle transform. In addition, the third argu-

ment is ratio of the image resolution to the accumulator resolution .For example, if 

its value is 1, the accumulator has the same resolution as the input image. Then the 

forth argument is the minimum distance between the centers of the detected circles. 

Since there might be many circles in an image, so if this argument is too large, many 

circles will be missed. The fifth argument is the higher threshold in the Canny 

method and the sixth argument is the accumulator threshold for the circle centers at 

the detection stage. If it is too small, the more false circles may be detected. Even-

tually, the last two arguments are the minimum radius value of the circle and the 

maximum radius value of the circle. Since the only limitation of this circle is that 

the Hough circle transform cannot find the precise radius of the circle, there is a 

need to specify the estimated radius of the circle in this method. But the Hough 

circle transform can find the center of the circle precisely even it is not a perfect 

circle because of shadow of the ball. It will return the x and y coordinates of the 

circle in pixel. The result is as shown in Figure 32. In this case, the coordinate of 

the center found is [407,282]. 
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Figure 32. Center of the circle 

 

 

4 STRATEGY DESIGN 

This chapter will introduce finding the ball strategy, picking up the ball strategy and 

finding the landmark strategy. 

4.1 Calculate the real distance of the ball 

In this case, the module, ALRedBallTracker, was used to make Nao track the red 

ball. The main goal of this module is to build a connection between the red ball and 

motion in order to make Nao keep the red ball in view in the middle of the camera. 

When tracking the ball, the stiffness of the head is set to be one. Then the head will 

move with the movement of the red ball. In addition, the method getPosition() was 

used to return the [x,y,z] position in FRAME_TORSO which is the relative [x,y,z] 

position based on the position of robot. But this method was done assuming that an 

average red ball size is 6 cm. So the [x,y,z] position is not accurate. In this case, 

only the x value was used to calculate the real distance between the ball and the 
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robot’s feet in x axel direction. Figure 33 shows x,y and z position in 

FRAME_TORSO. /20/ 

 

Figure 33. x, y and z position in FRAME_TORSO/20/ 

So the robot was kept in the go-initial posture and the ball in the center of the robot’s 

view. There is a ruler in the x axel direction in the center line of the robot’s feet. 

The relative position of ball and the robot is as shown in Figure 34. 

 

Figure 34. Find the real distance strategy/20/ 

The relationship between the real distance and the ball was found. First, the ball 

was placed in the point o shown in Figure 34, where the distance between the ball 
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and the robot’s feet is almost 0. Then the code was ran. The robot started tracking 

the ball and got the x value of the ball which is 0.163 in this case. Then the ball was 

placed in the point where the distance between the ball and the robot’s feet in x axel 

was 10 centimeters. The robot started tracking the ball without any body movement. 

The x value of the ball which is 0.355 was obtained. Then the distance was in-

creased in every 10 centimeters. But when the distance was larger than 50 centime-

ters, the robot could not keep the ball in the center of its view. Therefore the x value 

was not accurate and those x values were discarded. So in a real situation, if the 

robot finds that the distance between the ball and its feet is larger than 50 centime-

ters, it will firstly move 40 centimeters in x axel direction and then it will track the 

ball again to find the precise location of the ball in x axel direction. 

Six pairs of data was found. A piecewise linear function was used to express that 

relationship between the real distance and the robot’s feet. The 6 pairs of data are 

shown in Table 2 and the piecewise linear function is as shown in Figure 35. 

Table 2. Real distance and X value 

X value (x) Real distance in meter(y) 

0.163 0 

0.355 0.1 

0.609 0.2 

0.829 0.3 

1.092 0.4 

1.585 0.5 
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Figure 35. Piecewise function for real distance and the x value. 

Then the expression of each piecewise function needed to be found. First, the ex-

pression for a linear function is as follows: 

𝑦 = 𝑘𝑥 + 𝑏                                                                                                             (11) 

There are two points on that line which are (x1, y1) and (x2, y2). So the coordinates 

of both two points can be substituted into that function. Then the expressions ob-

tained is as follows: 

{
𝑦1 = 𝑘𝑥1 + 𝑏
𝑦2 = 𝑘𝑥2 + 𝑏

                                                                                                        (12) 

Then the expression for k and b can be found which is: 

𝑘 =
𝑦2−𝑦1

𝑥2−𝑥1
                                                                                                               (13) 

𝑏 =
𝑦1𝑥2−𝑦2𝑥1

𝑥2−𝑥1
                                                                                                          (14) 

The x value obtained by the robot was set to be x and the real distance was set to be 

y. So by substituting those six pairs of data into the expression k and b the piecewise 

function was found. And it is as follows: 
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{
 
 

 
 
𝑦 = 0.521𝑥 − 0.0849⁡⁡⁡⁡⁡⁡⁡⁡(0.163 < 𝑥 ≤ 0.355)
𝑦 = 0.394𝑥 − 0.0398⁡⁡⁡⁡⁡⁡⁡⁡(0.355 < 𝑥 ≤ 0.609)
𝑦 = 0.455𝑥 − 0.0768⁡⁡⁡⁡⁡⁡⁡⁡(0.609 < 𝑥 ≤ 0.829)
𝑦 = 0.380𝑥 − 0.0152⁡⁡⁡⁡⁡⁡⁡⁡(0.829 < 𝑥 ≤ 1.092)

𝑦 = 0.203𝑥 + 0.178⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(1.092 < 𝑥 ≤ 1.585)

0.4⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(𝑥 ≥ 1.585)

                                                   (15) 

Therefore, while the x value was obtained, the real distance could be calculated by 

using this piecewise function. Based on the test this real distance was found to be 

accurate in this case. 

4.2 Tracking the Ball Strategy 

Sometimes, the ball is not in the center line of the robot’s feet in the x axel direction, 

so only finding the real distance between the ball and the robot’s feet is not enough. 

Tracking the ball strategy in this case is that when the robot finds the ball, it will 

turn its body to let it face the ball directly and then find the real distance in the x 

axel direction. 

First, the position of the ball is assumed to be in the Ball position 1 in Figure 36. 

And the left foot and right foot position of the robot are assumed to be in Left foot 

center1 and right foot center 1 as in Figure 36. In this situation, the robot is facing 

the ball directly. But if the position of the ball changes to be in the Ball position 2 

as shown in Figure 36 and if the position of the robot keeps that place, the head of 

the robot will turn right. The angle the head turns is angle b as shown in Figure 36. 

And if the robot wants to face the ball directly, the body of the robot needs to turn 

right and the angle is b. Since B1O is perpendicular to L1R1 and B2O is perpendic-

ular to L2R2, angle a is equal to angle b. So every time when the robot finds the ball 

and the head will turn in an angle, and the body of the robot will turn in the same 

angle as the head. Then the robot is facing the ball directly. Then the robot can move 

only in the x axel direction until it reaches the specific point. 
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Figure 36. Facing the ball directly 

Since the posture of picking up the ball is almost fixed and the length of the robot’s 

arm is also fixed, so there is a relative position between the robot and the ball, where 

the robot can pick up the ball successfully. This is shown in Figure 37. When the 

left foot and right foot are in the position of L1 and R1, and the position of the ball 

is at the point p. Then the robot can pick up the ball. Based on the measurement, 

the length of the line OP is 5.5cm. The relative position of the robot and the ball is 

kept in that way, and let the robot to track the ball with its head. Then the angle that 

the head turned is 33.5˚, the angle α in Figure 37. 

Furthermore, in this case, according to my tracking the ball strategy, the robot will 

always face the ball directly. So in this case, the original position of the robot in 

Figure 37 is on the line LR. Besides, in order to pick up the ball successfully, the 

robot must turn its body to move to the position where the line L1R1 lies. As men-

tioned above, the angle that the body need to turn equals to the value of angle 

αwhich is 33.5˚. Since 𝛼 + 𝛽 = 90°, so 𝛽 = 56.5°. Therefore: 

𝐶𝑃 =
𝑂𝑃

sin𝛽
= 6.59                                                                                                  (16) 
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So, the strategy is that after finding the ball, the distance of the robot and the ball is 

kept to be 6.59 cm. Then the robot will turn left and the angle that it turn is 33.5°. 

Then the robot will reach a specific place where the robot is able to pick up the ball. 

 

Figure 37. The specific position to pick up the ball 

But in a real situation, the distance that the robot moves is not precise and some-

times the robot will move the distance where it is longer than the value set for the 

robot. So the robot will track the ball twice. In the first round, the robot will reach 

the point where the distance to the ball is 9.5 cm, since in the first round if the 

distance is set to be too small, the robot will always kick the ball. But in the second 

round, the robot will reach the point where the distance to the ball is 6.59 cm. Then 

the robot will turn its body to reach the position where the robot is able to pick up 

the ball. Figure 38 shows the flow chart for tracking the ball. 
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Figure 38. Tracking ball flow chart 

4.3 Picking up the Ball Strategy 

Although the robot reaches the specific point where it is possible for the robot to 

pick up the ball, the rate that the robot can pick up the ball successfully is still very 

low. So in order to increase the rate of picking up the ball, a picking up the ball 

strategy was designed. 

Three different picking up the ball animation were designed initially to pick up the 

ball in a different area. The area that the robot can pick up the ball for each anima-

tion was found as shown in Figure 39 based on many times testing. In Figure 39, 

those points with three different color is the place where the red ball appears. And 

the area that the red points appears is the range that the robot can pick up the ball 

using animation 1. The area that the green points appears is the range that the robot 

can pick up the ball using animation 2. And the area that the purple points appears 

is the range that the robot can pick up the ball using animation 3. Therefore, the 
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range that the robot can pick up the ball for each animation is like a parallelogram. 

The threshold is one side of that parallelogram which is the green line in Figure 39. 

 

Figure 39. Threshold for each animation 

Then the area that the ball will appear in the robot’s view with high possibility was 

tested. The area is as shown in Figure 40. These red points are the center of the ball. 

The coordinate of center of the ball in pixel was already known, and the robot tracks 

the ball for many times and finds many pairs of coordinates of the center of the ball. 

Then according to the coordinates, the area that the ball will appear with high fre-

quency as shown in Figure 40. 

Based on testing, the area that the ball appears is quite small in the robot’s view. 

Therefore, two animation are enough to increase the rate of picking up ball to be 

80%. Then there is a need to set the threshold to decide to use which animation. 

One side of that parallelogram is the threshold as shown in Figure 41. Then green 

line passing through the point P1 and P2 is the threshold line. Since using a linear 

function to be the threshold will increase the calculation of the program, the x co-

ordinate of the point which is the intersection of the threshold line and the x axel 

was set to be the threshold. The area that is on the left of the threshold line as shown 

in Figure 41 is the range that the robot can pick up the ball in using animation 1. 

Therefore, the right area of the threshold line is for animation 2. 
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Figure 40. The area that the ball appears 

 

Figure 41. Threshold for deciding which animation to use 

The coordinates of the point p1 and p2 are [442,240] and [446,252]. Therefore the 

linear function of the threshold line is: 

𝑦 = 3𝑥 − 1086                                                                                                     (17) 

And the inverse function of this linear function is: 

𝑥 =
1

3
𝑦 + 362                                                                                                        (18) 
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The x coordinate of the intersection point is the vertical intercept of this inverse 

linear function. And it is 362. Therefore this is the threshold.  

In a real situation, after the robot has found the coordinate of the center of the ball 

in pixel, through that point a parallel line of the threshold line can be found. The x 

coordinate of the intersection of that line and the x axel can be calculated. In this 

case, the coordinate of the center of the ball in pixel was assumed to be [a, b]. Since 

the line through that point is parallel to the threshold line, the slope of the inverse 

linear function of that line is the same as the slope of the inverse linear function of 

the threshold line and it is 
1

3
. So, the inverse function of that line can be expressed 

as: 

𝑥 =
1

3
𝑦 + 𝑛                                                                                                            (19) 

n is the x coordinate of that intersection. Since that point is on this line, therefore: 

𝑎 =
1

3
𝑏 + 𝑛                                                                                                            (20) 

So: 

𝑛 = 𝑎 −
1

3
𝑏                                                                                                             (21) 

Therefore, if the value of  𝑎 −
1

3
𝑏 is larger than 362, the animation 2 will be chosen 

to pick up the ball. Otherwise, animation 1 will be used to pick up the ball. 

4.4 Finding the Location of the Box 

4.4.1 Definition of the Box and Nao Mark 

In this case, the box used is as shown in Figure 42. The depth of the box is 25 cm. 

There is a Nao mark on the box and it is used to find the location of the box. See 

Figure 43. 
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Figure 42. The box 

 

Figure 43. Nao marks/21/ 

As shown each Nao mark consists of black circles with white triangle fans centered 

at the circle’s center. The particular location of the different triangle fans is used to 

distinguish different Nao marks. Each Nao mark has its own ID number. And in 

this case, the Nao mark used was the number 114 Nao mark, as shown in Figure 44. 

/21/ 
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Figure 44. Number 114 Nao mark/22/ 

4.4.2 Finding Nao Mark Strategy 

In this case, the module, ALLandMarkDetection, was used to recognize the Nao 

mark and get the size of the Nao mark and the module, ALMemory, was used to 

read and output the information of the Nao mark which was obtained from the AL-

LandMarkDetection module. 

First, a proxy to the module, ALLandMarkDetection, was created. By subscribing 

to the ALLandMarkDetection proxy, the module will write in ALMemory. Then 

the robot starts finding the Nao mark. By using the method, getData(), of the module 

ALMemory, size X and the angle of the Nao mark will be obtained. Based on testing, 

the angle of the Nao mark divides 2, and it is the angle that the robot needs to turn 

its body. After the robot has turned its body, the robot will face the Nao mark di-

rectly. Then the robot only needs to walk to a distance in the x axel direction to 

reach the place of the box. 
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The size X is the size of the Nao mark in robot’s camera. The relationship between 

the size of the Nao mark and real distance to the robot can be found. 

The relationship was tested as shown in Figure 45. First, the posture of the robot 

was set to be the go-initial posture. There was a ruler on the center line of the robot’s 

feet in the x axel direction. The Nao mark was placed at the point where the distance 

to the robot is 30 cm since if the distance is less than 30cm, the robot cannot recog-

nize the Nao mark. Then the robot was programmed to find the size x of the box. 

Then those value was recorded. Then the distance was increase in every 10 centi-

meters. Then the corresponding size X was obtained. Until the distance reached 150 

centimeters, the robot could recognize the Nao mark. Table 3 shows the data ob-

tained. 

 

Figure 45. Measuring the Nao mark’s distance (side view) 

Table 3. Size X and the distance 

Size X Distance (meter) 

0.228 0.3 

0.188 0.4 

0.158 0.5 

0.138 0.6 
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0.121 0.7 

0.108 0.8 

0.098 0.9 

0.091 1.0 

0.085 1.1 

0.078 1.2 

0.073 1.3 

0.070 1.4 

0.065 1.5 

 

Using these data in Matlab, the relationship of the real distance and size X was 

plotted. The result is as shown in Figure 46, where the x axel is the size X and the 

y axel is the real distance. 

 

Figure 46. Relationship of the real distance and size X 
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As shown in Figure 46, first, if those points are connected, the curve in Figure 46 

tends to be similar as the curve of the exponential function. But since the relation-

ship of the real distance and size X is not known, if only exponential functions are 

used, the curve of that expression will not fit the curve perfectly. Furthermore, ac-

cording to the Taylor's theorem, any functions can be expressed by the polynomial 

functions known as Taylor polynomial, therefore even the exponential function can 

be expressed by the polynomial functions. So in general, if the expression of the 

curve is not known, using the polynomial functions is the best solution to reduce 

errors. And in Matlab, the polyfit function can be used to find the best polynomial 

functions for any curve. And the degree of the polynomial functions can be changed 

to find the best expression for any curve.  And in this case, based on testing, when 

the degree of that function is three, it can expressed the curve perfectly. In addition, 

it can make the codes efficient instead of involving too much calculation if the ex-

ponential functions are used. And the expression of that cubic polynomial functions 

is: 

𝑦 = −485.5931𝑥3 + 266.2636𝑥2 − 50.8341𝑥 + 3.7969                                   (22) 

The curves of the both original relationship and the fit function was plotted in the 

same figure. The result is as shown in Figure 47. The blue crosses are the original 

data obtained and the green curve is the curve of the fit function. As it can be seen, 

the fit function is perfect. The code for Matlab can be found in Appendix 2. 
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Figure 47. The fit function 

In a real situation, after finding the size X of the Nao mark, the value of the size X 

will be substitute to the fit function. Then the real distance was calculated. Then the 

real distance that minuses 35 centimeters is the distance that the robot need to walk 

towards. Since the depth of the box is 25 centimeters, and in case of the robot kick-

ing the box, the value was set to be 35 centimeters. Finally after the robot reaches 

the box, the robot will throwing the ball. 

 

 

5 IMPLEMENTATION DETAILS  

In this chapter, the environment configuration, animation design and some im-

portant functions as well as the trouble shooting are introduced. 
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5.1 Set the Environment 

5.1.1 Setting the Environment for Eclipse and Python 

Eclipse is an IDE which contains a basic workspace and an extensible plug-in sys-

tem for customizing the environment. In addition, PyDev is a plugin that provides 

features such as code completion and code analysis. So with the combination of 

Eclipse and PyDev, it is easier to program and debug. 

First, eclipse was opened, and in the menu screen, the help icon was clicked, a “In-

stall New Software” was chosen. The view of “Install New Software” is as shown 

in Figure 48. 

 

Figure 48. Install new software 

By clicking the Add button, a view shown in Figure 49 appeared in the Name part, 

PyDev was input. And input the link for downloading the PyDev in the location 

part. Then ok was clicked. Finally the PyDev was installed automatically. 

 

Figure 49. Add a new software 

After installing the PyDev successfully, there was a need to configure the interpreter. 

Therefore, in the menu screen, Windows > Preferences>PyDev>Interpreter-Python 

was clicked. And the view was as shown in Figure 50. Then the Auto Config button 

was clicked. Then the interpreter was configured successfully. 
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Figure 50. Configure the interpreter 

5.1.2 Setting the Environment for OpenCV 

First, the Python 2.7.3 was downloaded and installed. And since OpenCV only sup-

ports python 2.x, the version of the Python must be 2.x. Then OpenCV was down-

loaded and installed. Then the control panel was opened and the All Control Panel 

Items was clicked and then click the System. And the view was as shown in Figure 

51. And the Advanced system settings on the left side of the System properties 

window was clicked. Then, the environment variable was clicked from the System 

Properties window. And the environment variable view was as shown in Figure 52. 

Then the path was clicked, and the paths of OpenCV and Python were saved into 

the Variable value. The paths were separated by using a semicolon. /3/ 

Then NumPy was downloaded and the version of it must be numpy-1.6.2-win32-

superpack-python2.7 since only this version supports Python 2.7. Then SciPy was 
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downloaded. The version of it must be scipy-0.11.0-win32-superpack-python2.7. 

And both of them were plugin which will be used in OpenCV. 

Finally, the file “cv2.pyd” was found in the directory of OpenCV and this file was 

copied to the directory of Python. The path of that directory was “.\Program 

Files\Python27\Lib\site-packages”. Then the environment for OpenCV was built. 

 

 

Figure 51. Control panel 

 

Figure 52. Set the environment variable 
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5.2 Animation Design 

For the animation design, Choregraph was used to design those movement and the 

box timeline was used to create any animation. By double clicking the timeline, 

each animation could be created in each key frame. The timeline panel is as shown 

in Figure 53. The function of each part pf the timeline panel can be found in Table 

4. 

 

Figure 53. Timeline panel/23/ 

Table 4. Functions of the timeline 

Part Name Description 

A Motion It can be used to define the Motion key frames 

 Timeline editor button can be used to edit the motion of 

each joints in more details 

 Timeline properties can be used to define the value of 

frame per second. And in this case, it is set to be 10. Since 

in one second, the robot will move 10 frames, which will 

make the movement stable. Besides it can also be used to 

set the mode of resources acquisition. And normally this 

mode is set to be passive mode. 

Play motion will play the motion layer of the timeline 

B Time 

ruler 

The posture of each key frame can be created in the time ruler 

by click the one frame on the time ruler. And when creating the 

movement by using creating the several key frames instead of 
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creating all the frames of the movement, the robot will supple-

ment the frames between each two key frames automatically. 

C Behav-

ior lay-

ers 

It can be used to define behavior layers to be executed in parallel 

with motion key frame/23/. 

Add button can be used to add one or more behavior layers. 

 

Furthermore, in this project, those designed animations are Nao movements that 

occur over time, and in Timeline each frame represents the posture of the Nao robot. 

Therefore by defining the a posture manually by opening the stiffness of each joints 

and storing the position of each joint of the robot in some key frames on the Time 

ruler, the robot will do the posture in each frame then the animation is achieved. 

And since the robot can automatically calculate the missing frames between those 

key frames, defining the posture of the robot in each frame is not needed, so only 

defining the postures of the robot on the key frames are enough. 

5.2.1 Nao Squat Animation 

For this Nao squat animation, there are total of six key frames. First, the robot was 

initialized as the go-initial posture. Then the robot will stretch its left leg. Then the 

robot will bent its right leg and also raise its right arm. The arm needs to be raised, 

since when the robot squats, the arm will block the sight of the robot’s camera, so 

the robot cannot find the ball. Then the head of the robot will turn right and look 

down onto the floor to find the precise location of the ball. The series of the images 

from Figure 54 to Figure 59 show every single key frame of this animation: 
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Figure 54. Key frame 10                                       Figure 55. Key frame 30 

  

Figure 56. Key frame 55                                       Figure 57. Key frame 87 

  

Figure 58. Key frame 105                                       Figure 59. Key frame 120 
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5.2.2 Picking up the Ball Animation 

There are two kinds of pick up ball animations. Animation 1 is used when the loca-

tion of ball is on the left of the threshold line. Animation 2 is used when the location 

of the ball is on the right of the threshold line.  

First, the robot is in the posture of squat, then the robot will lower its arm. Then the 

robot will open its hand and will spin its right wrist in counterclockwise direction 

until it touches the ball. In addition, the wrist of the robot will be spun, since it will 

increase the range that the robot can pick up the ball for each animation. Then the 

robot will close its hand and grasp the ball in its hand. Then the robot will stand up. 

There are total seven key frames for each animation. The difference between the 

animation 1 and the animation 2 is that when the robot lowers its arm, the position 

of the right hand is deviation to the left for animation 1, but the position of the right 

hand is deviation to the right for animation 2. The series of the images from Figure 

60 to Figure 66 shows every key frame of picking up the ball animation 1: 

  

Figure 60. Key frame 30                                       Figure 61. Key frame 40 
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Figure 62. Key frame 50                                       Figure 63. Key frame 70 

  

Figure 64. Key frame 90                                       Figure 65. Key frame 110 

 

Figure 66. Key frame 175 
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The series of the images from Figure 67 to Figure 73 show every single key frame 

of picking up the ball animation 2: 

  

Figure 67. Key frame 30 (2)                          Figure 68. Key frame 40 (2) 

  

Figure 69. Key frame 50 (2)                           Figure 70. Key frame 70 (2) 

  

Figure 71. Key frame 90 (2)                          Figure 72. Key frame 110 (2) 
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Figure 73. Key frame 175 (2) 

5.2.3 Checking the Ball in Hand Animation 

For this animation, there are two key frames. First, the robot raises its right arm and 

puts the hand in the position where the ball is in sight of the robot’s camera and the 

robot looks down to its hand. Then the robot will lower its right arm and stay in the 

posture of go-initial. Figure 74 and Figure 75 show every key frame of checking 

whether the ball is in its hand. 

  

Figure 74. Key frame 60                             Figure 75. Key frame 80 
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5.2.4 Throw the ball animation 

First, the robot is in the posture of go-initial, then the robot will raise its right arm 

and move its arm until the right hand is in front of its chest. Then the robot will spin 

its right wrist until the palm of its right hand faces the ground. Then the robot will 

open its hand, therefore the ball will drop from its hand. Finally, the robot will move 

to the initial posture.  

In this case, there are total of nine key frames of this animation. The series of the 

images from Figure 76 to Figure 84 show every key frame of throwing the ball 

animation: 

  

Figure 76. Key frame 10                                    Figure 77. Key frame 20 

  

Figure 78. Key frame 30                                    Figure 79. Key frame 45 
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Figure 80. Key frame 60                                      Figure 81. Key frame 75 

  

Figure 82. Key frame 90                                      Figure 83. Key frame 100 

 

Figure 84. Key frame 120 
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5.3 Getting the Angles of the Robot’s Joints 

5.3.1 Checking Whether the Ball Is in Hand 

For checking whether the ball is in hand, the module, ALMotion, was used and the 

method, getAngles(), was used to get the angle of the hand. This module provides 

methods which facilitate the movement of the robot. That method can be used to 

get angles of each joints of the robot.  

In addition, when the robot picks up the ball, the radian of the angle of its right hand 

is always larger than 0.3. Otherwise it is smaller than 0.3. Therefore 0.3 is the 

threshold to decide whether the ball is in the robot’s hand. The following is the code 

of checking whether the ball is in hand. 

def isBallInHand(IP,PORT): 
        ### 
    # Summary: This will indicate us if the ball is being 

grabbed by the hand 
    # Return: return if ball is in hand or not 
    ###        
         
        isIn = False 
        motion = ALProxy("ALMotion",IP,PORT) 
         
        # if angles of right hand are >= 0.3 then ball is 
in hand 
        if(motion.getAngles("RHand",True)[0] >= 0.3): 
            isIn = True 
        else: 
            isIn = False 
        print motion.getAngles("RHand",True)[0] 
        # return if ball is in hand or not 
        return isIn 

 

5.3.2 Getting the Angle that Robot’s Head Turns 

For obtaining the angle that robot’s head turns, the module, ALMotion, and the 

method, getAngle(), were used. In addition, the proxy of ALMotion was created. 

The first argument of the method is the name of the robot’s joint. Therefore, only 
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by specifying the name of the joints, then the method will return its angle. Here is 

the code for getting the angle of the head turns 

def getHeadAngles(IP, PORT): 
    motion = ALProxy("ALMotion", IP, PORT) 
    headDegree = motion.getAngles("HeadYaw", True)[0] 
    return headDegree 

 

5.4 Development of the Process of Walking 

Although there is already a method, moveTo(), of the module, ALMotion, that can 

be used to let the robot walk. But in real situation, this method does not work. Since 

sometimes the robot cannot walk to the defined distance, a new method was created 

to let the robot walk continuously until it reaches the defined distance. 

First, the proxy of ALMotion was created. Then the threshold value for the position 

in x and y axel direction was set to be 1 cm. It means that if the value that the 

distance which the robot needs to walk subtracts the real distance that the robot 

moves is higher than that threshold value, the robot will walk continuously. The 

threshold value for the angle is 0.03 rad. It also means that if the value that the angle 

which the robot needs to turn subtracts the real angle that robot turns is higher than 

that threshold value, the robot will turn continuously. 

Then by using the method, getRobotPosition(), it will get the position of the robot 

in FRAME_TORSO. Then by combining the distance and the angle that robot need 

to move with the original position of the robot, the robot will calculate the final 

position of the robot in FRAME_TORSO after it reaches the destination. But when 

the robot stops in the process of walking towards the destination, the robot will 

check its position. It will calculate the difference value of the real position and the 

final position. If it is higher than the threshold, the robot will walk the rest of the 

distance. Otherwise, it will print “move success”. The robot will do the check three 

times. If the robot still cannot walk to the destination after checking three times, 

then the robot will not walk anymore. Then the robot needs to rest for a while and 

run the program again. 
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After creating this method, the robot can almost always move to the destination. 

The code can be found in Appendix 3. 

5.5 Adjustment When Tracking the Ball 

Since in a real situation, the distance that robot moves is not accurate enough and 

the robot does not turn its body based on the center of its feet strictly, the distance 

that the robot needs to keep to the ball was modified to be 5.5 cm. And after the 

robot moves to the specific position before it squats, it will turn its body. The angle 

is 33.5 degree as mentioned in Chapter 4. Then the robot will move in the y axel 

direction and the distance is 2.5 cm. Then the robot will move forward and the 

distance is 1.5 cm. Finally the robot moves to the point where the robot is able to 

pick up the ball. 

5.6 Checking the Temperature of the Robot’s Joints 

When it comes to the method to check the temperature of the robot’s joints, the 

module, ALMemory, and the method, getData(), was used to get the temperature 

value of the robot. In this case, only the joints in both of the legs will get hot easily. 

So the temperature of both joints must be checked and a proxy of the module is 

created. Here is the code: 

def checkRightLegTemperature(IP,PORT): 
    memory = ALProxy("ALMemory",IP,PORT)    tem-

perature=memory.getData("Device/SubDevice-
List/RAnklePitch/Temperature/Sensor/Value") 

    return temperature 
 
def checkLeftLegTemperature(IP,PORT): 
    memory = ALProxy("ALMemory",IP,PORT) 

temperature=memory.getData("Device/SubDevice-
List/LAnklePitch/Temperature/Sensor/Value") 

    return temperature 
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6 OVERVIEW OF FUTURE RESEARCH 

6.1 Recognizing the Box instead of the Nao Mark 

In this project, Nao mark was used to find the location of the box. But in real situ-

ation, there is not a Nao mark on the surface of the box. So it is better that the robot 

can recognize the box itself and find the location of the box. 

Here are some suggestions about the way to implement the recognition of the box. 

First, the top camera will be used to find the box, since the range that the top camera 

can see is farther. The box is always in the place where it is far away from the robot. 

Then an image of the box will be captured from the box. The color space of the 

image is transferred from RGB to HSV. The brown color threshold should be found 

and the shape of the box be captured from the HSV image. Then the contour and 

the size of the box can be found. Finally, the relationship of the size of the box and 

the real distance should be found. Then the piecewise linear function can be used 

to calculate the real distance of the box to the robot. Finally, the robot can recognize 

the box and walk towards the box. 

6.2 Checking Whether the Ball is in the Box 

In this case, sometimes the robot did not throw the ball into the box and it was 

dropped the outside of the box. But the robot would still say ”I succeed”. Therefore, 

after the robot throws the ball, it should check whether the ball is in the box. If the 

ball is not in the box, the robot will track the ball and pick up the ball again. Then 

the robot will walk to the box and throw the ball again.  

One of solution is that after the robot has thrown the ball, the robot will look down 

to the box. Then an image can be captured from the robot’s camera and be cut. Only 

the area which is the bottom of the box is left. It is as shown in Figure 85. Then by 

setting the threshold of the red color, the robot can detect the ball. If it is in this area, 

the ball was found. Then the robot will say “I succeed”. Otherwise, the robot will 

track the ball and throw the ball again until it the ball goes into the box. 
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Figure 85. Bottom of the box 

6.3 Tracking the ball in Real Time 

Since the long term goal of the Botnia Nao robot team is to let the robots join the 

Robot Cup game, the way that the robot tracks the ball need to be improved. Here 

are some suggestions: 

First, there is no need to measure the distance between the ball and the robot, since 

in real situation there is no time for calculating the distance but just let the robot 

walk towards the ball in the direct way. Therefore, the robot should track the ball 

dynamically. Since the resolution of the image used is 640*480, the coordinate of 

the center of the robot’s view is [320,240]. The angle of the joint, HeadPitch should 

always be adjusted. And the robot turn its body at the same time to keep the ball at 

the position whose coordinate is [320,240]. Finally based on the threshold value of 

the angle of the HeadPitch, the robot will stop in front of the ball and kick the ball. 

The vision module can be created by OpenCV and C++ and all the movement need 

to be created by C++. In this case, using C++ is more efficient than using Python. 

 

 

7 SUMMARY 

This thesis introduces the behavior design of a humanoid Nao robot: a case of pick-

ing up the ball and throwing the ball into the box. 
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In the vision system stage, the main algorithm is based on filtering noise and Hough 

circle transform, and by utilizing that algorithm, the accuracy of detecting the loca-

tion of the center of the ball is improved. In the strategy stage, probability theory is 

used properly to design the strategy of picking up the ball, which leads to improve 

the rate of Nao picking up the ball successfully and the rate is almost 85%. Besides, 

appropriate mathematical models also contributes to calculating the distance to the 

ball and designing the strategy of tracking the ball dynamically. In addition, the 

polynomial functions are also utilized to calculate the distance to the box. And key 

frames in timeline are used to achieve the animation design. Therefore, the key 

points of this thesis is algorithm in vision system and appropriate mathematical 

models as well as animation design. 

In the beginning, this project is quite challenging. But by separating this huge pro-

ject into several small modules, this project was completed successfully. And in the 

process of completing a project, starting from completing some simple parts will 

simplify the project and provide you confidence. And there is no denying that much 

knowledge are learnt in the process of completing this project. Now, the methods 

about how to track a round thing in any color and build mathematical models are 

clear. Besides, the skills to program the Nao robot are also improved. 

When it comes to the suggestions to the students who are interested in the Nao robot, 

choosing an interesting topic is very important. Before starting programming with 

Python or C++, Choregraph can be used to get familiar with the environment of 

programming Nao. Each box in the Choregraph is like the demo code, which may 

inspire you in the process of doing the project. Through doing project about Nao, 

the student can improve himself a lot. 

Eventually, we wish all the students working on this project the best for their future 

study and career. 
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APPENDIX 1.  

FIND THE RED COLOR THRESHOLD 

import cv2 

import numpy as np 

 red=np.uint8([[[227,62,56]]]) 

hsv_red=cv2.cvtColor(red,cv2.COLOR_BGR2HSV) 

print hsv_red 
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APPENDIX 2.  

MATLAB COMMAND FOR FINDING THE RELATIONSHIP 

OF REAL DISTANCE AND SIZE X 

x=[0.228,0.188,0.158,0.138,0.121,0.108,0.098,0.091,0.085,0.078,0.073,0.070,0.0

65] 

y=[0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0,1.1,1.2,1.3,1.4,1.5] 

P = polyfit(x,y,3) 

y2=-485.5931*x.^3+266.2636*x.^2-50.8341*x+3.7969 

plot(x,y,'*',x,y2,'-') 
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APPENDIX 3.  

MOVETO METHOD 

def moveTo(x, y, degree, IP, PORT): 

     

    motion=ALProxy("ALMotion", IP, PORT) 

    positionErrorThresholdPos = 0.01 

    positionErrorThresholdAng = 0.03 

     

    # The command position estimation will be set to the sensor position 

    # when the robot starts moving, so we use sensors first and commands later. 

    initPosition = almath.Pose2D(motion.getRobotPosition(True)) 

    targetDistance = almath.Pose2D(x,y,degree * almath.PI / 180) 

    expectedEndPosition = initPosition * targetDistance 

    enableArms = True 

    motion.setMoveArmsEnabled(enableArms, enableArms) 

    #motion.moveTo(x, y, degree * almath.PI / 180) 

    motion.moveTo(x, y, degree) 

    # The move is finished so output 

    realEndPosition = almath.Pose2D(motion.getRobotPosition(False)) 

    positionError = realEndPosition.diff(expectedEndPosition) 

    positionError.theta = almath.modulo2PI(positionError.theta) 

 

    index=0 

    while (abs(positionError.x) > positionErrorThresholdPos or abs(positionEr-

ror.y) > positionErrorThresholdPos or abs(positionError.theta) > 

positionErrorThresholdAng): 
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        errorX=positionError.x 

        errorY=positionError.y 

        errorDegree=positionError.theta 

         

        motion.moveTo(errorX, errorY, errorDegree * almath.PI / 180) 

        realEndPosition = almath.Pose2D(motion.getRobotPosition(False)) 

        positionError = realEndPosition.diff(expectedEndPosition) 

        positionError.theta = almath.modulo2PI(positionError.theta) 

        print "go again" 

        print positionError.toVector() 

        time.sleep(2) 

        index+=1 

        if(index==3): 

            break 

         

     

    if (abs(positionError.x) < positionErrorThresholdPos 

        and abs(positionError.y) < positionErrorThresholdPos 

        and abs(positionError.theta) < positionErrorThresholdAng): 

        print "move success!" 

    else: 

        print positionError.toVector() 

 

    motion.moveToward(0.0, 0.0, 0.0) 

. 

 


