
Title
Brief Report: Incubation Period Duration and Severity of Clinical
Disease Following Severe Acute Respiratory Syndrome
Coronavirus Infection

Author(s) Virlogeux, VML; Fang, J; Wu, JTK; Ho, LM; Peiris, JSM; Leung,
GM; Cowling, BJ

Citation Epidemiology, 2015, v. 26 n. 5, p. 666-669

Issued Date 2015

URL http://hdl.handle.net/10722/220557

Rights

This is a non-final version of an article published in final form in
Epidemiology, 2015, v. 26 n. 5, p. 666-669; This work is licensed
under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by HKU Scholars Hub

https://core.ac.uk/display/38087466?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 1 

BRIEF REPORT 

Association of the incubation period duration with severity of clinical 

disease following Severe Acute Respiratory Syndrome coronavirus 

infection 

 

Victor Virlogeux1,2, Vicky J. Fang2, Joseph T. Wu2, Lai-Ming Ho2, J. S. Malik Peiris2,3, 

Gabriel M. Leung2, Benjamin J. Cowling2 

 

Affiliations 

1. Department of Biology, Ecole Normale Supérieure de Lyon, Lyon, France. 

2. WHO Collaborating Centre for Infectious Disease Epidemiology and Control, 

School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong 

Kong, Hong Kong Special Administrative Region, China.  

3. Centre of Influenza Research, Li Ka Shing Faculty of Medicine, The 

University of Hong Kong, Hong Kong Special Administrative Region, China.  

 

Corresponding Author:  

Dr Benjamin J Cowling, School of Public Health, Li Ka Shing Faculty of Medicine, 

The University of Hong Kong, 21 Sassoon Road, Hong Kong Special 

Administrative Region, China 

Tel: +852 3917 6711; Fax: +852 3520 1945; email: bcowling@hku.hk 

 

Running head: Incubation period and severity 

Word count (abstract): 138 

Word count (main text): 1,472 



 2 

 

FINANCIAL SUPPORT 

This study was funded by the Harvard Center for Communicable Disease 

Dynamics from the National Institute of General Medical Sciences (grant no. U54 

GM088558), and a commissioned grant from the Health and Medical Research 

Fund, Food and Health Bureau, Government of the Hong Kong Special 

Administrative Region. The funding bodies had no role in study design, data 

collection and analysis, preparation of the manuscript, or the decision to publish.  

 

POTENTIAL CONFLICTS OF INTEREST 

GML has received speaker honoraria from HSBC and CLSA. BJC has received 

research funding from MedImmune Inc. and Sanofi Pasteur, and consults for 

Crucell NV. The authors report no other potential conflicts of interest. 

 

ACKNOWLEDGMENTS 

The authors thank their colleagues in the Hong Kong Department of Health who 

were involved with the public health control of the SARS epidemic, and data 

collection and processing.  

 

 



 1 

Association of the incubation period duration with severity of clinical disease 

following Severe Acute Respiratory Syndrome coronavirus infection 

 

 

 

ABSTRACT 

Background: Few previous studies have investigated the association between the severity 

of an infectious disease and the length of incubation period. 

Methods: We estimated the association between the length of the incubation period and 

the severity of infection with the severe acute respiratory syndrome (SARS) coronavirus, 

using data from the epidemic in 2003 in Hong Kong.  

Results: We estimated the incubation period of SARS based on a subset of patients with 

available data on exposure periods and a separate subset of patients in a putative common 

source outbreak, and we found significant associations between shorter incubation period 

and greater severity in both groups after adjusting for potential confounders.  

Conclusions: Our findings suggest that patients with a shorter incubation period 

proceeded to have more severe disease. Further studies are needed to investigate potential 

biological mechanisms for this association. 
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INTRODUCTION 

The incubation period of an infectious disease is the time from infection to onset of disease. 

Estimation of the incubation period of a novel pathogen can be vital for prevention and 

control, for example in order to determine appropriate duration of quarantine or 

observation of exposed persons.1 In 2002-03, there was an epidemic of severe acute 

respiratory syndrome (SARS) caused by a novel coronavirus with more than 8,000 cases 

worldwide, mainly in Asia. The mean incubation period was rapidly estimated during the 

outbreak to be around 6.4 days,2 and subsequent studies estimated a slightly shorter mean 

incubation period of around 4.0-5.3 days.3–6 Estimation of the incubation period of a 

pathogen such as the SARS coronavirus can be complicated because infection events cannot 

be directly observed and exposure data are consequently interval-censored.7  

 

The incubation period is thought to be a function of the initial infective dose, the speed of 

replication of the pathogen within the host, and within-host defense mechanisms.1 Few 

previous studies have investigated the hypothesis that the incubation period might be 

correlated with the severity of disease, although some studies have examined the 

correlation between infecting dose and severity of disease.8,9 Here, we analyze the 

association between the length of the incubation period and the severity of SARS using data 

from the 2003 outbreak in Hong Kong.  
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MATERIAL AND METHODS 

Sources of Data 

Information on all 1755 probable cases of SARS coronavirus infection were recorded in an 

electronic database extracted from a secure web-based data repository containing clinical 

and epidemiological data on all probable SARS cases admitted to hospitals in Hong Kong 

throughout the entire epidemic between February and July 2003.10 Further details of the 

definition of a probable case of SARS and the database are reported elsewhere.10,11 In a 

subset of cases, information was available on dates of exposure to infection, and in the 

majority of cases this was recorded as intervals of 2 or more days during which infection 

may have occurred rather than exact dates of infection.2,6,7,10 We also analysed a separate 

subset of cases who were residents of the Amoy Gardens housing estate where a potential 

super-spreading event occurred in March 2003.12–14 For these patients, we removed the 

small proportion of cases with onset dates prior to the main outbreak and with onset dates 

>14 days after the start of the main outbreak (eAppendix).  

 

Statistical Analysis 

A simple approach to estimate the incubation distribution from interval-censored data is to 

impute the midpoint of the exposure interval for each patient, and then estimate the 

distribution based on these ‘exact’ incubation times.5,15 However, this approach is 

somewhat naïve, and is likely to overestimate incubation distributions which tend to be 

right-skewed.3  
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For the subset of cases with exposure dates, two approaches were used to estimate the 

incubation period distribution. First, we used a non-parametric estimator of the survival 

function that is a generalization of the Kaplan-Meier estimator for interval-censored data.16 

Second, we fitted a lognormal distribution1,6,7,17 allowing for interval censoring, estimating 

the location and scale parameters (µ and σ) using Markov Chain Monte Carlo (MCMC) in a 

Bayesian framework.  

 

To evaluate the association between the incubation period and the severity of disease, we 

first estimated the difference in mean incubation period between fatal and non-fatal cases 

in a Bayesian framework. However this analysis could not account for a potential 

confounding factor such as age which is known to be associated with the duration of the 

incubation period5,6 and with the severity of disease.10 We therefore specified a 

multivariable logistic regression model where death was the binary response variable and 

predictors included age, sex, occupation, and the incubation time Ti of each patient. We 

performed this with Ti resampled from the 10,000 posterior samples in each MCMC 

iteration. For the Amoy Gardens subset, we first estimated the potential date of infection for 

all cases by comparing the epidemic curve with the lognormal incubation period 

distribution estimated above, and then included in a similar logistic regression model.  

 

In each of the analyses, we specified flat priors for each parameter, and drew 10,000 

samples from the posterior distributions after a burn-in of 5,000 iterations. Further 

technical details of the statistical methods are provided in the eAppendix. All analyses 
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presented here were conducted using R version 3.1.1 (R Foundation for Statistical 

Computing, Vienna, Austria). 

 

RESULTS 

Among the 1755 probable cases of SARS in Hong Kong, 302 (17%) patients died.10 The 

mean age was 44 years, the proportion of healthcare workers was 23% and cases that died 

were older and more likely to be male and not healthcare workers (Table 1). Among the 

1755 cases, we identified 234 cases with an exposure period contained within the interval 0 

to 20 days and 308 cases in the "Amoy Gardens" subset with an onset date within the 

interval 0 to 14 days (eAppendix). Both subsets had similar characteristics to the 1755 

cases with fatal outcomes in 25/234 (11%) of the patients with exposure data and 38/308 

(12%) in the Amoy Gardens subset (Table 1).  

 

Parametric and nonparametric estimates of the incubation period distribution are 

presented in Figure 1A and show close agreement. We found a shorter incubation period 

for the fatal cases with a mean of 3.7 days (95% credibility interval, CrI: 2.6, 5.8), compared 

with a mean of 4.8 days (95% CrI: 4.2, 5.5) for the non-fatal cases, and a difference in means 

of 1.02 days (95% CrI: -0.41, 2.22) which was not significant.   

 

The epidemic curve in the Amoy Gardens outbreak followed a very similar pattern, 

consistent with an infection event on 21st March 2003 (Figure 1B). Incubation periods for 

each patient were calculated based on this infection date. In this group, the mean incubation 

period was significantly shorter in the fatal cases 4.5 days (95% CrI: 3.8, 5.6) than in the 
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non-fatal cases 5.5 days (95% CrI: 5.2, 6.0) with mean difference 1.06 days (95% CrI: 0.16, 

1.97) which was significant. 

 

In the multivariable logistic regression model, we found that a shorter incubation period 

was generally associated with an increased risk of death in both subsets of patients. This 

association was statistically significant in the analysis of the patients with exposure 

intervals (OR=0.86; 95% CrI: 0.71, 1.00), and in the Amoy Gardens cluster with an OR=0.79 

(95% CrI: 0.67, 0.94) (see also eAppendix).  

 

To examine the sensitivity of our results to inclusion of patients with wide exposure 

intervals for the cases with exposure data, we also fitted the logistic regression models for a 

subset of 185 patients with shorter exposure intervals, and found very similar associations 

of the incubation period with risk of death (eAppendix). In addition, to examine the 

sensitivity of our results to the assumption of a linear association between incubation time 

and the log-odds of death, we categorized incubation times into tertiles and found similar 

results although the effects were only significant in the Amoy Gardens patients 

(eAppendix). 

 

DISCUSSION 

We estimated the incubation period of SARS based on two different subsets of patients, the 

latter with available data on exposure periods and the former with the hypothesis of a index 

patient contamination, and compared the length of this period between fatal cases and non-

fatal cases to identify a correlation between shorter incubation and greater severity, 
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allowing for potential confounding by age, sex and occupation. Ours is the first study that 

examines the association between the incubation period and the severity of SARS in the 

literature to date. It is unlikely that a shorter incubation period itself is the cause of greater 

severity, but our results indicate that it could be a marker of underlying biological 

processes that led to greater severity. A shorter incubation period could be indicative of a 

higher infective dose, leading to faster/greater pathogen replication, out-running adaptive 

immune responses or leading to a more aggressive and damaging inflammatory response, 

and thus leading to more severe disease.  

 

An association between severity and a shorter incubation period was suggested by Glynn et 

al.8 in a study on malaria where a longer incubation period was associated with tertian 

fever, spontaneous recovery and less use of modifying treatment. Another study on 

salmonella infection reported a correlation between infecting dose and severity of the 

infection.9 In a previous study, we showed that healthcare workers, who could have 

received a higher infecting dose, had a significantly shorter incubation period compared 

with non-healthcare workers.6 It may also be biologically plausible that a more rapid 

progression from infection to symptom onset is correlated with more rapid disease 

progression after onset.  

 

Our study does have some limitations, including a low number of fatal cases having 

available exposure data that may not be fully representative of all infections. In addition, 

exposures were self-reported and could be subject to recall bias which was differential and 
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affected by severity, and the cases in the Amoy Gardens cluster may not have all been 

infected on the same date.  

 

  



 9 

REFERENCES 

1.  Nishiura H. Early efforts in modeling the incubation period of infectious diseases 

with an acute course of illness. Emerg. Themes Epidemiol. 2007;4:2. 

2.  Donnelly CA, Ghani AC, Leung GM, et al. Epidemiological determinants of spread of 

causal agent of severe acute respiratory syndrome in Hong Kong. Lancet 

2003;361(9371):1761-1766. 

3.  Lessler J, Reich NG, Brookmeyer R, Perl TM, Nelson KE, Cummings DAT. Incubation 

periods of acute respiratory viral infections: a systematic review. Lancet Infect. Dis. 

2009;9(5):291-300.  

4.  McBryde ES, Gibson G, Pettitt AN, Zhang Y, Zhao B, McElwain DLS. Bayesian 

modelling of an epidemic of severe acute respiratory syndrome. Bull. Math. Biol. 

2006;68(4):889-917.  

5.  Cai Q-C, Xu Q-F, Xu J-M, et al. Refined estimate of the incubation period of severe 

acute respiratory syndrome and related influencing factors. Am. J. Epidemiol. 

2006;163(3):211-216.  

6.  Cowling BJ, Muller MP, Wong IOL, et al. Alternative methods of estimating an 

incubation distribution: examples from severe acute respiratory syndrome. Epidemiology 

2007;18(2):253-259.  

7.  Farewell VT, Herzberg AM, James KW, Ho LM, Leung GM. SARS incubation and 

quarantine times: when is an exposed individual known to be disease free? Stat. Med. 

2005;24(22):3431-3445.  

8.  Glynn JR, Bradley DJ. Inoculum size, incubation period and severity of malaria. 

Analysis of data from malaria therapy records. Parasitology 1995;110(01):7.  



 10 

9.  Glynn JR, Bradley DJ. The relationship between infecting dose and severity of disease 

in reported outbreaks of salmonella infections. Epidemiol. Infect. 1992;109(03):371.  

10.  Leung GM, Hedley AJ, Ho L-M, et al. The epidemiology of severe acute respiratory 

syndrome in the 2003 Hong Kong epidemic: an analysis of all 1755 patients. Ann. Intern. 

Med. 2004;141(9):662-673. 

11.  World Health Organization, Case Definitions for Surveillance of Severe Acute 

Respiratory Syndrome (SARS). WHO. Available at: 

http://www.who.int/csr/sars/casedefinition/en/. Accessed October 30, 2014. 

12.  Li Y, Duan S, Yu ITS, Wong TW. Multi-zone modeling of probable SARS virus 

transmission by airflow between flats in Block E, Amoy Gardens. Indoor Air 2005;15(2):96- 

13.  Yu ITS, Li Y, Wong TW, et al. Evidence of airborne transmission of the severe acute 

respiratory syndrome virus. N. Engl. J. Med. 2004;350(17):1731-1739.  

14.  Yu IT-S, Qiu H, Tse LA, Wong TW. Severe acute respiratory syndrome beyond Amoy 

Gardens: completing the incomplete legacy. Clin. Infect. Dis. 2014;58(5):683-686.  

15.  Centers for Disease Control and Prevention (CDC). Severe acute respiratory 

syndrome--Singapore, 2003. MMWR Morb. Mortal. Wkly. Rep. 2003;52(18):405-411. 

16.  Turnbull BW. The empirical distribution function with arbitrarily grouped, censored 

and truncated data. J Roy Stat. Soc Ser. B 1976;38:290 –295. 

17.  Sartwell PE. The distribution of incubation periods of infectious disease. Am. J. Hyg. 

1950;51(3):310-318. 

 

 

 
 



 11 

FIGURE LEGEND 
 
Figure 1. Panel (a): Parametric (dotted line) and non-parametric (solid line) 

estimates of the incubation distribution for SARS cases with available data on 

exposure times (n=234). The incubation distribution estimated with a lognormal model 

(dotted line) gives a mean incubation time of 4.7 days (95% credibility interval, CrI: 4.1-5.4 

days) and a standard deviation of 4.6 days (95% CrI: 3.6-6.0 days) respectively. The non-

parametric estimate of the incubation distribution is represented by a solid line, and gray 

rectangles show intervals where the nonparametric maximum likelihood estimate was not 

unique. Panel (b): Distribution of illness onset dates for SARS cases in the Amoy 

Gardens cluster (n=308). For this subset of patients, we hypothesized that all the cases 

were infected on 21 March 2003, and the epidemic curve is consistent with the lognormal 

incubation period distribution estimated on the separate subset of cases with exposure data 

as shown in panel A (i.e. mean 4.7 days, standard deviation 4.6 days). 
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Table 1. Characteristics of SARS patients 

Patient characteristics Fatal cases Non-fatal cases Overall p-value 

 All cases   

Sample size, n (%) 302 (17%) 1453 (83%) 1755 - 

Age (years); mean±SD 66.6 ± 17.3 38.7 ± 17.3 43.5 ± 20.2 <0.001 

Male sex, n (%) 173 (57%) 604 (42%) 777 (44%) <0.001 

Healthcare worker, n (%) 129 (43%) 276 (19%) 405 (23%) <0.001 

 Cases with exposure data   

Sample size, n (%) 25 (11%) 209 (89%) 234 - 

Age (years); mean±SD 57.8 ± 14.7 40.1 ± 14.1 42.0 ± 15.2 <0.001 

Male sex, n (%) 14 (56%) 99 (47%) 113 (48%) 0.546 

Healthcare worker, n (%) 3 (12%) 54 (26%) 57 (24%) 0.202 

 Amoy Gardens cases   

Sample size, n (%) 38 (12%) 270 (88%) 308 - 

Age (years); mean±SD 48.4 ± 12.0 33.1± 14.1 35.0 ± 14.7 <0.001 

Male sex, n (%) 22 (58%) 108 (40%) 130 (42%) 0.055 
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eAppendix 
 

Association of the incubation period duration with severity of clinical disease 

following Severe Acute Respiratory Syndrome coronavirus infection 

 

 

Additional details of statistical methods 

 

The incubation period is defined as the delay between infection and illness onset. If 

infection occurred at time Xi for the patient i, and symptom onset occurred at time Zi, the 

incubation period is defined as Ti= Zi-Xi. However, estimation of the incubation period is 

often complicated because infection events cannot be directly observed. If patient i, 

reported that infection most likely occurred in a period of exposure between times Li and 

Ui, where Li≤Xi≤Ui, the incubation time therefore is bounded by the interval (Z-Ui, Z- Li). 

These data are a special type of survival data, and a natural approach would be to "reverse" 

the time axis setting Z as the origin and X as the outcome time. "Reversing" the time axis is 

valid only when the density function for infection is uniform in chronologic time. This 

condition should be reasonable here in the setting of SARS, with each exposure interval 

being relatively short.  

 

Based on previous studies which identified the lognormal distribution as a satisfactory 

parametric model for the incubation period of SARS, in this study we assumed that the 

incubation distribution followed a lognormal distribution with parameters (µ, σ) and 

probability density function: 

 

𝒇(𝒕𝒊) = 𝐞𝐱𝐩�− �
𝐥𝐧(𝒕𝒊) − 𝝁

𝝈
�
𝟐

𝟐� � �𝒕𝒊𝝈√𝟐𝝅��  

 

We used a Bayesian framework to estimate the parameters of the incubation period 

distribution. In this framework, if 𝜃 represents a vector of parameters and 𝑦 the data,  

Bayes theorem gives us the following relationship: 
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𝒑(𝜽|𝒚) =
𝒑(𝒚|𝜽)𝒑(𝜽)

𝒑(𝒚)  

  

where 𝑝(𝜃) is the prior probability of the parameters 𝜃 , 𝑝(𝑦|𝜃) is the likelihood function 

and 𝑝(𝜃|𝑦) is the posterior probability of 𝜃 given the data 𝑦. 

 

The MCMC process was initiated by giving random values to the parameters 𝜃 and by 

choosing non-informative prior (flat prior) for 𝜃. A Metropolis Hastings algorithm was used 

to update the parameter values in each iteration. In each iteration, all the 𝑘 parameters are 

randomly generated using the normal distribution with the mean 𝜃𝑘
𝑗−1 (previous value of 

the kth parameter) and standard error 𝜎𝑘 , 𝑁(𝜃𝑘
𝑗−1,𝜎𝑘 ) for each parameter. The updated 

likelihood is compared with the previous one using the following accept-reject method: 

𝒒 =
𝒑�𝒚�𝜃𝑗�𝒑�𝜃𝑗�

𝒑(𝒚|𝜃𝑗−1)𝒑(𝜃𝑗−1) 

If  𝑞 ≥ 1, the proposed new values of parameters 𝜃𝑗  are accepted 

If  𝑞 < 1, then 𝜃𝑗  are accepted with probability 𝑞.  

 

A burn-in period with 5,000 iterations was used to reduce the bias of the choice of the 

initial parameter values and to generate values only in the stationary distribution. The 

above algorithm was repeated 10,000 times after the burn-in period, with an acceptance 

rate included in [0.45,0.55] for each parameter (adjusting on 𝜎𝑘). 

 

For interval-censored data the following 𝑝(𝑦|𝜃) was used: 

 

𝒑(𝒚|𝜽) = �𝑺(𝒖𝒊|𝜽) − 𝑺(𝒍𝒊|𝜽)
𝒏

𝒊=𝟏

 

 

where [𝑢𝑖, 𝑙𝑖] are the interval censored data of the patient i and S(.) is the survival 

lognormal distribution function.  

 

(1) 
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Parameters of the fitted lognormal distribution  

 

In patients with exposure intervals data, the parameters of the lognormal distribution were 

estimated with the MCMC approach in the fatal and non-fatal cases, respectively. The 

estimates are for fatal cases: µ= 0.97 (95% CrI: 0.44, 1.38) and σ= 0.88 (95% CrI: 0.58, 1.34) 

and for non-fatal cases: µ= 1.24 (95% CrI: 1.09, 1.37) and σ= 0.88 (95% CrI: 0.58, 1.34). 

 

Among patients of the Amoy garden cohort, the parameters of the lognormal distribution 

were estimated with the same approach approach. The estimates are for fatal cases: µ= 1.37 

(95% CrI: 1.19, 1.54) and σ= 0.54 (95% CrI: 0.43, 0.68) and for non-fatal cases: µ= 1.59 

(95% CrI: 1.53, 1.65) and σ= 0.51 (95% CrI: 0.46, 0.55). 

 

Logistic regression model 

 

The logistic regression model used in this study is based on the following equation: 

 

𝒍𝒏 �
𝒑𝒊

𝟏 − 𝒑𝒊
� = 𝜷𝟎 + 𝜷𝟏𝑿𝟏(𝒊𝒏𝒄𝒖𝒃𝒂𝒕𝒊𝒐𝒏 𝒑𝒆𝒓𝒊𝒐𝒅) + 𝜷𝟐𝑿𝟐(𝒂𝒈𝒆) + 𝜷𝟑𝑿𝟑(𝒔𝒆𝒙)

+ 𝜷𝟒𝑿𝟒(𝒐𝒄𝒄𝒖𝒑𝒂𝒕𝒊𝒐𝒏) 

 

where pi is the probability of death, β i’s are the regression coefficients, estimated with 

MCMC (using flat priors N(0,100000)) and Xi ’s the explanatory variables labeled directly in 

the equation above.  

 

For the patients with exposure data, we performed this analysis three different ways: (1) 

with Ti as the imputed midpoint of exposure intervals; (2) with Ti as the mean of the 10,000 

posterior samples i.e. simulated incubation times for each patient; (3) with Ti resampled 

from the 10,000 posterior samples in each MCMC iteration. Results of these different 

analyses are presented in eAppendix Table 1. Significant association between incubation 

period and risk of death was observed using the mean approach (2) and the imputation 

approach (3) whereas no significant association was observed with the midpoint 
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imputation method (1). The results of method (3) are presented in the main text, as this is 

the most appropriate approach.  

 

 

Sensitivity analyses 

 

Sensitivity analyses were conducted in both subsets of patients. For the patients with 

available exposure data, an interval of 0 to 20 days was selected for the main analysis due 

to the data reported by some patients with very wide exposure intervals that are not 

informative. As a sensitivity analysis, a subgroup of patients was extracted with an inclusion 

criteria based on the exposure intervals of no more than 10 days (N=185). We also fitted 

the logistic regression model for this subset of patients using the mean incubation time and 

found very similar associations of the incubation period with risk of death (OR=0.77; 95% 

CI: 0.53 - 1.04).  

 

For the Amoy Gardens cluster of cases (eAppendix Figure 1), which were thought to have 

been caused by a super-spreading event, we examined potential dates of common infection 

for all members of the cluster and estimated that the most likely infection date was 21st 

March 2003. A period of 14 days i.e. cases with onset dates between 22 March 2003 and 4 

April 2003 (shown in eAppendix Figure 1) was selected for the main analysis in order to 

exclude the small number of cases infected prior to the super-spreading event, and cases 

that had symptom onset late in the outbreak and may have been secondary or tertiary 

infections. We also conducted a sensitivity analysis using first a larger subset of patients, 

with onset dates between 22 March 2003 and 10 April 2003 (N=320) and secondly using a 

smaller subset with onset dates between 22 March 2003 and 31 April 2003 (N=286). 

Results from the logistic regression model show similar associations of the incubation 

period with risk of death (OR=0.92; 95% CI: 0.82-1.02 and OR=0.77; 95% CI: 0.62-0.94, 

respectively).  

 

To evaluate the potential cofounding effect of age, we conducted a stratified analysis using 

two categories of age with the threshold of 50 years (eAppendix Table 2). A significant 
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association between incubation period and risk of death was only observed among Amoy 

garden cohort patients. No significant association was observed for patients with exposure 

data, probably due to the reduced sample size in the sub-analysis. 

 

Moreover, to examine the sensitivity of our results to the assumption of a linear association 

between incubation time and the log-odds of death, we conducted a similar analysis with a 

logistic regression model described previously with the incubation period as a categorical 

variable, using tertiles (eAppendix Table 3). We observed a significant association 

between shorter incubation period and an increased risk of death only in the Amoy Garden 

cohort. However, no significant association was observed in the cases of the exposure data 

patients although the direction of point estimates was consistent with the analysis 

presented in the main text. 
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eAppendix Table 1. Association between estimated incubation period (T) and risk of 

death for each case of Severe Acute Respiratory Syndrome  

Incubation period (Ti), per day 
Risk of Death1 

OR (95% CI) 

Cases with reported exposure dates (n=234)  

   Midpoint imputation  0.89 (0.76 - 1.03) 

   Mean incubation time, T𝑖  0.84 (0.68 - 1.00) 

   Simulated incubation times2 0.86 (0.71 - 1.00) 

Cases in the Amoy Gardens cluster (n=308)  

   Incubation period3 0.79 (0.67 - 0.94) 
1 The odds ratios (exp(β)) were estimated using Markov Chain Monte Carlo (10,000 runs) to estimate the coefficients (β) of 

the multivariable logistic regression model, with death status as the binary outcome variable and the incubation period, sex, 

age and occupation as predictors. 
2 10,000 samples from the posterior distributions of the two parameters (μ, σ) and the incubation periods T for each patient 

were drawn using MCMC in the same algorithm in order to retain uncertainty in the incubation period in the analysis of 

severity.  
3 Incubation period estimated based on illness onset dates, with an assumed infection date for all cases of 21 March 2003. 
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eAppendix Table 2. Age stratified analysis of association between risk of death and 

estimated incubation period, sex and occupation. 

 

Cases 
Risk of Death1 

OR (95% CI) 

 0 - 49 years old ≥50 years old 

Cases with reported exposure dates 

(n=234) 
9/1633 16/463 

Incubation period1 0.91 (0.70 - 1.11) 0.91 (0.73 - 1.09) 

   

Cases in the Amoy Gardens cluster 

(n=308) 
22/2363 16/343 

Incubation period2 0.91 (0.65 - 0.98) 0.70 (0.65 - 0.92) 
1 The odds ratios (exp(β)) were estimated using Markov Chain Monte Carlo (10,000 runs) to estimate the coefficients (β) of 

the multivariable logistic regression model, with death status as the binary outcome variable and the incubation period, sex 

and occupation as predictors. 10,000 samples from the posterior distributions of the two parameters (μ, σ) and the incubation 

periods T for each patient were drawn using MCMC in the same algorithm in order to retain uncertainty in the incubation 

period in the analysis of severity.  
2 Incubation period estimated based on illness onset dates, with an assumed infection date for all cases of 21 March 2003. 
3 number of fatal cases/number of non-fatal cases 
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eAppendix Table 3. Association between estimated incubation period (T) using 

categorical variables (tertiles) and risk of death for each case of Severe Acute 

Respiratory Syndrome 

Factors 

Risk of death, OR (95% 

CrI) in cases with 

reported exposure 

dates (n=234) 

Risk of death, OR 

(95% CrI) in cases of 

the Amoy Gardens 

cluster (n=308)2 

Incubation period below 1st tertile 

(shortest)1 (reference group) 
1.00 1.00 

Incubation period between 1st and 

2nd tertile1 
0.68 (0.22 - 2.11) 0.18 (0.05 - 0.63) 

Incubation period above 2nd tertile 

(longest)1 
0.57 (0.17 - 1.73) 0.07 (0.02 - 0.27) 

1 The odds ratios (exp(β)) were estimated using Markov Chain Monte Carlo (10,000 runs) to estimate the coefficients (β) of 

the multivariable logistic regression model, with death status as the binary outcome variable and the incubation period, age, 

sex and occupation as predictors. The tertiles were (2.3, 5.0 days) and (2.8, 5.8 days) for the patients with exposure data and 

the Amoy garden cohort, respectively  
2 Incubation period estimated based on illness onset dates, with an assumed infection date for all cases of 21 March 2003. 
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eAppendix Figure 1. Distribution of illness onset dates for all cases determined 

through epidemiologic investigations to form the Amoy Gardens cluster (n=331). The 

putative super spreading event happened on the 21st March 2003. The two vertical lines 

delimit the period of selection for the patients included in the main analysis. The dotted line 

indicates a lognormal distribution for the incubation period estimated on the separate 

subset of cases with exposure information as shown in Figure 1A in the main text (i.e. 

incubation period with mean 4.7 days, standard deviation 4.6 days). 
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