

Igor Golyanov

Automation Tool for Tasks in Computer
Graphics Production

Helsinki Metropolia University of Applied Sciences

Bachelor of Engineering

Information Technology

Bachelor’s Thesis

14 March 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Theseus

https://core.ac.uk/display/38089547?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 Abstract

Author(s)
Title

Number of Pages
Date

Igor Golyanov
Automation Tool for Tasks in Computer Graphics Production

35 pages + 1 appendix
14 March 2013

Degree Bachelor of Engineering

Degree Programme Information Technology

Instructor(s)

Keijo Länsikunnas, Lecturer

The goal of this project was to enhance and develop an application serving the purpose of
automating the routine tasks performed by the employees of a company making digital
visual effects for movies. The tasks involve various operations with image sequences, vid-
eos and special software usage. Reducing the time it takes to complete these regular
tasks is the main purpose of the enhanced application.

The application platform was limited to the Linux operating system only and the scope of
the project converged to a single company. The tools used in the application development
were Python programming language, PyQt4 application framework, bash scripts and spe-
cial command line utilities. Multiple scripts served as the origin of the application creation,
so the main techniques of its development were procedural and object-oriented program-
ming paradigms.

The main enhanced module completed during the project was the automatically generated
script for further converting image sequences to videos with appropriate labels and a pos-
sibility to change several output parameters. Other implemented functionality included in-
tegrated file browser enhancements for remembering local user settings, a convenient in-
browser sorting of the sequences, utilities to control permissions on the local server and to
power on the render machines remotely. Some graphical user interface improvements
were done as well.

The results are significant for the general workflow of the company, since both the en-
hanced modules and the new application functionality save considerable amounts of time
and make routine tasks completion more convenient. Further development of the applica-
tion may focus on other automation tasks, advancing of the graphical user interface and
creation of the unified package for the application installation.

Keywords automation, Linux, Python, PyQt4, bash

Contents

1 Introduction 1

2 Theoretical Background 3

2.1 Comparison of Studio Manager and Project Management Software 3

2.2 Studio Manager as an Automation Tool 6

2.3 Justifying the Need for Studio Manager Enhancement 9

3 Tools and Methods 13

3.1 Overview of Studio Operating Systems and Software Integration 13

3.2 Outline of Used Programming Paradigms in Relation to Studio Manager 14

3.3 Overview of Tools and Environment for Studio Manager Development 17

4 The Implemented Functionality 21

4.1 The New Daily Script Implementation 21

4.2 File Browser Tab Enhancements 23

4.3 SSH Tab Enhancements 26

4.4 GUI Improvements and Documenting Issues 28

5 Discussion 30

5.1 Overall View of Studio Manager 30

5.2 Benefits and Possible Improvements of Studio Manager 32

6 Conclusions 34

References 35

Appendices

Appendix 1. Key Code Excerpts

1

1 Introduction

Project management and organization are important aspects of a project development

process. Often simple tables, figures, graphs, timetables and scheduled meetings are

not sufficient for successful and efficient project organization. Sometimes routine tasks

are present within a project, and completing these tasks manually takes an unreasona-

ble amount of time and requires additional resources. Therefore, the special software is

needed to fulfil the purposes of a certain type of project.

The goal of this paper is to describe the enhancement and development of a project

management application serving a number of purposes, mainly automating the routine

tasks of a project. This application is created within a company called Algous Studio.

The company has more than ten years of experience in digital graphics production,

such as creating visual effects for movies, including 2D image compositing, animation,

3D modelling, lighting, shading and texturing. With the number of customers and orders

being constantly increased, it is necessary to quicken and automate the most common

tasks of the employees. This was the main reason for starting the development of this

application and it is still the main reason of the current project of enhancement and

adding new modules to the application. The application is named after its main purpose

– Studio Manager. Its second name is Studio Commandor, referring to the classic file

browser implemented in it.

Another reason for developing this application is combining the specific software tools

used within the company into one compact application, combining all the vital parts of

that software together for further data processing. The data mentioned here is common

for various projects in visual effects creation – usually image sequences, video files or

software specific types of files. In addition, there are certain operating system specific

routines that employees have to perform occasionally. Most of these tasks take signifi-

cantly more time to complete if done manually.

The scope of the project is strictly limited to Algous Studio, not only because of the

confidentiality reasons, but also due to the organization of the code of the application

itself, written in a way to constantly interact with the studio’s local server in most of its

functionality implementations. Therefore, it would take a considerable amount of time to

2

rewrite the code to adapt the application to any other environment. However, since the

primary operating system to run Studio Manager is Linux, the general idea of free and

open source software applies. Hence some parts of its code could be transferred and

used outside the scope of the studio needs. Another issue concerning the scope is the

operating system. All the machines in the studio are running different versions of Ub-

untu or Ubuntu-like systems such as Linux Mint. Therefore, it is important to outline that

the application runs on all of these systems, provided the needed libraries and packag-

es are installed. At the beginning of its development certain functionality of the applica-

tion was tested on Windows systems, but as more modules were added, Windows

support was deprecated.

3

2 Theoretical Background

This chapter discusses the general idea of project management and describes the

similarities and differences between Studio Manager and other project management

software. The general workflow of the application is described. Automation software

examples are outlined and the close relation of Studio Manager to automation software

is shown. The old version of the application is described in this chapter as well, in order

to justify the need for the implementation of new modules and therefore justify the pur-

pose of the whole project.

2.1 Comparison of Studio Manager and Project Management Software

One of the most important issues in any project is scheduling. The customer is highly

interested in getting the product on the deadline, which may be stated long beforehand.

If the deadline is not met there can be consequences, and neither side is interested in

them. Looking from the project manager point of view, it is also important to see how

the project progresses, how close it is to the actual completion and what are the realis-

tic possibilities of each employee involved. Also, in some cases different projects de-

pend on each other. Moreover, some employees might be working on several projects

with different priorities. Keeping all these matters in mind makes project scheduling and

tracking vital in the project management process. [1, 5-7]

In Algous Studio the monitoring of any project progress, along with other techniques,

can be achieved through so called dailies. The dailies are special videos, created by

most of the employees regularly. These videos are often put on the server on a daily

basis, hence the name. The purpose of dailies is to show a certain modification, or mul-

tiple modifications, of a shot received from the customer, so that the project supervisor

can view it, give feedback or commentaries, mark it as completely accepted, partially

accepted or to be redone. The main difference between Studio Commandor and clas-

sic project management software is that a feedback system is not implemented. The

feedback is taken care of through another special software tool. Instead, Studio Com-

mandor provides the file organization and the convenience to access dailies created for

a given shot of a given project. Figure 1 illustrates an example of a dailies list created

for a single shot.

4

Figure 1. Dailies list of a shot as implemented in Studio Manager.

There are three versions of dailies created for a shot located in a folder, the full path of

which is shown in the left part of Figure 1. Dailies themselves are listed on the right

side. It is important to note that filenames for dailies are generated automatically from

the sequence name of the shot with a version number appended (V01, V02...). Also,

the full path of dailies is not displayed, since the application itself takes care of the

strictly defined directory system on the server. The newly created folder in the daily

path may confuse the user, so the shot sequence path is enough. Besides, this path is

given for information only. This system makes the access of dailies easy, prevents the

user from creating wrong directories and lets the project supervisors reach any version

of dailies at any time.

Another important issue brought up by the system described above is control. If an

employee is highly experienced and trusted, the project supervisor might require less

reporting from him or her. As the deadline approaches, the employees would want to

focus on the actual project rather than the reports. However, this might be dangerous

for the project outcome, if the time between reports increases. Therefore, the balance

between agility and control is needed in this type of project development and manage-

ment. Although such balance always depends on a number of factors, including cultural

issues or supervisor involvement in the given project, a balanced approach would still

be essential. [2, 109]

The type of project management in Algous Studio is a combination of traditional and

agile. Naturally, in the inception phase of the project the workflow is steady and unper-

turbed, since the human resources are highly valued. As the project shifts closer to the

deadline, its type also shifts towards agile development, since there is always a risk of

uncertainty in understanding between the customer, the project supervisor and the em-

ployees involved in the project. While all misunderstandings are usually managed

5

through personal communication, the technical side of the project still largely depends

on the Studio Manager application. This is achieved by controlling the regularity of dai-

lies and their versions for any project. For example, if the customer wants to see a pre-

view of a certain shot that is still in progress, the request is sent to the project supervi-

sor, who in turn requests a preview daily from a person working on the shot. This is

done rapidly using Studio Commandor, which makes it a useful tool in both project con-

trol and communication with customers. The general workflow of the dailies creation

and its control by supervisors is shown on Figure 2.

Figure 2. General workflow of dailies creation.

Figure 2 shows the two perspectives of the dailies creation. The solid arrows represent

the user perspective on the workflow with elliptical parts being optional. The dashed

arrows correspond to the supervisor workflow, which includes the setup of initial set-

tings and checking the created dailies. It can be easily concluded from Figure 2 that the

application operation resembles the project management control. However, the appli-

cation is essentially a technical tool rather than a control tool, since the feedback sys-

tem and the project stages and milestones are missing.

Considering the facts depicted above, Studio Manager can be presented as project

management software to a certain extent only. The possibility of tracking the stages of

a project through dailies is a property that firmly connects Studio Manager to project

management software family with Microsoft Project as its classic example. On the other

hand, lacking such features as a feedback system, multiuser forum-like communication

or a higher control scheduling module makes the application quite different.

Initial setup
Dailies check

User application start Adjusting settings Dailies creation

Application quit

Usage of other

features

Supervisor application start

6

2.2 Studio Manager as an Automation Tool

Users and developers of the Linux operating system often refer to a slogan “free as in

freedom”. This is occasionally confused with being referred to the price of the operating

system, which is distributed free of charge. However, the true meaning of the slogan

lies in the freedom of power to know in detail how the computer operates and which

tools it is using. There should be the freedom to choose these tools and their combina-

tions in order to take the most of the computational power of the hardware. An im-

portant part of any Linux distribution is the command line. Although its user interface is

rather far from being friendly, there are undeniable advantages of taking control over

the system and its components with further automation. Mastering the command line

broadens to creating various scripts that allow completing rather complicated tasks

automatically. [3, 26-27]

If such tasks are required to be completed regularly, the need for an automation tool

becomes urgent. Time is always a valuable resource that should be preserved, if there

is a possibility of automating routine tasks. A script written using a high-level program-

ming language or a shell script containing a set of commands are good examples of

automation tools. As the task becomes more complex or the number of routine tasks

increases, a script may not be enough to execute the task flawlessly. A change in sev-

eral parameters can still be handled by the script, but if the parameters affect the inner

algorithms of the program flow, an application is the choice. One example of the men-

tioned type of an application is KRename, the batch rename program for KDE (K Desk-

top Environment), a popular Linux desktop environment. One of its main tabs is illus-

trated in Figure 3.

7

Figure 3. Filename tab of KRename.

The primary and only purpose of KRename is file renaming. However, as Figure 3

shows, the program has multiple tabs, buttons, combo boxes and other elements of a

graphical user interface. The reason for that is the presence of numerous parameters

that users can configure before the actual renaming takes place. A complex algorithm

of renaming a large number of files can be entered by the user to be executed by the

KRename application. Therefore, one might say that file renaming is automated by

KRename on a high level. Definitely, there are other ways to rename multiple files. For

example, a command line can be used for that purpose. The drawbacks of this method

are obvious: the user would have to know the exact syntax of the command, specifying

all the parameters and still might lack the desired file naming patterns at the output.

When using the application, the output patterns are shown before the renaming takes

place, as can be seen in Figure 3.

The property described above applies to Studio Manager as well. There are a few

tasks within the studio that are simple in essence, but require a considerable amount of

time if not automated. One example is software installation. If a certain package is re-

quired to be installed on ten computers, manual installation would take time. Since the

8

action is repeated, there is a way to automate it. In Studio Manager this feature is im-

plemented in the SSH (Secure Shell) tab. Figure 4 gives a visual representation of the

mentioned feature.

Figure 4. Studio Manager SSH tab.

There are two lists in the SSH tab of the application, as illustrated by Figure 4. The list

on the left contains the hostnames of the workstations in the studio, including render

machines. The list on the right is a history of commands that have been executed at

least once. By selecting the necessary hostnames from the list on the left and an ap-

propriate command from the list on the right, it is possible to launch this command to

the selected hostnames, provided the SSH connection is up. It is also possible to type

a new command, which will be stored in the history list. Typical usage of this feature

applies to installation of new software, starting special services or copying files, but the

application allows other standard Ubuntu bash commands to be executed as well. The

idea of freedom to choose and combine software and the idea of automation converge

in this particular feature. The powerful command line hidden from the user and a graph-

ical user interface with intuitively clear lists and buttons are working together in an es-

sential feature for automating trivial tasks.

9

Another example is the chmod –R 777 button, which can be found in Figure 4. Occa-

sionally the employees need to process files through a graphics program into a specific

directory. Typically, these files are image sequences. However, if the render machines

are involved in the file processing, the directory might not have the full permissions to

accept all the files generated by the render machines. The workaround for a user is to

set the right permissions for the directory. The chmod –R 777 button deals with it in

seconds by sending a bash command that gives the full permissions to the specified

folder. The same procedure would require a manual SSH connection to the server,

typing the password, locating the directory and finally issuing the command. Naturally,

automation saves a considerable amount of time here as well.

Although Studio Commandor is a multi-purpose application, the majority of its features

deal with reduction of time of the tasks completion by automation. Dailies generation,

described in section 2.1, is an automated task. Create_Dirs tab of the application is

responsible for creating a proper directory tree for each set of shots within a project.

There are about 10 subfolders being created on a single button hit. The Wake Render

Farm button located on the SSH tab powers on the render machines, ‘waking’ them

from the shutdown state. All of the outlined examples point to Studio Commandor as an

automation tool, which is its primary software type. It is important to emphasize the

encapsulation of the features related to the command line. The inner mechanisms of

the application use the benefits of the shell, but it is hardly relevant for the user to know

the details of these mechanisms. In the case of Algous Studio the user is primarily in-

terested in the end result rather than the tools involved. Thus, Studio Commandor is

being designed as an application that combines various software implementations, but

the exact combination techniques are concealed.

2.3 Justifying the Need for Studio Manager Enhancement

The first reason for the development of any software is its relevance. For an application

with a strictly limited scope it is especially important. When the old version of Studio

Manager was in use, the data on the number of used features among the studio em-

ployees was gathered. A single feature is one implemented functionality unit, such as

creating dailies or creating a tree of directories with the help of the application. Table 1

presents the gathered data.

10

Table 1. Intensity of the usage of Studio Manager features before enhancement.

Regular usage of Studio Manager features Number of employees

No regular usage 2

1 feature 4

2 or more features 7

All features 2

Desire for enhancing existing features 4

Desire for implementation of new features 5

With a total number of employees summing up to 15, Table 1 shows that the majority of

employees at Algous Studio use at least 2 features of the application regularly. More

than half of the employees also desire for either enhancing of existing features or the

implementation of completely new features they think would save time for the comple-

tion of various tasks. Thus, the data presented in Table 1 justifies both the relevance of

Studio Manager and the need for its enhancement.

A graphical user interface is an important aspect of an application, since its design may

determine the usability of the application. It has to present the information to the user

accurately and clearly. At the same time the user has to understand the actions availa-

ble to him or her and the possible outcomes of the performed actions. Usually a graph-

ical user interface designer is confronted with a challenge to compromise the appealing

interface and a possibility to interact with a user in a way to improve the effectiveness

of the jobs processed by the software. Such a compromise should be taken into ac-

count. [4, 103-104]

Since functionality was the number one priority as the Studio Manager development

started, relatively small effort was taken to design a proper user interface for it. At the

inception stage of the project the proper implementation of each button’s function

meant significantly more than its appearance on the application window. Hence the old

version of Studio Manager had a poorly developed graphical user interface, the exam-

ples of which can be seen in Figure 5.

11

Figure 5. Main tab of the old version of Studio Manager.

The options for dailies to be created are displayed on the right side of Figure 5. It is

hard to say how the options are related to each other or to the dailies list below, since

the location of the options’ widgets is disordered. For a new user the handling of these

options would be challenging, mostly due to the weakly implemented user interface.

There is a snapshot of a sequence above the settings section, but none of the se-

quences are selected. In fact it is the last frame of the last sequence in the sequence

list. This is exceedingly inconvenient and may as well be confusing for users, since it is

possible to have multiple different sequences within a shot and showing the last frame

of the last sequence with none selected would be absolutely incorrect. Another exam-

ple is the Exit button located below the sequences and dailies lists. The user might not

understand the purpose of this button, since there is a default close button in the upper

right corner of the window. The exit button was implemented for saving the window size

and location on the screen for the next launch of the application, whereas the default

close button would not save the mentioned settings. However, the user is not informed

of such nuances of the application nor is it intuitively clear.

By the facts outlined above the need for Studio Manager enhancement and further de-

velopment is justified. There are two main reasons to widen the application’s capabili-

12

ties. One is the relevance of the application within the studio. While the need for im-

plementing new features or enhancing the old ones is desired by the users, the im-

portance of the application development would be significant. Another reason is the

need for creating a more comprehensible graphical user interface, which would appeal

to the users and make general application handling more straightforward.

13

3 Tools and Methods

This chapter describes the software environment of a typical workstation of the studio

and explains the idea of transition from a number of scripts to a single application with

multiple modules. The ideas of object-oriented programming and procedural program-

ming as the main programming paradigms of the project are introduced. The Python

programming language as well as PyQt4 binding for a well-known graphical toolkit Qt

are introduced as the main tools for Studio Commandor development. The Eclipse en-

vironment and the project testing methods are outlined in order to explain the details of

the application development progress and justify the type of software development as

agile.

3.1 Overview of Studio Operating Systems and Software Integration

When choosing from numerous Linux distributions, one should think of the purposes

the operating system would help him or her to achieve. Although these distributions

support similar philosophies, such as “free as in freedom”, the approach to the end

user might be different. Ubuntu is occasionally called “Linux for People”, meaning that it

is aimed at being user-friendly. People who wish to get their job done regardless of the

operating system trivia choose Ubuntu because of its comparative simplicity. For ex-

ample, installing additional software could be done through Synaptic Package Manag-

er, containing a wide range of packages for different needs. Moreover, the operating

system itself includes useful packages available right after the installation “out of the

box”. The Ubuntu community is vast and devoted, providing support for end users in

various matters. It is also a rapidly developing operating system with regular updates

coming from official repositories. [5, 13]

For most of the artists within the studio it is essential to keep the system stable and

simple. Thus, Ubuntu is a suitable Linux distribution for workstations in the company.

Normally, an artist with little engineering experience would need specific software and

a couple of system tweaks only. Such tweaks can usually be done within a clear and

user-friendly Ubuntu interface. In fact, the end user will hardly ever need to use the

command line, although it is always there for more sophisticated purposes, described

in Chapter 2. With updates coming regularly, it is possible to keep the system stable

and especially convenient for studio artists, keeping the opportunity to alter the system

as well.

14

On the other hand, not all software is available in the official Ubuntu repositories, nor it

is obtainable from additional ones. One example is Afanasy – a powerful open-source

render farm manager. Like other software of this type, it should be downloaded sepa-

rately. The need for explicit compilation and configuration makes Afanasy’s installation

even more complicated. However, Linux systems allow most of the software to work

just by copying the directory with previously compiled and configured files, in case the

creation of the package is not possible. Adding several libraries and setting a few envi-

ronment variables on the local machine might be required, but still this kind of installa-

tion would save time.

The mechanism described above resembles the Studio Manager application launching

system, although the latter is simpler. The application itself is located on the server. All

the user needs is a link or a launcher of the application file. Naturally, a connection to

the server is required. In addition, the packages and libraries that are necessary for

Studio Manager to run should be installed. Nevertheless, the Ubuntu operating system

provides enough suitable tools for such purposes and makes the integration of required

studio software quick and convenient. It is important to note that the outlined integration

method applies to the Studio Manager application as well.

Although Ubuntu is the main system used in Algous Studio, two facts should be kept in

mind. Firstly, there are different release versions of Ubuntu. Secondly, there might be

other Linux distributions installed for advanced users. Luckily, the main tools used for

the development of Studio Manager – Python, PyQt4 and of course bash shell – are

common for most of the distributions. Thus, application development and usage would

be easily expanded to any Linux system, which slightly broadens the scope of the pro-

ject.

3.2 Outline of Used Programming Paradigms in Relation to Studio Manager

The history of Studio Manager started with several automation scripts, written in either

Python or bash. Eventually, the number of scripts increased, since more routine tasks

needed to be automated. In addition, the complexity of the scripts varied according to

the task complexity. Maintaining these scripts became more demanding. Moreover, the

script usage became problematic for users, since they had to be launched separately.

In case of errors the user could have spent time finding out what exactly went wrong.

15

At the point when scripts maintenance became too complex and their usage too incon-

venient, the actual application development started. It was logical to divide the main

application window into tabs, representing modules that contained closely related im-

plemented functionality. Although the application implying a graphical user interface

usually excludes the usage of the console, it is possible and often recommended to

launch it through the command line in order to track the important runtime information

and error messages. It helps the further debugging and lets the user follow the program

flow.

While various graphical toolkits, including PyQt4, with a variety of widgets and buttons

involve object-oriented programming style by default, it is still important to outline its

benefits. This approach combines both structured logic and structured data, providing

easy code factoring and reusing. Encapsulation makes the code safe and not too chal-

lenging to debug. Keeping the class methods organized with the help of the object-

oriented paradigm helps making the entire project more stable on the long-term scale.

It is also natural for people to think in objects rather than abstracted variables. [6, 26-

28]

Apart from the default classes embedded in PyQt4, which are mostly part of the graph-

ical user interface, such as buttons, text fields and combo boxes, there are more com-

plex classes in Studio Manager. One example is a browser tab class, which is mainly

responsible for creating the file tables of the current directory. Two browser tabs take

most of the space of the file browser tab of the application, as illustrated by Figure 6.

16

Figure 6. Browser tabs embedded into the file browser of Studio Manager.

The red rectangle encloses the area where two browser tab objects are located. It can

be clearly seen that these objects are similar but have different parameters. In this

case the addresses differ, so different file tables are shown. Although the traditional file

browsers have only two file tabs, there is a possibility to add more by creating another

object of the same class. In turn, file tables themselves are objects of the same class

called a browse table. Two browse table objects are enclosed by the green rectangle,

as it is demonstrated by Figure 6. This is a vivid example of utilizing the object-oriented

programming style, specifically reusing the code. If the implementation of another

browser tab was needed, it could be easily added by creating an object of the corre-

sponding class, which would contain the needed attributes by default.

Although object-oriented approach is more appropriate for the Studio Manager applica-

tion, as outlined above, the application’s origin is a collection of scripts, which implies a

different approach, namely procedural programming. Since automation tasks may not

always be very complex, the procedural approach still applies. Often it becomes inap-

propriate solely in tasks whose implementation reaches a high level of complexity. Op-

positely, the unchallenging tasks solutions could be implemented as just a sequence of

17

instructions. These solutions would be highly effective for the mentioned type of tasks.

Furthermore, a procedural approach is the most natural way of programming for less

experienced developers, since it involves defining the problem with further dividing it

into smaller parts. Often object definitions and encapsulation as well as the other char-

acteristics of OOP are not entailed by the task. In such cases the procedural approach

would satisfy the developer’s needs. Nevertheless, the Python programming language

allows relatively easy rewriting of the code using OOP, if it is strictly required. [7]

Summarizing the details described above, it is essential to note that Studio Manager

development makes use of two programming paradigms: object-oriented and proce-

dural. The first one suggests encapsulation, code reusing and general application sta-

bility. The second one adds the possibility to maintain the simpler tasks support and

implementation while keeping the object-oriented trivia away and thus making the code

less complicated. Combining the benefits of these approaches makes Studio Manager

development and enhancement rigid and safe, yet more comprehensible for a pro-

grammer.

3.3 Overview of Tools and Environment for Studio Manager Development

The main programming language used for the development of Studio Manager is Py-

thon. There are several reasons for this choice, apart from Python being available in

most of the Linux distributions, including Ubuntu, by default. Firstly, Python supports

system programming, meaning that it is easily compliant with system utilities such as

shell scripts and the command line itself. The built-in module ‘os’ makes the use of sys-

tem tools, such as directory files processing and SSH connections more accessible

than the syntactically obscure shell languages. At the same time Python allows keeping

code clarity. [6, 73]

Secondly, Studio Manager needs a controllable and efficient graphical user interface.

Python’s simple syntax and a possibility to utilize the object-oriented approach comply

well with the GUI model. Indeed, it is natural to represent the various devices drawn on

a screen as Python classes. Furthermore, Python allows making changes to the GUI

layout and observing their effects rapidly, giving the developer a good opportunity to

experiment with alternative designs and program behaviour. [6, 357]

Thirdly, it is important to contrast Python with compiled languages such as C and C++.

Although the latter two are classic examples of the procedural and object-oriented ap-

18

proach respectively, these languages are optimized for speed of execution at the cost

of a higher complexity. Python, on the contrary, is optimized for speed of development

at the cost of program performance. Nevertheless, Python has a useful characteristic of

integrating with components written in C. In case a performance increase is needed for

a certain program module, it is possible to merge the Python code with the C code to

achieve that particular purpose. [6, 1483]

The majority of workstations at Algous Studio have powerful high-end CPUs and a suf-

ficient amount of RAM in order to perform rendering, lighting, shading and other de-

manding tasks that require high computational power. Therefore, for comparatively

small applications such as Studio Manager execution optimization would not bring sig-

nificant positive results. Moreover, proper and efficient task completion has priority over

the minor runtime delays, which makes Python more suitable for this particular applica-

tion development than C or C++. It is also essential to briefly point out that the Python

version 2.7 was chosen, since it is currently stable and available in most of the Linux

distributions by default.

PyQt is a binding of Python and Qt, meaning that it makes Qt application framework

libraries available to Python programmers. Qt, in turn, is a powerful toolkit with numer-

ous features. One is Unicode support, which makes translation and localisation as sim-

ple as possible. This is especially important in environments where English is not the

only language used. Secondly, Qt provides the signals and slots mechanism. This in-

novation, introduced by Qt, provides the abstraction of event handling. It grants the

high-level view of the events, which makes handling the specific actions, such as doc-

ument saving, undemanding, even if the same action is invoked in different ways.

Moreover, this mechanism ensures type-safe communication between objects when

emitting or receiving of signals occurs, because the objects do not have any knowledge

of each other. The knowledge of the signal being sent is sufficient. [8, 5]

PyQt4 combines the benefits of the Python programming language, outlined earlier in

this subsection, with the benefits of Qt framework. Nearly all of the Qt classes are

available to Python programmers through PyQt. Naturally, all of the highlights of Qt

mentioned earlier are accessible in PyQt as well. Since all of these highlights are cru-

cial for agile development of Studio Manager, the usage of these tools is justified. [8, 7]

19

Apart from the programming language and the toolkit for graphical user interface de-

velopment, it is vital to describe and justify the integrated development environment.

Eclipse IDE was chosen for Studio Manager enhancement due to its clear interface

and fast operation. A snapshot of Eclipse Juno with PyDev plug-in installed is illustrat-

ed in Figure 7. The Eclipse window has been shrunk for convenience.

Figure 7. A snapshot of Eclipse IDE with PyDev plug-in in action.

As Figure 7 shows, this integrated development environment contains all the necessary

sections. The sections include main menu panels on top, the outline of classes and

methods on the right and the console output at the bottom with a possibility to switch to

Search or Problems tabs for searching for specific variables or methods and tracing

bugs respectively. The project tree on the left has been shrunk to illustrate the oppor-

tunity to control the workspace area by minimizing the sections. Although the program

interface might seem complex, it only contains the sections and menus that are used

more frequently. Other settings can be reached and altered by finding submenus,

which makes Eclipse’s GUI both appealing and convenient to use.

20

Although Java is the default language for Eclipse, plug-ins for the support of other lan-

guages are easily installable. In the case of Studio Manager, the PyDev plug-in is used.

As its name suggests, this plug-in is responsible for integrating the Python interpreter

and code editor into Eclipse. In the upper right corner of a window snapshot the PyDev

perspective is opened, as Figure 7 shows. It is crucial to note that code highlighting is

available by default, which makes the coding process more comfortable and reduces

the probability of typing errors. On the right to the main section there is a vertical ruler

indicating warning and errors, which makes the in-code navigation simpler. These ad-

vantages justify Eclipse IDE as the suitable environment for rapid and effective devel-

opment of Studio Manager.

It is also essential to mention that the application testers are the studio employees us-

ing Studio Manager. Once a bug is noticed, it will reported and further reproduced by

the developer. Reproducing the bug takes the minimum time, because the Eclipse pro-

gram launches the application rapidly – usually a few seconds is enough. If necessary,

the debugging feature can be used as well. The bug is then fixed and the new version

of the application is pushed to the local server. Occasionally the users ask for either

short-term or long-term enhancements, depending on their urgency and complexity.

These wishes for enhancements are recorded for further implementation.

By the facts presented above it is obvious to state that the application development

style is definitely shifted to agile. Indeed, all the outlined tools and methods of the pro-

ject, including the Python programming language, the PyQt toolkit and a quick respon-

sive approach to the testing signify the agile software development. This method is the

most appropriate for Studio Manager, since the functionality of its modules and the

actual task completion are the priority before the functionality achieving methods and

rationalizing the computational power management. That is, altering the basic algo-

rithms for a minor performance improvement is not needed in case the specific module

is capable of its task accomplishment.

21

4 The Implemented Functionality

This chapter describes the main enhancements of Studio Commandor that were im-

plemented during the project. Firstly, the new script for creating dailies, which works

significantly faster, is introduced and compared to the previous one. Secondly, the file

browser enhancements are described. Thirdly, the new SSH tab functionality is out-

lined. Finally, the graphical user interface improvements and code documenting issues

are covered.

Essentially, the enhancements of the application can be divided into two major groups.

The first one is performance improvement, used in the new daily script implementation,

which is described in detail in section 4.1. Since the technique used to generate dailies

was ineffective, the new technique had to be implemented to boost the performance.

The second one includes various functionalities implemented through GUI improve-

ments. The latter relates to the file browser tab and SSH tab enhancements described

in detail in sections 4.2 and 4.3 respectively, as well as the general GUI improvements

outlined in section 4.4.

4.1 The New Daily Script Implementation

As stated in Chapter 2, the creation of dailies is vital for tracking and evaluating the

work progress in Algous Studio. Since dailies are created on a regular basis and the

employees always have to check the result, the time spent on their creation should be

reduced to a minimum. The older version of the dailies script used the Nuke software to

generate frames for each daily and then combine them into a single video container.

The video should be of a given size, selected from the available size formats. There

has to be multiple labels on the video itself, providing information on the current project,

the current shot, daily version, the date and the frame number. Additionally, there

should be a so called cache present. The cache is responsible for partial hiding of the

top and the bottom of the video and its intensity can be chosen from three alternatives.

Optionally, there should be a slate frame coming first and displaying the same infor-

mation on a black background.

The old technique of creating the frames for a daily involved reworking each frame

separately and putting them into a separate folder as temporary files for further combin-

22

ing them into a daily using ffmpeg – a powerful tool for video manipulation. Although a

single frame processing usually takes less than half a second, the daily creation pro-

cess can still take a significant amount of time if there are hundreds of frames in a shot.

In addition, the only information label that is changing throughout the video is the frame

number. Therefore, processing every image of a sequence is not needed. The new

dailies script uses a technique of putting the readymade labels on a video, which is

combined of the existing sequence images, so that multiple image processing is avoid-

ed.

The tools used for implementing the described new technique are Imagemagick – a

tool for image manipulation and the mentioned ffmpeg. First of all, the general infor-

mation on the sequence is gathered. It includes the project name, the name of the shot,

the current date, and the optional notes to the daily that is going to be created. Then

Imagemagick takes care of finding the image resolution of the given sequence. The

number of the first frame and the sequence duration are calculated at this point as well.

After that the daily options are read from the main Studio Manager tab. Finally, the new

daily script generation begins, where all of the options are taken into account.

The daily script is a regular executable bash script consisting mostly of Imagemagick

commands. If the slate frame option is checked, it is created with all the needed labels

included and put into the same folder with the sequence as a preceding frame. Then

the canvas of the needed size with a cache and its own labels is created. The last

command of the script is utilizing ffmpeg to create a video from the given sequence

with a canvas over the video. In addition, ffmpeg is responsible for numbering the

frames. In the end of the daily creation method the slate frame is deleted and the newly

created daily is opened for viewing in an open-source sequence viewer djv_view. The

full code of the create_daily method, including the preliminary settings and the script

generation, can be found in Appendix 1.

It is important to note that internal script generation is a unique case in the application.

The reason for it is the intensive usage of other software, namely ffmpeg and Image-

magick. Such usage makes bash scripting more convenient than Python code imple-

mentation. Nevertheless, the script is not meant to be modified or executed outside the

application, which would contravene the general idea of automation.

23

As outlined, the new technique avoids processing of every single frame of the se-

quence, overlaying a canvas with labels on the generated video instead. It is essential

to emphasize the main advantage of the new script compared to the old one, which

used the Nuke software. This advantage is definitely saving time. The data on the daily

creation time from the sequences of different duration using both scripts is gathered in

Table 2.

Table 2. Old and new script daily creation time dependency on sequence duration.

Sequence duration,
frames

Processing time, s

Old script New script

23 5 2

45 9 4

98 22 8

389 83 21

459 97 23

600 124 27

As demonstrated by Table 2, the new script is able to create dailies faster than the old

one from the low duration sequences already. However, as the sequence duration in-

creases, the new script becomes much more efficient. It should be emphasized that the

old script processing time grows more or less linearly with the growing sequence dura-

tion, whereas the new script processing time does not increase that rapidly. The old

script behaviour is easily explained by reprocessing each frame. Conversely, the new

script focuses on creating the canvas once with further hasty video conversion by

ffmpeg. The new technique is a vital implementation in Studio Commandor, since it

makes the dailies creation significantly faster, especially if the high duration sequences

need to be processed.

4.2 File Browser Tab Enhancements

There are several enhancements that were added to the file browser tab during the

project. It is appropriate to present them visually with the help of Figure 6. The topmost

row is populated with buttons that accept a drop action if an existing location is dragged

24

onto them. In other words, it is possible to drag a directory to the button and it will store

its location, which can be further accessed by pressing that particular button. These

locations are saved in a file, so that the buttons are restored after reopening of the ap-

plication. The ‘+’ and the ‘-’ button positioned below allow adding and removing tempo-

rary bookmarks. Basically, the operation is the same, but the number of buttons is un-

limited and they are deleted once the application is closed. The combo box below is a

stack, populated with 10 different locations that the user has visited last. These loca-

tions are also stored in a file, so that it is possible for the user to switch to one of the

latest visited locations.

Apart from the location remembering widgets, there is a sequence check box below the

file list that allows switching between a normal file list view and a sequence file list

view. Also, there is a filtering text box for immediate filtering of the file list if the text is

entered. It is important to note the significance of the sequence check box, whose op-

eration is illustrated in Figure 8.

Figure 8. Sequence check box operation.

Both file lists shown in Figure 8 represent the same location in the file system. Howev-

er, the file list on the left represents separate files, whereas the file list on the right

gathers the appropriate files into sequences, since the check box is checked. This is

important for the studio, since the whole image sequences are often copied, moved or

deleted and the data could be lost if multiple files are processed. It is especially vital for

directories, where several sequences are located. The right part of Figure 8 illustrates

how the sequence check box alters the file list containing sequences, so that various

file operations can be performed easily without the fear of losing data.

25

The bottom row of buttons, which can be found in Figure 6, contains the new buttons

implemented during the project. They are: search, responsible for simple file searching;

rename, used to rename both regular files and folders and sequences; remove spaces,

responsible for recursive renaming of the files and folders containing spaces, since the

djv_view sequence viewer cannot resolve the names containing spaces; mov to seq,

taking care of opening the mov container and converting a video into an image se-

quence with the help of mplayer software. An information label showing the number of

objects in the current directory, and available free space on the current file system is

located below the bottom button row. All of the relevant implementations of the de-

scribed functions are shown in Appendix 1. The code for constant buttons that are be-

ing remembered is omitted due to its similarity to temporary tabs code. Most of the

search conditions are also omitted for the same reasons.

Since the work within Algous Studio is often related to image sequences manipulation,

the most frequently used button for the bottom button row is rename. Keeping the se-

quence names consistent is essential for proper organization of files. Therefore, the

implementation of the sequence renaming should be emphasized. The dialog for se-

quence renaming is shown in Figure 9.

Figure 9. Sequence renaming dialog.

As Figure 9 demonstrates, the user can edit all parts of the sequence name: base

name, padding, first frame and extension. The latter changes the format of the images

by means of the integrated system tools and should be applied with a high level of con-

cern. The result section of the dialog is showing the full path of the renamed sequence,

but is currently scheduled for deprecation from the application, since the information it

provides is irrelevant.

Generally, all of the described file browser enhancements are vital for speeding up the

routine operations within the studio. Location remembering widgets help the user navi-

gate in the file system rapidly and easily. The sequence check box provides convenient

26

switching between the file view modes. The filtering text box allows quick file searching

within the given directory. The sequence renaming implementation grants the appropri-

ate file organization and ensures avoiding of data loss. Obviously, all the mentioned

operations could be achieved separately by utilizing various software solutions or the

command line. However, Studio Commandor aims at combining the specific software

with specific studio needs for effective task completion and the file browser tab of the

application successfully fulfils this aim.

4.3 SSH Tab Enhancements

One of the SSH tab features, the chmod –R 777 button, was described in Chapter 2 as

a very important tool of changing the server permissions. Although the button’s opera-

tion is fast and simple enough, its drawbacks are obvious. Firstly, the repeated usage

of the button is often needed if the new directories are created on the server. Secondly,

giving the full permissions to the directories raises the risks of security issues, since the

files could be deleted unintentionally. The new chmod button, which can be found in

Figure 4, is the first step to get rid of the mentioned issues.

The button internal implementation is based on the chmod –R 777 button. However,

the general idea behind the new button is to give the appropriate permissions to a sin-

gle group, the users, which is the default group in Linux. Further on, when an employ-

ee belonging to the group needs access to the server directory with new permissions,

he or she has no trouble altering the files within this directory. In addition, the render

machines that might save the output to this directory are running the rendering pro-

cesses under a certain user that also belongs to the group. This solves the security

issues in most cases, since only certain employees would have access to certain direc-

tories. The new chmod button is tested for the users group only, but more implementa-

tions could be added to extend the permissions structure of the server if needed.

It is essential to note that the new chmod button also solves the issue of repeated us-

age, since it forces the newly created files and folders within the operated directory to

belong to the users group. The bash command behind the button operation is as fol-

lows: chown –R :users <directory> && chmod –R g+r, g+w, g+s <directory>. First the

command changes the ownership for the given directory and then gives the full permis-

sions for this specific group only. Both operations have the recursive effect on the sub-

folders and the ‘s’ flag ensures the further files and folders ownership to be under the

27

users group. This new button significantly broadens the capabilities of the chmod –R

777 button implemented earlier. Therefore, the old button is scheduled for deprecation.

Another example of the effective command line utilization is the Wake Render Farm

button of the SSH tab, which can also be found in Figure 4. As the name suggests, the

button sends wake-on-lan packets to every machine in the render farm. The render

farm is used to process network renders, launched by special software within the stu-

dio. Naturally, a considerable amount of work had to be done prior to the button imple-

mentation, since the render machines had to be set for receiving wake-on-lan packets.

Also, a special script for hourly checking of the processor activity was distributed to the

render machines. In case most of the processor capacity is idle, the computer will be

switched off.

Before the Wake Render Farm button implementation the render machines were

switched on and off manually. Obviously, it caused inconvenience and electrical energy

waste when the machines were up without any render jobs assigned. The Wake Ren-

der Farm button provides switching on the whole render farm (currently 19 machines)

by a single click. Once a machine is set up to receive wake-on-lan packets, its unique

hardware address of a network card could be added to the list, so that the button would

affect the new machine as well. Currently powering the machines on is the only auto-

mation feature connecting the render farm and Studio Manager. More features, such as

sending a specific task to the render machines through the application, are being de-

signed. The frames that are created during this specific rendering task could further be

redirected to a certain folder by means of automation. Additionally, these frames could

act as a base sequence for dailies creation and thus connect the implementation of the

render task management with another Studio Manager module internally.

Just as the new file browser tab features, the SSH tab enhancements speed up the

general workflow of the studio. By using the powerful console commands it is possible

to set up the appropriate file and directory permissions and preserve these permissions

for subfolders. The command line also allows powering on the numerous local ma-

chines by sending special packets. From the user perspective all of this is done by

clicking the appropriate button, which corresponds to automation as the primary pur-

pose of Studio Commandor.

28

4.4 GUI Improvements and Documenting Issues

In Chapter 2 it was mentioned that the old version of Studio Commandor had several

graphical user interface issues that confused the user. Some of these issues were

solved during the project. Figure 10 illustrates the main tab of the new version of the

application.

Figure 10. Main tab of the new version of Studio Manager.

Figure 10 demonstrates the GUI enhancements of the application main tab. If com-

pared to Figure 5, the differences can be clearly seen. First of all, the daily settings are

placed vertically in a table widget with a scroll possibility. The settings area was com-

pletely reworked in order to keep the GUI clean and appealing to users. Reset to de-

faults button was added to change all of the settings to their default values. Secondly,

the upper right corner snapshot now actually shows the middle frame of the selected

sequence, which is far more comprehensible by users than the previous implementa-

tion. Thirdly, the Exit button is deprecated and the default closing button is now re-

sponsible for saving the window geometry and its position on the screen to be restored

on the next application launch.

29

It is also essential to note the adding of Update Dailies List button to the main tab. It is

used for updating the current dailies list in case the new dailies were added on the re-

mote computer. The new button in the bottom left corner of Figure 10 is responsible for

creating dailies using the old script, but is scheduled for deprecation, since the new

script is operational. As outlined, all graphical user interface improvements implement-

ed in Studio Commandor during the project are aimed not only to place widgets on the

screen more effectively, but also to be more appealing and less confusing for the studio

employees.

In addition to GUI improvements one minor issue should be covered, namely docu-

menting the code of the project. Although it is not an implemented function itself, it

closely relates to all implemented functionality described in this chapter. Most im-

portantly, there is no official documentation, but in-code commenting only. Examples of

such commenting can be found in Appendix 1. The reason for lack of proper documen-

tation is that initially multiple scripts were merged into an application and further devel-

opment went on rapidly, maintaining the agile style. Naturally, the small scripts were

not documented and the application development continued similarly. However, for

Studio Manager the in-code commenting is sufficient, since the project does not have

the complicated class structure. Moreover, the class and method names are self-

explanatory for possible future developers of the project.

30

5 Discussion

This chapter explains the overall view of the application, describing the interactions

between Studio Manager, the users and the local server. The ways and possibilities to

set up the fully functional application from scratch are outlined. Additionally, the

strengths and limitations of the whole project are described in detail.

5.1 Overall View of Studio Manager

As explained in the Introduction section, the scope of the project was limited to the

company where it was undertaken. The main reason for this limitation was the rigid

bond between the application and the local server. Therefore it is necessary to show

the entire perspective of the application with employees as users on one side and the

local server on the other. Figure 11 gives a visual representation of these connections.

Figure 11. User-Application-Server interaction diagram.

Obviously, all the important work files and folders are located on the server. The same

applies to the project settings, which become loaded at the Studio Manager launch.

The user changes only the local settings, which are written to the special files in the

corresponding home folder. These settings include directory remembering, sorting re-

membering, saving and restoring the application’s window position and geometry and

other similar settings. Figure 11 clearly shows how the application encapsulates the

important aspects of server usage, preventing the users from direct access. Although

this encapsulation system is primitive, the general idea still applies and leaves room for

further development to achieve the minimal possible direct interaction of the users and

the local server.

Work submit

Settings retrieving Settings change

Settings retrieving

Settings saving

User

Home folder

Studio Manager
Local settings

Local server

Project settings

31

In order to outline the broad view of the application it is also important to describe the

theoretical restoration of the whole system from scratch in case the local server crash-

es. It is vital to know exactly how Studio Manager addresses the server. Basically, all

interactions between the application and the server converge to a properly named di-

rectory tree. Setting up a new local server to be fully compatible with the application

would require one of the following two options to be chosen. The first way is to name

the local server project tree exactly the same way as it had been set before. The sec-

ond way implies tweaking the corresponding server addresses within the application.

Any of these alternatives are realistic to complete within an hour. Therefore, the appli-

cation-server interaction is easily restorable.

Naturally, the local machines need to be set up properly as well. As mentioned earlier

in Chapter 2, Studio Manager actively uses the command line tools. These tools in-

clude additional software and libraries required for effective application operation. Alt-

hough most of them are included in the default system “out of the box”, some may re-

quire manual installation. However, once a single system is configured and the applica-

tion is fully functional within this system, it can be cloned to other hard drives using

various cloning tools. At Algous Studio the system cloning has been successfully per-

formed to the new machines using the CloneZilla software. Of course, the system gets

duplicated and some actions still need to be undertaken to set up the newly created

system. These actions include the new user creation, changing the hostname of the

machine and verifying the hardware operation. Nevertheless, such actions take con-

siderably less time than installing an entirely new operating system from scratch.

Summarizing the facts presented above, it is possible to state that the application and

the environment required for its operation are fully restorable from scratch, provided the

corresponding hardware is ready for installation. The amount of time needed to com-

plete such restoration mostly depends on the number of local machines. While the pro-

ject is limited to a single company, theoretically speaking, the application is transferra-

ble to other companies. From the technical side, the possibility to transfer the applica-

tion gives a variety of opportunities not only to develop the existing modules of Studio

Manager, but also to tweak them in order to fit the trivia of other environments and

tasks, including both project management and automation. The idea applies to all envi-

ronments running Linux as the primary system and tasks related to computer graphics

production.

32

5.2 Benefits and Possible Improvements of Studio Manager

Since the project is on-going, it is challenging to objectively evaluate its results. How-

ever, the goals that had been set before the project were successfully met. Chapter 4

gave a thorough view of the application enhancements and improvements implement-

ed during the project. Generally, Studio Manager effectively accomplishes the assigned

automation tasks and helps keeping track of studio projects by creating dailies appro-

priately and encapsulating the local server from direct user access.

Another important benefit of the application is its fast operation. Time is a vital resource

that should always be considered and one of the application functions is to preserve as

much time as possible. Also, the application is reliable to a high extent, since it is being

tested by the employees on a regular basis and all possible bugs become eliminated

rapidly. An essential advantage of Studio Manager is the possibility to add various

modules and functionality simply by adding more tabs to the graphical user interface. In

case the functionality is required, a new tab can be easily created to place all the

needed widgets.

On the other hand, the application is rather demanding to preinstalled software and

libraries. It simply would not start if a certain essential package was missing from the

system. Another possible scenario is the lack of certain functionality, when special

command line utilities are invoked by pressing a certain button. Externally it would

seem that no procedure was invoked by the button, but internally an error occurs.

Thus, the application could be improved by adding more GUI errors that would inform

the user of possible software missing from his or her machine. In that case launching

the application from the command line for further debugging could be avoided or at

least reduced.

An alternative to extending the GUI error system would be creating an ultimate collec-

tion of packages needed by Studio Manager to operate properly with further automatic

installation of these packages. This method could unify the application installation pro-

cess and make its integration easier and more reliable. Obviously, the described meth-

od is more demanding. Fortunately, the Linux operating system is quite flexible with

software installation and scripts could be used to implement this alternative method.

33

Generally, the error handling system is organized in a way to give a user feedback

through standard output, which is the reason for a terminal to be launched together

with the application. Since most errors occur if a needed package or library is missing,

it is easy to trace the issue by reading the standard output messages. Most of other

possible errors and warnings are displayed as GUI messages. For example, if a user

presses the Create Daily button without selecting a sequence, a message saying “Se-

lect the sequence!” appears. Also, there are a few try/except blocks in the code to take

care of possible runtime errors. More of these could be added in the appropriate places

in further application development.

However, errors occurring within external software invoked by Studio Manager are not

handled. The reason for that is encapsulation of the user interface in such ways that

the user simply cannot pass inappropriate parameters to the external software. If it still

happens, the problem origin lies within the application and should be fixed. Other errors

related to external software can be handled by analysing the standard output messag-

es. This error handling system could be added in future development, if its implementa-

tion was strictly required.

Although a number of graphical user interface issues were resolved during the project,

the GUI could still be improved or even completely reworked. Initially the project im-

plied simple layouts and a few buttons and combo boxes, so there was no need to de-

sign the GUI thoroughly. As the application grew larger, the GUI issues emerged on

some of the tabs, which resulted in this need of implementing the new GUI. It is not an

urgent matter now, but as the Studio Manager functionality increases, the issue will

gain more concern. The Qt Designer software could be used to rework the existing

graphical user interface to a far more appealing, consistent, and stable one.

Finally, the code organization could be improved by separating the application into

several source code files with proper addressing to each other. Naturally, the number

of lines of code will increase as the application gains new functionality. Therefore,

keeping the code clean and structured will become more important, even though there

are numerous methods with a scripting origin within the application code. Additionally,

the application lacks proper documentation. The documenting issues were covered in

section 4.4. However, the appropriate documentation could still be added to keep track

of the code changes and to make further application development easier for program-

mers.

34

6 Conclusions

The goal of this project was to enhance and develop the project management applica-

tion serving multiple purposes, mainly automation of the routine tasks within a studio

making visual digital effects for movies. The application was also meant to combine

various software tools to achieve the tasks. The project outcome was successful, since

the application was developed and enhanced according to the initial plan. The signifi-

cance of the project results can be measured by the implemented functionality and by

keeping in mind the fact that the employees of the studio utilize most of the application

features regularly.

The most used feature implemented during the project is the new daily script, allowing

a rapid sequence to video conversion with a possibility to change multiple parameters

of the output. Other implemented features include a significantly enhanced file browser

with various remembering features, filtering and sequence renaming modules. Addi-

tionally, important features of powering on the render farm and controlling the permis-

sions on the server were implemented. The graphical user interface of the application

was altered as well in order to make it more appealing and comprehensible by users.

The development of the application is on-going, hence the results can be considered

as intermediate, meaning more modules can be enhanced and more functionality can

be added to the application. The limitations of the project include its target operating

system, which is Linux only and the need of the special directory tree organization on

the local server. Otherwise, the project was successful, since it was carried out within a

single company for the definite purposes of this company and these purposes were

reached. Apart from the new modules, future development of the project might focus on

further graphical user interface enhancement and the unified installation package crea-

tion for the application.

35

References

1 Quiring C, Foster T. Mastering Resource Management Using Microsoft Project
and Project Server 2010. Ft. Lauderdale, FL, USA: J. Ross Publishing Inc.; 2011.

2 Cobb CG. Making Sense of Agile Project Management: Balancing Control and
Agility. Hoboken, NJ, USA: Wiley; 2011.

3 Shotts WE. Linux Command Line: A Complete Introduction. San Francisco, CA,
USA: No Starch Press; 2012.

4 Closa D, Gardiner A, Giemsa F, Machek J. Patent Law for Computer Scientists.
Berlin, Germany: Springer Berlin Heidelberg; 2010.

5 Von Hagen, W. Ubuntu Linux: Featuring Ubuntu 10.04 LTS. 3rd ed. Hoboken,
NJ, USA: Wiley; 2010.

6 Lutz, M. Programming Python. 4th ed. O'Reilly Media; 2010.

7 Gift, N. From scripting to object-oriented Python programming [online]. IBM de-
veloperWorks; 14 July 2008.
URL: http://www.ibm.com/developerworks/aix/library/au-scripting_to_oo/. Ac-
cessed 19 December 2012.

8 Riverbank Computing Limited. PyQt Whitepaper [online]. 2009.
URL: http://www.riverbankcomputing.com/static/Docs/PyQt4/pyqt-whitepaper-
a4.pdf. Accessed 21 December 2012.

Appendix 1

1 (8)

Key Code Excerpts

The new dailies script:

 def create_daily(self):

 server="//sun/EARTH/graphics"
 project=str(self.proj_combo.currentText())
 dailies_dir="dailies"

 kmb=str(self.kmb_combo.currentText())
 projDispName=str(self.proj_combo.currentText())
 override=str(self.versionLine.text())
 version="_V"+override
 date=str(time.localtime()[0])+"."+str(time.localtime()[1]).zfill(2)+"."+str(time.localtime()[2]).zfill(2)
 extension_mov=".mov"

 notes=unicode(self.notes.toPlainText())
 if "Type the " in notes:
 notes=""

 if not self.seqLst.selectedItems():
 item= "Select the sequence!\n"
 QMessageBox.warning(None,QString(item),QString(item))

 list_=[]
 for i in self.seqLst.selectedItems():
 list_.append(str(i.text()).split()[0])
 y=str(self.seqLst.selectedItems()[0].text())

 fileRead=str(list_[0]).replace("\\","/")
 renderpath=fileRead.split("%")[0]
 print 'renderpath', renderpath
 files = filter(os.path.isfile, glob.glob(renderpath+"*"))

 if renderpath.endswith("/"):
 files=filter(lambda i: str.isdigit(i.split("/")[-1][0]), files)

 files.sort(key=lambda x: os.path.getmtime(x))
 one_of_the_files=os.path.join(renderpath,files[-1])
 print str(one_of_the_files)

 ########### find the image size #################
 fout = os.popen('identify ' + str(one_of_the_files))
 imageInfo = fout.read()
 size = imageInfo.split(' ')[2]
 width = int(size.split('x')[0])
 height = int(size.split('x')[1])
 ratio = float(size.split('x')[0])/float(size.split('x')[1])

 ### find the digits ######
 digits=[]
 p=re.compile('\d+')
 for everyJpeg in files:

Appendix 1

2 (8)

 digits.append(int(p.findall(everyJpeg)[-1]))
 sortedDigits = sorted(digits)
 last_frame = max(sortedDigits)
 first_frame = min(sortedDigits)

 dailies_path=os.path.join(server,project,dailies_dir,date)
 daily_name=kmb+version+extension_mov
 daily=os.path.join(dailies_path,daily_name)

 first_frame=str(first_frame)
 last_frame=str(last_frame)

 if not os.path.exists(dailies_path):
 os.mkdir(dailies_path)
 else:pass

 first_frame=y.rsplit(" ",2)[1]
 last_frame=y.rsplit(" ",2)[2]
 y=y.rsplit(" ",2)[0]
 padding=int(y.split("%0")[1][0])

 fn=y.split("%0")[0]+"{"+first_frame.zfill(padding)+".."+last_frame.zfill(padding)
+"}"+y.split("%0")[1][2:]

 if self.slate.isChecked():
 slate = 1
 else:
 slate = 0

 cache = float(unicode(self.cacheComboBox.currentText()))

 fontsize=str(self.fontSpinBox.text())
 fps=str(self.fps.currentText())

 scale=str(self.resolutionComboBox.currentText())
 if scale and not scale == 'As input':
 if "/" in scale:
 width = int(int(width)*eval(scale+".0"))
 height = int(width/ratio)
 else:
 width = int(scale.split("x")[0])
 #height=int(width/ratio) ##here either aspect height is calculated
 height = int(scale.split("x")[1]) ##or the given height from the options is forced (both should
work for normal sequences)

 cacheHeight = '0'
 if width/cache < height:
 cacheHeight = str(int((height - width/cache)/2))
 print 'cacheHeight', cacheHeight

 print 'sequence fn (with {})', fn
 print 'first frame', first_frame
 print 'padding', padding

 slateFrame = str(int(first_frame)-1)

Appendix 1

3 (8)

 slatePath = renderpath + slateFrame.zfill(padding) + y.split("%0")[1][2:]
 sequence = renderpath + '%0' + str(padding) + 'd' + y.split("%0")[1][2:]

 version=self.get_version()
 project=projDispName
 date=datetime.date.today().strftime("%d-%m-%Y")
 length=str(int(last_frame)-int(first_frame)+1)

 fontToUse = '/usr/share/fonts/truetype/freefont/FreeSans.ttf'
 command="#!/bin/bash\n"
 com-
mand+='fps='+fps+';cacheHeight='+cacheHeight+';version='+version+';kmb='+kmb+';slate='+str(slate)+';l
ength='+length+';project='+project+';studio="Algous Stu-
dio";width='+str(width)+';date='+date+';a='+str(first_frame)+';height='+str(height)+';fontsize='+fontsize+
';\n'

code omitted here – reading various parameters and adding them into the script

 #getting back the original height value before ffmpeg conversion
 command += 'let height=height+1\n\n'
 #ffmpeg starts here
 command += 'ffmpeg -y -f image2 -start_number_range 1000 -r '+fps+' -i '+sequence+' -vf "mov-
ie='+os.path.expanduser('~/canvas.png')+' [watermark]; [in]scale=$width:$height [scale];
[scale][watermark] overlay=0:0, drawtext=text=%{n}: expansion=normal: fontfile='+fontToUse+': x=w-
tw-10: y=h-lh-10: fontcolor=white: fontsize=$fontsize: shadowx=1: shadowy=1 [out]" -f mov -q:v 0 -
vcodec mjpeg '+daily+'\n'

 print command

code omitted here – generating and executing the script

 os.system('djv_view ' + daily) ##open the newly created daily
 if slate:
 os.remove(slatePath) ##delete the slate frame
 if self.remember_format.isChecked():
 self.d_history("w")

The file browser enhancement methods:

class RenameDialog(QtGui.QDialog): ##a dialog for renaming sequences
 def __init__(self,data, parent=None):

code omitted here - defining the layout and buttons

 def print_stout(self):
code omitted here – defining the table items

##checking the user input
 if not isEnteredStringPositiveInteger(it1) or not isEnteredStringPositiveInteger(it2):
 QMessageBox.warning(None,QString("Warning!"),QString("Padding and first frame must be
positive numbers!"))
 return -1
 elif int(it1) > 9:
 QMessageBox.warning(None,QString("Warning!"),QString("Padding must be 1-9!"))

Appendix 1

4 (8)

 return -1
 else:
 result=it0+' '+it1+' '+it2+' '+it3
 it.setText(result)
 self.table.resizeColumnsToContents()
 self.table.horizontalHeader().setStretchLastSection(True)
 return result

 def update_table(self):
 data=[]
 data.append(self.data)
 if data:
 self.table.setRowCount(len(data))

 for row in range(len(data)):

code omitted here – filling the renaming table

 self.table.resizeColumnsToContents()
 self.table.horizontalHeader().setStretchLastSection(True)
 self.table.setSelectionBehavior(QtGui.QAbstractItemView.SelectRows)

 def renameSeq(self): ##a function for renaming sequences - includes the renumber func-
tionality
 data = self.data
 old_first_frame=int(data.rsplit(" ",2)[1])
 old_last_frame=int(data.rsplit(" ",2)[2])
 numberOfFrames=old_last_frame-old_first_frame+1

 currentPath = unicode(data[:data.rfind('/')])
 oldPadding=int(data.split("%0")[1][0])

 result = self.print_stout()
 if result == -1: ##if user enters wrong stuff as padding or first frame, the sequence is
not renamed
 return
 newBaseName = result.split(' ')[0]
 try:
 newPadding = int(result.split(' ')[1])
 newFirstFrame1 = newFirstFrame = int(result.split(' ')[2]) ##kinda counters
 extension = result.split(' ')[-1]
 except ValueError:
 QMessageBox.warning(None,QString("Warning!"),QString("Spaces found! Get rid of the spac-
es!"))
 return
 currentPath += '/'
 for i in range(numberOfFrames):

code omitted here – intermediate renaming

 for i in range(numberOfFrames): ##need to do it through intermediate file
renaming (to avoid losing files)

 newIntermediateName = newBaseName

Appendix 1

5 (8)

 newUltimateName = newIntermediateName + str(newFirstFrame1).zfill(newPadding) + exten-
sion
 newIntermediateName = newIntermediateName + str(newFirstFrame1).zfill(newPadding) +
'zzz' + extension
 #print 'newIN is ', newIntermediateName
 #print 'newUN is ', newUltimateName
 os.rename(currentPath+newIntermediateName, currentPath+newUltimateName)
 print 'Renamed to', newUltimateName
 #old_first_frame+=1
 newFirstFrame1+=1

 self.accept()

 def changeSeqs(self): ##a function for expanding the sequences into multiple
frames
 p=self.parameter ##and contracting the frames back into the sequence
 path=str(self.addressbar.text())
 if self.seqs_check.isChecked(): ##if the 'sequences' checkbox is checked,
the nightmare function list_seqs
 print 'checked!' ##is called to list all files normally + contract the
frames into sequences if needed
 data=sorted(list_seqs(path), key=lambda item: item[p],reverse=self.sorting_order)
 self.update_file_list(data)

 else:
 print 'unchecked!'
 for name in list_seqs(path): ##unchecking the 'sequences'
checkbox leads to calling the listFiles function
 if name[1] == 'seq': ##(only in case there are sequences
in the current folder)
 data=sorted(listFiles(path), key=lambda item: item[p],reverse=self.sorting_order) ##list-
Files will list the frames as normal files
 self.update_file_list(data)
 break

 def filterList(self, dataFromInput): ##a function for filtering files and folders
 #self.refresh_file_list(0) ##according to the low textbar text input
 p=self.parameter
 path=str(self.addressbar.text())
 newList = []
 if self.seqs_check.isChecked(): ##filtering for sequences
 for name in list_seqs(path):
 if str(dataFromInput) not in name[0]:
 continue
 newList.append(name)
 else:
 for name in listFiles(path): ##filtering for frames and normal files and dirs
 if str(dataFromInput) not in name[0]:
 continue
 newList.append(name)

 data=sorted(newList, key=lambda item: item[p],reverse=self.sorting_order)
 self.update_file_list(data)
 #print newList

Appendix 1

6 (8)

 def fillTheStack(self): ##the function fills the stack combobox
 stackFile = open(self.stackFile, "r") ##with the info from the stack history file

 #if os.path.getsize(self.stackFile) > 0:
 checkCounter = 0
 for i in stackFile.readlines():
 self.stack_history.addItem(unicode(i.split()[0],'utf-8')) ##i.split()[0] means the item without
the newline symbol - \n
 checkCounter += 1
 if checkCounter > 10: ##not more than 10 items must be loaded
 break

 stackFile.close()

 def addToStack(self):
 stackFile = open(self.stackFile, "a")

 if self.stack_history.findText(self.history[-1]) == -1 and os.path.exists(self.history[-1]): ##if the
item is not there already and if the path is not bullshit
 self.stack_history.addItem(self.history[-1]) ##it is added to the stack
 stackFile.write(self.history[-1]+'\n') ##and is written to the stack history file

 if self.stack_history.__len__() > 10: ##here the maximum stack size is fixed
 self.stack_history.removeItem(0)
 stackFile = open(self.stackFile, "r") ##
 lines = stackFile.readlines() ##
 lines = lines[1:] ##these lines are added to prevent the stack history file
 stackFile.close() ##from overflowing
 stackFile = open(self.stackFile, "w") ##
 stackFile.writelines(lines) ##
 stackFile.close() ##

 stackFile.close()

 def openFromStack(self, n): ##a function for catching the signal of stack combobox -
changes the address
 self.addressbar.setText(n)
 self.history.append(str(n))

class SearchDialog(QtGui.QDialog):
 def __init__(self, parent=None):
 super(SearchDialog, self).__init__(parent)
 searchFormLayout = QtGui.QVBoxLayout()

code omitted here - defining the layout and buttons

 self.cancelButton.rejected.connect(self.reject)
 self.connect(self.searchButton,QtCore.SIGNAL("clicked()"),self.doTheSearch)
 self.connect(self.browseButton,QtCore.SIGNAL("clicked()"),self.chooseDestination)
 self.connect(self.searchResultsTable,QtCore.SIGNAL("itemDoubleClicked (QTableWidgetItem *)"),
self.triggerItem)

 self.setLayout(searchFormLayout)

Appendix 1

7 (8)

 def chooseDestination(self):
 f=QtGui.QFileDialog.getExistingDirectory(None,"Choose Directory",self.searchInLine.text())
 self.searchInLine.setText(str(f))

 def triggerItem(self, triggeredItem): ##called when item is doubleclicked, writes the path to
searchOutcome for further opening
 #print 'you triggered', triggeredItem.text()
 pathTriggered = self.searchResultsTable.item(triggeredItem.row(),1).text()
 if triggeredItem.column() == 1:
 self.searchOutcome = pathTriggered
 else:
 self.searchOutcome = pathTriggered + '/' + triggeredItem.text()
 self.accept()

 def doTheSearch(self):
 while self.searchResultsTable.rowCount() > 0: ##clear the search results
 self.searchResultsTable.removeRow(0) ##
 searchPath = str(self.searchInLine.text())
 searchCriteria = str(self.searchForLine.text())
 row = 0
 if searchCriteria:
 if os.path.isdir(searchPath):
 #print 'nice'
 for path, dirs, files in os.walk(searchPath):
 for filename in files:
 if searchCriteria.startswith('*') and not searchCriteria.endswith('*') and file-
name.endswith(searchCriteria[1+searchCriteria.rfind('*'):]):
 if row == 9000: ##preventing overflow
 break
 self.searchResultsTable.insertRow(row) ##adding new row

 item1 = QtGui.QTableWidgetItem(unicode(filename)) ##defining the items
 item2 = QtGui.QTableWidgetItem(unicode(path)) ##

 self.searchResultsTable.setItem(row,0,item1) ##putting items into the table
 self.searchResultsTable.setItem(row,1,item2) ##

 item1.setFlags(Qt.ItemIsSelectable | Qt.ItemIsEnabled) ##setting flags - users cannot
edit the search results
 item2.setFlags(Qt.ItemIsSelectable | Qt.ItemIsEnabled) ##
 row += 1 ##row increment

code omitted here – other search conditions

 else: QMessageBox.warning(None,QString("Warning!"),QString("Invalid path!"))
 else: QMessageBox.warning(None,QString("Warning!"),QString("Enter the search criteria!"))
 self.searchResultsTable.resizeColumnsToContents()
 if row > 1000 and row < 9000:
 self.searchStatusLabel.setText(str(row) + ' items found. Too many items! Specify the search!')
 elif row == 9000:
 self.searchStatusLabel.setText('Searching stopped - over9000 items')
 else:
 self.searchStatusLabel.setText(str(row) + ' items found.')

Appendix 1

8 (8)

 def removeSpaces(self, data):
 for path, dirs, files in os.walk(data, topdown=False):
 for dirname in dirs:
 print os.path.join(path,dirname)
 os.renames(os.path.join(path,dirname), os.path.join(path,dirname.replace(' ','__')))
 for filename in files:
 print os.path.join(path,filename)
 os.renames(os.path.join(path,filename), os.path.join(path,filename.replace(' ','__')))

 def convertMovToSeq(self):
 if self.formatChoice.currentText() == 'png':
 command = 'cd ' + str(self.seqDestinationLine.text()) + '&& mplayer -nolirc -vo png ' +
self.movToConvert
 elif self.formatChoice.currentText() == 'jpeg':
 command = 'cd ' + str(self.seqDestinationLine.text()) + '&& mplayer -nolirc -vo jpeg ' +
self.movToConvert
 os.system(command)
 self.convertDialog.accept()
 self.totalRefresh()

 def addTab(self):

 if self.detect_browser_tab() == 0: ##adding tab according to
the current browser tab address
 self.tabButtons[self.tabButtonCount] =
QtGui.QPushButton(self.left_browser_tab.addressbar.text())
 else:
 self.tabButtons[self.tabButtonCount] =
QtGui.QPushButton(self.right_browser_tab.addressbar.text())

 self.tabsButtonLayout.addWidget(self.tabButtons[self.tabButtonCount])
 for i in self.tabButtons:
 self.connect(self.tabButtons[i],QtCore.SIGNAL("clicked()"),partial(self.openTab,
self.tabButtons[i])) ##waiting for signal to open the tab
 self.tabButtonCount += 1

 def removeTab(self):
 #print self.tabButtonCount
 if self.tabButtonCount > 0: ##if there are tabs in the layout
 widget = self.tabsButtonLayout.takeAt(self.tabButtonCount+1).widget() ##
 #print widget ##
 widget.close() ##the last one is removed
 self.tabButtonCount -= 1

 def openTab(self, tabButton):
 #print tabButton.text()
 if self.detect_browser_tab() == 0:
 self.left_browser_tab.addressbar.setText(tabButton.text())
 else:
 self.right_browser_tab.addressbar.setText(tabButton.text()

