

Purushottam Thapa Magar

Software Development Process in Small Enterprises

An insight into distributed development

Helsinki Metropolia University of Applied Sciences

Bachelor of Engineering

Degree Programme in Media Engineering

Bachelor’s Thesis

4 September 2013

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Theseus

https://core.ac.uk/display/38094714?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 Abstract

Author(s)
Title

Number of Pages
Date

Purushottam Thapa Magar
Software development process in small enterprises
An insight into distributed development
78
4 September 2013

Degree Bachelor of Engineering

Degree Programme Media Engineering

Specialisation option JAVA and .NET Application Development

Instructor(s)

TeemuPiirainen, CEO of DooxeOy
Kari Aaltonen, Principal Lecturer

The aim of this study is to analyse the overall work flow and processes that takes place in
small enterprises during software development and give an insight into the distributed ap-
proach in software development.

There are thousands of small sized software companies all around the world. Naturally,
small firms possess fewer resources and manpower than bigger companies like Microsoft
and Oracle. However, the contributions made by these firms to the software industry are
outstanding.

The world has turned into a global village. Information Technology is the father of this re-
markable achievement of mankind. Hence, it is obvious that this field benefits the most
from it. One of the advantages is that the software development can be distributed in vari-
ous geographical locations, which is a huge leap from the traditional development meth-
ods. The possibility of distribution of development team has given a birth to a new kind of
era, which is known as software outsourcing. Outsourcing is a very effective method to
employ for rapid and creative development. In fact, it provides huge financial savings to
businesses. Nevertheless, outsourcing also creates problems, which are irrelevant in cen-
tralized development. Those probable problems should be considered beforehand or it will
jeopardize the entire project.

Keywords DSD, dooxe, scrum, agile development, version control,
FDD, Extreme Programming.

Contents

1 Introduction 1

2 Basics of Software Engineering 3
2.1 Some terminology 3
2.2 Misconceptions about software 5
2.3 General software development approach 7
2.4 Why software engineering is required 9

3 Software Development Methodologies 12
3.1 Traditional software development methodologies 13
3.2 Agile software development methodologies 22
3.3 Comparison between traditional and agile development process 27
3.4 Team Development 28
3.5 Why methodologies at all 29

4 Scrum 34
4.1 The Team 35
4.2 Events to take place 37
4.3 Artifacts of Scrum 38

5 Distributed approach to software development 41
5.1 What is Distributed Software Development 41
5.2 Challenges in Distributed approach 43
5.3 Scrum in Distributed Development 45

6 Dooxe Oy 48
6.1 The Application 48
6.2 Background on the practical work 49
6.3 Tools and technologies used 51
6.4 Parties involved 64

7 Implementing Scrum in Distributed environment 66
7.1 Team involved in the project 66
7.2 Events Occurred 67
7.3 Artifacts Produced 68

8 Dooxe Retrospective 70

9 Conclusion 73
References 75

Abbreviations and terms

DSD Distributed Software Development

SDLC Software Development Life Cycle

TDD Test Driven Development

XP Extreme Programming

FDD Feature Driven Development

CMS Content Management System

MVC Model-View-Controller

VCS Version Control System

1

1 Introduction

The purpose of this thesis is to study the distributed aspect of software development

methodologies in small companies. Moreover, it intends to study the role of developers

in small firm’s working environment.

The United States of America alone has almost one million software developers [1]. We

can do the math to guess the number worldwide. The demand and need of new soft-

ware is never going to stop in today’s world. As a result, the number of software com-

panies has increased exponentially in the last one decade. However, the majority of

these enterprises are small sized businesses. It is very interesting to study a develop-

ment process in small firms because they are very versatile and frequently follow a

modified version of standard development methods. This is an effective method, which

allows changes to be executed with less or no amount of extra work. They work in

small teams and usually inside the same room, which makes the adaptation fairly sim-

ple.

On the other hand, software development has entered into a new era. Nowadays, de-

velopment does not occur in one geographical location. Many development teams work

in a same project from various locations of the world. Such approach to software de-

velopment is known as Distributed software Development (DSD). It is one of the im-

portant aspects of today’s software industry. Normally, DSD comes into play when

companies start to look for better opportunities, either financial or qualitative.

The study is based on the web services called dooxe and korjausurakka. Both applica-

tions are reverse auction platform and share the same backend. The only difference

between the two is the appearance and the group of users. The idea behind the appli-

cation is very simple, service seekers simply post a job in the service and contractors

try to outbid each other by offering their best offer. Finally, service seekers select the

service provider that best suits their need. Customers can post any kind of job in dooxe

whereas korjausurakka is strictly developed for a job relating to construction.

Dooxe oy owns both services mentioned above and commissioned this thesis. It is a

very small firm based in Helsinki. The dooxe team consists only six members. It is not a

2

software company but a company that operates a web service. However, it does not

order other software companies to develop and maintain their application.

A meticulous presentation of how software is developed in dispersed environment in

small firms is the aim of this paper. Dooxe is a very suitable choice for such study be-

cause first of all the only developer in dooxe team lives in Switzerland and second, it is

a very small company.

3

2 Basics of Software Engineering

The software industry has been through drastic changes over last three decades. At

the early stage of software industry, computer systems were not very complicated but

really simple and light. As a matter of fact, their capacity was so limited that they could

hardly handle more than one task at a time. 30 years ago, machines fitted out with sin-

gle processor used to run computer applications. Software on those days used to take

input from a single device. Keyboards were the most common source for inputting data

into the application. Outputs of the applications were either letters or numbers. Today,

computer applications are very complex and are often based on server-client model.

Applications have graphical user interfaces and are capable of receiving inputs from

multiple devices. Computer applications are so advanced that they can take inputs

from sensors or even satellites. Mobile applications are a very good example of sensor

driven software. Furthermore, they do not just produce alphanumeric outputs anymore.

Those are complex results that are not understood by ordinary people. Outputs can be

in different forms such as images, 3D models, old school alphanumeric values or eve-

rything combined. Nowadays, software runs on a machine with multiple processors. In

addition, such machines can be geographically scattered or running a different operat-

ing systems. [2,2.]

Software has become crucial in all areas of human life. At present context, program-

ming skill alone is not good enough for producing quality software. Software industry

has seen serious problems such as over cost and late delivery of software. Moreover,

the quality of software products has been compromised. Similarly, there is no effective

mechanism for the maintenance of software. These are worrying issues that need to be

addressed. [2,5.]

The concept of software engineering was initiated to solve all the problems that were

mentioned above. The key objective of software engineering is to develop maintainable

and excellent software within given time and budget. A disciplined protocol is followed

to acquire these objectives, which are called software development methods. [2,5.]

2.1 Some terminology

For the ease of readers of this paper, terms that are frequently used during software

development are discussed in this section. In software engineering, there are many

4

expressions that need to be explained to a novice person. However, many terms are

beyond the scope of this paper. Thus, only terms that are relevant to this thesis are

discussed below.

Deliverables

Deliverables are the things that are produced during development. Examples of deliv-

erables would be source code, database model, entity relationship diagrams, user

manuals, sequence diagrams and operating manuals. Each of these items is called

deliverable in software engineering.

Milestones

In software engineering, milestones are points that are used to define the completion of

different phases of a development work. As an example, completion of database de-

sign would be like reaching one milestone or simply, the whole process is a milestone.

Accomplishment of user interface design would be another milestone. Hence, mile-

stones are nothing but events, which are utilized to monitor the progress of the project.

[2,12.]

Product

The collection of deliverables that is delivered to a client is known as product. In simple

words, it is a package that contains all the deliverables that were generated during de-

velopment. [2,12.]

Process

Process is a method that is followed to develop software. It is used to ensure a quality

of software. Different companies follow different process. Some of the examples are

scrum, velocity tracking, waterfall, feature driven development and crystal clear. [2,12.]

5

2.2 Misconceptions about software

There are many fallacies among people, which directly concern software industry. A

few of them are very critical because they directly affect the software development pro-

cess. [2,4.] They are discussed below:

Modification of software is easy

In programming, one task can be implemented in several different ways; hence change

of code is easy. However, it is absolutely wrong to mix this idea with modification of

entire software. Software follows certain design and architecture, which needs to be

planned cautiously at the preliminary phase. Software architecture is like a foundation

of concrete building: if it is created once then it is extremely difficult to change. Once

software architecture is written, an entire application needs to be written in a way that it

goes along with the pre-written architecture. [2,4.]

On the other hand, change is not completely impossible. Software can be modified but

it requires tremendous amount of time and money. Change is less expensive if devel-

opment process is in initial phase. Moreover, it is less time consuming. [2,4.]

Software testing eliminates all the errors

This is another myth that people have about software. Software testing does not nec-

essarily remove all the errors. The objective of software testing is to find the presence

maximum possible errors. However, it does not guarantee the absence of errors. The

test results depend on the way that test cases are written. More testing will definitely

provide a safer system but it still cannot promise the absolute accuracy of software.

[2,4.]

Software is 100% accurate

It is a very traditional and widely accepted view that software makes no mistakes. In a

way, it is true but there are limits and exceptions to everything. Computer software

does produce false results occasionally. Because software testing cannot guarantee

bug free application, there is always a little window for mistakes to happen. However,

well-designed software does it very rarely. [2,4.]

6

Software engineering does not require prototypes

Almost every engineer first develops a prototype before putting an object into produc-

tion. Nevertheless, people think that computer software does not require that kind of

prototyping. They have this preconceived idea that software can do the job right in the

very first time. This is absolutely wrong: if that would have been right, the concept of

beta versions and testing would never have been born. Despite this fact, it is very hard

to convince customers, thus software engineers accept the job that is against the soft-

ware developing principles. [2,4.]

More the feature, better is the software

It is a normal human behavior that people want more. Perhaps, that is the reason why

they want more and more features in computer applications. Normally, people think

that software with massive list of features is better than the simple one. Actually, the

exact opposite is the truth. In real life, software or any other device that is designed for

one specific task does the job well. [2,5.] As an example, Facebook have lot more fea-

tures than twitter. However, twitter much more efficiently does the task of delivering

messages to wider range of people than Facebook. Therefore, many celebrities use

twitter instead of Facebook.

Software does not require maintenance

Because software is not a physical object, a considerable amount of people may think

that it never wears and tears. In traditional sense, it can be considered true. Nonethe-

less, modern concepts totally deny it. All computer software requires timely integration

and maintenance. Technology is changing very fast, and what is working today might

not work tomorrow. Hence, upgrading needs to be carried out in regular basis. Moreo-

ver, source code can change if software is handled improperly. Such change can result

into crash or strange behavior of software. Proper maintenance is important to resolve

those issues. Furthermore, performance of software might decline as the time on pro-

duction increases. Abundance of old and useless data in database might be one rea-

son for this kind of issue. Such problems will not arise if proper maintenance of soft-

ware is done.

7

Obviously, the mistaken notions described above cause trouble in development work.

In big companies like Oracle, it would be impossible to convince either management or

customers about these issues. On the other hand, managing director of the company is

often the member of development team in small firms. Hence, face-to-face meeting

with the decision maker is possible and the situation can be explained thoroughly. In

giant companies, management just wants to see the job done within deadline. However

in small enterprises, decision of the boss can be influenced with proper reasoning.

2.3 General software development approach

Although there are many software development principles, the core of the software

engineering is always same. All the existing methods follow this basic development

pattern. All the phases of basic development framework will be discussed below.

Software Requirements

In software engineering, requirement gathering is the phase when features and func-

tionalities of the software are discussed and written properly. It is the first phase in de-

velopment cycle. Requirement gathering is a very complicated task because user

needs are often hidden deeply within lots of assumptions and misconceptions. The

purpose of software is to solve a problem or achieve an objective of a user. To solve a

problem, user needs should be understood. A software engineer must not make as-

sumptions of client’s needs. A false assumption leads to a wrong solution, hence cus-

tomers must be questioned again and again to identify the problem precisely.[3,105-

106.]

Requirement gathering is a systematic process. It is performed in iterative cycles. At

first, the problem is observed, and then it is documented. Later, acquired information

are checked to assure the preciseness. The same process is repeated until all the re-

quirements are documented properly. [3,106.]

In software development, most of the time the client does not know what his/her soft-

ware needs are. They often present vague needs. It is the job of software engineers to

show them the right path. In the requirement gathering phase, involvement of the client

is inevitable. In fact, the development team should persuade customers to spend as

8

much time as possible in this phase. Inadequate attention from client can result into

redoing of work. For instance, if the development team writes a software specification

on their own, clients might disagree with that idea, which will lead to the complete

waste of time spent and frustration of the team. Hence, customers must not skip the

requirement analysis meetings.

Design

Designing is the second phase of software development life cycle. It is the phase when

software specification is written. In design phase, software structure and architecture is

defined [4,231]. Likewise, user interfaces and test plans are created. All the logical

models for software are defined. Security measures are also designed in this phase.

Similarly, inputs and outputs of the application are defined. In addition, if agile methods

are used, testing of user interface is also executed in this phase. Primary testers are

end users. End users provide lots of valuable data regarding user interfaces. However,

professional testers are also used in interface testing.

Later in the designing phase, previously written user-oriented designs are converted

into machine-oriented designs. Such computer-oriented designs are often called as

system designs of software. Data structures and software modules are part of system

designs. Further, coding conventions and database structure are defined in system

design phase. [4,231.]

Coding

Coding is the phase when actual development of software takes place. It falls between

designing and testing phase. Basically, it is just a technical implementation of designs

created in previous phase. Coding conventions and data structures defined in software

designs are strictly followed. [5, 18.] Moreover, developers themselves carry out unit

testing in this phase. Deliverables generated in this phase are source codes.

Testing

Testing is a fourth phase of Software Development Life Cycle (SDLC). Testing basical-

ly refers to the functional testing of source code. User interface testing is not consid-

ered at this point because such testing has already been carried out in the design

9

phase. The main objective of functional testing is to find possible bugs. At this stage,

professional testers are the primary testers. They test the application by following test

plans precisely. [5,19-20.]

Also the end users perform functional testing in many occasions. Usually companies

release beta versions of software to allow users to perform these testing.

Deployment

Deployment phase means the installation of source code for operational use. Source

codes are placed in different environment depending on the nature of an application.

Web applications are usually deployed in web servers whereas standalone applications

are installed in machines. After deployment, software is ready for use.

Maintenance

Maintenance is the last and a never ending phase. Maintenance of software is required

as long as the software is in production. In this phase, timely update and integration of

plugins and supporting software is done. [3, 221.] Moreover, old and irrelevant data are

archived to remove the unnecessary burden from an application. Applications may

need additional resources as the time in production increases. Addition of such re-

sources is also part of the maintenance cycle.

2.4 Why software engineering is required

Software crisis is the main reason why software engineering is required. Software crisis

has been with us since the early days of software industry. Software industry is growing

with lightening speed but complete eradication of problem has not been successful yet.

Problems that we faced 40 years ago still exist. Software projects still surpass antici-

pated budget and time. In addition, they are still faulty. According to IBM report, 53% of

the projects exceed the predicted budget by an average of 189%, Among every 100

projects, there are 94 restarts and worst of all 31% of the projects are never completed

because they get cancelled in the middle. [2,2.] Next, the importance of software engi-

neering will be reflected with historical examples.

10

Y2K crisis

In the year 2000, an unexpected software problem crippled computer systems globally.

The problem was with a date format. At that time, dates were shortened to two-digit

format. For example 1987 was written as 87. Software developers could not think of an

exceptional condition of the year 2000. Millions of dollars were invested to fix this small

problem. [2,2-3.]

Failure of Patriot Missile

Patriot is a defensive missile produced by “star wars” program of the United States. It

was first used in the Gulf war. Patriot’s main objective was to shoot down incoming

Iraqi Scud missiles. However, it failed several times. In one occasion, 28 American

soldiers were killed in Saudi Arabia. The reason was a software bug. Small timing error

was present in the system’s clock. After 14 hours of operation, tracking system was no

longer accurate. At the time of the attack in Saudi Arabia, the system had been operat-

ing for more than 100 hours. [2,3.]

Crash of Ariane-5

In 1996, the first test flight of Ariane-5 space rocket crashed within 39 seconds of its

launch. It was built in 10 years of time and a fortune of 7000 million dollars was spent.

The problem was very small and simple. Guidance system’s computer tried to convert

the value from one format to another and an overflow error occurred because the con-

verted value was too big. Developers knew about the conversion but they simply ig-

nored it because they assumed that the value would never be big enough to result in

any critical failures. [2,3.]

Hence, software crisis does not just crash computers but can bring down a giant ma-

chine like a space rocket. There are many other failures that have caused loss of life

and fortune. In order to prevent these catastrophic disasters, systematic rules and dis-

cipline are needed to develop quality software. Software engineering is a scientific dis-

cipline, which ensures good and quality performance of an application. Software engi-

neering principles cannot guarantee 100% accuracy of software. However, it brings

down the risk factors significantly and provides an acceptable level of assurance.

11

On the other hand, software engineering helps to keep the project within the estimated

budget and deadline. In conclusion, software engineering principles are important and

must be followed in all software development projects.

12

3 Software Development Methodologies

In simplistic terms, software development methodology is defined as the set of rules

that are followed by developers during development of an application. It provides a

framework for planning and controlling the entire software development process. [6,53.]

A relevant set of specific software development practices creates a software develop-

ment method. The term “specific practices” refers to all minute by minute tasks carried

out during development. For example, writing use cases can be considered as one of

the minute tasks in software development. A software development method must satis-

fy all the fundamental activities mentioned in section 2.3. A software development pro-

cess basically converts user needs into a real life application. There are intermediate

conversions involved. At first, user requirements are changed to software require-

ments. Then, software requirements are transformed into software designs. Coders

implement the designs produced. After that, a testing team tests the software with all

test cases that are likely to occur. Finally, software is deployed for operational use.

The main objective of software development methodologies is to prioritize the order of

stages followed during development. Furthermore, it provides a standard for transiting

from one stage to another. In simple words, it specifies things that need to be complet-

ed before moving forward to another stage. All development methodologies share the

same fundamental software development model: requirement, design, code, test, de-

ploy and maintain [6,53]. However, there are significant differences in the details of

these stages. It is very important to understand that all methodologies satisfy the basic

software development model but are different from each other in minute level.

As mentioned earlier, software products are no more mere calculating programs, but

rather complex systems. Such complexities are skyrocketing, as the users are being

more and more demanding. [2,2.] Today, there are thousands of software products

floating around the market. However, very few of them are advantageous. Useful soft-

ware is a result of systematic development process. Moreover, they evolve over time to

meet the needs of users and changing environments.

Computer applications were very expensive at the early stage of software industry.

Furthermore, they required good computer proficiency to produce fruitful output.

Hence, the number of users was very small. Time has changed and millions of people

are using all sorts of computer software. Today, the types of computer software have

13

no limits. They can be simple numeric calculators or advanced 3D games. Amazingly

software with different purposes are being developed everyday. Development of newer

type of software is not slowing down but increasing with lightening speed. Nowadays,

there is even software for measuring alcohol level in your blood. Basically, it calculates

how drunk you are. Due to all these facts, users of computer applications have in-

creased from a few thousands to millions in the past years. In order to address this

demand, more and more developers are being involved into a software development.

Such a massive engagement from both users and developers side has made the de-

velopment process very intricate. Thus, writing applications in a closed room with self-

defined standards and procedure is not practical anymore. In fact, a well-defined and

systematic rule is needed to manage such an intense project to get the decent out-

come. Hence, software development methodologies come into play.

Software development process has evolved outstandingly to cope with the changing

needs. Thus, there is a fairly good number of methods that are battle tested and proven

to be efficient. At the present context, there are rarely any companies that do not follow

these standard processes for their software development projects. Therefore, it is sure-

ly a good idea to get acquainted with the idea behind software development methods.

In conclusion, methodology is very important for software development. Many scholars

have done a variety of researches and several software development methods have

been developed. However, each of them has their pros and cons. Some of the popular

ones are explained in the following sections of this study.

3.1 Traditional software development methodologies

The core idea behind traditional software development methodologies is that all the

necessary information about the project is well known beforehand. Furthermore, that

information is assumed to be stable and unlikely to change during course of develop-

ment. [7,3.] Due to prior understanding of project’s details, a good plan is laid out to

complete the project. Hence, in software development community, the term plan-driven

or heavyweight methodology is also frequently used for traditional method [8,47]. In

software engineering, the longer the problem exists, the harder it is to get rid of it.

Moreover, the solution might be quite expensive and tedious. For example, if there is

any bug relating to a database, it is lot more difficult to remove it after one year than

14

right away because there will be hundreds of new entries piled during one year. More

data means more time for their migration. Furthermore, it is risky because data can be

lost or damaged during transfer. Therefore, traditional software development approach

argues that detailed planning of architecture and design of software can minimize the

cost and trouble of the project. The theory insists on prevention rather than fixation

[8,47].

Like any other software methodologies, plan-driven methodologies also follow the

same fundamental software development practices. First of all, requirement of the

software is defined. In this phase, the length of different phases and the whole project

is estimated. Furthermore, probable issues that may arise during the course of devel-

opment are discussed and preventive measures are planned. The second step is to

create designs and lay down an architectural plan. Diagrams are used to represent

designs and architectural planning. They provide technical infrastructure to the project

and create a path for implementation.

The third step is to implement an application for real. Coders write source code based

on predesigned architectures. In the coding phase, work is divided according to the skill

level of developer. In most cases, coding and testing are carried out simultaneously to

figure out the issues as soon as possible. Stakeholders usually participate in final test-

ing sessions. Software is delivered when the client is satisfied with the output. Delivery

might just be the deployment in proper environment or supply of all the deliverables

that were produced during the project. Due to these heavy phases, traditional practices

are also known as heavyweight methodologies.

In heavyweight methodologies, the quality of predetermined information affects the

success of project. It promotes the idea “Do it right the first time” because it denies any

changes in the middle of the project. These kinds of software development models are

outdated. However, some projects can still apply and enjoy their benefits. Typically,

traditional methodologies are appropriate for software that handles sensitive infor-

mation because any changes or problems are unwelcome due to safety reasons. Addi-

tionally, simple and small projects can make use of heavyweight methods. Some of the

traditional methods are described below.

15

Code and Fix

Code and Fix is the oldest and most simple software development method. Although, it

is the most impractical method available, developers still use it. The idea behind code

and fix is very straightforward. Firstly, the developer comes up with a rough idea about

a system. Then, implementation of that idea is carried out right away. As the develop-

ment progresses, problems reveal themselves and solutions are developed according-

ly. Despite the fact that code and fix welcome redundancy and failure, it still exists in

wider extent. Nonetheless, it should be kept in mind that organized and serious soft-

ware development has abandoned code and fix approach longtime ago. Currently, in-

dividual projects are the main scope area for code and fix. [9, 16.]

One of the reasons why code and fix method is still prevailing is that it does not require

any expertise to make use of it. Furthermore, it is a method that totally goes along hu-

man nature which is preference over doing than thinking. Thus, code and fix is also

known as “cowboy coding”. However, avoiding proper planning can be costly. In code

and fix approach, it is not surprising if things need to be done all over again. In addition,

extensive redesign of an application is a standard process developers go through. An-

other reason for the popularity of the code and fix method is instantaneous results. As

an example, if there is a need of division function, writing a function directly is a lot eas-

ier than thinking through all the cases for that operation. As a result, peculiar cases like

division by zero is not handled properly but function can be fixed or integrated as the

problem arises.

Code and fix resembles hit and trial method. Developers use it all the time. In huge

projects, code and fix is embedded in other SDLC models such as scrum. A project can

be managed using another efficient model but developers use code and fix to complete

parts of their task, sometimes even without realizing it. The division example explained

above is a good illustration of embedding the code and fix method. Division function

itself is not a project but it can be a part of project, for instance calculator application

undoubtedly requires division function. Hence, calculator application is built using effi-

cient SDLC model (for example, scrum). However, an individual developer can use

code and fix for writing a little portion of it (division function).

16

Waterfall

Waterfall is one of the most popular classical software development models. Win

Royce introduced it in the 1970s [8, 48]. The first waterfall model is known as the clas-

sical waterfall model, which had no kind of iteration whatsoever. However, the model

itself has evolved and changed over time. As a result, new waterfall models provide

some sort of iteration. [10,95] At the present context, hardly anyone follows the classi-

cal waterfall model.

The waterfall model was a great leap for software development industry when it was

first introduced. It is a linear method that discards any feedback between different

stages of software development life cycle. In waterfall development, series of sequen-

tial steps are carried out from very beginning to the end of the software development

lifecycle. The order of such steps is very critical and also the most distinctive feature of

waterfall model. In waterfall approach, next phase cannot start unless the previous one

is completed. There is no overlapping between the different phases. Moreover, testing

is discarded and only performed after the implementation phase. Thus, testing of the

whole product rather than an individual component is encouraged. Massive test cases

might disorient the testers and some vital test cases may go unnoticed. Such product is

bound to face problems in future. Such approach also leads to the hard and time con-

suming debugging. [10,95-96.] In modern software testing, even small and obvious

tests are recommended to be performed thoroughly.

In each step of development, the outcome is compared against requirements that were

decided at the very first phase. Each phase is marked as done when all previously

17

set requirements are met. In addition, the product’s quality is controlled in each and

every phase. The image below depicts the classical process of waterfall development.

Figure 1.Classical waterfall development. [6,56]

Figure 1vividly illustrates the step-by-step development process. As depicted in figure

1, waterfall model also follows the general software development pattern. At first, all

user requirements are listed and corresponding system architecture and layout is de-

signed. Later, coders implement such designs. Then, testing is carried out to guarantee

the efficiency and usability of an application. Finally, application is deployed and kept

under continuous maintenance.

Waterfall is the oldest well-known software development model. The biggest flaw in

waterfall model is that there is no way a project can be changed once the requirements

are finalized. However, requirements are always changing during the long software

development life cycle. Therefore, waterfall is a bad choice for big projects where re-

quirements cannot be fully analyzed beforehand. On the other hand, systems that are

well defined and straightforward are very good candidates for waterfall model. [11,18.]

For example, development of a current location finder application is a simple and

straightforward project. The only thing needed is to “find the right current location”.

Apart from rejection to change, there were evidently other weaknesses of waterfall

models. One of those shortcomings was the disobedience of strict sequential develop-

ment advocated by waterfall model, which is basically the soul of the entire model.

[8,49-50.] Such lack of obedience can be easily observed in the table below. The ‘cod-

18

ing’ column represents the amount of effort put on implementation and unit testing to-

gether.

Table 1.Division of work effort in different phases. [8, 49]

As shown in table 1, only 43% of the total coding has been carried out in coding phase.

About 5% was done before the finalization of software design. Even worse, more than

50% of actual implementation was accomplished in testing phase, at which point appli-

cation was suppose to be ready by all means. The result depicted in table 1 is against

the very ethics proposed by waterfall model. Hence, strict enforcement of waterfall

model is unrealistic. Software development process can be better defined as an oppor-

tunistic process, where developers move back and forth in different life cycle phases. In

software development, it is quite normal to cross milestone boundaries of different

phases.

V-shaped

As similar to waterfall model, V model use the sequential development approach.

Moreover, development phases must not overlap each other, that is, the first step must

be completed before the commencement of next one. Nevertheless, unlike wa-

terfall model, V model focuses on testing. Test plans are formulated for each

19

phase. Once the implementation of a system is accomplished, all of the pre-written

tests are conducted. [10,97-98.] Figure 2is the pictorial demonstration of V-shaped

model.

Figure 2. The V-shaped model.

As illustrated in figure 2, in V-shaped model, development phases that come before

implementation phase are listed in the left-hand side and testing phase is broken down

into several other phases and listed in right-hand side as it can be observed in the fig-

ure above. Such placement creates the shape of letter ‘V’, from which the model gets

its name. After that, test plans that are written after the completion of each of the phas-

es that lie in the left-hand side are placed in the middle of the V structure. As in any

other SDLC model, gathering of requirements is the first step. Then, a system test plan

is formulated, which verifies the functionality of an application that are described in pre-

viously gathered requirements. As depicted in figure 2, development then proceeds to

high-level design phase, where designing of system architecture takes place. Moreo-

ver, integration test plan is also created in this phase. The ability of different compo-

nents of software to work together is evaluated by an integration test. In low-level de-

sign phase, each component of software is designed. Unit test plans developed in this

phase verify all components that were designed previously. After the completion of low-

level design phase, actual coding begins. Once implementation is finished, develop-

ment process moves to the sequential steps that lie in the right-hand side and moves in

20

upward direction. Thus, the final product is obtained at the successful completion of

system testing.

V-shaped model is very straightforward and the extensive use of Test Driven Develop-

ment (TDD) provides high rates of success. However, like in waterfall model, require-

ments need to be well-defined and understood. Therefore, the model is only suitable

for small projects.

Spiral

Software development experts soon realized the shortcomings of waterfall model. As a

consequence, many SDLC models were developed to answer the weaknesses of wa-

terfall model, the spiral model being one of those models. On contrary to waterfall ap-

proach of software development, the newer models introduced iterative development.

However, the amount of iteration varied from model to model. In addition, strict sequen-

tial development was discarded. [12, 25-26.]

In the spiral model, a team starts off with a tiny chunk of requirements. Then, they go

through all the development phases with the same set of prerequisites (except mainte-

nance and deployment). Once those requirements pass all the test cases, a new set of

requirements is added and the development process proceeds in the same way as in

the first set of prerequisites. However, lessons that were learned in the first cycle are

considered seriously via risk analysis while moving forward. Risk analysis is a very

important aspect of spiral model. The development process continues in ever-

increasing “spirals” until the application is ready for deployment. [12, 25-26.]

21

The unfinished product that is obtained at the end of each spiral (except the final one)

acts as a prototype for next iteration. The figure below illustrates the spiral SDLC mod-

el.

Figure 3. Spiral software development model. [6, 62]

As depicted in figure 3above, spiral model is divided into four development phases and

each spiral goes along all the phases. At first, planning is done, then, designing of the

system is accomplished. Later, actual implementation is carried out and testing and

evaluation processes are executed in the last quarter of the development work.

The biggest edge that spiral model has over waterfall model is the ability to commence

development even if the application requirements are vague and uncertain. Only the

iterative process followed by spiral model provides such an ability. Furthermore, each

prototype is well tested, which helps to keep the project in the right track. In addition to

that, user feedback is taken for each and every prototype that guarantees the usability

and efficiency of a system. On the other hand, detailed risk management sessions help

22

in preventing wasting the resources. Even though spiral model complies with various

aspects of agile model such as incremental iterative development, it falls into the cate-

gory of traditional methodologies because of its bulky and heavy development process.

In addition, extensive planning is encouraged. [12, 26-27.]

Unlike waterfall, spiral model can handle projects with an element of uncertainty. For

instance, online shopping application such as ebay with a great amount of obscurity

can be developed using spiral model. Usually, the cost of the spiral projects is excep-

tionally high because project period tends to be long. Moreover, the heavy amount of

documentation at intermediate phases make the management fairly complex business.

In most cases, great deal of skill and expertise is required to manage the spiral pro-

jects. Also, great determination and strict obedience of principal is required to enforce

this model, which frequently becomes a difficult job for developers. Hence, it is a bulky

model that is best suited for big and high-risk projects.

3.2 Agile software development methodologies

On contrast to principle of traditional methodology, agile approach welcomes changes.

In fact, the whole idea behind agile development is about feedback and change. No

matter how simple or small the project is, change is inevitable in software development.

Software can never be made perfect. Hence, spending time for heavy planning is not

worth it. Why not just do it rather than think about it. In agile development, massive

planning and detailed design are discouraged because priorities and requirements are

always shifting during development cycles. The main idea is to obtain a decent product

by iterative and incremental cycles. Different phases such as requirement gathering,

designing, coding and testing are repeated over and over again. The agile principle

believes in improving and developing software in small steps. Each of these steps is

called as iterations. All fundamental phases of software development are executed in

each cycle. The agile model advises to spend little time in early planning and more time

in planning of iterations. Basically, a huge chunk of work in traditional approach is bro-

ken down into small pieces in agile model. [13, 7-11]

Today, most of the software companies follow agile software development process

against traditional development methods. The term ‘agile development’ was coined in

1990s. Later, well-known figures in software development society like Kent Beck, Ward

23

Cunningham, Alistair Cockburn, Jim Highsmith, Ken Scwaber and others developed

the term into a standard software development model with a same name. The team

later wrote a manifest for agile development. They provided simple suggestions that

were very easy to understand. Indeed, most of the agile thinking is merely common

sense. Agile processes respond to the changing environments and requirements rather

than following a process blindly. According to Williams and Cockburn, agile develop-

ment is all about feedback and change. Furthermore, they describe it as the process

that accepts change instead of refusing it. Agile manifesto highlights following four vital

points.

1. Stakeholders should be the part of a development team and must follow the

process.

2. Development must be carried out in small iterations.

3. Team decides what to do.

4. Change must be welcomed and adapted. [14, 17-18]

There are several agile methods, which are proven to be efficient. Some of them are

explained below.

Extreme Programming

Extreme programming (XP) is an agile software development model that emphasizes

on user feedbacks, which are provided by short iterations. Kent Beck introduced the

first agile SDLC model in an attempt to overcome the challenges of linear models. [7,

99.] This model is very lightweight. Furthermore, XP provides great deal of flexibility to

the development process. The risks involved in projects following extreme model are

usually minimal.

Like any other agile approach, XP is an incremental development model that responds

to changing requirements. Nonetheless, it is best suited for a team of two to ten people.

It is to say that extreme programming is for the team that can fit into a single room.

Extreme programming is designed for small teams because it relies heavily on oral

communication. Likewise, pair programming is the unique aspect of XP, which makes it

difficult to implement it in big teams. In extreme programming, a pair of programmers

shares one machine. One of them does the coding and the other one asks questions

and gives suggestion. By doing so, things that are slipped from one mind are grasped

by another one. Role of observation and coding can change during the course of de-

24

velopment. The pair can be interpreted as the captain and his first officer of an air-

plane. [8, 62.]

There are certain protocols that need to be followed to be able to call yourself a XP

follower. For instance, tests need to be written; there is no way out of this. Similarly, the

customer needs to be involved from the very beginning of project. Customer partici-

pates in planning phase and follows the process until the end. During that period, cus-

tomer continuously gives feedback, to which extreme programming responds and re-

quired changes are implemented. A team is not extreme if the customer is excluded in

development process: end of discussion. A team does not get to choose certain things

if it wants to follow extreme programming. [15, 9.]

Similar to every other SDLC model, first phase in XP is the requirements gathering

phase. Nevertheless, as discussed above, not only technical people but also customer

is deeply engaged in planning. As a point of fact, customer provides a huge piece of

information on how to proceed forward. Customer set priorities and deadlines of the

project. Likewise, the customer also provides requirements of the system. [15, 9.]

Simplicity of design is the beauty of extreme programming. Complex designs are totally

discarded by XP because future is uncertain anyway. Hence, designing is carried out

for smallest component of the software. After completion of that design, it is tested to

look for a possibility to improvement. Refactoring is the keyword used for such check-

ing. Refactoring is limited to the code of an individual developer. Coding standard

needs to be set if refactoring is to be carried out in an entire system. [16, 24.]

Rapid feedback is crucial aspect of XP. In XP, implementation and test cases are writ-

ten simultaneously. All these tests need to pass before the implementation of new

codes. Once coding is completed, entire test suit is executed; again all the tests must

run successfully. Hence, an application is always running successfully. Furthermore,

testing results are gathered in a small amount of time. The latest delivery of tests result

would be a few days at most. In normal case, test results start to appear within hours.

Small pieces of software are tested as they get written. Therefore, problems are imme-

diately realized and rectified. Such approach leads to the frequent delivery of bug free

system to the customer. When the customer gets his hand on a working piece of soft-

ware he can evaluate it and give instructions about next feature that needs to be add-

ed. [16, 25-26.]

25

In a nutshell, extreme programming is a very powerful agile Software development

model. However, it is not suitable for all kind of projects. A project with a big team and

missing customer cannot make use of XP.

Feature Driven Development (FDD)

Jeff De Luca and Peter Coad introduced feature driven development in 1997. Jeff got

the idea when deadline was slipping for one of his own project in Singapore. FDD is a

pure agile method that provides high adaptability towards changing environment. [17,

3.]

Feature driven development focuses on quality at all development phases. It generates

tangible result in every cycle. Moreover, it is well-known for delivering deliverables fre-

quently. Likewise, progress-monitoring mechanism is accurate and reliable. In FDD,

features are prioritized. Furthermore, cost involved in each feature is listed along with

its priority definition. Feature driven development involves five different iterative pro-

cesses. At first, overall feature of an application is listed. In second phase, those fea-

tures are prioritized and defined extensively. In next process, prioritized features are

picked up for iteration and the plan is laid for the execution of that cycle. In fourth pro-

cess, such hands picked features designed. Finally, they are implemented in code lev-

el. There are short cycles in FDD. In addition, specific timeframe is allocated for each

cycle. The cycle is terminated when time allocated is over. After that, the most recent

version of the software is tested. After testing, plans for new iteration is discussed, if it

happens to be the final iteration product is delivered. [18, 26-27.]

In feature driven development, there are six key roles for people. Also, there are other

people in supporting roles. First, there is a project manager, who is the boss. He is the

one who provides all the required resources. In addition, he is responsible for financial

management. [17,5.]

Another key person in FDD is the chief architect. Chief architect designs the entire sys-

tem. It is his duty to bring all members together and run a design workshop. In design

session, he collaborates with other member of the team. [17,5.]

26

Development manager is the one who leads the daily development work. Development

manager’s main job is to resolve conflicts when there is a need of authority or delega-

tion skill. [17,5.]

Chief programmers are veteran coders who lead a small development team. They par-

ticipate in requirement analysis and design session. They know the entire lifecycle of

the software. They instruct class owners and help them out if they could not solve a

problem. [17,5.]

Class owners are the members of a small development team. They take orders from

the chief programmer and do most of the implementation, perform low-level design,

coding and testing. [17,5.]

Finally, there are the domain experts who are users, business analyst, sponsors or any

composition of these. They participate and monitor the project from the very beginning.

Their main job is to keep the project in right track. They are the ones who provide re-

quirements for the system. They need to be excellent in communication and presenta-

tion skills. [17,5.]

Apart from these six key roles, there can be other supporting roles like release manag-

er who keeps track of project, so that it can be released in time. There might even be

language guru who is expert in the programming language that is being used. These

kinds of supporting roles can be added according to the need of project. [17,5.]

To conclude, feature driven development is the effective agile SDLC model, which uses

incremental short cycle to develop software. Its main aim is to produce tangible results

in timely manner.

27

3.3 Comparison between traditional and agile development process

Traditional methods of software development are old but yet they kept the software

industry going for a long time. They were quite popular at their times. When waterfall

model was introduced by Royce in 1970, it was the best thing ever that had happened

to the software industry. Nonetheless, every good thing has an end. Traditional meth-

ods faded away when more efficient agile methods were developed, the first being the

extreme programming introduced by Kent Beck. Agile methods only rectified the limita-

tions of heavyweight models. As a result, both of the models follow the general soft-

ware development pattern. Nevertheless, they obviously have their differences in the

way they pursue the steps that are involved in that pattern. [7, 35.] The concise over-

view of the differences between traditional and agile methods can be seen in the table

below.

Table 2. Summary of differences between traditional and agile methods. [7, 35]

Table 2illustrates the nature of agile and heavy methods. For instance, agile methods

are adaptive and based on iteration. However, heavy methods are predictive and

based on limited cycles. Furthermore, upfront planning for agile methods are minimal

and is comprehensive for heavy methods. All the typical differences have been listed in

table 2.

Generally, people choose development methods depending on their needs. It is obvi-

ous that both agile and heavy methods have their strengths and weaknesses. Usually,

a customized method that fits best for a certain project will be chosen.

28

3.4 Team Development

 As we know from above, software development is not an easy task. There are many

variables that cannot be anticipated beforehand. At the beginning of the development

process, the obvious approach to develop a solution is to look for something similar

that has been made before. It is irrelevant to form a team to develop solutions, which

are already available in the market. For instance, if somebody wants a blog for himself,

then perhaps the best way to get this done is to use some sort of Content Management

System (CMS) like WordPress or Drupal. These systems are fairly easy to use and

they offer a lot more features than a solely developed solution. Furthermore, most of

the CMS are available free of charge. Therefore, if something has already been made,

a wise decision would be to go along with it. It saves both, time and money. [19, 17-16.]

There are lots of open source projects available in the Internet. Nevertheless, most of

the open source projects tend to give a solution to generic problems. It is very likely

that the problem is very peculiar, if the development has to be done for a company. [19,

9-10] A company would not invest in a solution that can be found freely. Hence, a

group of competitive personnel is required to find a solution to all the difficult problems

that the contracting firm has.

Moreover, a team is required to implement the customized top-notch software that can

fight and survive today’s competitive market. Now a day, companies are not just look-

ing for a mere application. They demand agility and flexibility and expect it to cope with

the ever-changing business needs. As an example, CMSs like WordPress and Drupal

can get the site running in less than 10 minutes but that is not going to be anywhere

near the expectations of the client. In order to satisfy the client, an application needs to

be customized and it should address the needs of client’s business. A project like that

surely requires more than one person. A software development team usually consists

of product owner, designers and developers. The size of the team varies according to

the size of the company and the project. In small firms, teams normally have 2 to 5

members. [19, 9-10] On the contrary, a team might have hundreds of members if the

project is complex. For example, there are hundreds of people working for a betterment

of facebook. Basically, we can consider each and every member a part of single team.

However, it is a general practice that a large team is divided into small teams.

29

Personally, I have not seen any developer who has not worked in a team. I myself have

always worked in team whenever I have participated in an application development

projects. It would be unwise not to take a team approach while building an IT (Infor-

mation Technology) solution.

3.5 Why methodologies at all

A software engineering principle is a standard process that software engineers follow

during the development of an application. Some of the examples of such principles

would be Scrum, Waterfall model, Code and fix, Code reuse and Refactoring. Software

engineering methods set the clear track for entire development process. In other

words, software engineering principles tell developers “how work is done”. Following a

process has some major benefits, which are explained below.

Introducing new member to a team

It is very common to bring a new member to a team while developing applications. The

need of a new member may arise due to change in requirements. Sometimes, it is

planned beforehand to introduce a fresh member with particular skills set in specific

time. The specific time refers to a point when some tasks are completed or some re-

sources are available for disposal. As an example, companies may decide to bring in

coders when designers complete the wireframes and all the software specifications are

written. Moreover, it is very common to hire people for certain duration of time in soft-

ware development business. A designer is a very good example. Once the designer

accomplishes all the graphical work, he rarely follows the development process.

Companies tend to employee people for the shortest time possible because they want

to save costs. For small companies, this is crucial because they posses limited fund.

On the other hand, big companies hire all sorts of people on permanent contract be-

cause they have many projects going on.

A newcomer can grasp the idea very easily, if there is a systematic method involved. It

would be a disaster, if he has to go through all the random works done by other team-

mates. [20, 204.] Therefore, it is absolutely essential to use software development prin-

ciples to help newcomer to get hold of the project.

30

Substitution of people

In companies, there should always be room for the unthinkable. A team is formed with

a solid goal and specific task is given to each and every member. Companies do not

want to replace someone if that might jeopardize or delay the project. An employee is

an asset that the company has invested in. Firms often asks question like, “How long

do you plan on working here?” before hiring someone because they want to be abso-

lutely sure that the new employee will work for a reasonable amount of time. In many

competitive jobs, a minimum commitment of 5 years is required.

Things always do not work as planned. There is always something missing or not work-

ing properly. Likewise, the unimaginable can happen in a company. [20, 204.] Thus,

company needs to stay prepared. The methods used in company can make a big dif-

ference when problems arise. The newcomer can be useful in very short duration of

time if the proper methodology has been used. An application developed in distributed

environment benefits the most from this aspect of methodologies. [20, 204.]

Specifies responsibilities

In a company, there is a hierarchy and people with different skills. One of the key ad-

vantages of using methodologies is that it delineates responsibilities. An employee

knows what he/she need to deliver. [20, 204.]

In today’s world, it is very usual to find people with multiple talents. Talent is definitely a

good thing but it might cause friction when work needs to be done in a group. As an

example, a programmer can be a good designer or he/she might have a good sense of

colors. However, most of the software companies appoint designers separately. If tasks

have not been divided properly, problems will arise. If the coder is also a proficient de-

signer, he/she would most likely intervene if the design did not meet his expectations.

Web developers are a good example of such combination of skills.

Proper implementation of methodologies can address such problems. A methodology

not only tells what one should do but also clearly states what a person should not worry

about. Hence, a software development principle specifies that a designer is the one

who makes decisions about design of an application, not the coder; programmers im-

plement the design via code; not the designer. [20, 204.]

31

Influencing the customers

It is very important that a customer gets a good impression of a company. A loyal cus-

tomer is the biggest asset of any business. Let’s assume there are two companies that

are bidding to work with me. The first one keeps track of time and all the work that has

been done and has to be done. Moreover, it documents everything very clearly follow-

ing a precise method. On the other hand, the second bidder does not follow any pro-

cess; rather all the team members sit together and work independently. They share

notes to share ideas and status of project. They tackle the problem when they face it.

The key element in succession of the project would be the commitment of a team.

In a situation like this, I would definitely choose the first bidder because well document-

ed and planned working process will make me feel safer. I would not trust a group of

personnel who tries to convince me by saying, “We are all responsible individuals and

we will deliver what we commit”. It is just not good enough. Hence, use of methodology

can give an edge in getting a work contract. [20, 205.]

Monitoring progress

One of the key features of most development procedures is that they provide a possi-

bility to track the progress. Tracking progress during application development is very

important because it helps to stay in schedule. Furthermore, it motivates the develop-

ers. Visible progress really adds up an extra energy to the whole team. In the same

way, it can be a source of frustration. In the development phase, there are times when

members spend considerable amount of time working but there are no results. This

often happens when a team has to do a lot of background studies. [20, 205.]

In software industry, it is very common that a customer is involved in development pro-

cess. In fact, it is highly recommended by the contracting software company. Once the

building process has begun, clients demand visible progress. They do not understand

any technical excuses. Thus, something needs to be produced in daily basis; this is

one of the key elements that I have learned in my career. An agile development meth-

od such as scrum really pushes developers to produce something everyday. In scrum,

a member of the team needs to explain the status of his work in scrum meetings, which

are held everyday. [20, 205.]

32

Many companies make use of burn down charts to monitor their advance. A burn down

chart is a graphical representation of remaining work against time. In simple words, a

burn down chart is a run chart of work left. The name ‘burn down’ implies that the

amount of work is decreased as the time increases. It gives a clear picture of project

status at one glance. In many instances, remaining tasks represent the vertical axis

and time is along the horizontal axis. A burn down chart is a very flexible graph be-

cause it does not require any specific units. A graph producer can make use of any

convenient measurement unit for both time and work. It is also acceptable to use a unit

of one’s own if that makes sense. Scrum makes an extensive use of burn down charts.

Nevertheless, it can be implemented in all kind of projects, which have measurable

work and time. It is good to set the date of product launch because it makes the em-

ployee to work hard if something has not been done. The figure below is the very good

example of a burn down chart.

Figure 4. A typical example of a burndown chart. [21]

Figure 4 demonstrates that ninety tasks have been completed in duration of about

eleven days. It also shows that more than fifty percent of total tasks have been accom-

plished in last four days, which is a usual case in software development. Most of the

work in application development is done in later hours of the project which raises the

stress level substantially.

33

Educating employees

Once the company chooses a standard methodology, courses can be designed to edu-

cate employees about techniques and skills that work best with that particular method.

It makes the work much more efficient. As an example, a company can train an em-

ployee to be expert in UML (Unified Modeling Language) drawing or in using any par-

ticular tools. Based on their responsibilities, workers can be sent to training. [20, 205.]

By doing so companies will turn their employees into experts, which will definitely yield

more profit. Moreover, companies win loyalty from workers because they are given

extra training for free.

34

4 Scrum

Scrum is an iterative and incremental framework that facilitates a development of soft-

ware product. Actually, scrum can be used to manage any kind of work not just soft-

ware development. [22, 3.] The term “scrum” has been derived from the sport of rugby

where it is the means of resuming game when minor foul occurs [23, 132]. In rugby,

Scrum is an important event to employ strategy and teamwork. Ken Schwaber and Jeff

Sutherland developed scrum in 1990s. They define it as a framework rather than a

method within which techniques and processes can be employed. [22, 3.] In this paper,

scrum has been explained extensively because it is the method that was employed

during the practical phase of this thesis.

Like any other agile method, scrum provides great deal of flexibility towards changing

needs of an application. The figure below gives the glimpse of working process in

scrum.

Figure 5. Scrum Framework. [18, 26]

Figure 5 shows the events and process involved in scrum. At first, product backlog is

created. Then, sprint backlog items are selected from the product backlog items. Such

35

items are fine-grained and implemented in a sprint. There are daily scrum meetings

during 30 days of sprint. Finally, usable or even releasable increment is delivered at the

end of sprint.

Those who have practiced scrum consider it very easy to understand but extremely

difficult to master. Similar to extreme programming, people need to obey certain rules

to consider themselves a scrum follower. Special scrum rules, events and artifacts are

described below.

4.1 The Team

To practice scrum, there needs to be a team. Such team is called as ‘Scrum Team’.

The scrum team comprises of scrum master, product owner and the development

team. [22, 5.] Each and every member of a team has a special role. Usually, scrum

team is cross-functional in nature. Moreover, it is optimized to increase productivity and

creativity.

In addition, scrum teams are self-organizing in nature. Self-organization is the team

practice, in which there is no command and control. Furthermore, the team manages

themselves. Self-organizing team has the power to make decisions. Moreover, they

pick their own task against the conventional approach where leaders used to do it for

their employee. Likewise, these teams communicate heavily among themselves and

they are continuously improving their skills. A member of self-organizing team under-

stands the project requirements and is committed to the team instead of a boss. [24.]

Self-organizing teams still require mentoring and they are not entirely free from the

grasp of management. Leaders create the product backlog and they recruit team

members. In addition, management takes actions if self-organizing team starts to go

against its very principles. The only thing self-organizing theory denies is the absolute

‘command and control’ over team. As an example, Pekka is a senior developer who is

dominating and making all the decisions of self-organizing team and nobody stands up

to him because he is more experienced. [25] In this case, team members cannot ques-

tion freely, which deters the ability of improvement. Additionally, they cannot put their

ideas forward, which is the key reason why self-organizing teams came into existence.

In a situation like this, management has to intervene. However, intervention might

36

come in an indirect form. For instance, management can bring in someone who can

question Pekka’s decisions. Direct interference in a case like this does not yield benefi-

cial results because team starts to fear and wait for leader’s decisions after such inci-

dents.[25.] Hence, management has to play a role of strategist while managing self-

organizing teams.

Self-organization is the key element in agile software development. The agile manifesto

encourages self-organizing team. [25.] However, team members must have some qual-

ities to be a self-organizing team player. They need to be competent and highly skilled.

Furthermore, they are required to be good team players. Likewise, they should have an

ability to trust and respect others. [24.]

Since scrum teams are self-organizing, they usually make decisions and manage their

work. Members of a scrum team are described below.

Product Owner

A product owner is accountable for the performance of the team. He or she is the one

who provides all the requirements of a system. In real life, product owner is the stake-

holder. Nonetheless, according to scrum principle, this is not obligatory. Therefore, the

project owner can be any person with good management skills. Product owner sets

deadline and pushes development team to complete their task within given time. Set-

ting priority of backlog is also part of product owner’s responsibility. Moreover, it is

his/her job to make the development team understand the product backlog properly.

[22, 5.]

Development Team

Development team is a group of professional software developers. They take care of

technical development. They create and implement a test design. Finally, they test

such developed product. It is their responsibility to deliver well-tested product at the

end of every sprint. However, the product does not need to be the final version unless it

is a final sprint. The size of the development team varies according to the project’s de-

mand. Nonetheless, a team should consist at least of three members; otherwise

productivity of a team might be compromised because of the skill constraints. On the

37

other hand, it should not exceed nine members because coordination might be difficult.

[22, 6.]

Scrum Master

Finally, there is scrum master who is the de facto leader of scrum team. It is his/her

responsibility to make sure all the scrum principles are being followed. In addition,

he/she organizes daily scrum meetings and receives status report from each develop-

er. Scrum master also divides work to developers. It is a very common practice to as-

sign the most experienced member of the development team to a role of scrum master.

[22, 6-7.]

4.2 Events to take place

Scrum framework strictly defines several events that need to occur in a development

process. These events have been designed to increase productivity and adaptability.

Furthermore, it decreases communication gap, which is the biggest challenge of team

development. [22, 7.]

Sprint

Sprint is a soul of scrum. Schwaber and Sutherland define it as a time-box within which

a decent amount of product increment is produced. The duration of sprints may vary

from project to project, however, it is uniform throughout the same project. The time

duration of sprints is usually less than a month but more than a week. Next sprint starts

immediately after the retrospective session of the previous one. A sprint can be con-

cluded if all the goals are achieved before the sprint deadline. Only the project owner

has the power to terminate sprints before the end of sprint time-box. However, it should

be kept in mind that scrum master and development team have great influence over

him/her to make this decision. [22, 8.]

Sprint Planning

Before the commencement of each sprint, there is a planning session. Sprint is

planned by the collaborative effort of each member. Sprint planning meeting is also

38

time-boxed. For a sprint of one month, the developers of scrum framework have sug-

gested the duration of eight hours meeting. Nevertheless, time-box may vary depend-

ing on the length of sprint. In sprint planning, tasks are divided and sprint backlogs are

picked from the product backlog. [22, 9.]

Daily Scrum

Another important event in scrum is the daily scrum meetings. It is also a time-boxed

event. Schwaber and Sutherland have advised duration of 15 minutes. The main pur-

pose of scrum meeting is to revise the work that had been done in last 24 hours and to

predict the work that can be accomplished in next 24 hours. [22, 10-11.]

Sprint Review

At the end of sprint, there is a sprint review session. In this session, overall increment

is inspected and adaptation is made if required. Scrum team and stakeholders take

part in sprint review session. [22, 11.]

Sprint Retrospective

Finally, there is a sprint retrospective session, which occurs before the beginning of a

new sprint. Its main purpose is to enable team members to talk about the wrong doings

of previous sprint and lay a plan to avoid them in next sprint. It is also a time-boxed

event. For a sprint of one month, duration of three hours is allocated. The time duration

is decreased proportionally if sprint time is shorter. [22, 11-12.]

4.3 Artifacts of Scrum

Scrum artifacts mean the work that is carried out to facilitate transparency in develop-

ment work. Moreover, they were designed to optimize adaptation and inspection. [22,

12.] Scrum artifacts have been described below.

39

Product Backlog

Product backlog is a list of features that are going to be needed in a system. It is an

ordered list, which acts as a single source for changes in an application. The responsi-

bility of producing product backlog lies with the product owner. It is his or her job to

prioritize and make it available to development team. [22, 12.]

Product backlog is a dynamic artifact. It is never complete and it is continuously evolv-

ing. At the early stage of development, it only consists of very first requirements that

were understood. The product backlog exists as long as the corresponding product is

in existence. [22, 12.]

Features listed in the product backlog have attributes, namely description, order and

estimate. Backlog items are ordered on the basis of risk, necessity, priority and value.

As a consequence, there are low-ordered and top-ordered backlog items. Top-ordered

items have detailed description and are precise estimates. On the contrary, low-

ordered backlog items are poorly described and estimated. Backlog items that are to

be implemented in next sprint are fine-grained before the beginning of that sprint. [22,

13.]

The development team selects backlog items so that they can be accomplished in

deadline. It is development team’s job to decide all these estimates. [22, 13.]

Monitoring Project Progress

Monitoring progress is a very important scrum artifact. In scrum, remaining work at any

point of time can be calculated. Product owner is always tracking the total remaining

work. Such information is made transparent and all stakeholders know about it. To

monitor progress, projective practices like burndown and burnup are used. [22, 13-14.]

Sprint Backlog

Sprint backlog is a list of items that are chosen to be crucial, they form product backlog

items which should be implemented in a sprint. The development team is responsible

for selecting sprint backlog items. It is a definition of work that is going to be added in a

sprint. Sprint backlog is also modified as sprint progresses. Only the development team

40

has a right to perform such modification. As items in sprint backlogs are added, deleted

and completed, development team updates the remaining amount of work. Sprint back-

log provides a clear picture of work that is going to be completed in a sprint. [22, 14.]

Inspecting Sprint Progress

Sprint progress can be summed at any given point of time. As sprint backlog solely

belongs to development team, it is their responsibility to track sprint progress. Tracking

of remaining work is performed at daily scrum meetings. [22, 14.]

Increment

Increment is the total amount of work that has been completed in a sprint and all the

sprints that occurred previously. It is a sum of all the accomplished backlog items.

However, increment must be usable and well tested. It is obligatory that increment

meets the definition of “Done”. [22, 14.]

Definition of “Done”

Definition of “Done” is a scrum term, which is used to mark a backlog item as complet-

ed. It is very important that all the team members understand the meaning of “Done”.

Definition of “Done” varies from project to project. There are no specific guidelines for

defining “Done”; scrum team defines it according to the needs of the project. [22, 15.]

41

5 Distributed approach to software development

The way that software engineers develop an application has shifted drastically in the

last two decades. Technological progress has made the impossible possible. Rapid

growth of Internet has carved a path to the dispersed software development of today.

The idea of geographically separated development came into existence when physicist

and researcher Jack Nilles first used the term ‘telecommuting’ and ‘telework’ in 1973

for a work environment that does not require any commutability from employees. The

teleworker works at home or at some remote place to complete whatever job he is re-

sponsible for. Jack Nilles is also known as “Father of telecommuting and telework”.

Companies did not have enough technological capabilities to use that idea then. How-

ever, explosive growth of global market and availability of economically cheap work-

force on the other parts of the world has caused a rapid development of tools and

technologies that made the scattered developments possible. Today, thousands of

individual work with other individuals in various part of the world to build software but

face-to-face meeting between them may never occur. [26, 1-2.]

5.1 What is Distributed Software Development

The software development process that involves at least one geographically scattered

member is known as distributed software development. In this approach, all the team

members are not collocated in the same place. Therefore, a team member is not able

to have in-person communication with all the members of a group. However, part of a

42

team can be together and face-to-face meeting among them is possible. Moreover,

there can be separate teams in different geographical locations with a specific task

but contributing to an outcome of the same project. The figure below illustrates the

concept of dispersed software development. [27,122]

Figure 6. Illustration of distributed software development. [27, 93]

Figure 6 provides an overview of scattered software development. It is important to

notice that individuals are not just distributed geographically but functionally also. De-

velopers are in Asia and North America. However, testing of an application is being

carried out in Europe and North America only. Moreover, there are not any managers

and clients in Asia.

It is a well-known fact that without technological achievements scattered development

is just a myth. Beside technological progress, there are other scenarios that pushed

companies to put trust and fortune into overseas workstations. Companies face prob-

lems like deficiency of skilled manpower and resources. Moreover, production cost of

software in western countries is way higher than in Asian or South American countries.

These are the major reasons why distributed approach is going viral. Software houses

are desperate to bring out new applications into the market but it is absolutely essential

for them to deal with these problems first. Hence, huge firms started to shift their de-

velopment approach from local to global environment. The main purpose of dispersed

development is to reduce the production cost and get access to skilled resources.

43

5.2 Challenges in Distributed approach

In distributed development, developers work in a unique environment. They need to

cope with a difference in culture, time zone and site of work. These circumstances cre-

ate unexpected problems. Usually, issues in dispersed environment are of different

nature such as cultural and social. Obviously, these issues affect the development pro-

cess and the quality of the software. Some of the most crucial ones are discussed in

this section.

Communication

Since, team members are not collocated in same place, communication among devel-

opers is the major challenge in distributed development. For development of good

software, engineers need to spend considerable amount of time in giving, taking and

understanding information among members. Communication pattern directly affects the

quality of software. Hence, standard protocol for communication is advised in distribut-

ed development. A communication without rule can result into late responses and mis-

understandings. To deal with this issue, a software development method must be

backed up with proper communication tool. A good communication tool provides user-

friendly interface and smooth connection. Many scholars recommend this approach to

eliminate communication gap without affecting the outcome of the project. [28, 29.]

Likewise, difference in time zone can create problem to set up a time for meetings.

Both parties should discuss and agree on a same time before commencing a project.

Common mistake in agreeing time is not to mention a time zone but only a time. As an

example, if two developers working in Finland and Switzerland separately agree on

time 9 o’clock in the morning, they must specify if it is a Finnish or Swiss local time.

Prior agreement can easily sort out this issue. [28, 31]

Similarly, cultural difference is another important aspect in communication among team

members. Different culture means different meaning of gestures and terminologies.

Such difference can cause serious mistakes in translation and understanding of infor-

mation. Hence, standard guidelines must be used to process translations. [28, 30-31.]

44

Additionally, software projects can have sensitive information, which are absolutely

forbidden for public or rivals. Thus, security of communications must be considered.

Proper training and guidance must be provided if it is felt as required.

Team Spirit

Dispersed team lack team spirit in many occasions. It is because of the isolation from

rest of the team members. One of the characters of human being is an ability to con-

nect with people. They create bonds by talking and sharing thoughts. Hence, level of

team spirit is really high in collocated teams. On the other hand, distributed teams do

not have the luxury of making jokes with their teammates, which critically damage spirit

of the team. Lack of team spirit may result into lack of trust among members. Further-

more, team spirit is really important because it directly affects the productivity of a

member. Low productivity means ill outcome of the project. To cope with this problem,

managers can set up an annual in-person meetings or recreational tour to some place.

These kinds of activities not just provide chance for bonding but also bust the level of

trust among each other. [29, 7.]

Status Awareness

To make good software, developers must know the situation of the project at all time.

Feelings of indifference and limited socialization in dispersed development can easily

create confusion among developers. Moreover, changing requirements and priorities

cause distributed teams to lose the track of work. They often do not know about the

working progress of another developer. As a result, right information cannot be found in

time. Hence, some sort of visualization tool is necessary to track the progress of work.

Many experts suggest a tool with notification system. [29, 6.]

Merging of Source Code

Once the code is written, it needs to be merged with the codes written by other devel-

opers. Complexity of collaboration and sharing of code increases, as the developers do

not work in same place. Hence, source code control becomes critical. Most of the com-

panies have version control system that takes care of this issue. However, version con-

trol system must have some features to be applicable for distributed teams. It needs to

45

work in a cloud with Internet access. Moreover, data needs to be secured while it is

transit or in remote server. [29, 6.]

Knowledge Sharing

Once an application is complete, team member must save their knowledge of project

for maintenance or further development in the future. The term knowledge refers to

experiences and methods applied by the developer. It can be really helpful if new de-

veloper starts to work in a middle of the project. Accumulation of knowledge can save

great deal of time and money. In addition, it prevents redoing of work. Experts advise to

use web-based repository for getting rid of this issue. Projects can be learned very

quickly with the help of such knowledge center. [29, 6.]

Risk Management

Due to addition of new risk factors such as lack of coordination, collaboration, commu-

nication and sharing, risk management is very important in distributed development.

Bugs are very likely to occur because of the added constraints. Hence, risk manage-

ment activities must be increased to minimize software defects. Managers can specify

responsibilities and guidelines to control teams. Such controlled actions help in early

detection of problem. Moreover, some experts suggested an idea of using web-based

forms and templates for prevention of synchronous activities. [29, 8.]

5.3 Scrum in Distributed Development

It is a long-standing tenet that distributed development compromise the quality of soft-

ware. However, more than 50% of the total software projects worldwide are distributed

in some way. Researchers had been trying to adapt agile methods to increase produc-

tivity and efficiency of these projects. They have succeeded in large extent. Today,

most of the distributed projects use agile methods without harming the quality of soft-

ware.

Before applying agility in distributed environment, it is very essential to get oneself ac-

quainted with agile practices in collocated context. There are not many differences in

the process itself. However, scattered environment posses some peculiarities. Thus,

46

standard method needs to be modified to address those unique characters. In reality, it

is just a process of removing or replacing the unrequired aspects of standard software

development method without tweaking any core principles.

In this dissertation, integration of scrum into the distributed environment is discussed

because scrum was applied as a development method during the practical phase of

this paper. To scattered teams, scrum can be applied in several different ways. Jeff

Sutherland and Guido Schoonheim proposed three different ways of applying scrum to

distributed teams.

Isolated Scrums

In isolated scrums, there are independent scrum teams in each and every location. The

work done by one team is independent of another one. There is no need of collabora-

tion whatsoever. Since teams are totally separated from each other, scrum can be im-

plemented as it was prescribed originally. [30, 12.]

Isolated model is best suited for the cross-functional scrum teams. As an example, if

the project has development, test and architecture team at China, Finland and United

States, isolated scrum would be the best choice because each team has all the exper-

tise it requires and development can progress well, even without the collaboration. On

the other hand, success breed by communication has no comparison. [30, 12.] There-

fore, a team must come up with a way to compensate that missing part.

Distributed Scrum of Scrums

Similar to isolated scrum model, distributed scrum of scrums model have cross-

functional scrum team at different geographical location. However, unlike isolated

model, these teams are not independent. In scrum of scrums, scattered teams collabo-

rate with each other. In other words, they act as a big scrum team, which gave the

name ‘scrum of scrums’ to this model. Coordination in geographically distributed team

is a challenging task. Therefore, a representative is appointed to each team. [30, 12-

13.]

47

Totally Integrated Scrums

Totally integrated scrum is the third model that is use to manage distributed scrum

teams. In totally integrated model, all the scrum team members are scattered in differ-

ent locations. It might be that all the testers are in one place and developers are in an-

other place. It might even be possible that each member are in different location and

work remotely. However, all of these scrum teams are working towards the common

goal. Furthermore, they are required to present an integration-tested single system at

the closing of each sprint. International Business Machines (IBM) is the well-known

user of totally integrated scrum. [30, 13-14.]

48

6 Dooxe Oy

Dooxe Oy is a service-based company that was commenced by several energetic en-

trepreneurs, Teemu Piirainen being the founding managing director. It is a very small

company with a workforce of six people. Among six, Teemu is the only full-time worker.

He handles all the management and administration of both the firm and online services

that the company operates. In addition, Teemu was the project manager and product

owner of this project. Jan Diener-Rodriguez is the only software developer in the Dooxe

team, rest of the team members are mainly marketing and media relation specialists.

[31.]

Despite of being a small firm, Dooxe uses state of the art principles for development

and enhancement of its service. The lead developer Jan lives in Switzerland and is

responsible for technical management. He is also in charge of maintenance and timely

integration of applications. He, along with his friend developed the whole Dooxe

framework.

On the other hand, Hung Ho Ngoc and I were temporary coders hired by Dooxe to de-

velop some components of the software. Our roles can be classified as junior develop-

ers in this project. We did not have to go to dooxe office unless there was a meeting.

We were to work and deliver code from our homes. Since member of Dooxe team con-

tributes from different places, it practices distributed approach for both management

and technical development.

Dooxe uses PHP as a major programming language. Additionally, JavaScript has been

used extensively in client side. The service utilizes MYSQL for data storage. Moreover,

zend framework has been applied as a foundation for the entire service.

6.1 The Application

Dooxe oy operates two online services namely ‘dooxe’ and ‘korjausurakka’. Customers

can post any kind of job in dooxe whereas korjausurakka is strictly developed for a job

relating to construction. Basically, both of these services are reverse auction platform

[31]. The idea of developing a reverse auction service gave a birth to dooxe. Later,

49

need of separate service for construction work was felt because numbers of such jobs

were overwhelming. Thus, korjausurakka came into existence.

It is very time consuming process to find a right contractor to do any kind of job. In ad-

dition, it is very annoying because price, quality and suitable time needs to be consid-

ered simultaneously. As a solution to this problem, dooxe and korjausurakka brings

service seeker and provider together. Service seekers simply post a job in the service

and contractors try to outbid each other by offering their best offer. Finally, customers

choose the service provider of their preference. [31.]

6.2 Background on the practical work

Both ‘dooxe’ and ‘korjausurakka’ were in production when practical work for this paper

begun. Thus, reader should be clear that this paper is based on studies that has been

done while developing additional features to the already existing fully functional ser-

vice. I did not create the whole service but parts of it. As mentioned earlier, lead devel-

oper of the project along with his friend built the service from scratch using zend

framework.

Dooxe and korjausurakka have many things in common. They have same backend and

share many codes in front end as well. Their color schemes are different but structure

of the view is somewhat alike. We can consider korjausurakka as the optimized clone

of dooxe. At first, the plan was to develop extra features to korjausurakka and later

enhance those developments to dooxe. Korjausurakka was chosen as a priority be-

cause enhancements were being carried out for about a year and it was more im-

portant from the business perspective. On the other hand, improvements of dooxe

were halted from long time. At that time, everybody assumed that enhancement of

dooxe would not be difficult because korjausurakka and dooxe have lot in common.

Thus, dooxe was planned to be integrated in later part of the project.

As planned, development team started developing additional features to korjausurakka.

Later, when all the works were complete, integration of dooxe was commenced. Never-

theless, it was a nightmare. We allocated very little time for integration and our as-

sumption was totally wrong. Although dooxe shared files and codes with korjausurakka,

complexity of the service demanded lot more time than we expected. Therefore, en-

50

hancements of dooxe were left for senior developer. Hence, this thesis is solely based

on the work delivered to korjausurakka.

51

6.3 Tools and technologies used

Tools and technologies that were used during practical phase of this paper will be dis-

cussed in this section. Nevertheless, irrelevant tools to this study such as text and pho-

to editors have been ruled out.

As referenced previously, Dooxe oy is a small firm but it uses all modern approaches

towards software development. It has applied framework as a foundation to korjau-

surakka, which is a newest way of developing web applications or any other kind of

software. In addition, bug-tracking system is in place and used very effectively. Fur-

thermore, availability of version control system provides sense of relief to coders be-

cause things can be rolled-back easily if something goes wrong. Details of tools and

technologies applied during practical phase of this paper are described below.

Zend Framework

In software engineering, framework is a collection of libraries that provides reusable

codes to developers. Frameworks provide basic structure of the application. Later, a

developer can modify that basic structure to a software or service that best suites him.

Moreover, developers can customize standard frameworks by adding their own librar-

ies. The idea behind frameworks is that a developer does not have to build software

from scratch. Reusable libraries are the greatest power of frameworks. In addition,

frameworks provide amazing methods. It would take quite a while for developers to

build such functions. Furthermore, frameworks provide libraries for securing applica-

tions, which are very convincing.

Likewise, frameworks help in keeping the project well structured. It prevents project

from being disorganized because most of the frameworks follow software architecture

pattern called Model-view-controller (MVC). Massive use of frameworks gave birth to

model-view-controller. Model-view-controller is a booming concept in today’s software

industry. Model-vie-controller pattern contains three basic blocks: model, view and con-

troller. These blocks are sort of groups that keep similar kind of codes. It is the main

reason why projects are clean and well structured when frameworks are used. In MVC

approach, model refers to a logic and state of the application, controller is a communi-

cation channel between view and model and view is a visual representation of a state

of model. The Model-view-controller pattern recommends thick model but thin control-

52

ler and view. Most codes are placed in model so that they can be reused in future and

controller or view does not need to take any unnecessary burden. The theory behind

Model-view controller pattern has been exhibited in the figure below.

Figure 7. MVC pattern. [32]

As depicted in the figure 7 above, the controller receives instruction or input from the

view, which is caused by user action. Then, controller sends those instructions to mod-

el for processing. During this process, controller calls method and object from model.

After that, model processes that user action and updates its state. Change of state is

notified to the controller. Then, controller updates view with the new state of model.

Updating new state of model means feeding changed object and value to view. Thus,

view is changed and user gets the result for his action. One of the important aspects of

model-view-controller is that it prevents redundancy of code. As an example, if

username needs to be displayed in four different pages, traditional web-development

approach would require same code to be written in four different places. In MVC pat-

tern, we can write one function to fetch the username from database and store that

function in our model. Later, controller can call that function from model whenever it is

required. It is a same concept as in object-oriented programming but MVC focuses on

keeping model, view and controller separately. In web-development, logic classes and

53

databases are referred as models. Views are the visual representation of the service,

thus HTML files are mentioned as views. Lastly, Controllers are the classes that inter-

act between model and view.

On the other hand, applications created by using frameworks are bulky. Frameworks

contain all kinds of libraries and methods. It is impossible for one application to use all

of those incredible features. Thus, hundreds of lines of codes remain unused. They just

stay in the service for no reason. Unused codes cause application to perform slowly.

Removing those codes would be very difficult because frameworks are also complex

software. One minor mistake can cause total failure of the application. However, devel-

opers turn a blind eye on this issue because performance power of computer is grow-

ing very cheap and frameworks give lot more than it takes.

There are many frameworks available for different purposes. Among them, zend

framework is a PHP based web-development framework, which is the most popular

framework for developing modern PHP applications. Furthermore, it is an open source

project; hence, developers with proper skill can view and edit the source code if neces-

sary. Zend framework applies the concept of object-oriented programming in every

library. Thus, methods are highly reusable and can be overridden easily if necessary.

Zend framework 2 is the latest version available at the moment. Zend framework 2

evolved from zend framework 1, which was very popular amongst PHP developers.

The total numbers of download for zend framework 1 was over 15 million. [33.]

Git

Version Control System (VCS) is a tool that manages and keeps track of different ver-

sions of application or content of a file. Basically, it marks the changes in software.

Such changes are saved along with timestamp and username of a changer. Further-

more, VCS saves the entire project in a remote server. Version control systems are

also referred as source code manager or revision control system. However, authors

and users of each system may argue the difference between three, each system was

designed and developed to solve the same problem. Thus, all of them perform same

tasks: manage storehouse of contents in chronological order, grant access to older

versions whenever requested and keep log of all the changes. In this paper, the term

version control system is used to mention any kind of source code manager.

54

The need of version control system is realized when computer programs started to be-

come complex. At the early stage of software development, computer programs were

very simple. They were written to perform a specific task. Hence, number of files and

people involved in developing process were very small. Such projects did not need any

version control software because every modification can be tracked very easily be-

cause entire system was very small. On the contrary, software is very complex in pre-

sent context. Software today performs multiple tasks simultaneously. One individual

cannot create such applications. There might be tens and hundreds of people working

in a same project. Since all of them are working in a same project, it is very obvious

that they alter content of files in regular basis. It would be a complete chaos if all of

those modifications were left unmarked because one developer would not know who,

when and where did another developer altered the contents. As a solution to this prob-

lem, software engineers developed version control systems.

The working mechanism of revision control system is very simple. The VCS software

creates two separate repositories. One of the repositories is a local repository that is

located in coder’s local machine. Only respective coder has access and authority over

that repository. Local repository is created when coder installs version control system in

his private computer. Hence, it can also be called as private repository. Other reposito-

ry is a remote storehouse that can be accessed by all developers involved in a project.

Remote repository is created in service providers online platform at the beginning of a

55

project when coding is yet to start. Developers can login to online platform and look

for the address of a repository. The mechanism of version control system has been

illustrated in picture below.

Figure 8. Overview of version control system. [34]

As exhibited above, developers have local and remote repository. Once coding starts,

developers write codes in their personal computer and commit those codes to local

repository. After that, they upload the local repository to a remote version control server

as shown in the picture. Other developers can easily see and access those work either

by simply logging into the remote server or by running a command in a command

prompt.

Source code manager of today are very smart. They can save changes with different

colors, which make them easily visible. Moreover, it saves different state of a file;

hence it is very easy to switch back to the older version if something bad happens. For

instance, 5 coders committed their codes to the remote version control server at some

point of time. Nobody noticed any problem with committed codes. After some days,

program started to show strange behaviors but nobody knows what is happening. In

such case, it is much easier for developers to rollback to previous version and to find a

problem in committed codes rather than trying to figure out a bug in entire software.

Thus, source code manager tools can be of great help in finding and fixing bugs.

56

In addition to that, remote saving feature of version control system is astonishing.

Computers and hard drives are mere machines; they can give up at any time. Unex-

pected crash of system causes loss of development work if they are not backed up

properly. Such crash can jeopardize the entire project. Moreover, it can result into loss

of job or money, which could be devastating personally also. VCS provides assuring

solution to that problem by saving files in a remote location.

Another aspect of version control system is that it is absolutely unavoidable in scat-

tered development. Fellow developer can point out the files and lines if developing en-

vironment is not distributed. Since, coders cannot have face-to-face meeting in dis-

persed environment, it is very difficult to ask questions about code. In such case,

source code manager is the only option to follow other’s work. Additionally, revision

control system compiles the work of each and every developer, which would have been

a terrible thing to do if there was no version control tool.

During practical phase of this paper, git was chosen for controlling versions of korjau-

surakka. Git is a free and open source version control system. It is designed for every

kind of projects, hence can handle versions of small to large software efficiently. It is

comparatively very easy to use and performance is very fast and convenient. Git works

in the same way as any other version control system: saving and merging of codes.

However, it possess additional features like multiple workflows and cheap local branch-

ing, hence surpasses other VCS like Subversion, Perforce and ClearCase. [35.] To be

able to use git, one should install it in his local machine first. Basic pulling and pushing

of code in git via command prompt has been demonstrated in the figures below.

Figure 9. Stashing of changes in buffer.

Firstly, as exhibited in figure above, git stash command is used to store new local

version of an application in buffer.

57

In second phase, git pull command downloads the latest version of software from

the remote server as exemplified in figure 10.

Figure 10. Pulling latest release from remote location.

In figure above, git pull fetches the latest version of an application from remote

server. After pulling most recent version, developer needs to merge the local recent

version with recently pulled version as illustrated in figure 11.

Figure 11. Merging remote and local versions.

Figure 11 illustrates the merging of local and most recent version of software. For

merging stashed changes, git stash pop command is used. Then, merged version

58

needs to be committed to local repository by using git commit command. Git

commit takes an obligatory parameter -m, which refers to a commit message.

Commit message is essential for committing a code to repository. Commit to local re-

pository has been visualized below.

Figure 12. Overview of committing process.

In figure 6, git commit command committed a code to local repository with commit

message “Hello”. Finally, such committed code needs to be uploaded to remote server,

so that other coders can access the changes. For that purpose, git push command

is used.

Figure 13. Demonstration of git push command.

In figure 13, git push command has been used to upload the local commit to remote

repository. Hence, an application is backed-up in remote location and fellow developers

can view and access it from any part of the world.

59

As discussed earlier, version control system saves project in such a way that changes

are easily visible. VCS make use of different colors for that purpose. Git uses no differ-

ent method than the color technique to make commits easily noticeable. The figure

below depicts how git stores the changes in remote server.

Figure 14. Remote git repository.

In the figure above, texts that were added and removed from the project are in green

and red color respectively. Furthermore, name of the committer and time of the commit

are easily seen on the top.

Trac

A computer application is never complete or perfect. There is always something that

can be added or made better. Computer software always demands change or optimiza-

tion. Need of change may occur due to addition of new user group or expiration of

technology that is being used. Change in computer software means addition of new

functionality, replacement or fixing or enhancement of older functionality and deduction

of existing feature. Reduction of existing feature may take place due to various reasons

60

such as unpopularity, to reduce operation costs or inappropriate content to users. In

theory, modification in software is carried out to provide a better service. However, this

is always not true and is kind of a gamble. Facebook introduced new timeline but many

people totally hated it at first. Nonetheless, people liked the new photo gallery of Face-

book. Facebook insisted on keeping timeline, thus it still exists and people are kind of

got used to it. They do not make any complaints anymore. Presumed optimization of

software can bring negative impact also, hence it needs to be carried out with great

caution. Improper handling can delay or degrade the quality of software. In worst case,

it may destroy the project completely. Thus, a tool is required for management and

maintenances of change. Such tools or software is known as issue tracking system. It

is also known as trouble tracking system, bug tracking system and requirements track-

ing system. However, the term issue tracking system is used in this paper to refer to

any form of issue tracking system.

The main purpose of issue tracking system is listing use cases, managing them and

monitoring their progress. It is a centralized system, where all members of develop-

ment team can view the state of software. Information in issue tracking system is

shared across each and every member of the team. Issue tracking system works in a

fairly simple way. First of all, author creates an issue in a system. At this phase, an

issue contains issue number, title, description, priority order, issue reporter’s username

and username of a person who it was assigned to. Issue number is just as same as

serial number and increases by 1 whenever new issue is added. Title of an issue is a

short form of description; it is written in a way that reader gets a basic idea of issue.

Description on the other hand is a detailed explanation of an issue. Description has

information like what needs to be created or fixed. Moreover, it describes the nature

and behavior of bug. Furthermore, the right behavior of software is also highlighted. In

description, problem is precisely mentioned. Likewise, all the necessary references are

cited properly. Priority of an issue is set during creation process. Priority illustrates the

level of urgency of an issue. The words chosen by different issue trackers to tell priority

levels are different. However, It is always similar to words like urgent, major and minor.

Issue tracker automatically saves the username of author. An author can assign an

issue to specific developer, thus username of assigned developer is also visible. In

some issue trackers, issues can be left as open and developers can choose from the

list.

61

Once the issue has been assigned, developer works on it and continuously updates the

status of that issue. For instance, the status of issue is always ‘To do’ when created.

The status changes into ‘In Progress’ when developer starts to work on that issue.

Once the issue is resolved, developers change the status to ‘Completed’. During this

period, description of the issue is updated regularly. Updates contain information like

solving strategy of issue, why one method over another was chosen to tackle problems

and new findings on that matter. Issue tracker automatically saves the time when de-

veloper took issue and when it was marked as completed. The length of that period is

also measured.

There are many issue-tracking systems available in the market. Some of the popular

examples would be Bugzilla, Mantis, JIRA and Trac. Nevertheless, trac was used for

this particular thesis project. Trac is a web-based issue tracking system that is imple-

mented in python. It is an open source project, which can be used by anyone for free. It

provides very easy and intuitive user interface. Furthermore, it is equipped with an in-

terface to work with version control systems and integrated wiki. Due to these amazing

qualities, it is very popular among open source communities. In trac world, a term ‘tick-

et’ is used to refer to issues. As an example, issue 154 is called as ticket 154. Trac is

based on wiki, so user interface looks like a wiki page. Users quickly understand this

62

because welcome page is also a standard wiki page. All wiki tags work in trac environ-

ment. Users can use those tags during documentation also. The figure below exhibits

the ticketing system of trac.

Figure 15. Overview of trac.[36.]

Figure 15 demonstrates the list of tickets in trac. Unique number is assigned to every

ticket and they are listed in prioritized order. Trac is very convenient in tracking time

because time planned, spent and remaining can be easily summed as shown in figure

15. In trac, milestones are almost like groups. There is list of issues in every milestone.

Developers take issues in the ascending order from milestone. For instance, if there

are three milestones like 1.1, 1.2 and 1.3; developers start to work with milestone 1.1.

The usual practice is to put important items in earlier version of milestone. It is not nec-

essary that every milestone have fixed number of items. Issues are always changing

due to a shift in software requirements. It is also possible that milestone 1.3 have zero

issues. In that case, one need to understand that planning for milestone 1.3 is not

complete. Tickets will appear when milestone items are finalized. In general practice,

fixed time is allocated for each milestone. The length of time varies from project to pro-

ject; usually it is at least one month long.

63

Firebug

Firebug is a very popular free and open source web development tool developed by

Firebug working group. It provides interface for debugging and editing a client side

code live in any web service. It is an extension that can be integrated with Firefox. It

does not support any other browser at the moment.

Monitoring of HTML, CSS, DOM and JavaScript code has become lot easier with the

development of firebug. Furthermore, properties of HTML and CSS element can be

modified to see the result instantly. Figure 16 illustrates the basic user interface of fire-

bug.

Figure 16. Overview of Firebug.

As we can see in figure 16, by using firebug we can easily check DOM structure of any

webpage. Further, CSS styling used on page are visible in bottom right panel.

Skype

Although Skype is a communication tool used by general public, I would like to mention

it here because communication is a big issue of distributed development. Skype and

general emails were used as a communication means during the development of kor-

jausurakka. Performance of Skype was really appreciable. It could easily handle the

conference call between three people. On several occasions when product owner was

also present in a meeting, the quality of the service did not decline. Hence, Skype is a

very good tool for communication and can be applied professionally in distributed de-

velopment. Further, Skype provides facility of video calling, which can be used to cre-

64

ate little more of a bonding than just an audio talk. However, we did not use video call-

ing in this thesis project.

6.4 Parties involved

Korjausurakka is an interactive web-service. As a consequence, there are many parties

involved in the service. As explained earlier, service seeker creates a job in the service.

Once the job is online, contractors present their best offer to that job. Finally, service

seekers choose the contractor of their preference. Now, it is very clear that there are

two types of user groups involved. In addition to these two user groups, there is an

administrator who monitors and manages the whole service. All of these roles are de-

scribed below.

Service seekers

At first, Service seekers need to go into the service and create an account with valid

information. They can do it free of charge. Once the user account is in place, they need

to log in with valid credentials to be able to use the service. Service seekers have very

limited privileges in the service. All they can do is create job and accept service provid-

ers. Service seekers need to provide full details of the job. Details contain time, price

range and description of the job. Likewise, they can upload pictures, Microsoft Office

and PDF files to make nature of the job clearer.

Job seekers see list of bidders to their job if any has been placed. Then, they can view

the details of each and every offer. Finally, job seeker accepts the offer by clicking ‘Se-

lect offer’. Service seekers do not need to pay anything else than lump-sum money.

Value added tax is also included in the offer.

After the completion of a job, service seekers can rate the performance of contractors.

Ratings reflect the quality and attitude of a service provider. Better the rating better is

the service provider. Ratings help service seeker to find a quality contractor.

65

Service Provider

Similarly, service providers also need to create a user account to be able to place bids

in the service. However, they have to go through different path than service seekers.

First of all, they need to pay to create an account. Second of all, an administrator has

to process their request for creation of an account. They will only be able to log in when

administrator verifies the integrity of information provided and member fee is received.

Service providers are usually firms instead of an individual person. Administrator

checks and verifies the registration number of a firm from a publically available data-

base before granting an account. Once account is set, service providers can create

their profile by adding description and photos.

All the available jobs are visible to service providers, hence they choose and place an

offer to the relevant job. Once positive feedback is received from the job provider, con-

tractors complete the job and receive a rating from service seekers.

There are three kinds of service providers depending on the membership fee. Ones

paying less are basic members, middle ones are silver members and top ones are gold

members. Basic members have very limited privileges. They can write limited charac-

ters for their description. Additionally, they can only upload several pictures. These

privileges increase, as the membership status gets better. In addition to these privileg-

es, gold members get benefit of online advertisement in the service.

Administrator

Finally, there is an administrator. Administrator is like a god within korjausurakka. He

has all the privileges within the service. Primary job of an administrator is to manage

user accounts and process requests coming from users. Requests usually come from

service providers. Requests might be for creation or upgrade of an account. Further-

more, administrator can block or even delete the accounts if some malicious activities

are found.

Project manager is the acting administrator of korjausurakka. He manages all the sub-

scribers. Furthermore, he takes care of adding dynamic textual contents to a service.

66

7 Implementing Scrum in Distributed environment

As mentioned previously, Scrum was used as a software development method in de-

velopment of korjausurakka. Nature of the project was distributed because all three

developers were working from three different places. Senior developer was in Switzer-

land, whereas two junior developers were in Finland. Moreover, we were a totally inte-

grated scrum team. Implementation of scrum in our project is described below.

7.1 Team involved in the project

Scrum team consisted four members. Every member had a specific role in a team.The

team was more or less self-organized. The development team enjoyed flexibility of

choosing tasks from product backlog. Moreover, product owner did not try to control the

team. Personally, I never felt any kind of hesitation to interact or ask questions with

either product owner or lead developer.

Product Owner

Product ownerof the project team was the sole stakeholder in the project. He provided

all the resources and product backlog items. He briefed backlog items to development

team, especially to junior developers because Dooxe framework was completely new

to them.

Development Team

Development team consisted of three members: senior developer and two junior de-

velopers. The main tasks development team was assigned with were front and back

end implementation on code level. There was not any graphical or structural designing

to perform because we were only enhancing the already running application. Develop-

ment team switched back and forth while developing front and back ends. Lead devel-

oper being the core coder of whole Dooxe framework had extensive knowledge about

it. Hence, he helped juniors a lot to understand the framework. Moreover, he assisted

in troubleshooting the technical problem.

67

Scrum Master

There was not any one assigned as a scrum master. However, lead coder led the daily

scrum and performed some of the scrum master’s responsibilities. On the other hand,

product owner monitored the progress of entire project and fulfilled duties of project

manager.

7.2 Events Occurred

The scrum events that occurred during the project are described below.

The Sprint

At the early stage of project, we had time-boxed sprint of one week. Nonetheless, due

to poor understanding of Dooxe application on code level, we failed to deliver incre-

ment within allocated time. As a consequence, we modified scrum rules and deadlines

were not made very strict. However, sprint of one to two weeks were employed.

Sprint Planning Meeting

Sprint planning meetings were held at Dooxe office. It was not a time-boxed event ei-

ther, although, scrum rules say otherwise. It usually happened right after the comple-

tion of previous task. Sometimes, it occurred in middle of ongoing task to adjust the

timetable of team members or to implement two tasks parallel manner.

Daily Scrum

Daily scrum meetings were held via skype. They occurred at eight o’clock in the morn-

ing. In daily meetings, senior coder gave solutions to our problem and suggested the

most efficient approach to implement a task. Moreover, he showed us places where we

should be looking at for coding backlog items.

68

Sprint Review

We had brief review sessions but it was more like item review rather than sprint review.

Product owner did all the reviews and gave feedback on completed items.

7.3 Artifacts Produced

Scrum artifacts that are produced and relevant to this project are described below.

Product Backlog

Product backlog items were listed in issue tracking system. Detailed descriptions were

provided for every item. They were continuously updated to meet the changing re-

quirements.

Monitoring Project Progress

Project manager monitored the progress of a project. However, a common trend like

burndown chart was not used. To monitor progress, project owner simply checked the

number of remaining items in product backlog.

Sprint Backlog

Product owner selected sprint backlog items from product backlog. In addition, he as-

signed it to specific member of the development team. Likewise, he briefed and fine-

grained those items before coding began.

Increment

The increment produced was relatively small. Sometimes it was as small as couple of

lines of front-end codes. On contrary to the scrum principle, most of the increments

produced at one sprint were not releasable. However, they were definitely usable. In

addition, it should be kept in mind that sprint duration was much shorter than originally

prescribed.

69

Definition of “Done”

Backlog items were marked as done when they satisfied all the test cases provided by

product owner. Test cases were in description section of backlog. Moreover, they were

briefed in sprint planning session. Product owner tested development items while de-

velopment was in progress, which ensured their correct behavior. Product owner had

the sole right of producing definition of “Done” and marking backlog items as complet-

ed.

70

8 Dooxe Retrospective

Dooxe was a very interesting project to be part of. First of all, the project was distribut-

ed then we were diving into an entirely new development environment. Nonetheless,

improvements could have been made. There was plenty of room for enhancing produc-

tivity and efficiency.

Dooxe application did not have any documentation, which was a major obstacle in

overcoming the learning curve. Lack of proper documentation significantly reduced the

productivity at the initial stage of development. Thus, it is definitely a good idea to write

and maintain documentation of an application. Wisely written document helps new de-

velopers to familiarize themselves with new system. I delivered the documentation for

the part that I had developed in this project.

Likewise, in the early stage of development, implementation was carried out in a re-

mote files, which slowed the development process. I personally do not enjoy editing

remote files because changes take time to show results and there is no control over

source code. If by any mistake typographical error occurs, then it is very hard to debug

and it can corrupt the entire development environment. Moreover, it caused problems

in switching between different versions of an application. I believe this project would

have returned more increment if local environment was set up at initial stage. Nonethe-

less, it took more than a month to do it. Dooxe development environment in local ma-

chine was set up during lead developer’s short visit to Finland. Local environment really

helped in understanding the structure, objects, classes and methods of Dooxe frame-

work.

Another problem that I realized was that the folder structure of Dooxe did not conform

to the zend application, however, Dooxe was built using zend framework. In zend ap-

plication, there should have been different folders for models, views and controllers. On

the contrary, folder structure of Dooxe was completely different, which made the un-

derstanding of model, view and controller bit difficult. We were editing files at random

while coding. Better understanding of these MVC entities would have yield fast and

better increments.

71

Brief summary of findings in dooxe project are illustrated in table 3.

Findings Comments

Distributed development Communications helps to reduce the cul-

tural difference. Continuous interaction

between team members is important.

Small Company Direct access to key person. Even junior

developers can influence the decision

making process. Today’s software indus-

try is heavily dependant on small compa-

nies.

SDLC models They are not strictly followed in real life.

These models should be modified to suit

the need of project.

Documentation SDLC models encourage to maintain

proper document of software. Proper doc-

umentations help out the new developers.

Self-organizing team Team spirit and commitment in self-

organizing team is relatively high.

Small team Communication is easy. Self-organization

can be implied more effectively.

Scrum Effective agile model for small teams.

Productivity of scrum depends on the de-

gree of self-organization in team. More the

self-organizing behaviour better is the

result.

Project monitoring Project monitoring tools pushes the de-

velopers.

Table 3. Findings of dooxe project.

Table 3 is the concise representation of findings that were constructed in this disserta-

tion. Despite these findings and limitations mentioned earlier, I think Dooxe project

went pretty well. Although, I was an amateur developer with limited set of skills, I com-

pleted items that were assigned to me. It really was a memorable experience to be

part of a real development team.

72

Likewise, on the face of these hindrances, project manager did a great job in keeping

the team spirits up. I must say he did justice to the role of project manager and product

owner.

73

9 Conclusion

Today’s software industry will crumble without the contribution of small software hous-

es. The development process is exactly similar except the number of manpower and

resources available is limited in small companies. However, in small firms, there is

huge room for developers to shine and show their ability because they have access to

key people in a company. Thus, decision can be influenced and one’s own idea can be

planted.

As numerous computer systems are being developed, it is vital that safety and security

needs are considered. Numerous catastrophic mishaps in the past have proved that

software engineering principles need to be followed to ensure usability, efficiency, safe-

ty and security. As a consequence, considerable numbers of software development

methodologies have been developed. These methods have their strengths and weak-

nesses. However, one must choose the method that suits best for their project. These

methodologies prescribe strict guidelines. However, they are rarely followed in real life.

In reality, they are always tweaked and bent to adapt to a needs of the project.

Among many software development methodologies, scrum is a free and versatile

framework that can be employed not just to handle software projects but any project. It

also provides the flexibility of using a certain portion of it. It is based on roles, events

and artifacts, which are fairly simple to understand. It is one of the most popular meth-

ods in today’s software business.

Furthermore, team development is a key to quality software. Team development cre-

ates a system of check and balance. Therefore, a mistake of one member can be de-

tected and corrected by another member. Such approach will definitely produce a ro-

bust system. In addition, most of the software development teams are cross-functional

in nature. Experts in different fields of software engineering have extensive knowledge

of their related field and help yield more efficient results. Even if the team is not cross-

functional, an extra hand is always a plus.

To meet the demands of growing software industry, a distributed approach of software

development was introduced. Distributed approach helps in finding people with right

skills. Furthermore, it is a great way of reducing software development costs. Outsourc-

ing to a cheaper country is the ongoing trend in software industry.

74

To conclude, software development is a complex process. It always presents ambigu-

ous future. Addition of distributed approach to that complexity makes it even more intri-

cate. Such complexity can be overcome if strategy is planned carefully. Scrum is one of

the most efficient battle-tested agile methods that can be applied to face the challenges

posed by distributed development.

75

References

1. Bureau of Labor Statistics. Software Developers [online].
URL: http://www.bls.gov/ooh/Computer-and-Information-Technology/
Software-developers.htm#tab-1.
Accessed 13 August 2013.

 2. Aggarwal K. K., Singh Yogesh. Software Engineering. Delhi, India: New Age

International Ltd; 2001.

 3. Williams Laurie. A (Partial) Introduction to Software Engineering Practices and

Metods. 5th Edition. 2008-2009.

 4. Mohapatra P.K.J. Software Engineering. Delhi, IND: New Age International;

2010.

 5. Burback Ron. Software Engineering Methodology: The Watersluice. 1998.

 6. Lane M. Susan, editor. Object-Oriented Analysis and Design: Instructor

Guide. Phoneix, AZ: ProsoftTraining; 2003.

 7. Awad M.A. A Comparison between Agile and Traditional Software Development

Methodologies. 2005.

 8. Vliet Van Hans. Software Engineering: Principles and Practice. Wiley; 2007.

 9. Lui Kim M. Chan, Keith C. Software Development Rhythms: Harmonizing Agile

Practices of Synergy. NJ, USA: Wiley; 2008.

 10. Munassar Ali Mohammed Nabil, Govardhan A. A Comparison Between Five

Models of Software Engineering. International Journal of Computer Science Is-

sues 2010;7(5):94-101.

 11. Maza Resnick S, Bjork A.M. Professional Scrum with Team foundation Server

2010. NJ, USA: Wrox; 2011.

76

 12. Goodpasture John C. Project Management the Agile way: Making It Work in the

Enterprise. FL, USA: J. Ross Publishing Inc; 2010.

 13. Martin Robert C., Martin Micah. Agile Principles, Patterns, and Practices in C#.

NJ, USA: Pearson Education Inc; 2006.

 14. Kelly Allan. Changing Software Development: Learning to Become Agile. Chich-

ester, GBR: Wiley; 2008.

 15. Beck Kent. Extreme Programming Explained.1st ed. 1999.

 16. Holcombe Mike. Running an Agile Software Development Project. NJ, USA:

Wiley; 2008.

 17. GoyalSadhna. Agile Techniques for Project Management and Software Engi-

neering.Technical University Munich; 2008.

 18. Hunt John. Agile Software Construction. Wiltshire, UK: Experis Ltd; 2006.

 19. AbeysingheSamisa. PHP Team Development: Easy and Effective Team Work

Using MVC, Agile Development, Source Control, Testing, Bug Tracking, and

More. Birmingham, GBR: Packt Publishing Ltd; 2009.

 20. Cockburn Alistair. Agile Software Development: The cooperative game. Indiana,

United States: Pearson Education; 2007.

 21. Saksena A. Agile burn-down chart [online.]

 URL: http://www.certschool.com/blog/agile-burn-down-charts/.

 Accessed 7 July 2013.

 22. Schwaber Ken, Sutherland Jeff. The Definitive Guide to Scrum: The Rules of the

Game. 2011.

77

23. Highsmith Jim. Agile Software Development Ecosystems.Addison Wesley; 2002.

24. Mittal N. Self-Organizing Teams: What and How [online].

 7 January 2013.

 URL: http://www.scrumalliance.org/community/articles/2013/january/

 self-organizing-teams-what-and-how.

 Accessed 9 September 2013.

 25. Cohn M. The Role of Leaders on a Self-Organizing Team [online].

 7 January 2010.

 URL: http://www.mountaingoatsoftware.com/blog/

 the-role-of-leaders-on-a-self-organizing-team#comments.

 Accessed 9 September 2013.

 26. National Research Council Staff. Office Workstations in the Home. Washington

DC, USA: National Academies Press; 1985.

 27. Kile F. James. An Investigation into the effectiveness of agile software develop-

ment with a highly distributed workforce. Pace University; 2007.

 28. Alqahtani Abdullah Saad, Moore John David, Harrison David K, Wood Bruce M.

The Challenges of Applying Distributed Agile Software Development: A Systematic

Review. International Journal of Advances in Engineering and Technology

2013;5(2):23-36.

 29. Jimenez Miguel, Piattini Mario, Vizcaino Aurora. Challenges and Improvements in

Distributed Software Development: A Systematic Review. 2009.

 30. Woodward Elizabeth, SurdekSteffan, Ganis Matthew. A Practical Guide to Distrib-

uted Scrum. Boston, MA: Pearson Education Inc; 2010.

 31. DooxeOy. About Dooxe [online]. Helsinki, Finland: DooxeOy.

 URL: http://www.dooxe.fi/info/about-dooxe

 Accessed 3 August 2013.

78

 32. Design Patterns: Model-View-Controller [online].

 URL: http://cupsofcocoa.com/2011/08/13/

 design-patterns-model-view-controller/

 Accessed 14 August 2013.

 33. Zend Technologies. About [online].

 URL: http://framework.zend.com/about/

 Accessed 14 August 2013.

 34. Berkenalandengan Version Control [online].

 URL: http://nopainsocounterpain.wordpress.com/2011/09/22/

 berkenalan-dengan-version-control/

 Accessed 14 August 2013.

 35. Git [online].

 URL: http://git-scm.com/

 Accessed 14 August 2013.

 36. Trac. Time Tracking [online].

 URL: http://trac.edgewall.org/wiki/TimeTracking

 Accessed 14 August 2013.

