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Back-Gate Bias Dependence of the Statistical
Variability of FDSOI MOSFETs With Thin BOX

Yunxiang Yang, Stanislav Markov, Member, IEEE, Binjie Cheng, Member, IEEE,
Anis Suhaila Mohd Zain, Xiaoyan Liu, and Asen Asenov, Fellow, IEEE

Abstract—The impact of back-gate bias on the statistical vari-
ability (SV) of FDSOI MOSFETSs with thin buried oxide (BOX) is
studied via 3-D ““atomistic” drift-diffusion simulation. The impact
of the principal sources of SV, i.e., random dopant fluctuations,
line edge roughness, and metal gate granularity, on threshold volt-
age, drain-induced barrier lowering, and drive current is studied
in detail. It is shown that reverse back-bias is beneficial in terms of
reducing the dispersion of the OFF-current and the correspond-
ing standby leakage power, whereas forward back-bias reduces
the ON-current variability. The correlation coefficients between
relevant figures of merit and their trends against back-bias are
also studied in detail, providing guidelines for the development
of statistical compact models of thin-BOX FDSOI MOSFETs for
low-standby-power circuit applications.

Index Terms—Back-gate bias, line edge roughness (LER),
metal gate granularity (MGG), random dopant fluctuation (RDF),
statistical variability (SV), thin buried oxide (BOX).

I. INTRODUCTION

TATISTICAL variability (SV) has become one of the

major challenges to CMOS device scaling and integration
beyond the 45-nm technology node [1]-[3]. Arising from the
discreteness of charge and granularity of matter, the impact of
SV adversely affects supply voltage scaling and is difficult to
eliminate by simply tuning the fabrication process [4], [5]. This
forces the industry to adopt novel device architectures and to
advance the traditional deterministic design flow of circuits and
systems by adopting statistical circuit simulation and verifica-
tion technology with the support of the corresponding statistical
compact models [5], [6]. Statistical 3-D TCAD simulations
greatly facilitate this process in terms of 1) understanding
the role and importance of the different sources of SV and
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2) making the right technology and device choices and advanc-
ing the development of statistical compact models.

Conventional bulk MOSFETs require very high channel
doping in order to suppress short-channel effects (SCEs). As a
result, it greatly suffers from random dopant fluctuation (RDF)
[6], [7]. Planar fully depleted (FD) silicon-on-insulator (SOI)
MOSFETs with superior electrostatic integrity can tolerate very
low channel doping and, in this way, can greatly suppress the
impact of RDF-induced SV. Such devices have demonstrated
record low threshold voltage (Vry) fluctuations, with an ex-
perimentally reported mismatch coefficient on the order of
1-1.3 mV - um [8], [9]. However, RDF in the source and drain
access region that is adjacent to channel—termed SD-RDF—
leads to small residual fluctuations and has a pronounced
impact on the ON-current variability via fluctuations in the
source/drain resistance [10], [11]. Line edge roughness (LER)
and metal gate granularity (MGG) remain important sources
of SV for FD-SOI technology [8], [10]. The latter can be
technologically improved, e.g., by adopting a gate-last process,
whereas the former improves with the reduction in the silicon
body thickness.

The introduction of devices with ultrathin body and BOX
(UTBB) somewhat relaxes the demand for Tg; scaling by
providing a background plane, which reduces the drain field
penetration in the channel region. It also helps to establish a
large on/off drain current ratio by back-gate bias (V},) control
[12], [13]. This is essential for low-standby-power (LSTP)
devices, where reverse back-gate bias is applied to reduce the
power dissipation in a standby mode, whereas forward bias is
used to boost the performance in active state. However, the only
few available reports about the influence of back-bias on the SV
in UTBB devices are with limited scope and focus mainly on
threshold voltage variability [9], [12], [14].

In this paper, we present a comprehensive simulation study
of the impact of back-gate biasing on the SV of 22-nm UTBB
SOI MOSFETs. In addition to the back-gate bias dependence
in threshold voltage variability, we analyze the variability in
drain-induced barrier lowering (DIBL) and in the effective
drive current [15], given their paramount importance in the
design and optimization of LSTP circuits [13]. The study is
performed at two substrate concentrations, in order to establish
if a tradeoff is necessary between the level of back-bias control
over threshold voltage and current, and the level of SV. Further,
we discuss the correlation between the important electrical
figures of merit, in view of their importance for the development
of statistical compact models and circuit simulations.

0018-9383/$31.00 © 2013 IEEE
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Fig. 1. Schematic and transfer characteristics of the template FD-SOI transis-
tor in saturation, showing more than seven decades on/off ratio achievable with
the help of back-bias (V},) modulation.

II. METHODOLOGY
A. Simulations Approach

The study employs the commercial statistical 3-D drift-
diffusion simulator Garand, which seamlessly handles all major
sources of SV and permits efficient automated simulations of
very large statistical ensembles of devices in cluster computing
environment [16]. The simulations in this study involve the
three principal sources of SV in planar FD-SOI MOSFETs, i.e.,
RDEF, LER, and MGG. Previous studies revealed that atomic
scale interface roughness and corresponding statistical body
thickness variations play negligible role in FDSOI MOSFETSs
with dimensions considered in this study [17]-[19]. Since
MGG is technology dependent, we present in parallel results
with and without MGG throughout our study. The resolution
of the individual discrete dopants in the RDF simulations
employs fine meshing in conjunction with density gradient
quantum corrections. This prevents artificial charge trapping
in the sharply resolved Coulomb wells of the ionized dopants
and avoids acute mesh-spacing sensitivity [20]. LER is modeled
with the assumption that it follows a Gaussian autocorrelation
function with three times root-mean-square deviation of the
gate edge position of 2.1 nm (approximately 10% of L) and
a correlation length of 25 nm [21]. The modeling of MGG
assumes a TiN gate with two grain orientations differing in
workfunction (WF) by 0.2 V, with a probability of 0.4/0.6
for the lower/higher WF, respectively, and an average grain
diameter of 5 nm [22].

B. Template Transistor

The statistical ensembles are composed of 1000 micro-
scopically different renditions of a template UTBB FD-SOI
n-channel MOSFET, schematically illustrated in Fig. 1, with
a 22-nm physical gate length, designed on the basis of the
ITRS (2009) guidelines for LSTP applications. The simulations
are carried out assuming a supply voltage (Vpp) of 0.8 V
[23]. The template transistor features (TiN/HfO2/SiO,,) high-k
metal gate stack with a SiO, interfacial layer and an effec-
tive oxide thickness of 0.9 nm. The buried oxide (BOX) and

TABLE 1
ELECTRICAL PARAMETERS OF THE SIMULATED UTBB
SOI DEVICE TEMPLATE AT ZERO BACK-BIAS

Parameter Value
Substr.Conc. (Ngyp), em 1x10"8 5x10'®
Vigat> mV 213 252
SS. mV/dec 883 87.9
DIBL, mV/V 106 92
IoNSAT- MA/m 900 810
Iopp, NA/pum 4.1 1.5
150 pr—rrrrrrr T e
E Square: 1x10'8 cm™3 E 30 square: 1x10'® cm™3
100 Circle: 5x10'® cm™> E 20; Circle: 5x1018 cm™3 4
S 50F 18 oL ]
E !
z O 12 o ]
A 3 8-10f 7
F = 1< i
[ Fill: Vtgar E —20+ =
—-100F _ . E L
F Void: VtyN E 30k i
. PR BT I T ey e leos enesmy
i 0 1 0 1
Back-gate voltage V;, (V) Back-gate voltage Vy, (V)

Fig. 2. Back-gate bias (V}) dependence of (a) AVipn and AVigaT, and
(b) AIoN,saT, showing adequate back-gate control for the nominal device,
for both substrate concentrations used (denoted by the symbol shape).

Si-body thickness (7&;) are 10 and 7 nm, respectively. The
body acceptor doping concentration is 1.2 x 10*® cm™3, while
two levels of acceptor doping in the substrate (Ngyp) are
considered—1.0 x 10'® and 5.0 x 10'® cm~3. Donor concen-
tration in the source and drain extensions is 2.0 x 10%° cm™3,
with a 2-nm/dec rolloff under the spacer. Table I summarizes
the nominal figures of merit of the template transistor at zero
back-gate bias for two substrate concentrations. The saturation
threshold voltage Vitgar reported in Table I is defined as the
gate voltage corresponding to a current of 1 x 107% A/um when
the drain bias equals Vpp.

The nominal transfer characteristics of the 22-nm FDSOI
transistor with a substrate concentration of 5 x 10'® cm=3 in
saturation regime at three different back-gate bias conditions
are shown in Fig. 1(b). It is clear from the figure that the back-
gate is an effective handle to control the power dissipation or
to boost the performance. Fig. 2(a) reports the sensitivity of
the linear and saturation threshold voltages, i.e., AVt N and
AVitsar, on the back-gate bias. V sensitivity of 85 mV/V
at Ngyg = 1 x 10" cm™3 and of 118 mV/V at Ngyp = 5 X
10'® cm—3 is observed. Fig. 2(b) reports the back-bias sensitiv-
ity of the drive current Alon gat, which can be enhanced by
20%-30% with a forward back-gate bias of 0.8 V. Therefore,
the data in Fig. 2 show adequate back-gate control and agree
well with experimentally observed modulation of 120 mV/V
for UTBB devices with a 10-nm BOX [24].

III. RESULTS AND DISCUSSION
A. Threshold Voltage Variability

Since there are two widely used definitions of threshold
voltage—1) obtained through a constant current criterion, i.e.,
Virinysar, and 2) extrapolated from maximum transconduc-
tance, i.e., Vg, /g—it is important to establish which one
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TABLE II

NEGATIVE OF THE CORRELATION COEFFICIENT BETWEEN DRAIN
CURRENT AND THRESHOLD VOLTAGE. (Nsyp = | x 108 cm—3)1
Vbs Vp=-Vpp’ | Vp=0 |V,=+Vpp

Torr>, Viga | 0.82/0.89% | 0.87/0.90 | 0.78/0.89

50mV [ Ion Viun | 0.87/0.85 | 0.82/0.79 | 0.73/0.70

Ton Viga | 0520077 | 0.510.69 | 0.23/0.55

Torr Viges | 0.78/0.86 | 0.66/0.84 | 0.45/0.82

Voo | low Visar | 0.82/0.93 | 0.76/0.91 | 0.68/0.88

Tow Vigs | 0.76/0.85 | 0.65/0.80 | 0.44/0.73

! Correlation Topp, Vi pysat ~ 0.98 in all cases and omitted for clarity;
2Vpp=0.8V: *Log(Iorr); * without MGG/with MGG.
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Fig. 3. Variability in the (a) linear and (b) saturation threshold voltage V'¢

versus back-gate bias (V3 ), showing negligible dependence in the linear case,
but ~10% modulation of the standard deviation in saturation, if MGG is absent.
Fill/void denotes substrate concentration Ngyg.

represents a better figure of merit with respect to device vari-
ability. Threshold voltage is commonly perceived as an indica-
tor of the magnitude of the ON- and OFF-current in a particular
technology. Therefore, a useful definition of the threshold volt-
age should, from the variability point of view, lead to a higher
correlation between threshold voltage and ON/OFF current.
Table II reports the correlation coefficients between ON/OFF
current and the two definitions of threshold voltage. Several
important conclusions stem from the results in Table II. First,
the threshold definition based on constant current criterion leads
to a higher correlation in all cases. Notably in the linear regime,
in the absence of MGG, the correlation between Vitgyr, and 1oy
can be as low as 0.23, whereas Vi v and /oy remain well
correlated to 0.73. Second, the application of forward/reverse
bias appreciably decreases/increases the correlation between
threshold voltage and ON/OFF current. Third, the presence
of MGG always enhances the correlation between threshold
voltage and current, as explained in [10]. Therefore, the con-
stant current criterion offers a more appropriate definition of
threshold voltage (Vtpn/sat). in view of SV, and is used in
the rest of the exposition, including the calculation of DIBL.
Fig. 3 shows the back-gate bias dependence of the standard
deviation of linear and saturation threshold voltage, with and
without MGG, for two levels of substrate doping. It is clear
that V¢ variability is practically independent of the back-gate
bias under linear source—drain bias. The same is true for the
variability in the saturation threshold voltage, in the presence
of MGG, as shown in Fig. 3(b), due to the dominant char-
acter of MGG for planar devices [25], [26]. However, in the
absence of MGG, there is a positive back-bias dependence of
o Vitsar, leading to more than 10% modulation of the standard
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Fig. 4. Back-bias dependence of DIBL variability due to RDF and LER in the
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deviation. Therefore, in the limiting case of an amorphous metal
gate, reverse back-biasing a thin-BOX FDSOI transistor yields
the additional advantage of reducing the dispersion of Vr,
hence Iopr, and the associated circuit standby leakage power.
Fig. 3(b) also shows that a higher substrate concentration tends
to suppress the Vp variability while the device transits from
linear to saturation region. Both dependence values of oVt
(on Vj, and on Nguyp) are attributed to the reduction in the
LER-induced fluctuations, owing to the suppression of SCE and
consistent with the DIBL variability discussed next.

B. DIBL Variability

The dependence of the standard deviation of DIBL on the
back-gate bias under the influence of RDF and LER, with
and without MGG, is plotted in Fig. 4 for two substrate
concentrations. In the absence of MGG, oDIBL decreases at
negative back-gate bias and high substrate concentration due
to the suppressed SCEs but increases with the application of
a positive back-bias. This is easily understood if we consider
the thin-BOX FDSOI transistor as composed of two single-
gated devices in parallel: One is the upper device with good
electrostatic integrity, as a result of having a very thin EOT, as
defined by the top-gate dielectric, whereas the other is the lower
device with bad electrostatic integrity, as a result of having a
thick EOT, as defined by the BOX. Under zero or negative back-
bias condition, the lower device is well suppressed. However,
the relative importance of the lower device increases with the
application of positive back-bias, since the peak of the inversion
charge centroid shifts away from the top-gate toward the BOX,
as shown in Fig. 5, which, in turn, degrades DIBL and makes
the device more vulnerable to LER.

The broader dispersion of DIBL under positive back-bias
can be a significant issue for power budget control of LSTP
circuits, and particularly in SRAM. Moreover, the magnitude
of DIBL directly impacts performance through the effective
current [13]. Therefore, positive back-bias may increase the
absolute magnitude of effective drive current variation.

Fig. 4 also shows that the higher substrate concentration
reduces o DIBL, by suppressing the fringing field from the drain
to the channel, but increases the corresponding sensitivity.

Finally, in the presence of MGG, ocDIBL is doubled. We con-
sidered oDIBL in ensembles subjected to the individual influ-
ence of RDF, LER, and MGG. The results indicate that the three
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Fig. 5. Impact of back-bias on the current path, illustrated by the electron
concentration in the Si-body of a device with RDF and LER, for three back-bias
voltages Vj,, at Vps = Vpp, Vgs = VitgaT. Gradual transparency below
1017 ¢cm~3 reveals an iso-concentration surface at 5 x 106 cm~3, delineating
the inversion-charge centroid. Changing V4, from negative to positive shifts the
centroid from the top-gate toward the BOX, degrading SCEs and increasing
oDIBL.
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Fig. 6. Surface potential (2-D elevated plot) and electron distribution (3-D
plot) with semitransparency revealing an iso-electron surface at 1016 cm?) in
the body of a UTBB device subject to RDF, LER, and MGG, at linear and
saturation drain—source biases, explaining the pronounced effect of WFV on
oDIBL.

sources act in a statistically uncorrelated manner (confirmed
by a zero covariance), with MGG being dominant. Further,
MGG implicates surface-potential fluctuations, the magnitude
of which depends on the ratio between the gate area and the av-
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Fig. 7. Back-gate bias dependence of the ON-current variability in saturation:
(a) absolute value of the standard deviation, (b) standard deviation normalized
to the mean value. Fill/void denotes substrate concentration.

erage grain size. This leads to a slightly larger o Vigar (31 mV)
than o Vi v (25 mV), since the channel pinchoff at high drain
effectively reduces the area for self-averaging of the potential
fluctuations incurred by WF variability (WFV). In turn, there
is a slight reduction in the correlation between Vigar and
Vi, i.e., from 0.99 to 0.8, which enhances cDIBL. Fig. 6
provides further insight by comparing the surface potential and
the electron distribution in the body of an FDSOI transistor
subjected to RDF, LER, and MGG. For the given grain pattern
of the metal gate, grains with higher WF appear at the drain
side. These grains dictate a high Vit n as determined by the
peak of the potential barrier, which is nearer to the drain end.
Under saturation, however, the peak of the potential barrier is
nearer to the source end, where a much lower Vitgar is dictated
by a grain with a smaller WF. The difference in WF of the grains
controlling the peak of the potential barrier leads to large DIBL
not due to SCE but due to WFV, which increases cDIBL.

Interestingly, the application of positive back-bias reduces
oDIBL in the presence of MGG. This could be understood
again in view of the top and bottom gate actions. Since MGG
predominantly affects the potential fluctuations at the top inter-
face, the application of positive back-bias reduces its impact by
moving the channel closer to the back interface.

C. on-Current and Effective Current Variability

The dependence of the standard deviation of the satura-
tion ON-current o0lon saT (defined as the drain current when
Ves = Vps = Vpp) on back-gate bias is shown in Fig. 7(a).
For both cases, with and without MGG, higher back-gate
bias increases the value of olon,sat. The underlying cause
could not be related to the dependence of oVigar on the
back-bias, since, at least in the presence of MGG, oVitgar is
practically independent of the back-bias (cf. Fig. 3). However,
it is known that RDF in the source/drain (SD-RDF) has strong
impact on o Ion through fluctuations of the source/drain access
resistance o Rgp [10], [11], [25]. We attribute the olon,saT
dependence on back-gate bias to the RDF-induced fluctuations
in the source access resistance, with the following explanation.
The drain current in saturation can be expressed as Ipg =
ﬂsCoxW(VGS — Vr — IpsRg), where ¥g is the injection
velocity at the source, C'ox is the sheet capacitance of the gate
oxide, W is the width of the channel, and Rg is the access re-
sistance of the source. The effect of positive/negative back-bias
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is to increase/decrease Ipg, hence to amplify/attenuate the
fluctuations of the gate overdrive through the /pgRg term. The
relative significance of this term diminishes with the increase
in V¢, which can explain the lowering of 0 lon saT for higher
substrate concentration.

Fig. 7(b) shows back-gate bias dependence of Ion saT vari-
ability when normalized by the mean value, i.e., o/u. Here,
we observe a negative dependence on back-bias, meaning that
the mean of the saturation current is more sensitive to the
back-gate than the variability in the current. This should be
beneficial from circuit application point of view, yielding a
lower dispersion in the intrinsic transistor delay at positive
back-bias conditions.

Fig. 8 reports the back-gate bias dependence values of the
absolute and normalized standard deviations of the linear and
saturation ON-current o Ion in/sat and effective drive current
olrrr. Ion, LN is obtained at 50-mV drain bias. The effec-
tive drive current is defined in [15] as Igpr = 0.5(I1 + Ig),
where IL = Ips(VGS = O.SVDD, VDS = VDD) and IH =
Ips(Vaes = Vpp, Vps = 0.5Vpp). Itis clear in Fig. 8(a) that
o Igrr has the strongest back-gate bias dependence, regardless
of the presence of MGG. When normalized by the mean value,
Igrr has the largest relative variability in the presence of MGG,
~11% at zero back-bias, slightly decreasing with positive back-
bias, as shown in Fig. 8(b). In the case without WFV, there
is little difference between the normalized variability of Ion
and Igpr, with very weak dependence on back-gate bias. The
dependence on substrate concentration is the same as discussed
in Fig. 7; hence, we show only results for Ngyp = 10'® cm—3.

D. Correlation Between Figures of Merit

Fig. 9 shows the correlation between DIBL and Vitgar at dif-
ferent back-gate biases in the presence of combined sources of
SV. The correlation coefficients are also indicated in the figure.
Not surprisingly, for the case without MGG, DIBL and Vigat
are highly correlated since both of them are mostly influenced
by SD-RDF and LER in terms of SCEs. For the case with MGG,
their correlation is dramatically reduced since MGG primarily
impacts the surface potential and has little influence over SCE at
the drain end of the channel under saturation conditions. Fig. 9
has two very important implications. First, the decorrelation
between DIBL and Vigar in the presence of WFV implies
that it may be improper to use DIBL to predict Iorp. Second,
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the level of correlation between DIBL and VigaT may serve
as an effective metric for the amount of MGG-induced WFV
in a given technology. Note that the correlation coefficients are
practically independent of the back-gate bias.

Since DIBL is known to affect the effective current Igpp for
high-V't devices, it is important to note that the scatter plots
of DIBL versus Igrr have very similar patterns and trends as
illustrated in Fig. 9, although the correlation coefficients are
lower in this case (0.85 without MGG and 0.25 with MGG at
zero back-bias; plots are not shown for brevity) and somewhat
stronger, and opposite back-bias trend exists.

Finally, an important correlation for LSTP applications of
thin-BOX FDSOI transistors is the correlation between [gpp
and lopp, shown in Fig. 10. Contrary to the scatter plot of
Vitsar and DIBL, here, there is a stronger correlation in the
presence of MGG, which acts as a dominant source of vari-
ability for both Igpp and Iopr. For the case without MGG,
the correlation is reduced because SD-RDF-induced o Rsp
acquires a more important role in o Igpr, while cLog(Iorr)
remains determined by cVigar (and oSS). The weak depen-
dence of the correlation coefficients is consistent with the trends
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in o Ion/EFF, discussed earlier, explained with the growing sig-
nificance of 0 Rgp as Ipg is amplified by a positive back-bias.

IV. CONCLUSION

The back-gate bias dependence of SV in a 22-nm n-channel
thin-BOX FDSOI MOSFETs subject to RDF, LER, and MGG
(WFV) is comprehensively studied, including detailed analysis
of oVry, oDIBL, and olgy JEFF- In the absence of WFYV,
the application of reverse (negative) back-bias reduces the
variability in saturation V'¢ by more than 10%. However, WFV
practically eliminates any dependence of oVt on back-bias,
since MGG is a dominant surface source, whereas reverse back-
bias improves only SCE and LER sensitivity.

Variability in DIBL and drive current are evaluated under
the application of forward (positive) bias on the back-gate.
We observe an LER-related increase in ¢DIBL by more than
20%, in the absence of MGG (WFV). MGG almost doubles
oDIBL, as it dominates the fluctuations of V't1,1n, whereas LER
has a strong impact on Vigar. The competition of MGG and
LER reduces the correlation between Vi iy and Vigar and
enlarges oDIBL. It is also responsible for the apparent (but
weak) reduction in 0 DIBL when forward bias is applied on the
back-gate.

Variability in saturation Ion and Igpp also increases by
forward back-biasing the device, which is due to the amplifying
of the fluctuations in gate overdrive through the RDF-induced
fluctuation in the source access resistance. However, the sensi-
tivity of the current magnitude on back-bias is stronger, and the
normalized variability is reduced by over 10% (for Igrr in the
presence of MGG), compared with zero back-bias.

Therefore, in view of LSTP application of thin-BOX
FDSOI transistors, back-biasing beneficially reduces the
dispersion of standby leakage power and of on-demand
intrinsic performance, and a higher substrate concentration
enhances the above trends.
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