
Selecting a Deployment Automation Tool for
CRM Software in Elisa Oy

Karalar, Onur

2013 Leppävaara

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Theseus

https://core.ac.uk/display/38088790?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Laurea University of Applied Sciences
Laurea Leppävaara

Selecting a Deployment Automation Tool for CRM Software in Elisa
Oy

Onur Karalar
Business Information Technology
Bachelor’s Thesis
2013

Laurea University of Applied Sciences Abstract
Laurea Leppävaara
Bachelor’s Programme in Business Information Technology

Karalar, Onur

Selecting a Deployment Automation Tool for CRM Software in Elisa Oy

Year 2013 Pages 37

Software passes through several phases during its production process which are typically de-
signing, developing, testing and delivering. In the software development life cycle (SDLC), the
ultimate aim is to deliver the software product to its intended users with the expected func-
tionality. Deployment is a critical step which harnesses all the work done in the previous
stages in the SDLC and makes the software available to the end user. Thus, failure in the final
deployment stage will waste the effort expended in earlier phases.

The responsibility for deployment usually belongs to operations teams and it is done manually
or then partially automated, often using inefficient scripts. Manual deployment can be ex-
tremely difficult task, and it is easy to blunder with repetitive routines consisting of many
steps such as setting up similar environments and installing software components in those en-
vironments. Some operations teams attempt to ease the manual work by writing scripts to
automate the process, but ultimately this method can become complicated and burdensome.

The deployment process delays can be avoided and redundant costs eliminated in the error
prone manual deployment process by changing the work culture and automating said process-
es. There are several products on the market to help automate this process. Achieving fully
automated provisioning is the ultimate goal to produce and update services rapidly within
enterprise applications in large corporations. Full automation is accomplished when the envi-
ronments are set up automatically, and software installation is automatic in those environ-
ments.

The objective of this research is to introduce these automation tools to the Customer Rela-
tion Management (CRM) system at Elisa Oy and to develop a proposal for automating the de-
ployment process as an alternative to its current manual process. CRM as a large system con-
sists of numerous sub systems and software components. A deployment case with a selected
tool will be demonstrated to show how the automation can be accomplished.

Key words automated deployment, continuous delivery, deployment activities, deploy-
ment challenges, configuration management systems, service deployment tools

Table of Contents

1 Introduction ...5

2 Basic Terminology..6

3 Deployments Value in Business and in SDLC...7

4 Deployment Process and Activities ...9

4.1 Release... 11

4.2 Packaging .. 11

4.3 Distribution.. 11

4.4 Pre-installation Checks.. 12

4.5 Installation .. 12

4.6 Updates .. 12

4.7 Activation.. 13

4.8 Testing ... 13

4.9 Deactivation... 14

4.10 Adaptation... 14

4.11 Removal.. 14

5 Deployment Challenges ... 14

6 Case Scenario ... 18

6.1 Background of the System .. 18

6.2 Background of the Development and Deployment Process 20

6.3 Defining a Sample Deployment Process .. 21

7 Deployment Approaches and Architectures ... 22

8 Major Deployment Tools .. 23

8.1 Configuration Management Systems .. 24

8.2 Software Deployment Tools .. 26

9 Selecting a Tool Chain .. 28

9.1 Fabric... 29

9.2 Liverebel... 30

9.3 Rundeck.. 31

10 Solution to the Case Scenario.. 32

References .. 35

Figures ... 37

1 Introduction

The process of turning a new idea into a product which is ready for the final consumer con-

sists of several steps. In terms of software production, this process is called software devel-

opment life cycle (SDLC). Deployment plays a critical part in making the product available to

its end user. Handling deployments manually or with inefficient scripts can become a problem

in the long run for large systems since is time consuming, repetitive and technically difficult.

Although software may work well in the development environment after passing certain tests,

it is still not certain that it will work in the final machine in the consumer’s environment.

Even if, the software is successfully installed in the production environment, the software and

the environment itself will need upgrades or changes later. These changes in the system and

software should not affect the users with outages, session losses or defects in functionality.

Correct deployment is defined in terms of given identical inputs: the software should behave

the same on an end-user machine as on the developer machine (Dolstra 2006, 3).

Changing the work culture and automating the deployment process avoid delays and redun-

dant costs by eliminating error prone manual deployment process (Edwards, Schafer, Short-

land and Honor 2009). Achieving fully automated provisioning is the ultimate goal to produce

and update services rapidly within enterprise applications in large corporations.

The main aim of this report is to select the most suitable deployment automation tool by re-

viewing major automation products which are considered to be used in Elisa’s software pro-

duction department for the CRM software. Before evaluating any of these tools, we will have

an informative introduction related to deployment field. Instead of going in to detail of every

aspect, we will mention the most related areas to understand the purposes of these tools and

how they are used. Following section presents how the research work conducted, what are

the gaps in current practices and how to fill those gaps to propose new solution.

The research study consists of theoretical and practical approach. Theoretical part is in-

formative which points out the critical areas in deployment and introduces background in Eli-

sa Oy in a sufficient level along with a case scenario where we can work on actual problems

and search solutions for them. In the practical part, a selected tool is installed in a test envi-

ronment and tested to see suitability to our needs. Informative section starts with presenting

the basic terminology which will help us to understand the concepts throughout the research

and includes the activities involved in the deployment process. After this informative phase,

there is a case scenario from Elisa and analysis of some products in the market which will

help to ease the deployment process. After analysis of the current deployment process and

reviewing products in the market, we test an automation tool candidate and make a sample

6

deployment. Finally, outcomes and suggestions are presented according to these analysis and

experiments.

Automating deployment is a gradual work and takes a considerable amount of effort from

planning to implementation. Every system and software are unique with varying require-

ments, so there is no single solution fits for all covering a full range of deployment activities.

Hence, in different situation or case the needs must be identified and a solution must be se-

lected with highest benefits encompassing new policies and automation tools.

2 Basic Terminology

In this research paper software refer to components which make up larger software and can

be reused to make other software with same component pool with different combinations.

Therefore, software as a service must be perceived each time dependencies between compo-

nents are mentioned. The environment and provisioning of this environment for the software

are also other dependency variables related to software.

Development stage in SDLC starts in the developer’s machine which is called development

environment. Before the software is delivered it passes through many phases and tests. Man-

ual tests are not enough to confirm that the application is running correctly. Number of test-

ing environments can vary but they are mainly unit tests, user acceptance tests, quality as-

surance tests, manual tests and performance tests. The software is deployed to these envi-

ronments for testing and if it successfully passes these stages it is finally deployed to the pro-

duction environment. Production environment is the final destination where the software

lives and it reaches its intended users. This environment is the most critical one and its con-

figuration is duplicated in test environments to see any change affects as early as possible in

the testing stage. All the requirements of production stage are copied to test environments to

create the similar feedbacks on updates or changes. Production environment consists of one

or many servers and other hardware, required operating system and supporting components

with configurations of these systems.

Version control systems (VCS) are used to support collaborative work in a project with many

developers. Any change made to the project is traceable with version numbers of the soft-

ware. First developer checks out the code from the master which mirrors the project to de-

veloper environment from a repository server. Developer creates a new branch and starts

working on a new feature or just simply fixing a bug. Then he checks in these changes back to

mainline. Hereby all the source code is updated and a new version of the software is saved in

the repository. Distributed VCS allows many developers to work on the same project but in

7

different tasks. (Chacon 2009, 4)

Writing the code in high level languages (Java, C++, Python etc.) is not enough for the soft-

ware to run. In order to execute the software, this high level language first must be translat-

ed to computer language by compiling. Binaries as output of compiled code also must be

packaged for distribution to the environment for execution. All this process is called build

process and there are many build automation tools which compile the code, package, distrib-

ute, deploy, run tests automatically and copy these files to other locations. Build automation

is an important part of continuous integration and delivery.

Development team collaboration has become a necessity recently named DevOps consisting

both software developers who develops the application and operations team who makes the

application available and maintains the infrastructure. This collaboration eliminates frequent

contacts to developers what went wrong during deployment. If the delivery process is divided

between different individual groups such as development, DBA, operations, testing etc. the

cost of coordination of these silos is difficult after deployment. (Humble and Farley 2011, 6)

All the organization must be involved in the delivery process from build and release team to

developers, testers and operations. Devops is actually a new cultural aspect how software

development is combined with deployment pipeline instead of being realized as separate pro-

cesses. One of the aims in Devops is that it tries to deploy as fast as development develops to

ensure fast and efficient reaction to business changes. In short any code change should reflect

to the production environment as soon as it passes all the stages in development and testing.

This culture is governed by agile principles and appropriate automation tools selection. (Wat-

son 2013)

3 Deployments Value in Business and in SDLC

Business requires the ability to adapt fast changing market demands and business needs. Fun-

damental business process in today’s companies is getting the idea from inception to where it

generates revenue rapidly. Shortly if someone has a good idea, the question is how it is possi-

ble to deliver that idea to users quickly. In IT dependent company’s software is only ready to

generate revenue until it is made available to end users. This means developing the applica-

tion and checking it into source control does not complete the value stream until it is de-

ployed to customer site. Updating the software and successfully deploying each time as often

as business requires is the most favourable output a software development and operations

team can produce. If an efficient deployment pipeline is not established the deployment will

take many days until the software is ready for end users. This is not encouraging for a compa-

ny which needs to make several changes a day and make those changes available to users. If

8

anything goes wrong at this stage it might induce outages and even worse for example, the

customer will be charged but his action will not be recorded in the system. An unstable de-

ployment pipeline might cause monetary and reputational losses. (Edwards 2010)

Software delivery and deployment differ from each other in the context of SDLC. Software

delivery includes all the necessary work to deliver the software across all phases of SDLC alt-

hough deployment is just a subroutine in SDLC implemented several times repeatedly in envi-

ronments such as developer workspace, QA and UAT testing, performance test environments

towards production environment. For example, you can deploy rapidly to a UAT environment

but it is not delivered until it is deployed to production and made available to users. Deploy-

ing the successful builds to production environment is the actual act what makes the software

available to the user. It also requires configuration of various environments for installation

and execution of the software in that target environment. Since an application is deployed to

production only after passing several stages, deployment is more frequent in preceding stages

than the production environment. The deployment process includes complex tasks like build-

ing from the source code, packaging, distributing, installing and activating (instantiating, ini-

tializing and executing the binaries). Delivery process ensures that business is always ready to

respond quickly to the market changes whereas deployments feed this process through in-

creased efficiency in IT operations. (The International Foundation for IT 2009)

Figure 1 from IBM is a rational unified process presenting software development contents and

frequency of tasks in each content. We can see deployments relation to other contents and

frequency in different phases of development.

9

Figure 1: Deployments place in Rational Unified Process

In the diagram below the delivery process and its relation to deployment is presented. De-

ployment is involved from construction to delivery.

Figure 2: Delivery process and deployments.

4 Deployment Process and Activities

The deployment process encompasses certain activities and most of them are done in a spe-

cific order where as some other activities are done throughout the whole process. Applying

10

these activities by scripting deployment and configuration files is not expressive enough to

manage the dependencies and configurations are hard to verify. But this method is practiced

very often. Even if scripts are used, the best way to ensure correctness of the scripts is to use

same scripts in test and production environments. By doing so, if something goes wrong during

deployment it is for sure that the problem is not about scripts but instead it is environment

specific configuration. If the environments are not identical, that adds up to the challenge.

The ideal deployment involves only two human tasks for deployment: picking the version of

software and pressing a deploy button. This action triggers numerous activities automatically

and makes debugging easier. Any change in any kind in executable code, configuration, host

environment and data, the delivery system should trigger a feedback system which initiates

tests. According to results feedback is delivered simultaneously and the action is taken ac-

cording to feedback. Figure below shows how a change is moving through a deployment pipe-

line (Humble and Farley 2011, 109). Deployment activities must be automated where possible

to avoid each error prone steps in activities described below.

Figure 3: Changes moving through deployment pipeline

In this section, all main activities are reviewed from development to final delivery. These

actions are always present whether the process is automated or not. The best way to avoid

human errors of course is to automate as many of these activities as possible.

11

4.1 Release

Release phase starts right after development stage connecting it for the processes prior to

installation and the rest of the deployment covering the whole following process. It encom-

passes assembly of all required files, packaging, transferring them to the relevant destina-

tions and feedback monitoring after installation. Required resources are determined here to

ensure the system has suitable environment. Information related to other activities in de-

ployment is collected for analysis and monitoring. Documentation is recorded regarding to

deployments including product version, product configuration, interfaces, deployment time

and delivery personnel information.

All the stakeholders involved in the software product are informed about the changes and

update. If this information is not accurate or missing, it will create customer dissatisfaction.

Most of the information is presented during sales for clean installations whereas less infor-

mation is needed for upcoming changes. (Mantyla & Vanhanen, 5)

The users are trained about the new features through several materials like manuals, online

instruction links or videos and on site meetings. After the training, there is an active custom-

er support to further help the customer.

Deployment is scheduled with the customer whether it is a clean install or an update. Cus-

tomer can do the deployment themselves but in some cases experts from third party vendors

might be required to be present during deployment.

4.2 Packaging

After the assembly of the files comprising the software, they are packaged in specific folders

in a certain order so that they can be transferred to the target environments such as testing

and production. This package must contain the system components, deployment descriptor

specifying the procedure, a system description which includes its requirements, external

component dependencies and all other system management information in consumer site.

4.3 Distribution

The software is transferred several times to different environments with many servers or

nodes until it is finally moved to production environment. Product is first transferred to test

environments from development then to production environment when it passes all the nec-

essary tests. Distribution of the archive files are mostly done with interconnected networks

and transferring packages to the environment. In some cases, distribution to customer CDROM

12

is still used via deliverable CDs. Today’s most deployments use the internet as a channel for

distribution such as FTP and other web technologies.

4.4 Pre-installation Checks

In order to make a new installation, there are preparation activities implemented in customer

site. Customer data is imported to the environments and some conversions between data

types might be required. It takes long time to implement these data structures in test and

production environments if data models are complex including massive databases.

Before or during installation the product is configured according to customer needs. At this

stage both the customer and the vendor is present since they learn from each other about the

software capabilities and customer business process respectively. Creating software which is

configurable according to diverse customer needs is a technical achievement.

Software is integrated to customers other systems by using interfaces in middleware technol-

ogies with the help of vendor and customer experts. Several components talk to each other

through interfaces or calling methods in other parts of the system.

Backup of databases and executable files are performed before installation. If there are peri-

odic backups already, there isn’t need for doing it before installation.

4.5 Installation

Installation is the most critical step in deployment since the actual merging of the software

and environment is done in this stage by recruiting all necessary resources from the system.

Pre installation checks are performed in advance regarding to environment, dependent exter-

nal components, resources and integrity of the installation package. At this stage, the pack-

ages are already transferred to target environment and configuration are completed for the

activation of the software. After the package is transferred to the environment it must be

extracted for binary execution therefore, a package extraction program should be triggered

first.(Carzaniga, Fuggetta , Hall , Heimbigner, Hoek , and Wolf 1998, 5)

4.6 Updates

Updates are easier than clean installations since installations require implementing customer

specific data models and configurations in the beginning. Updates are a simple type of instal-

lation where the minimal configuration changes might be required without more comprehen-

sive adjustments in the environment. Clean installations or certain updates are done by ex-

13

perts from vendors or third party agents. Simple updates can be done by the customer follow-

ing instructions or vendor can help remotely. Figure below shows an update moving in a basic

deployment pipeline from a commit stage to deploying into certain environments (Humble

and Farley 2011, 111).

Figure 4: Basic deployment pipeline

4.7 Activation

After installation, the executable files should be run in order to start all the services which

make up the whole system. Executing binaries will make the system available to the user for

running the intended business processes. In clean installations, the servers are stopped and

restarted before the software is activated after installation. There might be also other sys-

tems need restarting which are relied upon.

4.8 Testing

Vendor tests the software according to customer specific aspects in their premises. If a full

test cannot cover all aspects due to lack of identical environment specifics in customer site,

more testing is done in customer site with cooperation of the customer and vendor experts.

Most ideal situation is when an environment identical to production environment can be cre-

ated. But that might be challenging since customers doesn't have resources to duplicate the

14

production environment.

4.9 Deactivation

Deactivation is shutting down an active component of an installed system. Deactivation oc-

curs in order to update a part of the system. After the update, the deactivated component is

activated again. If the intention of the deactivation is uninstalling the software, then activat-

ing again is not needed.

4.10 Adaptation

Adaptation is required when an environment changes where the software resides. In environ-

ment updates hardware, operating systems or configurations changes are unlike software up-

dates which the product itself changes. This requires the software to adapt these environ-

mental changes. An example can be if we rip off one of the servers from the system, system

should still adapt to the new model and serve to its users without any interruptions or opera-

tional malfunctions.

4.11 Removal

When customer business process change in a way that the system is no longer needed the

software can be uninstalled after deactivation. After uninstallation other part of the system

can be reconfigured to function correctly after the removed software. Dependencies are con-

sidered where other systems interacted with the software when it was part of the mechanism

so that removal doesn't have side effects.

5 Deployment Challenges

Back in the days, deployment was as easy as just inserting a CD to the customers CD-ROM for

updating or installing the new software. With the advance of the internet, it is done via vary-

ing sophisticated data communication channels requiring configurations in the hosting envi-

ronments. First the source code is developed and tested then followed by a complex release

process. The environments that host the software are often crafted individually by operations

team. Third party software that the application relies on is installed. Configuration infor-

mation is copied to the production host consoles of web servers, application servers, or other

third party components of the system. Reference data is copied and finally the app is started,

piece by piece if it is a distributed or service oriented app. Difference in ordering and timing

of these steps can lead to a different outcome. So it is not simply copying binary files to cus-

15

tomers system. There are several issues to consider such as managing dependencies, orches-

tration and configurations, variables in heterogeneous environments, change management

and teams collaborations. We don't aim to solve all of these issues but it is beneficial to point

out as many of them as possible now for allowing future development.

Software demands correct configurations and certain resources from its environment in which

it runs. These dependencies are mainly configuration files, modifications in operating sys-

tems, existence of other dependent software’s and available resources like memory or net-

work connections. Therefore, delivery team first checks if the other components exist in the

customer site and the configurations are fulfilling the software requirements accompanied by

adequate clusters of servers and other technical pieces. Configurations in individual machines

in clusters must be identical. This kind of environmental challenges are addressed in configu-

ration management tools which are particularly designed for easing the system side issues of

deployment.

Deploying to large systems brings more challenges than simpler systems. Continuously evolv-

ing Web 2.0 companies use software-as-a-service (Saas) business models and N-tier architec-

ture in their products such as E commerce services or social network applications. Updating

these systems may require changes in thousands of machines and services in those machines

might have varying dependencies in heterogeneous environments. An intermediate enterprise

web application consist of at least three main tiers as the web, application, data tiers rather

than having simpler two tier client-server architecture. In a most elemental form, an N-tier

architecture will include a client environment where a user touches the system, an HTTP

server to deliver web content to client, an application server for business logic and database

server for storing the data all running in separate machines. Each of these tiers will be parti-

tioned into sub tiers according to workload and architectural needs. The amount of tiers is

directly related to the complexity of the system (Mukhar & Zelenak 2006, 6). Management of

these systems encompasses complex relationship between human and computer tasks. Auto-

mation in deployment purposes should focus eliminating manual human tasks.

Today’s software is far more different than their stand alone, self-contained predecessors.

Heterogeneous components form inter-dependent relationships to construct multi-purpose

mechanisms. A component actually will be built upon dependent pieces including data, other

executable files, documentation and instructions at separate locations in wide area networks.

Developing and deploying enterprise level business application software requires thorough

planning and implementation techniques especially when working in large teams, long-lived

services and numerous interconnected systems. These mechanisms house multiple services

which encapsulate and interfaces dependent components. A change to any of these compo-

nents is going to affect the other services functions which use the dependent components. An

16

implicit dependency in a development environment may impose a hidden risk when it is im-

plemented in a deployment environment. Applying component upgrades or removing a com-

ponent will overwrite or delete a functionality affecting part of the entity if that component

is still in use by others. Therefore predefined steps must be followed safely in order to man-

age any changes in packaging, distributing, installing, updating and uninstalling. Deploy per-

sonnel should also be able to react to third party component updates or changes that are not

under their control.

Environments are often shared between several applications which cause complications. Extra

care must be taken when preparing the environment for a new deployment of an application

so that it will not disturb the operation of other applications in the same environment. This is

done by ensuring that changes to the configuration of the operating system or any middle-

ware don’t cause the other applications to misbehave. There shouldn’t be conflicts between

the chosen versions of the applications. The applications sharing the environment may de-

pend on each other as a common practice in service-oriented architecture. Dividing an appli-

cation into a collection of loosely coupled, well-encapsulated, collaborating components is

not only good design. It allows for more efficient collaboration and faster feedback when

working on large systems. In this situation, the integration testing environment is the first

time that the applications will be talking to each other involving deploying new versions of

each of the applications until they all cooperate. At the end smoke test suite which is set of

acceptance tests will run against the whole application.

Advancements in data communications and increased usage of the internet made it possible

to download and install third party components after reading their specifications and re-

quirements. Even if the component is found with the functionality needed it must be still

compatible with the rest of the system and able to run in target environments. These compo-

nents require reliable connections to talk to others. Integration with the internet reveals an-

other dependency variable which makes deployment a distributed problem. Third party com-

ponents are usually part of other entities at the same time. Any change to these third party

services will affect the system especially if there is a more tightly coupled relationship. If

these challenges are not realized as nature of the modular architecture, it will encourage

monolithic application development which is an inefficient way of production causing soft-

ware duplications. However, solutions must be thought modular architecture in mind.

The hardware consists of mainframes, workstations, servers, personal computers and mobile

devices, all possibly running different operating systems construct a heterogeneous environ-

ment. All these platforms work together and challenges exist for software development con-

sidering interoperability. Platform types are one of the variables which involve configurations

and dependencies. (Carzaniga, Fuggetta , Hall , Heimbigner, Hoek , and Wolf 1998, 7) The

17

automation software therefore must comply in all these environments and act as a platform

and language neutral agent.

Another issue is that updating software in heterogeneous networks is not as easy as updating

single technology family. This issue might create security risks as software need to be updat-

ed frequently and it should be always up to date. After determining whether updates are

available, the update decision is made considering behaviour of the updates software and its

dependencies.

Development team is responsible for making the changes and developing the software where-

as operations team is responsible for the maintenance and availability of the environment

where that software resides. Agile and lean development techniques allowing release ready

software has grown faster than the operation teams capabilities which caused a bottleneck in

deploying the applications. This resulted in delays, long outages and lack of confidence in

deployments. There is also a necessity for experts’ presence like a database or system admin-

istrators during deployments since they might be the only ones who have the environment and

product domain knowledge in case a complication occurs. Experts deal with repetitive and

trivial tasks rather than more valuable creative tasks. These tasks are not repeatable for the

future use since it is done manually. Using a common automation tool for both developers and

system operators will reduce the dependency to experts and related troubles in their absence

while increasing confidence in deployments by avoiding unpredictable outcomes. This prac-

tice will increase the knowledge transfer between developers and operations personnel and

create more available manpower. Most of the critical deployment tasks occur in customers’

site which requires authenticated access by only proficient personnel. A proper deployment

automation tool will give the appropriate admin rights in customers’ site for a flexible and

effective activity management.

A flexible deployment process allows migration between environments or adapts changes

quickly which is always a present possibility in business and technology. Otherwise, migration

can become a major issue causing delays in project schedules. The system should not depend

on any machines in the network. When a server is down or it is upgraded the deployment

pipeline must be able to react these changes and still keep the functionalities as expected.

(Nayak, Sudarsan, Venkataramappa, Wang and Williamson 2005. 2)

Manual deployment requires extensive documentation which describes detailed information

related to steps to be taken. This documentation has to be updated frequently which is time

consuming involving many people. It is hard to verify who followed the documentation and

implemented it accordingly. Automated process is more auditable than the manual one.

(Humble and Farley 2011, 5)

18

6 Case Scenario

We have identified the activities in general and issues related to deployment. In this section,

we introduce the complexity of the system used in Elisa and current software development

process. This section will emphasize the practical challenges and reasons why automation is

required including in what spectrum of activities that it can be utilized. A sample deployment

with a selected automation tool is going to be presented afterwards.

The background information about the system and the process is acquired by interviews with

software development manager and dedicated CI team which consist of a DBA, CI architect

and a CI consultant. These personnel took part actively during the research with discussions,

technical support and providing necessary information. Internal documentation included com-

plete information which is an active wiki continuously being updated and improved by all de-

velopers. Another information resource was accessing the scripts themselves in Git reposito-

ries of projects which were used in deployments.

6.1 Background of the System

Elisa is a large IT company and it manages its internal and external operations with advanced

and complex technologies. The company has been in the market for many years and eventual-

ly its system and software is aged. Businesses have merged with other companies acquiring

their systems with different technologies and sizes over time. The legacy systems are com-

bined with today's latest technologies making it complex heterogeneous structure. There are

different projects and products managed separately in Elisa. Therefore, the tools and pro-

cesses used in each one of them vary. One of systems like the CRM is spread over a wide area

network in Finland and abroad with over 2.5 million users. High number of developers con-

tributing in this system makes team collaboration and orchestration a challenge. Many de-

partments in the company utilize CRM along with other systems for their internal business

process and managing customer interactions. Numerous subsystems and software components

make up to the bigger CRM system. One of the small applications is chosen as an input for the

automation tool candidate to see how the candidate handles the process.

CRM is used by customers, resellers and the company representatives. Customers can see and

manage their account information. They can view information and make purchases of various

products and services. Resellers have all required system functions such as reaching detailed

19

product and services information, communication and support. Company representatives use

this system through its advanced interface to search and manipulate any customer, product

and service related information.

The architecture used for enterprise level CRM application development is N-tier architecture

and components have dependencies among each other across the tiers. Depending on the

business requirements the system uses a variety of software and hardware technologies. Sev-

eral operating systems are used such as most of the UNIX systems like Solaris, Linux versions

and others such as Windows operating systems. Software languages including Python, Java,

Perl, Scala, Groovy, JavaScript and shell scripts are employed throughout development, coor-

dination and scripting purposes. Different products from varying vendors are part of the sys-

tem such as Tomcat, Resin and Jetty for application servers, MySQL, Nosql etc. for databases

and Linux machines for web servers.

In CRM system, the dependencies between components are complicated due to interdepend-

ent 200 components in addition to around 240 third party components and libraries. Currently

there are 136 software projects in different developer environments maintained simultane-

ously. Dependency figure from IVY dependency manager below shows dependencies in a part

of the system.

20

Figure 5: CRM dependency graphic

The introduction above gives a clear picture that this system requires sophisticated tech-

niques for development, management and delivery. Current methods used in deployment are

not efficient enough and we will be looking for better solutions with automation. In the later

sections, the deployment automation tools are analyzed for this purpose.

6.2 Background of the Development and Deployment Process

Continuous integration practices are applied currently by a CI team in the software develop-

ment department and it is improving towards continuous delivery. Automated deployments

comprise important part of the continuous delivery in addition to automated builds and tests.

This section explains the stages from development to deployment currently in practice in Eli-

sa OY for the CRM software. First developers in the production team check out and create a

new branch for a new feature from VCS. The development process starts in the developers’

local machine mostly using Eclipse IDE. The new code is built and tested locally using ANT

21

build automation tool. If tests are successful, the build artifacts are saved in local Git reposi-

tory then these changes are pushed to the version control system which triggers Jenkins con-

tinuous integration (CI) tool for integration and dependency tests. First, It compiles the

changed module and its dependencies followed by testing all modules. After passing this

stage, the artifacts are saved in Artifactory repository manager. Finally, all the code is

merged to the main trunk in VCS and tested several times such as automated acceptance

tests and manual tests. At this point, we have the code for a new feature or a bug fix, next

the deployment of this new version to the production environment is done manually and par-

tially by scripts. Production environment consists of application servers and databases. The

technologies used in this environment are same as afore mentioned background of the system

part.

Developers and other participants in projects use wiki for collaboration, documentation and

communication. Some automation tools send feedback right after developer actions such as in

CI environments but communication needed in the deployment process is managed with man-

ual communication means. If there was an automation tool, it could be able to report and log

deployment activities and their results automatically.

Current deployment is done by scripts additional to manual configurations which are hard to

maintain and requires on-duty experts during deployments. Users bear the risk to lose ses-

sions during updates and changes. It has a possibility to cause outages therefore a specific

time in a specific day is chosen for deployment to affect minimum amount of users. Any

changes in the system are not managed in a flexible and confident way. If a problem reveals

after deployment to production, a manual rollback and undoing changes are also a time con-

suming task. In the situation where the problem cannot be fixed quickly, the change must be

reverted to the previous change in VCS. The release ready product is not tested thoroughly

due to different testing and production environments therefore unexpected failures are likely

in deployments. Currently a team is assigned to create an identical test environment to pro-

duction. There are 20 deployments in average per month and improvements in deployment

pipeline can increase this frequency and its quality. Automation tools and changes in delivery

culture can be a solution to many issues in deployments.

6.3 Defining a Sample Deployment Process

A case scenario for deployment is the most basic form of deployment for the beginning. A

service among many other services which consists of CRM system is deployed to a certain

server with certain configurations. In order to limit scope, other services in Elisa Oy is not

mentioned other than CRM. Sessions of the users should be preserved during deployments.

Any outages should be avoided if deployment goes wrong by a rollback reaction from the sys-

22

tem. Deployment history should output the deployment time, version number and deploy per-

sonnel. Initially this is an ideal deployment but in the future number of requirements can in-

crease.

7 Deployment Approaches and Architectures

Approaches for deployment are mainly manual, script, language and model based methods

and each one has some advantages for special cases. A small scale system can benefit from a

manual or script based method with its fast start-up and easy to learn feature benefits. But

larger scale systems require language or model based methods. These more advanced ap-

proaches come with the cost of complexity and learning curve (Figure 3). They are not as fast

and easy to adapt as script based approaches. Below graph gives a clear picture of costs and

benefits of each approach. (Talwar & Milojicic 2005, 71).

Figure 6: Deployment Approaches

Depending on the complexity of the system and needs of the organisation a single deployment

tool or a tool chain might be required. The most common solution for managing automated

deployments in large systems is separating the process in two main tiers such as configuration

management(operations side) and application orchestration(developers side) (Figure 4). There

are tools which can manage both of the tiers in small scale systems with some extent but

none of them are comprehensive enough to cover all tasks in each tier within the whole spec-

trum. Therefore, an application tool chain is recommended as configuration management sys-

tems (CMS) and application service orchestration tools. Advanced CMS tools are usually model

based whereas application deployment tool can be sufficiently script based. Combining these

two tools will give more flexibility for large systems.

23

Figure 7: System configuration tier is for CMS and Service orchestration tier is for deployment

tools.

Fully automated provisioning ensures the ability to deploy, update, and repair the application

infrastructure. All deployments, updates and fixes must be done through this tool using only

pre-defined automated procedures rather than accessing to the individual machines. These

activities are done through a provided specification to the tool and the rest is handled auto-

matically by starting up, configuring and deploying the entire mechanism from bare hard-

ware(or virtual machines).(Edwards, Schafer, Shortland and Honor 2009)

Below we will look more in detail what are the typical features offered by these technologies

and products. In general, they include system and configuration description, packaging, dis-

tribution, installation, security, update and network management.

8 Major Deployment Tools

As we described before, there are two main tiers considering deployments automation which

are configuration management and software deployment tools. CMSs are beneficial for de-

scribing how the infrastructure should look and maintain it that way. Since CMSs are not de-

signed for remote scripting, software deployment tools complements this task. They are re-

viewed in two different sections and tables are drawn to compare fundamental features and

properties.

24

There are large amount of products in the market and it is impossible to review all of them.

While selecting these products criterias should comply certain conditions such as popularity,

large community support, active development, ease of use and special features. The review

list is not limited to open source products since a commercial tool might provide a superior

feature which is worth the costs. Nevertheless, if a commercial product is not distinctive

enough, we preferred to review open source tools.

Popularity and broad community support ensure to find help quickly when there is an issue

with the set up or implementation. Active development shows that the product is not aban-

doned and is still evolving by trying to answer market needs. Features and attributes of the

products what makes them special if they can offer a solution to known problems. User

friendliness is a matter since there will be many users using this tool including managers, jun-

ior developers, software developers and system administrators. These were the most funda-

mental guidelines to select possible candidates for further review.

There are three options for deploying into remote machines. The most powerful one consists

of a tool chain which packages the application up using platforms packaging technology and

has an infrastructure management or deployment tool to initialize the middleware. Deploy-

ment tools like Rundeck and infrastructure management tools like CFEngine and Puppet are

declarative and idempotent, ensuring that the right version of the packages is installed on all

necessary boxes. So this option employs two separate tools for CMS and deployment purposes.

If this option is not feasible, the second option is to write a script that runs locally, and have

agents that run the script on each of the remote machines. Continuous integration servers

like Jenkins run pre-written scripts in remote machines as if they are running locally. These

scripts are saved in VCS. It also provides jobs which runs during a failure, displays console

output and provides a dashboard where monitoring deployment including deployment status,

software version and environment information.

The third option is to write a script that logs into each server and runs the appropriate com-

mands. Tools like Fabric, Func and Capistrano helps to script own deployments and SSH to

execute commands on remote machines (Humble & Farley 2011, 161).

The following review section is going to mainly focus on deployment tools but it will also in-

troduce CMS tools since they are important complementary part of the tool chain.

8.1 Configuration Management Systems

25

System management and configuration is a crucial part of the deployment and it prepares the

environment and resources for software. Configuration management refers to the process by

which all artefacts relevant to project, and the relationships between them, are stored, re-

trieved, uniquely identified, and modified. It sets the OS into a correct state with a desired

patch level for the intended application so that the application can be deployed there. All the

environments and configuration of third party elements should be applied from version con-

trol through an automated process. Automated configuration management allows to repeat-

edly recreate every piece of infrastructure used by the application. Infrastructure includes

the OS configuration, application stack, its configuration, infrastructure configuration and so

forth. The changes in the production environment must be recorded and audible.

Correct state of the environment involves certain update packages and configurations. Most

of these CMS tools also have the ability to do these configurations as well as maintaining

them. They can also deploy the software but we are going to review some other more specific

tools for deployments and have an overview on CMS tool for pure configuration. The table

below (figure 5.) shows major CMSs currently in the market. The attributes of the table lists

the specifics about these tools. The language is the programming language used to construct

the product. Mutual authentications manage and identify users. Verify mode ensures if the

configuration works before actually installing configurations.

Language License Mutual

auth

Encrypts Verify

mode

First

release

Latest

stable

release

number of

platforms

supported*

Ansible
Python GPL

Yes Yes Yes
2012-03-

08

2013-02-01

1.0

6

CFEngine
C GPL, COSL

Yes Yes Yes
1993 2012-07-20

3.3.5

8

Bcfg2
Python BSD

Yes Yes Yes
2004-08-

11

2012-07-03

1.2.3

5

Chef

Ruby Apache

Yes Yes Yes

2009-01-

15 0.5.0

2013-02-13

11.4.0,

2013-02-15

11.0.6

(server)

8

26

*Platform support for AIX. BSD, HP UX, LINUX, WINDOWS, MACOS X, SOLARIS. OTHERS

Figure 8: Comparison of major open source CMS tools.

8.2 Software Deployment Tools

Systems consist of many services and servers while each of these specific services must be

deployed into certain servers. Software deployment tools coordinate the deployment of each

service into correct servers and configure environment specific components. Each time a ser-

vice is deployed other related components need to stop and start in a specific order. This or-

chestration is also ensured by deployment automation tools. The coordination occurs between

components in all tiers in N tier architecture. When all services are orchestrated and started

successfully, these services run all together to make up the business application. (Edwards,

Schafer, Shortland, Honor, Thompson 2009) In figure 6 the features of the major deployment

automation tools is listed. The commercial tools like Nolio and Deployit is not included in our

table since these products can be overkill in our initial transition period to deployment auto-

mation. These products are more than simple deployment tools offering solutions in other

layers such as provisioning and configuration management. Some of the commercial products

Puppet

Ruby Apache

from 2.7.0,

GPL before

then

Yes Yes Yes

2005-08-

30

2012-10-18

3.0.1

8

Quattor
Perl, Python EDG,

Apache 2.0
Yes Yes

2005-04-

01

2012-02-22 2

Salt
Python Apache

Yes Yes Yes
2011-03-

17 0.6.0

2012-07-30

0.10.2

6

SmartFrog
Java LGPL

Yes Yes
2004-02-

11

2009-01-26

3.16.004

5

Spacewalk
Java (C, Perl,

Python,PL/SQL)

GPLv2
Yes Yes

2008-06 2012-03-07

1.7

2

STAF
C++ CPL

No Partial
1998-02-

16

2012-06-29

3.4.10

8

27

have proved themselves over time and they have big customer base. In order to find simpler

tools, such commercial products are excluded.

Lang. Roll-

back

Ses-

sion

Histo-

ry

UI Comm latest ver-

sion

Architec-

ture

Rundeck Java Yes Yes Yes Web+CL

I

Ssh 2/21/2013

1. ver.

stand alone

Fabric Py-

thon

scripts No Yes CLI Ssh 1/3/2013 stand alone

Func Py-

thon

scripts No Yes CLI Xmlrp

c

7/4/2011

and still

active(see

git repo)

server +

agent

Capistrano Ruby yes Yes Yes CLI Ssh still ac-

tive(see

git repo)

server +

agent

Mcollec-

tive

Ruby Yes Yes Yes CLI Msg

que

14/02/201

3

server +

agent

Liverebel Java Yes Yes Yes Web+CL

I

ssh 3/18/2013 server +

agent

Figure 9: Comparison of software deployment tools

Language: Language is the programming language which this software relies on in order func-

tion and coordinates the activities. The user of the tool should understand the corresponding

languages to benefit more from these products.

Rollback capability: In case a deployment goes wrong this ability will allow to go back to last

working version. Therefore, there is no need to for manual work and doing all the work again

for deploying the last working version.

Preserving Sessions: Users loose sessions during deployments due to restarting many services

and servers. Preserving sessions will avoid any interruptions and allow users to use the appli-

cation without realising there was an update.

Execution History: Tracking changes becomes useful when details regarding to deployment

needed to be reviewed. Most basic attributes of the history are the personnel who made the

deployment, version number and time of deployment.

28

UI: Graphical user interfaces are more user-friendly and allows deployments to anyone who is

not familiar with the system. Instead of writing command line entries deployment is done by

only push of a button.

Communication: The deployment tool eventually will need to communicate with all servers in

the system in order to manage deployments. These products use technologies like ssh, xmlrpc

or others for most secure way for communication. While ssh is useful for a single machine

manipulation remotely it is not designed for multi-system remote scripting. (DeHaan 2008)

Latest version: Latest version ensures an active development of the tool if the date is recent.

This is a proof that the product is not abandoned or reached its end of life cycle and it is still

in development.

Architecture: Most of the systems have server-agent architecture which requires a central

management console and agents installed on remote machines. But there are simple stand-

alone products which are basically installed in one location and they send commands to re-

mote machines.

9 Selecting a Tool Chain

One of the biggest challenges in CMS tools is adaptation and learning curve of the tool and

domain specific language. Puppet is chosen for CMS purposes, since it was already in use in

other projects even though it was never used in the team which is responsible for CRM. Since

Puppet is used in other project it is beneficial to inherit the knowledge form those projects

and experts. An initial interview was held with an expert to see the Puppet scripts from a git

repository. There will not be any integrity and compatibility issues in the future if we merge

those projects which use Puppet. Puppet also has support for most of the platforms and the

community behind it is still active. Verify mode allows Puppet to try a change before actually

implementing it which is a valuable feature. Closest candidates to Puppet could be CFEngine,

Bcfg2 and Chef due to their active development, large community and advanced features.

Puppet is one of the most popular open source systems currently available along with CfEn-

gine and Chef. The underlying principles of this kind of tools are the same. Puppet manages

configuration through a declarative, external domain-specific language (DSL) tailored to con-

figuration information. This allows for complex enterprise-wide configurations with common

patterns extracted into modules that can be shared. Thus, configuration information duplica-

tion can be avoided. Puppet configuration is managed by a central master server. This server

runs the Puppet master daemon which has a list of machines that it controls. Each of the con-

29

trolled machines runs the Puppet agent. It communicates with the server to ensure that the

servers under Puppet’s control are synchronized with the latest version of the configuration.

When a configuration changes, the Puppetmaster will propagate that change to all the clients

that need to be updated, install and configure the new software, and restart the servers

where necessary. Agents will be aware of these changes and pull the configurations. The con-

figuration is declarative, and describes the desired end state of each server. This means they

can be configured from any starting state, including a fresh copy of a VM or a newly provi-

sioned machine. The user doesn’t need to know ruby to use puppet even though the product

is written in ruby language. But instead it uses a meta language and operator needs to under-

stand this DSL in order to make configurations and extensions. This is usually the case in this

kind of tools. Mode of operation is that deamon pulls the configuration. But in deployment

tools user pushes the changes. (Humble and Farley 2011, 258)

When it comes to deployment tools, we chose three products for further review and these are

Liverebel, Fabric, and Rundeck. These three tools got separated from other with different

reasons which are listed below. There was some time reserved to try how these software

work and their working mechanisms were analysed. This review allows estimating what kind

of software is needed and how it is going to be used.

9.1 Fabric

Fabric is one of the tools we reviewed due to its simplicity. It was also used in another pro-

ject other than CRM so it was easy to get some sample scripts and interview with the systems

team. Another reason we included this tool for a further review is a ready knowledge base is

an advantage while choosing these kinds of products. Fabric is just a Python library with pre-

defined functions which can run from the command line directly. The operator should know

python in order to make use of python scripts, combine them and extend functions when nec-

essary. A rollback option will be available if scripted. User pushes changes to remote servers

with ssh. In a sample scenario, a web application is managed via Git on a remote host

vcshost. On localhost, we have a local clone of said Web application. When we push changes

back to vcshost, we want to be able to install these changes immediately on a remote host

server in an automated fashion. We will do this by automating the local and remote Git com-

mands.

Fabric consists of 12 modules which can be used in a custom made fab file to run local and

remote commands. Operations module includes many useful functions and they are as fol-

lows:

fabric.operations.get, downloads one or more files from a remote host.

30

fabric.operations.local, runs a local command

fabric.operations.open_shell, Invoke a fully interactive shell on the remote end.

fabric.operations.prompt, Prompt user with text and return the input (like raw_input).

fabric.operations.put, Upload one or more files to a remote host.

fabric.operations.reboot, Reboot the remote system.

fabric.operations.require, Check for given keys in the shared environment dict and abort if

not found.

fabric.operations.run, Run a shell command on a remote host.

fabric.operations.sudo, Run a shell command on a remote host, with superuser privileges.

There are other modules including tasks, utils, network, docs and so on. The classes and func-

tions can be extended and new ones can be created using the Python programming language.

Therefore, Fabric becomes easy to implement and extensible choice. It doesn’t have a GUI

but can be run from command line. It is well suited for basic tasks since it is easy to adopt

and flexible.

9.2 Liverebel

Liverebel made it to the final candidate list because it tries to do both configuration man-

agement and deployment in an efficient way. This tool was the only commercial one and we

installed a trial version in our test environment for testing. The product offers two options to

manage configuration by either including configuration specifics in the jar file or as an addi-

tional separate file. It has a user-friendly GUI additional to its command line interface. Users

can be defined to operate the deployment process with a username-password authentication.

However, it is designed mostly for Java world and this is a minus for the current environment

since there are other technologies as well. But the product recently started to support PHP

and Perl which is an improvement. During the trial period, the product was locked on a single

page after an upgrade which made us hesitant to recruit this tool.

Some of the key features of Liverebel are presented as instant live application updates, pre-

serving user sessions during updates and executing custom scripts. Deployment is made easy

with one click if the configurations are done correctly. During an online meeting with Livere-

bel team they presented how the product works. There are two servers running the applica-

tion therefore there are not session losses when each server is stopped, updated and restart-

ed in turns. If something goes wrong after deployment, system automatically rolls back to its

last healthy state. Task log allows user to follow what is happening in the background during

updates.

31

Below is a snapshot from the GUI. After selecting a server and a software version clicking

“deploy now” button will deploy that software to the intended serer.

Figure 10: Liverebel GUI

9.3 Rundeck

Rundeck is the last product we have reviewed more in detail and experimented by installing

in a testing environment. It is a spin off project from a successful predecessor called Con-

trolTier. Rundeck offers user-friendly GUI additional to CLI. It is written in java but the users

don’t need to know Java due to easy user interface. It is possible to create workflows by

combining scripts and jobs. Role based access control with LDAP support allows access to us-

ers with different background. Architecture involves a server and communicating remote

agents. It has rollback capability and many more modules for common tasks. Rundeck can

32

save execution history in a relational database or file-based data storage. It can also import

node sources from Puppet or others which makes it easy to cooperate with CMS tools.

Jobs and ad-hoc execution are some of the main features of Rundeck. Jobs keep a sequence

of steps, node filter and job option. Then a Job with a unique ID can be run to execute all

these steps. Jobs can be composed out of many other jobs which will make it a step in the

sequence. On the other hand ad-hoc commands can execute individual shell commands as a

user would run it at an interactive terminal. GUI includes three main tabs such as run, jobs

and history(Figure 11). Run and jobs are for managing command execution and history is to

review the changes. Run screen allows seeing live execution revealing all events in the back-

ground. Jobs can run on a schedule or on demand and people can be notified when they are

completed.

Figure 11: Rundeck main tabs.

10 Solution to the Case Scenario

It is beneficial to use two separate solutions for system configuration and service deployment.

These two separate solutions will replace different manual or scripted steps in the deploy-

33

ment process which was counted in the section “Deployment process and activities” and it

will automate the whole process. Puppet is the strongest candidate in among CMS tools due to

its support for most of the platforms and large community support. There are several exam-

ples in the market which shows how to combine Puppet with other service deployment tools.

Puppet is used in some other project for purely configuration purposes but not in CRM. The

ready knowledge base in the company is going to decrease one of the biggest costs related to

learning curve and adaptation phase. It gives the opportunity to interview with the experts in

that project and review their sample configurations and scripts. There is no other superior

alternative to Puppet which can make us ignore the advantages of accessing ready knowledge

in close premises. Puppet is responsible for ensuring consistent system configuration and de-

ployment tool will handle more dynamic aspects like deploying new releases of the custom

applications or ad-hoc server monitoring.

Service deployment tools can be combined with CMSs and there are varieties of choices. The

most suitable software which can company Puppet is Fabric and Rundeck. Liverebel was elim-

inated due to its Java specific requirements which don’t suit well in our heterogeneous envi-

ronment. Fabric can be used to automate some simpler tasks but managing whole process will

get difficult to maintain. Rundeck on the other hand proved to be the most suitable tool due

to its rich feature list and easy to use GUI.

One of the most fundamental features of Rundeck is the Jobs and workflows which can organ-

ize commands, group them and run them in target environments or clusters. Saving com-

mands as Jobs or Ad-hoc commands helps to centralize system manipulation and makes it

more auditable. There will be only a single place to run commands which prohibits accessing

the individual machines.

User friendly GUI allows easy control for users with different background such as managers,

junior or senior developers and system administrators. It can authenticate these users with

different profiles through its role based access control mechanism. Making this product usable

for several type of users will accomplish a change in work culture and move it into Devops as

mentioned earlier. Therefore it will eliminate or decrease the need for on-site experts signif-

icantly.

Rollback ability will allow fast recovery from a failed installation. This will increase the con-

fidence in deployments and the installation schedules will not be limited to certain hours

where there is least amount of users. Sessions of the users also could be preserved when con-

figurations are done correctly. Increasing confidence in deployments will ensure better safety

and in return it will increase frequency of deployments which is a desired outcome.

34

Execution history reports the user who deployed the application, time and project details

which assists for trouble shooting. These history reports can be used to improve the deploy-

ment pipeline in later stages.

It can import CMS node resources from Puppet which makes Rundeck a suitable product chain

for a final solution. It is designed to work with many other CMS tools as well such as Chef and

Amazon EC2. It also supports many platforms and programming languages even though it is

written in Java. These properties gives this product a flexible quality in design.

Rundeck has an active community with many participants in the market. They have active

discussions in forums where they meet other users and developers to solve common problems

or make improvements. Large community is a good sign to see how popular is the product in

the market and makes users more confident when they can discuss with their common issues.

The product is a spin-off project from its successful predecessor ControlTier. Rundeck is still

active in development with the recent version 1.5 released on 21.2.2013. Active development

means that this automation tool will react market needs and improve over time.

In conclusion Rundeck becomes a strong candidate for deployment automation purposes for

the reasons mentioned above. Elisa Oy is planning to implement concrete tasks to see the

product on the job. By the time of writing, the product is installed in two servers on a test

environment and reviews are still being made by the CI team. A fully working implementation

can be reached by gradual steps and it will take considerable amount of time and effort. A

fully automated deployment process can be reached with the help of other tools on CMS side

such as Puppet. Puppet is suggested to accompany Rundeck in tool chaining for automation

purposes

35

References

Carzaniga, A., Fuggetta, A., Hall, R., Heimbigner, D., Hoek, A. & Wolf, A. 1998. A characteri-
zation framework for software deployment technologies. University of Colorado. Department
of Computer Sciences. Technical Report. Accessed 23 February 2013
http://www.ics.uci.edu/~andre/papers/T3.pdf

Chacon, S. 2009. Pro git. New York: Apress.

DeHaan, M. 2008. Open source project: Func the fedora unified network controller. Redhat

Magazine. Accessed 17 March 2013

http://magazine.redhat.com/2008/02/21/open-source-project-func-the-fedora-unified-

network-controller/

Edwards, D. 2010. DevOps is not a technology problem. DevOps is a business problem. Ac-

cessed 3 February 2013.

http://dev2ops.dtosolutions.com/2010/11/devops-is-not-a-technology-problem-devops-is-a-

business-problem/

Edwards, D., Schafer, A., Shortland, A., Honor, A., & Thompson, L. 2009. Achieving fully au-

tomated provisioning. Accessed 17 March 2013

http://api.ning.com/files/aVcfIQKPor*gYXVVIm1Wiix6FnVIDx3NgNc5PrbhcQRE5t6CHBDFz6LvJL

BeZCfa0Og6A93E6DJyhK70c45C3bTOZc7qCKXN/FullyAutomatedProvisioning_Whitepaper.pdf

Humble & J. Farley, D. 2011. Continuous delivery. Boston: Pearson.

Mäntylä, M. & Vanhanen, J. Software deployment activities and challenges –

a case study of four software product companies. Aalto University. Accessed 17 March 2013

http://www.soberit.hut.fi/~mmantyla/CSMR_final_mmantyla_install.pdf

Nayak, R., Sudarsan, S., Venkataramappa, V., Wang, Q. & Williamson, L. 2005. Automated

deployment of an application. United States Patent Application Publication. Accessed 11

March 2013

http://www.google.fi/patents?hl=en&lr=&vid=USPATAPP10874495&id=F5iRAAAAEBAJ&oi=fnd

&dq=automated+deployment&printsec=abstract#v=onepage&q=automated%20deployment&f=f

alse

The international foundation for IT. 2009. IT deployment framework. Accessed 12 March 2013

http://www.if4it.com/SYNTHESIZED/FRAMEWORKS/DEPLOYMENT/deployment_framework.ht

ml

36

Talwar, V. & Milojicic, D. 2005. Approaches for service deployment. Hewlett-Packard Labora-

tories. Georgia Tech Accessed. 13 February 2013

http://www.cc.gatech.edu/~calton/publications/IC-05-03-SF-eval.pdf

Watson, M. 2013. Defining the dev and ops in devops. Accessed 1 March 2013.

http://devops.com/

37

List of Figures

Figure 1: Deployments place in Rational Unified Process ..9
Figure 3: Changes moving through deployment pipeline ... 10
Figure 4: Basic deployment pipeline ... 13
Figure 5: CRM dependency graphic ... 20
Figure 6: Deployment Approaches .. 22
Figure 7: System configuration tier is for CMS and Service orchestration tier is for deployment
tools .. 23
Figure 8: Comparison of major open source CMS tools.. 26
Figure 9: Comparison of software deployment tools .. 27
Figure 10: Liverebel GUI .. 31
Figure 11: Rundeck main tabs. .. 32

