
Saimaa University of Applied Sciences
Technology Lappeenranta
Degree programme in Information Technology
Information System Development

Joonas Pirttiaho

Cross-platform mobile game development

Thesis 2014

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Theseus

https://core.ac.uk/display/38101497?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Tiivistelmä

Joonas Pirttiaho
Järjestelmäriippumaton mobiilipelikehitys, 30 sivua, 1 liite
Saimaan ammattikorkeakoulu
Tekniikka Lappeenranta
Tietotekniikan koulutusohjelma
Tietojärjestelmien kehitys
Opinnäytetyö 2014
Ohjaaja: lehtori Mikko Huhtanen, Saimaan ammattikorkeakoulu

Opinnäytetyössä tutkittiin miten on mahdollista kehittää applikaatioita tai pelejä
järjestelmäriippumattomasti yleisimmille mobiilikäyttöjärjestelmille. Opinnäyte-
työn kirjoitushetkellä käytetyimmät mobiilikäyttöjärjestelmät olivat Googlen And-
roid ja Applen iOS.

Opinnäytetyö aloitettiin selvittämällä erilaisia tekniikoita, joilla on mahdollista
kehittää mobiiliapplikaatioita tai -pelejä järjestelmäriippumattomasti. Erilaiset
vaihtoehdot käydään läpi ja Libgdx-ohjelmistokirjastoa esitellään tarkemmin se-
kä toteutetaan esimerkki projekti kyseisellä ohjelmistokirjastolla.

Lopputuloksena valittuja kehitystyökaluja hyödyntämällä oli mahdollista toteut-
taa mobiilipeli Android- ja iOS-käyttöjärjestelmille. Opinnäytetyössä esitellään
myös kehitysympäristö työkaluineen sekä esimerkki projektin asennus oikealle
laitteelle.

Avainsanat: mobiilipelien kehitys, järjestelmäriippumaton, Libgdx

3

Abstract

Joonas Pirttiaho
Cross-platform mobile game development, 30 pages, 1 appendix
Saimaa University of Applied Sciences
Technology Lappeenranta
Degree Programme in Information Technology
Information System Development
Bachelor´s Thesis 2014
Instructor: Senior Lecturer Mikko Huhtanen, Saimaa University of Applied Sci-
ences

The main purpose of this thesis was to find and learn about a framework for
cross-platform mobile game development for modern mobile operating systems.
The target mobile platforms were Google's Android and Apple's iOS.

The thesis was started by finding out different types of solutions for cross-
platform application and game development for mobile devices. Different types
of solutions should be briefly described and the found solution for cross-platform
development should be more extensively covered.

As the result of this thesis the found types for cross-platform development op-
tions are listed and one framework, Libgdx, is more extensively covered from
the required development environment to the stage of deploying the game to an
actual device.

Keywords: mobile game development, cross-platform, Libgdx

4

Table of contents

1 Introduction ... 6

2 Cross-platform development ... 6
2.1 Native code for each platform .. 7
2.2 HTML5 based technologies ... 7
2.3 Cross-platform compilers ... 8

3 Libgdx ... 8

3.1 Supported platforms .. 9
3.1.1 Android .. 9
3.1.2 iOS .. 9
3.1.3 Desktop ... 10

4 Java programming language .. 10

5 Creating the Libgdx example project .. 10
5.1 Required software .. 11
5.2 Creating the Libgdx project .. 11

5.2.1 Main project ... 12
5.2.2 Android project .. 13
5.2.3 Desktop project ... 14

5.2.4 RoboVM project... 15
5.2.5 HTML5 project ... 16

5.3 Creating the example game ... 16

5.3.1 The game loop .. 17
5.3.2 Variables and create method .. 18

5.3.3 Updating the game state ... 19

5.3.4 Processing the user input .. 20

5.3.5 Drawing the game ... 21
5.3.6 Disposing assets ... 22

5.4 Debugging on desktop ... 22
5.5 Logging .. 23
5.6 Deploying to a device... 23

5.6.1 Deploying to Android ... 23

5.6.2 Deploying to iOS ... 24
6 Publishing the application ... 24

6.1 Publishing for Android .. 25
6.2 Publishing for iOS .. 25
6.3 Publishing for desktop.. 25

7 Falling Stars - a game with Libgdx .. 25
8 Summary .. 27

Appendices

Appendix 1 Example game code

5

Terms and abbreviations

ADT Android Development Tools is an Eclipse plugin for

supporting Android development

Android Google's mobile operating system

API Application Programming Interface

App Store Apple's digital distribution platform

Apple Apple Inc. produces consumer electronics and devel-

ops operating systems

Eclipse Open source IDE

Google Google Corporation develops Google search engine

and the Android operating system

Google Play Google's digital distribution platform

HTML5 HyperText Markup Language 5 is used to create mod-

ern websites and mobile applications

IDE Integrated Development Environment

iOS Apple's mobile operating system

Java Programming language

Libgdx Game development framework

Platform Operating system, hardware or combination of both

Plugin Software component that brings new features to exist-

ing software

RoboVM Software that translates Java bytecode into native code

for iOS

6

1 Introduction

Nowadays mobile applications and games are used on a broad range of differ-

ent kind of devices. Devices are from a variety of manufacturers, come in differ-

ent sizes and hardware components. Even the operating system and its version

can vary from one device to another. Therefore when developing an application

or a game the developer needs to plan what are the target platforms and mini-

mum device requirements.

In the beginning of the development of an application or a game the developer

chooses which technologies are going to be used for the development. The

chosen technology can consist of programming languages, software develop-

ment kits, third party software libraries and frameworks. The chosen technolo-

gies usually limit the available target platforms. Typically the application is cre-

ated for one platform and can be ported to another platform by recreating parts

or the whole application with different technologies. The goal of porting is to be

able to run the application in a new platform which supports the new technolo-

gies. Developing for a variety of platforms can be very time consuming, if the

application porting requires a lot work. For commercial projects this means extra

costs but also broadens the customer base.

The main goal of this thesis is to explore the solutions for cross-platform devel-

opment for mobile games. With one framework an example game is created

from the beginning to a stage of deploying to a live device. The target platforms

for the game are Google's Android, Apple's iOS and the desktop platform. In

this thesis the desktop platform consists of Microsoft's Windows, Apple's Mac

OS X and Linux based operating systems.

2 Cross-platform development

Creating graphical user-interface objects, drawing pictures or controlling the

device's camera is done by using specific methods described in the platform's

API (Application Programming Interface). Each platform has its own API, so that

an application which has been created for a specific platform cannot be installed

on a different platform because the APIs are different. Usually the supported

7

programming languages and SDKs (Software Development Kits) are also dif-

ferent between platforms.

Because consumers use devices with different operating systems, in order to

reach the largest possible audience for an application or a game it should be

able to run on as many devices as possible. Cross-platform applications usually

provide identical (or nearly identical) functionality on each platform although the

graphical user-interface can be different with each supported platform due to

different design guidelines for individual platforms. Mobile application develop-

ment for multiple platforms can be roughly divided into the following techniques.

2.1 Native code for each platform

Different native codebase for each platform of the same application is created

simultaneously or an existing application from a specific platform can be ported

to another platform. Porting is done by modifying the existing application, so

that it is able to be run on a new target platform. Further updates to the applica-

tion require that all the projects are updated separately with their own platform

supported technologies.

Each platform has its own supported IDEs (Integrated Development Environ-

ments), programming languages and SDKs. Some IDEs or programming lan-

guages can also be used with different platforms. For example, Eclipse IDE

supports Windows, Mac OS X and Linux based operating systems but Apple's

Xcode IDE supports only their own OS X.

2.2 HTML5 based technologies

HTML5 (HyperText Markup Language) based mobile development technologies

relay on HTML and JavaScript programming languages, which are commonly

used with website development. The HTML5 based application operates on the

platforms web runtime, also known as a web view, or it can be run on the web

browser the same way as a normal website would. Packaging the HTML5 appli-

cation in to a native binary allows the application to be distributed, installed and

launched in the same way as a native application on any platform. The applica-

8

tion can control the device's capabilities and be displayed in a full-screen view.

(Intel Developer Zone, Building Cross-Platform Apps with HTML5.)

Accessing devices capabilities is done by using an API provided by a HTML5

mobile application framework. Some of these frameworks are Titanium

Appcelerator, Sencha Touch and Kendo UI. The frameworks also provide the

possibility to build the application in to a native binary for each supported plat-

form. (GAJOTRES, Top 7 mobile application HTML5 frameworks.)

2.3 Cross-platform compilers

These types of cross-platform development technologies offer the developer a

unified API and a single programming language for each target platform. The

application code is created once and then it is possible to compile the applica-

tion for each target platform separately.

For example, Xamarin framework allows the developer to create the application

in C# programming language and then build the application for Android, iOS

and Windows Phone mobile devices as a native application (Xamarin, Tour). By

using Libgdx framework games are programmed with Java and the projects can

be built for Android and iOS devices as native games. Where Xamarin is built

for mobile application development, Libgdx is focused on mobile game devel-

opment.

3 Libgdx

Libgdx is an open source game development framework, which provides a uni-

fied API to target supported platforms. The code is written once and the applica-

tion can be ported to all platforms without any platform specific modifications.

Writing platform specific code is also supported if necessary. Libgdx has been

developed in Java, but the performance critical parts are written in C and C++

due to higher level of performance. (Libgdx, Goals and Features)

Supported target platforms for Libgdx are Windows, Linux based operating sys-

tems, Mac OS X, Android, iOS, BlackBerry and HTML5. Libgdx applications are

written in Java and the graphics are drawn by using OpenGL via OpenGL ES

9

1.x or 2.0 interfaces. For game development the framework includes common

game related APIs to ease the development such as rendering text, building

user-interfaces and playing sounds or music. (Libgdx Developer's Guide, Intro-

duction.)

The development of a Libgdx based game is done on the desktop by writing the

code with an IDE. The game can also be run and debugged on the desktop. But

because of computers usually are a lot more powerful than mobile devices the

application should be periodically tested on different mobile devices, so that the

performance of the game can be verified.

3.1 Supported platforms

3.1.1 Android

Android is an operating system based on the Linux kernel. Primarily Android is

used on mobile devices such as smartphones and tablet computers. Applica-

tions for Android are most commonly developed in Java programming language

with Android software development kit (SDK). Android SDK includes develop-

ment tools such as a debugger, necessary software libraries, a device emulator

and sample code with tutorials. Applications operating on Android are run on

the Dalvik Virtual Machine as Dalvik bytecode compiled from Java. (Android

Developer, Android the world's most popular mobile platform.)

3.1.2 iOS

The operating system used in Apple's mobile devices is named iOS. The first

version of iOS was released with the first iPhone in 2007. Contrary to Android,

iOS is not available to be used by any other device manufacturer.

Mobile application development for iOS devices is possible with an Intel based

Macintosh computer running Mac OS X operating system with the iOS SDK.

Deploying the application also requires Xcode IDE, since it comes with many

necessary tools such as the Application Loader for uploading the finished appli-

cation to the App Store. Native iOS applications are written in Objective C pro-

gramming language. (iOS Developer Library, About iOS App Programming.)

10

3.1.3 Desktop

Supported desktop platforms are Windows, Mac OS X and Linux based operat-

ing systems. The desktop platform is used for creating and debugging the game

in an IDE. The desktop platform differs from the mobile platform with mostly dif-

ferent hardware. For example the desktop environment usually has a very large

screen compared to a mobile device but on the downside the desktop environ-

ment does not have GPS positioning, accelerometer or possibility to vibrate the

computer like a smartphone would. Nevertheless, the desktop can fully be one

of the game's target platforms or even the only one.

4 Java programming language

Java is a pure object-orientated programming language, that was evolved from

a language named Oak. The main idea of the language was to be platform in-

dependent, so it can run with different devices and platforms. The syntax for

Java is similar to the popular C++ programming language. Java is used in

Libgdx, but it is also used with applets in websites, electronic devices, desktop

and server applications. (History of Java programming language, History.)

Native applications targeted for a specific platform are run on the native operat-

ing system whereas Java compilers produce platform independent byte code

which is operating in Java Virtual Machine (JVM) on each of the supported plat-

forms. Therefore Java applications are written once and deployed to all plat-

forms with the same code. (Groups.enging.umd.emich.edu, Java The Pro-

gramming Language.)

5 Creating the Libgdx example project

The development can be done with Windows, Mac OS X or with a Linux based

operating system. Deploying the game to an iOS simulator or on to an actual

iOS device can only be done in Mac OS X due to Apple's policy not to support

any other operating system for development besides their own Mac OS X.

(Libgdx Developer's Guide, Prerequisites.)

11

For example, the game can be created in Windows operating system and the

iOS deployment can be done by importing the game project in to a Mac OS X

development environment. Vice versa the whole development process and de-

ploying to all platforms can be done with using only Mac OS X. Libgdx projects

can also be developed with different IDEs than mentioned in this thesis, for ex-

ample Android Studio or IntelliJ IDEA can also be used.

5.1 Required software

For targeting Android, desktop and HTML5 platforms the following software

needs to be installed for the development machine.

 Eclipse IDE and Eclipse ADT (Android Development Tools) plugin

 JDK (Java Development Kit)

 Android SDK

 Google Web Toolkit (explicitly for the HTML5 project)

Additionally for targeting Apple's iOS platform Xcode IDE and RoboVM Eclipse

plugin must be installed on a development machine running Mac OS X. (Libgdx

Developer's Guide, Prerequisites).

5.2 Creating the Libgdx project

Libgdx projects can be created with an application called Libgdx Setup (figure

1), which was developed by Aurelion Ribon. Libgdx Setup downloads the latest

version of Libgdx, creates the folders for each platform project and links the pro-

jects correctly to be used with Eclipse. The created projects can also be updat-

ed in the future with the newest version Libgdx framework by using the update

functionality. (Aurelion Ribon's dev Blog, Libgdx Project setup v3.0.0!)

12

Figure 1 LibGDX Project Setup

5.2.1 Main project

The main project contains all the code for the game, except the starter classes,

platform specific libraries and optional third-party SDKs for each platform. For

example, the Android project can utilize Google Play's In-app Billing service or

the iOS version can use the Apple's Game Center. All the other projects are

linked to this main project.

All the application code will be written in the src folder as java files as shown in

figure 2. Java code files are typically organized in Java packages by classes

belonging to the same category or by providing similar functionality. Libgdx li-

brary files are located in the libs folder. Other platform specific libraries are lo-

cated within the respective projects libs folder.

13

Figure 2 Tree view of the main project

5.2.2 Android project

Android project contains the starter class MainActivity.java in Java package

com.me.mydgxgame and necessary files to run the Android application. Also all

images, sounds and other resource files for the game are stored in Android pro-

ject's (figure 3) assets folder.

Android project's tree view is similar to the main project's tree view. New addi-

tions are Android specific folders and files. All the Android project's settings

such as the application name, version number and required permissions are

located in the AndroidManifest.xml file. The assets folder will contain all the

non-code related files such as images and sounds of the project.

ProGuard is a tool which can shrink, optimize and obfuscate Android applica-

tions code. Obfuscating is done by removing the unused code, or by renaming

classes, fields and methods. The result is a smaller application size and it is

more difficult to reverse engineer. Using ProGuard is optional but highly rec-

14

ommended. ProGuard can be enabled and configured from the proguard.cfg

config file. (Android Developer, ProGuard.)

Figure 3 Tree view of the Android project

5.2.3 Desktop project

The desktop project contains the starter class Main.java found in Java package

com.me.mygdxgame to run and debug the application on the desktop. The

desktop project is linked to the Android project's assets folder so that it is un-

necessary to keep duplicates of the resource files.

The desktop version of the project is executed (figure 4) by selecting Run As

Java Application. Configuration, such as the game resolution, for the desktop

can be changed from the starter class Main.java. This is very practical since it is

15

possible to test the game's appearance with different device resolutions, without

needing the actual devices.

Figure 4 Libgdx application running on Windows 7

5.2.4 RoboVM project

RoboVM project contains the starter class to run the application on iOS devices

and on the iOS simulators for iPad and iPhone. RoboVM project is linked to the

Android project's assets folder like the desktop project. RoboVM project also

contains configuration files for the iOS. This project is the only one which does

not support debugging due to RoboVMs limitations at the time of writing. Figure

5 lists the RoboVM specific settings files Info.plist.xml and robovm.xml.

16

Figure 5 The projects in Eclipse on Mac OS X operating system

5.2.5 HTML5 project

HTML5 project contains the starter class to run the application as a HTML5 ap-

plication and it is also linked to the Android project's assets folder. The project

can be run in development mode where the actual Java code is run via GWT

plugin and therefore allows debugging. Running in production mode requires a

web server that supports serving compiled files.

Further information about HTML5 project and publishing HTML5 projects can be

found from the Libgdx documentation.

5.3 Creating the example game

The following example is a simple game in which the player tries to click on fall-

ing red objects. When the player manages to click on an object, the object dis-

appears and the player scores one point. If the object falls the down player los-

17

es one point from the score. Objects appear on top of the screen at one second

intervals. The whole source code for the game is also attached as an appendix.

Figure 6 Running the example game on desktop

In figure 6 the game is running on Windows 7 platform. A mouse click on the

game screen works in the same way when a user clicks on the screen on a

touch screen mobile device.

5.3.1 The game loop

From a programming perspective the main standpoint of a game is the game

loop from where the game is run. The game loop (figure 7) reacts to user input,

updates everything within the game world and draws the game. Before the

game loop starts usually game assets and other file input or output operations

are performed in a loading screen. Loading the resources can also be done

from the game loop as they are needed. A simple example of a game loop is in

the following figure.

18

Figure 7 Simple example of a game loop

5.3.2 Variables and create method

The create method, shown in figure 8, is run only once when the game is

launched. Typically setting up the game world, setting the player to the starting

position and similar starting the game related actions are done in this method.

19

Figure 8 Setting up variables and the create method

5.3.3 Updating the game state

The updateGameState method (figure 9) calls the createNewObject method

within one second intervals, moves the objects on the screen downwards and

takes care of the object removal once an object has gone below the gameplay

area.

20

Figure 9 Updating the state of the game

The falling objects are created in createNewObject method as Rectangles and

stored in the objects array as shown in figure 10.

Figure 10 Creating the objects

5.3.4 Processing the user input

In this example game the user input is only the occasion when the user taps on

the screen. From the position of the tap, a new Rectangle is created (figure 11)

and then it is possible to check for overlapping between the tap and the falling

objects. Alternative to this method would be creating an onClickListener for the

objects.

21

Figure 11 Processing the user input

5.3.5 Drawing the game

All the images and the font are drawn to the screen by using OpenGL. In Libgdx

2D textures can be drawn by using a SpriteBatch (figure 12). Each object and

the font for the score need to be drawn for every single frame.

Figure 12 Drawing the objects and the score

The render() method shown in figure 13 is called constantly through the life-time

of the game in a rate of frames per second. All the input processing, game state

22

updates and drawing is done in this method by calling the appropriate methods

since they require constant updating.

Figure 13 Render() utilizes the previously created methods

5.3.6 Disposing assets

Although the modern mobile operating systems free up memory automatically

once needed it is still necessary to dispose the loaded assets when possible to

avoid memory leaks. The following dispose (figure 14) method is automatically

called by the Libgdx framework when the application is going to get terminated

by the user or by the operating system.

Figure 14 Dispose method

5.4 Debugging on desktop

Development is mostly done by adding new lines of code, or changing some-

thing from the old lines of code. After certain amount of changes, the new fea-

tures need to be tested and verified that they work as indented. Compiling the

23

application for the desktop is the fastest way to run the application since it only

takes a few seconds to deploy. Deploying to a mobile device is a lot slower.

The desktop version of the application can be started by right clicking the desk-

top project and selecting Run As Java Application. Debug mode can be started

by selecting the Debug As option or using the Debug icon from the toolbar.

Debug mode allows hot swapping of code, which is the fastest way to change or

try new code in the application. No compiling or restarting of the application is

required between changes. The changes are instantly visible within the applica-

tion.

5.5 Logging

Debug messages can be printed with "Gdx.app.log("message-tag", "mes-

sage");". While running the desktop project debug messages are shown in the

Eclipses Console view and when running on Android the messages are printed

in LogCat, which is also commonly used with Android development. LogCat al-

so provides all system debug output's from the Android device. The output can

be filtered with a tag to show only the relevant output. All errors and exceptions

will also be printed to these views. (Android Developer, logcat.)

5.6 Deploying to a device

It is also necessary to test the application on real devices. Modern computers

have more processing power and better graphics processing units than mobile

devices. A good application should be created so that it can be run with even

older mobile devices with lower-end components. The procedure for deploying

to a device varies from the platform.

5.6.1 Deploying to Android

The easiest way to deploy to an Android device is to connect the device through

a usb-cable with the development computer. Depending on the device a usb

driver for Windows might be required from the devices manufacturer. Android

requires a Usb debugging option to be enabled from the device's developer op-

tions.

24

The application is deployed as an apk (Android application package) file to the

device by right clicking the Android project and selecting Run As > Android Ap-

plication or by using the Run icon from the toolbar. Applications sent to digital

distribution platforms need to be signed when exported as apk files. This can be

achieved by using the Export as Android application functionality in Eclipse.

5.6.2 Deploying to iOS

Apple's Mac OS X is required when deploying to an iOS device or a simulator.

Deployment cannot be done in Windows or Linux based operating systems

since the necessary Xcode is only supported in OS X. Deploying to an iOS de-

vice also requires purchase of Apple Developer Program license for iOS. De-

ploying to an iOS simulator is possible without the license.

After a proper Development Certificate, Application identifier and Provisioning

Profile have been acquired to the development environment it is possible to de-

ploy the application to an iOS device (iOS Developer Library, Maintaining Your

Signing Identities and Certificates). The required Certificate, Identifier and Pro-

file can be obtained from Apple's Developer portal after purchasing the neces-

sary license.

Deployment to a device is done by right clicking the RoboVM project and se-

lecting iOS Device App from Run As. The Package for App Store / Ad-hoc dis-

tribution selection in RoboVM tools allows to build the application for the App

Store. The built application file (.ipa) can be sent for evaluation for the App

Store with a tool named Application Loader.

6 Publishing the application

Finished applications are usually published on digital distribution platforms

where consumers can download the application for free or purchase the appli-

cation for a price. Distribution platforms have their own rules and demands

(such as application quality, content or price) for the submitted applications.

25

6.1 Publishing for Android

Google allows Android applications to be published to any digital distribution

platform, shared from any website directly, or be sent as email attachments as

an installation package (.apk). Google's own digital distribution platform is called

Google Play, formerly known as Android Market. (Android Developer, Open Dis-

tribution.)

6.2 Publishing for iOS

Applications for iOS can only be published to the official Apple App Store. All

applications must meet Apple's guidelines for quality and content before ac-

ceptance to the App Store. In order to publish an application it must be built us-

ing the Distribution Provisioning Profile, which can be created after purchasing

the iOS Developer program license. Applications are submitted for approval

through Application Loader and iTunes Connect website. (iOS Developer Li-

brary, About App Distribution).

6.3 Publishing for desktop

Libgdx applications for the desktop are created with the Eclipse's Export func-

tionality. Exported applications are created as executable .jar files which can be

launched by opening the file.

Exported applications can be freely distributed through websites or distribution

services such as Valve's Steam or Apple's Mac App Store. These commercial

distribution platforms have their own submit and approval processes like Google

Play and iOS App Store.

7 Falling Stars - a game with Libgdx

This thesis also developed a mobile cross-platform game (figure 16) with Libgdx

named Falling Stars. The game was developed for Android and iOS mobile

phones and tablets. Although a desktop version is possible with Libgdx, only the

mobile platforms Android and iOS were the main target platforms.

26

Figure 16 Falling Stars game play

The playable character is a flying squirrel and the object of the game is to com-

plete various challenges and to collect the stars from the sky for points and fuel.

Points can be used to purchase upgrades and power-ups.

Figure 17 Main menu of Falling Stars game

27

The development was done by using many tools, community add-ons and fea-

tures of Libgdx such as light effects from box2dlights, particle effects were cre-

ated by using the Particle editor and object physics were achieved by using the

Box2D extension. Also Google Play Game Services (icons in figure 17) leader-

boards and badges were integrated to the game. The player can use these ser-

vices by logging in with a Google+ account within the game itself.

The game was successfully created by reading tutorials from the Libgdx com-

munity forums and by watching Libgdx video tutorials from YouTube. Libgdx

also comes with comprehensive documentation, which was proven to be a great

resource for development.

Figure 18 Falling Stars game on different platforms

In above figure 18 the game is running on iOS devices iPad 2 and iPhone 4 and

also Android devices Asus TF300 and Samsung S3.

8 Summary

The main purpose of this thesis was to find and learn about a framework, which

enables development of cross-platform games for mobile devices. Libgdx

proved to be a good choice for the developed game Falling Stars, since it was

possible to develop the game for the target platforms from the same codebase.

28

In the future more mobile platforms like Firefox OS, Tizen, Sailfish or Ubuntu

Touch are likely to be also target platforms for popular mobile games and appli-

cations. Developing applications or games to all of these platforms in native

code is unlikely because of the amount of time and expertise required for each

platform. For commercial applications this requires more work hours and pro-

grammers who are experienced with developing to these platforms.

Alternative technologies such as HTML5 based technologies are likely to be

more common choices for development in the future because of the commonly

used JavaScript and HTML languages. Currently the main issue holding back

the spreading of HTML5 based development is the performance of HTML5

based mobile applications. Native applications are generally more responsive

than HTML5 based applications. Especially with games it is important to

achieve the best possible performance from the available device.

29

List of references

1. Intel Developer Zone. Building Cross-Platform Apps with HTML5.

http://software.intel.com/en-us/html5/articles/building-cross-platform-apps-
with-html5 Read 3.1.2014.

2. GAJOTRES, Top 7 mobile application HTML5 frameworks.
http://www.gajotres.net/top-7-mobile-application-html5-frameworks/. Read
3.1.2014.

3. Xamarin. Tour. http://xamarin.com/tour Read 3.1.2014

4. Libgdx. Goals and Features. http://libgdx.badlogicgames.com/features.html.
Read 3.1.2014.

5. Libgdx Developer's Guide. Introduction.
https://github.com/libgdx/libgdx/wiki/Introduction Read 12.12.2013.

6. Android Developer. Android, the world's most popular mobile platform.
http://developer.android.com/about/index.html. Read 17.11.2013.

7. iOS Developer Library. About iOS App Programming.
https://developer.apple.com/library/ios/documentation/iphone/conceptual/ip
honeosprogrammingguide/Introduction/Introduction.html#//apple_ref/doc/uid
/TP40007072-CH1-SW1 Read 10.12.2013.

8. History of Java programming language. History.
http://www.freejavaguide.com/history.html. Read 4.2.2014.

9. Groups.enging.umd.emich.edu, Java The Programming Language.
http://groups.engin.umd.umich.edu/CIS/course.des/cis400/java/java.html
Read 2.1.2014.

10. Libgdx Developer's Guide, Prerequisites.
https://github.com/libgdx/libgdx/wiki/Prerequisites. Read 5.2.2014.

11. Aurelion Ribon's dev Blog. Libgdx Project setup v3.0.0!
http://www.aurelienribon.com/blog/2012/09/libgdx-project-setup-v3-0-0/.
Read 7.2.2014.

12. Android Developer, ProGuard.
http://developer.android.com/tools/help/proguard.html Read 4.1.2014.

13. Android Developer, logcat.
http://developer.android.com/tools/help/logcat.html Read 15.12.2013.

14. iOS Developer Library. Maintaining Your Signing Identities and Certificates.
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/App
DistributionGuide/MaintainingCertificates/MaintainingCertificates.html. Read
20.10.2013.

http://software.intel.com/en-us/html5/articles/building-cross-platform-apps-with-html5
http://software.intel.com/en-us/html5/articles/building-cross-platform-apps-with-html5
http://xamarin.com/tour
https://github.com/libgdx/libgdx/wiki/Introduction
http://developer.android.com/about/index.html
https://developer.apple.com/library/ios/documentation/iphone/conceptual/iphoneosprogrammingguide/Introduction/Introduction.html#//apple_ref/doc/uid/TP40007072-CH1-SW1
https://developer.apple.com/library/ios/documentation/iphone/conceptual/iphoneosprogrammingguide/Introduction/Introduction.html#//apple_ref/doc/uid/TP40007072-CH1-SW1
https://developer.apple.com/library/ios/documentation/iphone/conceptual/iphoneosprogrammingguide/Introduction/Introduction.html#//apple_ref/doc/uid/TP40007072-CH1-SW1
http://groups.engin.umd.umich.edu/CIS/course.des/cis400/java/java.html
http://developer.android.com/tools/help/proguard.html
http://developer.android.com/tools/help/logcat.html

30

15. Android Developer, Open Distribution.

http://developer.android.com/distribute/open.html Read 2.12.2013.

16. iOS Developer Library. About App Distribution.
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/App
DistributionGuide/Introduction/Introduction.html Read 8.12.2013.

http://developer.android.com/distribute/open.html

Saimaa University of Applied Sciences Appendix 1
Pirttiaho Joonas Example game code

package com.me.mygdxgame;

import com.badlogic.gdx.ApplicationListener;
import com.badlogic.gdx.Gdx;
import com.badlogic.gdx.graphics.GL10;
import com.badlogic.gdx.graphics.OrthographicCamera;
import com.badlogic.gdx.graphics.Texture;
import com.badlogic.gdx.graphics.g2d.BitmapFont;
import com.badlogic.gdx.graphics.g2d.SpriteBatch;
import com.badlogic.gdx.math.MathUtils;
import com.badlogic.gdx.math.Rectangle;
import com.badlogic.gdx.math.Vector3;
import com.badlogic.gdx.utils.Array;

public class MyGdxGame implements ApplicationListener {
 private OrthographicCamera camera;
 private SpriteBatch batch; // draws 2D textures

 private Array<Rectangle> objects; // holds the objects that player tries to click
 private Rectangle object = new Rectangle(); // objects are defined as Rectangles
 private Texture objectImage;
 private float time = 0; // time tracking for making objects appear
 private float lastSpawnTime = 0;

 private int score; // keeps the players score
 private BitmapFont font; // default font which comes with Libgdx

 private Vector3 touchCordinates = new Vector3();
 private int i;

 @Override
 public void create() {
 camera = new OrthographicCamera();
 camera.setToOrtho(false, 800, 480); // cameras viewport width and height
 batch = new SpriteBatch();

 // loads the image for the object from the assets folder
 objectImage = new Texture(Gdx.files.internal("object.png"));

 // clickable objects array
 objects = new Array<Rectangle>();

 // font to draw the score
 font = new BitmapFont();
 }

 @Override
 public void render() {
 // each frame is cleared with black color, RGB (0, 0, 0, alpha)

Gdx.gl.glClearColor(0, 0, 0, 1);
 Gdx.gl.glClear(GL10.GL_COLOR_BUFFER_BIT);

 processUserInput();
 updateGameState();
 drawGame();
 }

Saimaa University of Applied Sciences Appendix 1
Pirttiaho Joonas Example game code

 private void processUserInput() {
 // finds out if the user has clicked on a object
 if(Gdx.input.isTouched()) {

//user touched this area
touchCordinates.set(Gdx.input.getX(), Gdx.input.getY(), 0);
camera.unproject(touchCordinates);
Rectangle touchArea = new Rectangle(touchCordinates.x, touchCordinates.y, 10,
10);

// goes trough all the objects
for(i = 0; i < objects.size; i++){
 // if the object overlaps with the touch on screen
 if(objects.get(i).overlaps(touchArea)){
 objects.removeIndex(i); //remove from the array
 score++; //add +1 to score
 }
}

}
 }

 private void updateGameState() {

time += Gdx.graphics.getDeltaTime();

 // if a second has passed since the previous object was made
 if(time - lastSpawnTime > 1){
 createNewObject();
 lastSpawnTime = time;
 }
 // moves the objects downwards and removes one once
 // the object is below bottom of the screen
 for(i = 0; i < objects.size; i++){

objects.get(i).y -= 250 * Gdx.graphics.getDeltaTime();
if(objects.get(i).y + objectImage.getHeight() < 0){
 objects.removeIndex(i); // removes the object
 score--; // -1 to the score
}

 }
 }

 private void drawGame() {

// updates the camera for each frame
camera.update();

// batch renders the view with dimensions specified by the camera
batch.setProjectionMatrix(camera.combined);

batch.begin();
//goes through the objects array one by one
for(Rectangle object: objects) {
 //and draws each object on to the screen
 batch.draw(objectImage, object.x, object.y);
}
//draws the current score on to the top left corner of the screen
font.draw(batch, "Score: " + score, 0, Gdx.graphics.getHeight());
batch.end();

 }

Saimaa University of Applied Sciences Appendix 1
Pirttiaho Joonas Example game code

private void createNewObject() {
// creates new object as a Rectangle with given dimensions and positions
// it to a random location on top of the screen
object = new Rectangle();
object.setSize(64, 64);
object.x = MathUtils.random(0, Gdx.graphics.getWidth() - object.getWidth());
object.y = Gdx.graphics.getHeight();
objects.add(object);

}

@Override
public void dispose() {

// unloading the disposable resources from memory
objectImage.dispose();
font.dispose();
batch.dispose();

}

@Override
public void resize(int width, int height) {}
@Override
public void pause() {}
@Override
public void resume() {}

}

