
Title A Hybrid Estimation of Distribution Algorithm for Simulation-
Based Scheduling in a Stochastic Permutation Flowshop

Author(s) Wang, K; Choi, SH; Lu, H

Citation Computers & Industrial Engineering, 2015, v. 90, p. 186-196

Issued Date 2015

URL http://hdl.handle.net/10722/220154

Rights This work is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/38086524?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1

A Hybrid Estimation of Distribution Algorithm for Simulation-

Based Scheduling in a Stochastic Permutation Flowshop

K. Wang
a
, S.H. Choi

b
, H. Lu

c

 a Department of Management Science and Engineering, Economics and Management School, Wuhan University, Wuhan, China

 b Department of Industrial and Manufacturing Systems Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong

 c Department of Logistics Management, School of Logistics Engineering, Wuhan University of Technology, Wuhan, China

Abstract

The permutation flowshop scheduling problem (PFSP) is NP-complete and tends to be more

complicated when considering stochastic uncertainties in the real-world manufacturing

environments. In this paper, a two-stage simulation-based hybrid estimation of distribution

algorithm (TSSB-HEDA) is presented to schedule the permutation flowshop under stochastic

processing times. To deal with processing time uncertainty, TSSB-HEDA evaluates candidate

solutions using a novel two-stage simulation model (TSSM). This model first adopts the

regression-based meta-modelling technique to determine a number of promising candidate

solutions with less computation cost, and then uses a more accurate but time-consuming

simulator to evaluate the performance of these selected ones. In addition, to avoid getting

trapped into premature convergence, TSSB-HEDA employs both the probabilistic model of

EDA and genetic operators of genetic algorithm (GA) to generate the offspring individuals.

Enlightened by the weight training process of neural networks, a self-adaptive learning

mechanism (SALM) is employed to dynamically adjust the ratio of offspring individuals

generated by the probabilistic model. Computational experiments on Taillard’s benchmarks

show that TSSB-HEDA is competitive in terms of both solution quality and computational

performance.

Keywords: permutation flowshop scheduling; stochastic processing times; estimation of

distribution algorithm; genetic algorithm; meta-model.

1. Introduction

The permutation flowshop scheduling problem (PFSP) is a well-known and well-studied

combinatorial optimisation problem (Gupta and Stafford Jr, 2006; Vallada and Ruiz, 2009). In

the classical PFSP, jobs arrive at the shop floor simultaneously and then follow the same

processing order on each of the machines. The PFSP has been proven strongly NP-complete for

2

more than two machines (Garey, 1976). Due to its great significance in both academic and real-

world applications, the PFSP has attracted considerable attention after the pioneering work of

Johnson (1954).

Although a tremendous amount of effort has been devoted to addressing the PFSP, most of

the research works consider a static environment, in which no unexpected events would occur

to disturb job processing. Real-world manufacturing environments, however, tend to suffer a

variety of uncertainties, including change of processing time, machine breakdown, rush orders,

and job cancellations, etc. (Gholami et al., 2009; Ouelhadj and Petrovic, 2009). Therefore,

permutation flowshop scheduling under uncertainties has recently received an increasing

attention.

Three types of approaches, namely exact algorithms, heuristics, and meta-heuristics, are

commonly adopted to solve the PFSPs in the literature (Ruiz and Maroto, 2005; Xu et al.,

2014). Exact algorithms aim to achieve the optimal solution, and hence are computationally

expensive for large-sized PFSPs. Examples of such methods are branch and bound approaches

(Chung et al., 2002). In addition to exact algorithms, heuristics and meta-heuristics have also

been introduced to find approximate solutions within reasonable computational cost. Since

most existing heuristic methods, such as constructive heuristics and improvement heuristics,

tend to perform poorly on large-sized PFSPs (Ceberio et al., 2014), a wide range of meta-

heuristics have been applied to address the PFSPs (Zobolas et al., 2009).

To deal with uncertainties in a flowshop, the simulation-based meta-heuristics (SBM) have

been successfully developed to construct and evaluate candidate solutions. In these approaches,

a discrete-event simulator is usually incorporated into a meta-heuristic (Wang et al., 2013),

such as genetic algorithm (GA) (Dugardin et al., 2010), immune algorithm (Zandieh and

Gholami, 2009), ant colony optimisation (ACO) algorithm (Ahmadizar et al., 2010), and

hybrid meta-heuristics (Safari and Sadjadi, 2011), etc. As an iterative procedure, the meta-

heuristic guides its subordinate heuristics to iteratively produce high-quality candidate

solutions until a termination criterion is met. In the SBM, the performance of candidate

solutions is estimated over iterations using the discrete-event simulator. Accordingly, the

computation time of such an evaluation process inevitably greatly increases with the growth of

the number of candidate solutions or simulation replications. The main disadvantage of SBM

technique therefore lies in the large computation time required for performance evaluation

under uncertainties (Dugardin et al., 2010).

To overcome such drawback, some effective approaches have recently been proposed for

scheduling under uncertainties. Instead of estimating the performance of all candidate solutions,

http://en.wikipedia.org/wiki/Candidate_solution

3

these approaches only evaluate a number of promising candidate solutions by a time-

consuming simulator. Zhang et al. (2012) developed a hybrid particle swarm optimisation (PSO)

algorithm for stochastic job shop scheduling problems. They first adopted the lower bound of

the objective value to give a quick performance evaluation on candidate solutions, and then

only the ones in the satisfactory regions were further estimated using a discrete-event simulator.

Moreover, to determine the promising candidate solutions for further optimisation under

uncertainties, both Horng et al. (2012) and Juan et al. (2014) applied the stochastic simulation

model with less simulation replications for performance evaluation.

Despite an increasing amount of research interest in developing new SBMs, few research

works have been reported on improving their computational performance for scheduling

problems under uncertainties.

This paper therefore presents an effective SBM to address the PFSPs under stochastic

processing times. Enlightened by the works of Zhang’s (2012), Horng’s (2012), and Juan et al.

(2014), we incorporate an efficient two-stage simulation-based model into a hybrid estimation

of distribution algorithm (EDA) to generate good-quality schedules with less computational

effort.

The EDA was first introduced by Mühlenbein and Paass (1996) as an alternative to

conventional evolutionary algorithms (EA). Different from conventional EAs, EDA adopts a

probabilistic model to generate the offspring. This model is established by learning from an

elite set of individuals in the previous population. As an effective method to inherit good genes

over generations, EDA has recently been successfully used to a wide range of combinatorial

optimisation problems (Hauschild and Pelikan, 2011), such as the PFSP and its variants.

Jarboui et al. (2009) presented an efficient EDA to solve the PFSP with total flow time

minimisation. For the same scheduling problem, Zhang and Li (2011) improved the EDA

efficiency by incorporating the longest common subsequence into the probabilistic model.

Wang et al. (2013) developed an effective EDA to minimise the makespan of the distributed

permutation flowshop. More recently, Ceberio et al. (2014) introduced a probabilistic distance-

based ranking exponential model, named the Mallows model, to construct EDA solutions. To

further investigate the performance of EDA for the PFSP, hybridisation of EDA with other

meta-heuristics has also been studied. Liu et al. (2011) hybridised EDA with PSO to allow

social information sharing among candidate solutions. Moreover, Tzeng et al. (2012)

incorporated the idea of ant colony system (ACS) into EDA to schedule a permutation

flowshop.

The proposed two-stage simulation-based hybrid EDA (TSSB-HEDA) differentiates itself

4

from the conventional EDA by two mechanisms, namely a two-stage simulation model (TSSM)

and a self-adaptive learning mechanism (SALM). To reduce the computation cost of TSSB-

HEDA, TSSM first employs a regression-based meta-model to provide a rough estimation of

candidate solutions, and only a number of promising ones are identified and further evaluated

using a discrete-event simulator. Moreover, to prevent EDA from early search stagnation,

TSSB-HEDA employs both the probabilistic model of EDA and genetic operators of GA to

produce offspring individuals. Motivated by the idea of neural network training, SALM

dynamically adjusts the ratio of offspring generated by the probabilistic model to avoid being

trapped into premature convergence. An extensive search of literature on PFSP suggests that

not much research effort has been devoted to applying EDA to schedule the permutation

flowshop under uncertainties.

The rest of the paper is organised as follows. Section 2 presents the mathematical

formulation of PFSP. Section 3 describes the proposed TSSB-HEDA in details. To validate the

performance of TSSB-HEDA under stochastic processing times, simulations are conducted and

the computation results are analysed in Section 4. Finally, in Section 5, we conclude the paper

and discuss some topics for future research.

2. Problem description

The PFSP is a well-known combinatorial optimisation problem. In the classical PFSP, a

finite set J = {1, 2, … , n} of n jobs are firstly released simultaneously to the shop floor, and

then are processed on a finite set M = {m1, m2,… , mm} of m machines with no pre-emption

allowed. Each job j, j∈J, consists of m operations that have to be processed on the machines in

the order of m1, m2,… , mm. All the jobs have deterministic processing times and follow the

same processing order on each machine.

In the real-world manufacturing environments, however, a variety of unexpected events,

such as tool wear, equipment failure, operator unavailability, and quality issues, may lead to

uncertain processing times (Lawrence and Sewell, 1997). This paper describes the processing

time uncertainty using the level of processing time variation (LPTV), which is described as

follows:

 LPTV E P

 (1)

where E(P) and σ indicate the expected value and the standard deviation of processing time,

respectively. According to formula (1), a larger LPTV may result in a large deviation between

the expected and the actual processing times. For example, suppose E[P] of a job equals 15

5

time units, LPTV values of 0.2 and 0.4 lead the standard deviation of actual processing time

from E[P] to be 3 and 6 times units respectively.

The objective of PFSP in this study is to determine a feasible permutation to minimise the

makespan, i.e. the maximum completion time of all operations. With consideration of

processing time uncertainty, we formulate the PFSP as follows:

 ,()n mmin E C

 (2)

Subject to the following constraints:

 1 1,1 ,1() ()C SP

(3)

 1,1 ,1 ,1() () (), 2,...,j j jC C SP j n

(4)

 1 1 1, , 1 ,() () (), 2,...,i i iC C SP i m

(5)

 1, , , , 1 , , ;() () () () 2,..., 2,...,j j j ji i i iC max C C SP i m j n

(6)

Where

i: machine index, 1 ≤ i ≤ m

j: job index, 1 ≤ j ≤ n

j : j
th

 job in permutation 1,..., n , 1 ≤ j ≤ n

,()j iC : completion time of Job j on machine i

,()j iSP : stochastic processing time of Job j on machine i

3. Details of the proposed two-stage simulation-based hybrid EDA (TSSB-

HEDA)

3.1 The framework of TSSB-HEDA

As a relatively new paradigm of EAs, EDA reproduces the offspring from a probabilistic

model, rather than crossover and mutation operators used in traditional GAs. The probabilistic

model describes statistical information of elite individuals from previous generations, and

therefore is capable of predicting the most promising search area. As an iterative procedure,

EDA includes the following steps (Pan and Ruiz, 2012): (1) Randomly generate an initial

population; (2) Choose some good individuals to construct the elite set; (3) Establish the

probabilistic model from the elite set; (4) Generate new individuals from the estimated

probabilistic model; (5) Steps 2-4 are repeated until a stopping criterion is satisfied.

6

Since new populations are generated entirely from the probabilistic model, EDA may not

generate diversified individuals. It tends to trap into premature convergence after some

generations (Chen et al., 2010). Incorporation of meta-heuristics, particularly GA, might be an

effective approach to avoiding premature convergence. Although the genetic operators of GA,

such as crossover and mutation, can provide the population diversity by perturbing the good

solution structure, few studies on the integration of GA with EDA have been reported. Some

existing hybrid frameworks mainly include ACGA (Chang et al., 2009) and eACGA (Chen et

al., 2012). In these hybrid approaches, the probabilistic model of EDA and genetic operators of

GA are alternated to produce the offspring over a predefined number of generations. No

adaptive strategy is adopted to guide the process of population generation.

Fig. 1 illustrates the framework of the proposed TSSB-HEDA, which is differentiated from

the conventional EDA by the two-stage simulation model (TSSM) and hybridisation of EDA

and GA. To provide an efficient method for performance evaluation, TSSB-HEDA incorporates

7

TSSM into EDA to estimate the performance of offspring individuals under stochastic

processing times. Furthermore, to preserve the population diversity, both the probabilistic

model of EDA and genetic operators of GA are applied to create new individuals in this study.

Enlightened by the weight training process of neural networks, the EDA participation ratio

EDAR , indicating the ratio of individuals generated by the probabilistic model, is dynamically

adjusted by a self-adaptive learning mechanism (SALM). The rest of Section 3 first provides

a detailed explanation of TSSM and the hybrid EDA with genetic operators, and subsequently

follows the complete procedure of TSSB-HEDA.

3.2 The Two-stage simulation model (TSSM) under stochastic processing times

TSSB-HEDA applies the TSSM to reduce the computation cost of performance evaluation

considering processing time uncertainty. In the first stage, a regressing-based meta-model is

applied to estimate the performance of candidate solutions, so that a number of promising ones

can be quickly determined. From these selected solutions, a discrete-event simulator is then

used in the second stage to obtain a more accurate evaluation.

3.2.1 Stage I: using the regression-based meta-model for performance evaluation

In the real-world manufacturing systems, processing time uncertainty may advance or

postpone job processing, and in turn lead to deviations between the planned and the actual

schedules. The effect of schedule deviations, if not be properly compensated by the slack or

idle time on the machines, could eventually degrade schedule performance (Saad, 2003; Wang

and Choi, 2014). Accordingly, less slack or idle time on the machines may result in significant

degradation of schedule performance. Moreover, the configuration of permutation flowshop

systems, including the number of jobs to be processed, the number of machines, and LPTVs of

machines may influence the performance degradation of the planned schedule. To estimate the

schedule performance in a realistic permutation flowshop, there is therefore a need to develop

an effective method to predict the performance degradation of planned schedules.

Simulation modelling and analysis on manufacturing systems are often complicated, time-

consuming, and challenging. Due to the robust and fast decision support in the decision-

making process, meta-modelling techniques, including regression and neural network models,

have been widely applied to predict the simulation results in real-world manufacturing

environments. Instead of an actual simulation model, a meta-model approximates a functional

relationship between simulation input parameters and system responses (Yu and Popplewell,

1994; Vinod and Sridharan, 2011). Since regression analysis is one of the commonly used

8

methods for finding such functional relationship, it has been applied to establish the meta-

model to evaluate the schedule performance in this study.

To obtain a number of promising candidate solutions, the multiple linear regression meta-

model is firstly applied to estimate the degradation of schedule performance (DSP) with

processing time uncertainty. The makespan of the actual schedule, i.e. ASM , is then computed

as follows:

 AS PSM M DSP

(7)

where PSM represents the makespan of the planned schedule. Based on ASM , the promising

candidate solutions can be easily identified.

The DSP of a planned schedule may be affected by machine size, job size, LPTV, and the

slack ratio (SR). The SR, describing the slack per processing time of a planned schedule, is

measured by

1 1

m n

ij ij

i j

SR S P

(8)

where m denotes the number of machines, n represents the number of jobs to be processed,

ijS and ijP indicate the free slack and the processing time of job j on machine i respectively.

In the literature of scheduling under uncertainties, free slack is commonly applied to

estimate the robustness of a given schedule (Xiong et al., 2013). It is therefore used in this

study to define the SR. Different from idle time, free slack in a permutation flowshop is

measured by the amount of time that an operation could be right-shifted without delaying its

start on the next machine. The difference between free slack and idle time of a given schedule

is depicted in Fig. 2.

To predict the DSP of a planned schedule, we adopt job size, machine size, LPTV, and SR

as the independent variables, and the multiple linear regression meta-model is accordingly

established as follows:

9

0 1 1 2 2 3 3 4 4 5 1 2 6 1 3

7 1 4 8 2 3 9 2 4 10 3 4

 DSP x x x x x x x x

x x x x x x x x e

(9)

where 1x , 2x , 3x , and 4x represent job size, machine size, LPTV, and SR; 0 is the constant;

1 , 2 , 3 , and 4 denote the coefficients corresponding to job size, machine size, LPTV, and

SR; 5 , 6 ,…, 10 are the coefficients corresponding to the interaction effects between job size,

machine size, LPTV, and SR; e is the error.

The meta-model is often constructed in a three-step process (Hurrion and Birgil, 1999;

Vinod and Sridharan, 2009). First, a factorial experimental design is conducted to obtain a set

of simulation results. The meta-model is then established using either regression or neural

network techniques. Finally, a validation test on the developed meta-model is conducted by

comparing predicted results with simulation results. In this study, the simulation results under

stochastic processing times (to be presented in Section 4.2) are used to build the meta-model

shown in formula (9). After obtaining the multiple linear regression meta-model, the

performance of candidate solutions can be roughly estimated according to formula (7), and

accordingly the best 100% 0,1

ones can be chosen to establish a set of promising

solutions p for further performance evaluation.

3.2.2 Stage II: using the discrete-event simulator for performance evaluation

In this stage, only the promising solutions p

are further estimated using a discrete-event

simulator. To model the manufacturing process in a permutation flowshop, processing time

uncertainty is considered in this simulator, which is described below.

Algorithm I: The discrete-event simulator

Step 1: Set the number of simulation replications simN and counter 1n .

Step 2: Initialise the level of processing time variation (LPTVk) for each machine kM .

Step 3: Allocate the jobs to machines according to the job sequence of a candidate solution.

Step 4: Following the processing route in a permutation flowshop (i.e. from the first

machine to the last machine), the actual completion times of jobs on each machine

kM are obtained as follows:

Step 4.1: Identify the first unprocessed job j on machine kM and record its start time.

Step 4.2: Apply a truncated normal distribution (to be detailed in Section 4.1) to

generate actual processing time of job j on machine kM .

10

Step 4.3: Obtain the completion time of job j on machine kM by summing its start time

with its actual processing time.

Step 4.4: If all the jobs assigned to machine kM have been completed, record their

completion times; otherwise, return to step 4.1.

Step 5: Record the simulated makespan under stochastic processing times as n

simM , i.e. the

completion time of the last job on the last machine.

Step 6: If simn N , return the average simulated makespan over simN simulation replications

as
1

simN
n

avg sim sim

n

M M N

 ; otherwise, set 1n n and return to step 3.

Based on the above simulator, avgM is used to evaluate the candidate solutions of p . To

model the manufacturing process in a permutation flowshop, this simulator employs a

large 100simN for performance evaluation under stochastic processing times, inevitably

resulting in a costly and time-consuming evaluation process.

3.3 The hybrid EDA with genetic operators

TSSB-HEDA employs both TSSM and genetic operators to address the PFSPs with

processing time uncertainty. The details of TSSB-HEDA are described as follows.

3.3.1 Solution encoding and initial population

TSSB-HEDA applies the permutation-based encoding scheme to represent individual

solutions. Such a method has been widely adopted for permutation flowshop scheduling during

the past decades (Wang et al., 2010; Gao et al., 2011; Li and Pan, 2014). For example, as a

solution to a PFSP with 4 jobs, job sequence {1, 4, 2, 3} shows that job 1 is first scheduled,

then successively followed by job 4, job 2, and job 3. To better cover the promising regions of

the entire search space, TSSB-HEDA generates the initial population randomly.

3.3.2 Selection

 The probabilistic model of EDA is established based on an elite set of individuals, which are

selected from previous population using a selection operator. To reduce the computation time

of performance evaluation under stochastic processing times, TSSM adopts a regression-based

meta-model to determine some promising individuals, which are further estimated using a

simulator, i.e. Algorithm I. Since different methods are used to estimate the individual fitness in

TSSB-HEDA, it is not suitable to select good individuals from the population only depending

on their fitness values. Therefore, a modified linear rank selection is employed to choose part

11

of individuals with good performance under stochastic processing times.

The modified linear rank selection involves two steps: (1) the individuals are ranked in

ascending order of the estimated fitness under stochastic processing times, which is the

reciprocal of the objective function. Based on the regression-based meta-model, the worst

 (1) 100% 0,1 individuals are first identified and sorted. Then, using Algorithm I, the

rest 100% 0,1 individuals are evaluated and sorted; (2) the individuals are selected

with the probability:

()

k
i
k k

i i i

k k

x P

P x r r

 (10)

where kP denotes the k
th

 population of TSSB-HEDA,
k

ix and i

kr represent the i
th

 individual and

its rank in population kP respectively. To produce the elite set for the probabilistic model

construction, such selection process continues until 100% ([0,1]) individuals of current

population have been chosen.

3.3.3 Probabilistic model

Instead of using genetic operators, the probabilistic model is applied in the conventional

EDA to guide the exploration of the search space. It therefore affects the EDA performance

substantially. To address the PFSP with total flow time minimisation, Jarboui et al. (2009)

developed an effective probabilistic model with consideration of both job order in the sequence

and similar job blocks of selected elite parents. In their proposed model, the probability for

selecting job j at position k, i.e. jk , is computed as follows:

1

1
k

jk j k

jk

lk l kl

(11)

where jk represents the number of times that job j appears before or at position k in the

selected individuals augmented by a given constant 1 ; 1j k

 denotes the number of times that

job j appears immediately after the job at position k−1 in the selected individuals augmented by

a given constant 2 ; k indicates the set of jobs that are not scheduled until position k.

Such a probabilistic modelling method has its own disadvantage when applied to solve the

PFSP. According to the definition of 1j k

, it equals zero when 1k , since no job can be

positioned before job j if it is selected as the first job to be processed. This may lead the

probability of positioning any job at position 1 to be zero. Therefore, instead of being

determined by the genetic information of the elite set, the first job in the sequence is randomly

12

chosen. To overcome such drawback, we apply a new probabilistic model to determine
jk as

1

1

,
1

, 2,3...,

k

k

jk

jkl

jk
jk j k

lk l kl

k

k n

(12)

Based on formula (12), the job assigned to a specific position k in the sequence can be

determined by the probability of jk . For each generation,

100% ([0,1])EDA EDAR R offspring

are generated by the probabilistic model.

3.3.4 Crossover and mutation

To prevent EDA from being trapped into premature convergence, genetic operators, namely

crossover and mutation, are adopted to generate part of population. As the primary genetic

operator, crossover guides the exploration of new promising regions in the search space. It

usually produces the offspring by interchanging parts of their parents (genes) (Huang et al.,

2015). TSSB-HEDA applies the order crossover to generate the offspring, which is explained

as follow: two parents are first divided into three parts by selecting two random cut points.

Then the middle parts of two children are then directly inherited from their parents, and the

remaining genes of child 1 are filled following the job order appeared in parent 2. Similarly, the

remaining genes of child 2 are determined based on parent 1. An example of order crossover is

illustrated in Fig. 3.

To preserve the population diversity, mutation changes one or more genes in a chromosome

from its initial state (Choi and Wang, 2012). TSSB-HEDA adopts the pairwise interchange

mutation to swap two randomly selected jobs of the individual, as illustrated in Fig. 4.

For each generation of TSSB-HEDA, the order crossover is performed to generate

(1) 100% ([0,1])EDA EDAR R of new individuals, and each of them is mutated with rate mp .

13

3.3.5 Self-adaptive learning mechanism

To improve the population diversity of EDA, both the probabilistic model of EDA and

genetic operators of GA are adopted to produce the offspring. The proposed TSSB-HEDA

applies a self-adaptive learning mechanism (SALM) to determine the EDA participation ratio,

which indicates how many individuals of a population are produced by the probabilistic model.

SALM is based on the weight training process of neural network, which has been adopted by

Agarwal et al. (2006) to address the traditional flowshop scheduling problems. In their research

work, a set of weights were used to construct solutions by perturbing the data of original

scheduling problem. To iteratively improve the solutions, they employed a learning approach to

dynamically change the weights by reinforcement and backtracking. The set of weights were

reinforced if an iteration resulted in improvement, and were backtracked to the best set of

weights so far if there was no improvement over a certain number of iterations.

Inspired by the work of Agarwal et al. (2006), SALM uses both reinforcement and

backtracking to adjust the EDA participation ratio EDAR . The idea of reinforcement originates

from the weight training process of neural network. If the best individual found so far improves,

we record EDAR at current population as the best one and then reinforce its change from

previous generation using a reinforcement factor (RF). Thus, if EDAR

increases from its

previous value, more offspring are sampled from the probabilistic model at the next generation.

Otherwise, fewer offspring are produced using the probabilistic model. If no improvement

happens at an iteration, a perturbation strategy is used to update EDAR , which allow either

slightly increase or decrease the number of offspring generated by the probabilistic model. In

addition to reinforcement, SALM allows backtracking to a previous EDAR according to the

predefined tolerate iterations with no improvement (TINI). If the best individual does not

improve for consecutive TINI generations, EDA may produce offspring with similar structure

and tend to get trapped into premature convergence. Therefore, backtracking is performed by

changing the current EDAR to the best one so far. The procedure of SALM is detailed below.

Algorithm II: SALM

14

Step 1:

Find the best individual in the current generation i. If it provides the best makespan so

far, record the makespan as the best makespan bM

and the current i

EDAR as the best

EDA participation ratio EDABR .

Step 2: If the TINI counter k TINI and improvement of bM

occurs at current generation i,

set 1k and use one of the following strategies to reinforce the EDA participation

ratio at generation i+1, i.e. 1i

EDAR . In these two strategies, RF indicates the

reinforcement factor.

(a) 1 1 1,1 , 0i i i i i i

EDA EDA EDA EDA EDA EDAR min R RF R R if R R

(b) 1 1 1,0 , 0i i i i i i

EDA EDA EDA EDA EDA EDAR max R RF R R if R R

Step 3: If k TINI and no improvement of bM occurs at current generation i, set

1k k and select one of the following strategies to update the EDA participation

ratio at generation i+1, i.e. 1i

EDAR . In these two strategies, r represents a uniformly

random number from [0, 1] and is the learning rate.

(a) 1 ,1 , 0.5i i

EDA EDAR min R r if r

(b) 1 ,0 , 0.5i i

EDA EDAR max R r if r

Step 4: If k TINI and no improvement of bM occurs during the past TINI generations, set

1k and 1i

EDA EDAR BR .

After the offspring are produced by the probabilistic model and genetic operators, SALM is

applied to adjust the EDA participation ratio. We initialise the TINI counter 1k and the EDA

participation ratio 50%EDAR when SALM is implemented for the first time.

3.3.6 Stopping criterion

A variety of stopping criteria have been considered in the literature of EDA, such as the

number of generations (Wang et al., 2013), the number of consecutive generations with no

improvement (Zhang and Li, 2011), the number of examined solutions (Chen and Chen, 2013),

and bound of computation time (Jarboui et al., 2009), etc. Similar to that of Wang et al. (2013),

the maximum number of generations is adopted as the stopping criterion of TSSB-HEDA.

3.4 Complete procedure of TSSB-HEDA

According to the detailed description above, the complete procedure of TSSB-HEDA is

15

described as follows:

Notation:

simN : the number of simulation replications

sP : the size of population

 : the ratio of population related to identifying promising individuals for further

performance evaluation

 : the ratio of population related to establishing the probabilistic model of EDA

TINI : tolerate iterations with no improvement of SALM

RF : reinforcement factor of SALM

 : the learning rate of SALM

k : the TINI counter of SALM

EDAR : the EDA participation ratio

cS : the best individual of current population

bS : the best individual found so far

CurGen : the current generation index

MaxGen : the maximum number of generations

Algorithm III: TSSB-HEDA

Step 1: Set the algorithm parameters simN , sP , mP , , ,

 ,

TINI ,

RF , MaxGen . Let

1CurGen , 1k , and 50%EDAR ;

Step 2: Randomly initialise a population of sP individuals;

Step 3: Estimate the initial population under stochastic processing times using the TSSM

and choose the best one as bS ;

Step 4: Identify sP

individuals to establish the elite set e ;

Step 5: Construct the probabilistic model of EDA using e according to formula (12);

Step 6: Apply the constructed probabilistic model to sample and generate EDA sR P offspring;

Step 7: Apply the order crossover and the pairwise interchange mutation to generate

(1)EDA sR P offspring;

Step 8: Employ the TSSM to determine the best individual of the current population under

stochastic processing times, i.e. cS , and then update b cS S

if the expected

makespan of cS is less than that of bS ;

16

Step 9: Perform SALM to adjust EDAR .

Step 10: If CurGen MaxGen , return bS ; otherwise, let 1CurGen CurGen

and return

to step 4.

4. Computational experiments

The proposed TSSB-HEDA is coded in the Netbeans
TM

 development environment 7.4 and

performed on a PC with Intel® Core
TM

 i5 2.7GHz processor and 6GB memory. To validate the

effectiveness of TSSB-HEDA, we designed and conducted three experiments, which are

detailed in the following sections.

4.1 Design of experiments

The first experiment constructs the regression-based meta-model to predict the DSP of

planned schedules under stochastic processing times. Instead of conducting a full factorial

experiment, the second experiment applies the Taguchi experimental design to identify the near

optimum values of key parameters in TSSB-HEDA. After these two experiments, TSSB-HEDA

is well prepared to address the PFSP under stochastic processing times, and its performance

with makespan criterion is subsequently analysed in the third experiment.

To model the processing time uncertainty in a permutation flowshop, the actual job

processing time P is generated from a normal distribution with its expected value of ()E P and

the standard deviation of σ. To guarantee job processing time to be non-negative in these three

experiments, we adopt a left-truncated normal distribution at zero, i.e. 2~ (),P N E P where

 0,P . For the second and the third experiments, TSSB-HEDA and the compared

algorithms are terminated when 10×n generations are reached, where n is the number of jobs.

4.2 Development of regression-based meta-model for DSP Estimation

To obtain the regression-based meta-model for DSP estimation, it is necessary to first

generate the simulation results that describe the effect of simulation inputs, including job size,

machine size, LPTV, and SR, on the performance degradation of planned schedules under

stochastic processing times. The levels of these four simulation inputs used in the experiment

are presented in Table 1.

17

For each possible combination of simulation inputs, an experimental PFSP with processing

time uncertainty is generated. To solve this problem, a job sequence is first randomly generated

and converted into a feasible schedule with a specific SR. The makespans of such schedules

under stochastic processing times and deterministic processing times, i.e. and , are

subsequently obtained. Lastly, the degradation of schedule performance of a planned schedule,

i.e. DSP, is computed as

 1AS PSDSP M M

(13)

Such process continues until each combination of the simulation inputs in Table 1 has been

examined. Therefore, a total of 625 (5×5×5×5 = 625) simulation experiments are conducted to

generate the simulation results.

Based on the simulation results, multiple linear regression analysis has been applied to

establish the meta-model using formula (9). Accordingly, the proposed regression-based meta-

model is obtained as follows:

1 2 3 4 1 2

1 3 1 4 2 3 2 4 3 4

0.04497 0.00019 0.00593 2.10028 0.16319 0.00002

0.00266 0.00033 0.02441 0.00358 1.71680

DSP x x x x x x

x x x x x x x x x x

(14)

To evaluate the effectiveness of the developed meta-model, Table 2 gives the results of

analysis of variance with 5% significance level for the meta-model. According to Table 2, the

following observations are made: (1) The regression-based meta-model is

statistically significant because of the small p-value (less than 0.05); (2) The correlation of

coefficient R
2
 (larger than 0.95) implies that the meta-model can explain over 95% of the

variance in the estimated performance degradation. These observations indicate that the

18

regression-based meta-model is statistically adequate to fit the simulation results under

stochastic processing times.

To further test the validity of the developed meta-model, we consider two typical PFSPs, i.e.

50×10 and 100×20, in which the expected processing times are generated from the uniform

distribution with range [1, 20]. For these two PFSPs, different values of LPTV and SR are

adopted as the inputs of the simulation model. LPTV is chosen to be 0.15, 0.25, 0.35, and 0.45.

SR can be 0.26, 0.34, and 0.42. Table 3 presents the DSPs obtained using the discrete-event

simulator and the predicted DSPs using the meta-model for the chosen LPTVs and SRs. It is

clear that the percentage deviation between the meta-model results and the simulation results is

less than 5%, indicating that the developed meta-model provides a good prediction of DSP

under stochastic processing times.

4.3 Parameter tuning of TSSB-HEDA

The performance of TSSB-HEDA depends on the values of some important parameters,

such as sP (the size of population), (the ratio of population related to identifying promising

19

individuals for further performance evaluation), (the ratio of population related to

establishing the probabilistic model of EDA), mp (mutation rate), (the learning rate of

SALM), TINI (tolerate iterations with no improvement of SALM), and RF

(reinforcement

factor of SALM). To determine the near optimum values of these parameters, Taguchi

experiments (Taguchi, 1986) are conducted on a moderate-size PFSP with 50 jobs and 10

machines. In this PFSP, LPTVs of machines and expected job processing times are uniformly

generated in the ranges [0.1, 0.5] and [1, 20], respectively. Compared with a

full factorial experiment, the Taguchi method is capable of reducing the number of experiments

substantially (Naderi et al., 2010).

Seven key parameters of TSSB-HEDA and their different factor levels considered in

Taguchi experiments are presented in Table 4. Accordingly, an orthogonal array L18 (6
1×3

6
)

shown in Table 5 is established by MINITAB 16 for parameter tuning. Rather than performing

6
1×3

6
= 4,374 experiments in a full factorial design, we only conduct a total of 18 Taguchi

experiments to identify the near optimum values of these seven parameters. For each of the

Taguchi experiment, TSSB-HEDA with a specific level combination of factors is first run

separately 20 times for the same experimental PFSP under stochastic processing times. The

average of simulated makespans, i.e. the value of response variable (RV) in a Taguchi

experiment, is then determined. Based on RV values, the average response at each factor level

is obtained and presented in Fig. 5.

20

21

To further analyse the significance of individual factor in TSSB-HEDA, Table 6 ranks the

factors according to their Delta statistics, which is the difference between the highest and

lowest average of RV. The rank of a factor shows its relative importance to the performance of

TSSB-HEDA.

From the ranks in Table 6, it is clear that has the most significant effect on the

performance of TSSB-HEDA. Although a large may result in a more accurate performance

estimation of candidate solutions under stochastic processing time, the large computation cost

of modelling processing time uncertainty has to be considered. As shown in Fig. 5, the

performance of TSSB-HEDA improves slightly once is larger than 0.3. The parameter of

0.3 is therefore adopted in this study to prevent large computation time. The value of sP is

likewise set to 300 when considering the amount of computation cost. For the parameters

associated with SALM, the moderate values of TINI and RF can help avoid large fluctuation

of the EDA partition ratio, and hence may provide a better balance between population

diversity and convergence performance. Furthermore, the values of , mp , and can be easily

determined by Fig. 5. From the above analysis, all the key parameters of TSSB-HEDA are

accordingly set as:

0.30 , 300sP , 0.15 , 0.10mp , 0.05 , 30TINI ,

and 1.10RF .

4.4 Performance evaluation of TSSB-HEDA

Different from traditional EDA for permutation flowshop scheduling in a static environment,

the proposed TSSB-HEDA is characterised by using TSSM and genetic operators to construct

solutions considering processing time uncertainty. Therefore, to evaluate the effectiveness of

TSSB-HEDA, it is compared with three scheduling algorithms, namely simulation-based

22

hybrid EDA (SB-HEDA), TSSB-EDA with no genetic operators (TSSB-EDA), and TSSB-GA.

The brief explanation of these compared scheduling algorithms is shown below:

 SB-HEDA: This algorithm is the same as TSSB-HEDA, except for applying a time-

consuming simulator to estimate all candidate solutions rather than some selected

promising ones. Compared with TSSB-HEDA, SB-HEDA provides a more accurate

performance estimation of candidate solutions, so that it tends to outperform TSSB-

HEDA in terms of solution quality. However, with respect to computational efficiency,

SB-HEDA is more costly and time-consuming since it takes ()sO P time for

performance evaluation, while TSSB-HEDA takes about () (0,1)sO P time for

such task.

 TSSB-EDA: Rather than hybridising the probabilistic model of EDA with genetic

operators of GA for population generation in TSSB-HEDA, this algorithm only applies

the probabilistic model to produce the offspring.

 TSSB-GA: Similar to TSSB-HEDA, the initial population is randomly generated and

two genetic operators, namely order crossover and swap mutation, are adopted to

produce the offspring. The crossover and mutation rates are empirically fixed at 0.8 and

0.1, respectively.

To have a fair comparison, the key parameters of SB-HEDA, TSSB-EDA, and TSSB-GA,

such as sP , MaxGen , and simN , have the same values as those used in TSSB-HEDA. Moreover,

all these four algorithms are stopped after 10×n generations. This experiment is conducted on

the well-known Taillard’s benchmark problems with m = 5, 10, and 20 and n = 20, 50, 100, and

200 (Taillard, 1993). Ten instances are considered for each PFSP, in which the LPTVs of

machines are generated from the uniform distribution with range [0.1, 0.5]. To compare

schedule performance of TSSB-HEDA, SB-HEDA, TSSB-EDA, and TSSB-GA, we perform the

four algorithms 10 times for each instance and measure the solution quality of each instance

group by the minimum relative percentage deviation (denoted as min), the average relative

percentage deviation (denoted as avg), and the maximum relative percentage deviation

(denoted as max). These three performance measures are computed as follows:

 10

1

100
10

r r

alg best

min r
r best

BS S

S

(15)

23

 10

1

100
10

r r

alg best

avg r
r best

AS S

S

(16)

 10

1

100
10

r r

alg best

max r
r best

WS S

S

(17)

where r

algBS ,
r

algAS , and
r

algWS respectively denote makespans of the best, average, and worst

solutions obtained using a specific algorithm for instance r ; r

bestS represents the

minimum makespan among the solutions generated using all compared algorithms for instance

r .

Table 7 shows the experiment results of SB-HEDA and TSSB-HEDA under stochastic

processing times. According to the experiment results, the following are observed: (1) SB-

HEDA performs better than TSSB-HEDA in terms of min , avg , and max . The good

performance of SB-HEDA lies in evaluating all the offspring individuals by the time-consuming

simulator; (2) since the difference in the performance of SB-HEDA and TSSB-HEDA is not

significant, TSSM is found to be effective to estimate the schedule performance considering

processing time uncertainty.

24

Different from the conventional EDA, TSSB-HEDA hybridises EDA with GA to address the

PFSP under stochastic processing times. Therefore, to further validate the effectiveness of

TSSB-HEDA, it is compared with TSSB-EDA and TSSB-GA. The experiment results in Table

8 indicate that TSSB-HEDA performs significantly better than either TSSB-EDA or TSSB-GA.

Furthermore, max of TSSB-HEDA is less than min of TSSB-EDA and TSSB-GA for all the

test problems, which shows the superiority of the proposed TSSB-HEDA.

To further investigate the performance of the proposed TSSB-HEDA, the computation time

of TSSB-HEDA, SB-HEDA, TSSB-EDA, and TSSB-GA are compared. Table 9 summarises

the average CPU times in seconds of these four algorithms. From this table, the following

conclusions can be made:

(1) SB-HEDA is computationally more expensive than TSSB-HEDA, although it provides

slightly better results, as shown in Table 7. TSSB-HEDA is computationally more

efficient than SB-HEDA because it only applies the time-consuming simulator to

evaluate a small portion of a population, i.e. (0,1)sP , rather than the whole

population.

(2) As a hybridisation of EDA and GA, the average CPU time of SB-HEDA is between

those of TSSB-EDA and TSSB-GA.

25

5. Conclusion

In this paper, an effective two-stage simulation-based hybrid EDA (TSSB-HEDA) is

presented to address the permutation flowshop scheduling problems with processing time

uncertainty. To reduce the computation cost of evaluating the offspring, TSSB-HEDA employs

a novel two-stage simulation model (TSSM) for performance estimation. In the first stage of

TSSM, a regression-based meta-model is adopted to provide a quick performance evaluation

on offspring individuals, and only a number of promising ones are subsequently estimated in

the second stage using a relatively time-consuming simulator. Furthermore, to enhance the

population diversity of EDA, TSSB-HEDA applies both the probabilistic model of EDA and

genetic operators of GA to produce the offspring. Inspired by the idea of neural network

leaning, a self-adaptive learning mechanism (SALM) is established to determine the ratio of

offspring generated by the probabilistic model.

To validate the performance of TSSB-HEDA, it has been compared with three scheduling

algorithms, namely simulation-based hybrid EDA (SB-HEDA), TSSB-HEDA with no genetic

operators (TSSB-EDA), and TSSB-GA. The experiment results on the well-known Taillard’s

benchmark problems show that TSSB-HEDA can maintain a good balance between schedule

performance and computation time. Such a quality-time balance is resulted from the efficiency

of TSSM in estimating the schedule performance with processing time uncertainty, and SALM

in dynamically adjusting the ratio of individuals generated by EDA to avoid early search

26

stagnation. Since real-world manufacturing suffers a variety of uncertainties, future research

may extend the proposed TSSB-HEDA to deal with other unexpected events in a permutation

flowshop, such as rush order and machine breakdown. Furthermore, another research direction

can focus on exploring possible hybridisation of EDA with other effective meta-heuristics to

enhance the population diversity.

References

Agarwal, A., Colak, S., Eryarsoy, E., 2006. Improvement heuristic for the flow-shop

scheduling problem: an adaptive-learning approach. European Journal of Operational Research

169(3), 801-815.

Ahmadizar, F., Ghazanfari, M., Ghomi, S. M. T. F., 2010. Group shops scheduling with

makespan criterion subject to random release dates and processing times. Computers &

Operations Research 37(1), 152-162.

Ceberio, J., Irurozki, E., Mendiburu, A., and Lozano, J. A., 2014. A Distance-based Ranking

Model Estimation of Distribution Algorithm for the Flowshop Scheduling Problem. IEEE

Transactions on Evolutionary Computation 18(2), 286-300.

Chang, P. C., Hsieh, J. C., Chen, S. H., Lin, J. L., and Huang, W. H., 2009. Artificial

chromosomes embedded in genetic algorithm for a chip resistor scheduling problem in

minimizing the makespan. Expert Systems with Applications 36(3), 7135-7141.

Chen, S. H., Chen, M. C., Chang, P. C., Zhang, Q., Chen, Y. M., 2010. Guidelines for

developing effective estimation of distribution algorithms in solving single machine scheduling

problems. Expert Systems with Applications 37(9), 6441-6451.

Chen, Y. M., Chen, M. C., Chang, P. C., Chen, S. H., 2012. Extended artificial chromosomes

genetic algorithm for permutation flowshop scheduling problems. Computers & Industrial

Engineering 62(2), 536-545.

Chen, S. H., Chen, M. C., 2013. Addressing the advantages of using ensemble probabilistic

models in estimation of distribution algorithms for scheduling problems. International Journal

of Production Economics 141(1), 24-33.

Choi, S. H., Wang, K., 2012. Flexible flow shop scheduling with stochastic processing times: A

decomposition-based approach. Computers & Industrial Engineering 63(2), 362-373.

Chung, C. S., Flynn, J., Kirca, O., 2002. A branch and bound algorithm to minimize the total

flow time for m-machine permutation flowshop problems. International Journal of Production

Economics 79(3), 185-196.

27

Dugardin, F., Yalaoui, F., Amodeo, L., 2010. New multi-objective method to solve reentrant

hybrid flowshop scheduling problem. European Journal of Operational Research 203(1), 22-31.

Gao, K. Z., Pan, Q. K., Li, J. Q., 2011. Discrete harmony search algorithm for the no-wait flow

shop scheduling problem with total flow time criterion. The International Journal of Advanced

Manufacturing Technology 56(5-8), 683-692.

Garey, M. R., Johnson, D. S., Sethi, R., 1976. The complexity of flowshop and jobshop

scheduling. Mathematics of operations research 1(2), 117-129.

Gholami, M., Zandieh, M., Alem-Tabriz, A., 2009. Scheduling hybrid flowshop with sequence-

dependent setup times and machines with random breakdowns. The International Journal of

Advanced Manufacturing Technology 42(1), 189-201.

Gupta, J. N. D., Stafford Jr, E. F., 2006. Flowshop scheduling research after five

decades. European Journal of Operational Research 169(3), 699-711.

Hauschild, M., Pelikan, M., 2011. An introduction and survey of estimation of distribution

algorithms. Swarm and Evolutionary Computation 1(3), 111-128.

Huang, Y., Wang, K., Zhang, T., Pang, C., 2015. Green supply chain coordination with

greenhouse gases emissions management: a game-theoretic approach. Journal of Cleaner

Production, doi:10.1016/j.jclepro.2015.05.137.

Hurrion, R. D., Birgil, S., 1999. A comparison of factorial and random experimental design

methdos for the development of regression and neural network simulation metamodels. Journal

of the operational research society, 1018-1033.

Horng, S. C., Lin, S. S., Yang, F. Y., 2012. Evolutionary algorithm for stochastic job shop

scheduling with random processing time. Expert Systems with Applications 39(3), 3603-3610.

Jarboui, B., Eddaly, M., Siarry, P., 2009. An estimation of distribution algorithm for

minimizing the total flowtime in permutation flowshop scheduling problems. Computers &

Operations Research 36(9), 2638-2646.

Johnson, S. M., 1954. Optimal two‐ and three‐ stage production schedules with setup times

included. Naval research logistics quarterly 1(1), 61-68.

Juan, A. A., Barrios, B. B., Vallada, E., Riera, D., Jorba, J., 2014. A simheuristic algorithm for

solving the permutation flow shop problem with stochastic processing times. Simulation

Modelling Practice and Theory 46, 101-117.

Lawrence, S. R., Sewell, E. C., 1997. Heuristic, optimal, static, and dynamic schedules when

processing times are uncertain. Journal of Operations Management 15 (1), 71-82.

Liu, H., Gao, L., Pan, Q., 2011. A hybrid particle swarm optimization with estimation of

distribution algorithm for solving permutation flowshop scheduling problem. Expert Systems

http://dx.doi.org/10.1016/j.jclepro.2015.05.137

28

with Applications 38(4), 4348-4360.

Li, J. Q., Pan, Q. K., 2014. Solving the large-scale hybrid flow shop scheduling problem with

limited buffers by a hybrid artificial bee colony algorithm. Information Sciences,

doi:10.1016/j.ins.2014.10.009

Mühlenbein, H., Paass, G., 1996. From recombination of genes to the estimation of

distributions I: Binary parameters. Lecture Notes in Computer Science 1141, 178-187.

Naderi, B., Ghomi, S. M. T., Aminnayeri, M., 2010. A high performing metaheuristic for job

shop scheduling with sequence-dependent setup times. Applied Soft Computing 10(3), 703-710.

Ouelhadj, D., Petrovic, S., 2009. A survey of dynamic scheduling in manufacturing systems.

Journal of Scheduling 12(4), 417-431.

Pan, Q. K., Ruiz, R., 2012. An estimation of distribution algorithm for lot-streaming flowshop

problems with setup times. Omega 40(2), 166-180.

Ruiz, R., Maroto, C., 2005. A comprehensive review and evaluation of permutation flowshop

heuristics. European Journal of Operational Research 165(2), 479-494

Saad, S. M., 2003. The reconfiguration issues in manufacturing systems. Journal of Materials

Processing Technology 138(1), 277-283.

Safari, E., Sadjadi, S. J., 2011. A hybrid method for flowshops scheduling with condition-based

maintenance constraint and machines breakdown. Expert Systems with Applications 38(3),

2020-2029.

Taillard, E., 1993. Benchmarks for basic scheduling problems. European Journal of

Operational Research 64(2), 278-285.

Taguchi, G., 1986. Introduction to quality engineering. Asian Productivity Organization.

Tzeng, Y. R., Chen, C. L., Chen, C. L., 2012. A hybrid EDA with ACS for solving permutation

flowshop scheduling. The International Journal of Advanced Manufacturing Technology 60(9-

12), 1139-1147.

Vallada, E., Ruiz, R., 2009. Cooperative metaheuristics for the permutation flowshop

scheduling problem. European Journal of Operational Research 193 (2), 365–376.

Vinod, V., Sridharan, R., 2009. Simulation-based metamodels for scheduling a dynamic job

shop with sequence-dependent setup times.International Journal of Production Research 47(6),

1425-1447.

Vinod, V., Sridharan, R., 2011. Simulation modeling and analysis of due-date assignment

methods and scheduling decision rules in a dynamic job shop production system. International

Journal of Production Economics 129(1), 127-146.

Wang, K., Choi, S. H., Qin, H., Huang, Y., 2013. A cluster-based scheduling model using SPT

29

and SA for dynamic hybrid flow shop problems. The International Journal of Advanced

Manufacturing Technology 67(9-12), 2243-2258.

Wang, K., Choi, S. H., 2014. A holonic approach to flexible flow shop scheduling under

stochastic processing times. Computers & Operations Research 43, 157-168.

Wang, L., Pan, Q. K., Suganthan, P. N., Wang, W. H., Wang, Y. M., 2010. A novel hybrid

discrete differential evolution algorithm for blocking flow shop scheduling

problems. Computers & Operations Research 37(3), 509-520.

Wang, S. Y., Wang, L., Liu, M., Xu, Y., 2013. An effective estimation of distribution algorithm

for solving the distributed permutation flowshop scheduling problem. International Journal of

Production Economics 145(1), 387-396.

Xiong, J., Xing, L. N., Chen, Y. W., 2013. Robust scheduling for multi-objective flexible job-

shop problems with random machine breakdowns. International Journal of Production

Economics 141(1), 112-126.

Xu, J., Yin, Y., Cheng, T. C. E., Wu, C. C., Gu, S., 2014. An improved memetic algorithm

based on a dynamic neighbourhood for the permutation flowshop scheduling

problem. International Journal of Production Research 52(4), 1188-1199.

Yu, B., Popplewell, K., 1994. Metamodels in manufacturing: a review. International Journal of

Production Research 32(4), 787-796.

Zandieh, M., Gholami, M., 2009. An immune algorithm for scheduling a hybrid flowshop with

sequence-dependent setup times and machines with random breakdowns. International Journal

of Production Research 47(24), 6999 - 7027.

Zhang, Y., Li, X., 2011. Estimation of distribution algorithm for permutation flowshops with

total flowtime minimization. Computers & Industrial Engineering 60(4), 706-718.

Zhang, R., Song, S., Wu, C., 2012. A two-stage hybrid particle swarm optimization algorithm

for the stochastic job shop scheduling problem. Knowledge-Based Systems 27, 393-406.

Zobolas, G. I., Tarantilis, C. D., Ioannou, G., 2009. Minimizing makespan in permutation flow

shop scheduling problems using a hybrid metaheuristic algorithm. Computers & Operations

Research, 36(4), 1249-1267.

