
Title A Hybrid Estimation of Distribution Algorithm for Simulation-
Based Scheduling in a Stochastic Permutation Flowshop

Author(s) Wang, K; Choi, SH; Lu, H

Citation Computers & Industrial Engineering, 2015, v. 90, p. 186-196

Issued Date 2015

URL http://hdl.handle.net/10722/220154

Rights This work is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/38086524?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 

 

A Hybrid Estimation of Distribution Algorithm for Simulation-

Based Scheduling in a Stochastic Permutation Flowshop  

K. Wang
a
, S.H. Choi

b
, H. Lu

c 

 
 a Department of Management Science and Engineering, Economics and Management School, Wuhan University, Wuhan, China 

 b Department of Industrial and Manufacturing Systems Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong 

 c Department of Logistics Management, School of Logistics Engineering, Wuhan University of Technology, Wuhan, China 

 

 

 

Abstract 

The permutation flowshop scheduling problem (PFSP) is NP-complete and tends to be more 

complicated when considering stochastic uncertainties in the real-world manufacturing 

environments. In this paper, a two-stage simulation-based hybrid estimation of distribution 

algorithm (TSSB-HEDA) is presented to schedule the permutation flowshop under stochastic 

processing times. To deal with processing time uncertainty, TSSB-HEDA evaluates candidate 

solutions using a novel two-stage simulation model (TSSM). This model first adopts the 

regression-based meta-modelling technique to determine a number of promising candidate 

solutions with less computation cost, and then uses a more accurate but time-consuming 

simulator to evaluate the performance of these selected ones. In addition, to avoid getting 

trapped into premature convergence, TSSB-HEDA employs both the probabilistic model of 

EDA and genetic operators of genetic algorithm (GA) to generate the offspring individuals. 

Enlightened by the weight training process of neural networks, a self-adaptive learning 

mechanism (SALM) is employed to dynamically adjust the ratio of offspring individuals 

generated by the probabilistic model. Computational experiments on Taillard’s benchmarks 

show that TSSB-HEDA is competitive in terms of both solution quality and computational 

performance. 

Keywords: permutation flowshop scheduling; stochastic processing times; estimation of 

distribution algorithm; genetic algorithm; meta-model. 

 

 

1. Introduction 

The permutation flowshop scheduling problem (PFSP) is a well-known and well-studied 

combinatorial optimisation problem (Gupta and Stafford Jr, 2006; Vallada and Ruiz, 2009). In 

the classical PFSP, jobs arrive at the shop floor simultaneously and then follow the same 

processing order on each of the machines. The PFSP has been proven strongly NP-complete for 
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more than two machines (Garey, 1976). Due to its great significance in both academic and real-

world applications, the PFSP has attracted considerable attention after the pioneering work of 

Johnson (1954).  

Although a tremendous amount of effort has been devoted to addressing the PFSP, most of 

the research works consider a static environment, in which no unexpected events would occur 

to disturb job processing. Real-world manufacturing environments, however, tend to suffer a 

variety of uncertainties, including change of processing time, machine breakdown, rush orders, 

and job cancellations, etc. (Gholami et al., 2009; Ouelhadj and Petrovic, 2009). Therefore, 

permutation flowshop scheduling under uncertainties has recently received an increasing 

attention.  

Three types of approaches, namely exact algorithms, heuristics, and meta-heuristics, are 

commonly adopted to solve the PFSPs in the literature (Ruiz and Maroto, 2005; Xu et al., 

2014). Exact algorithms aim to achieve the optimal solution, and hence are computationally 

expensive for large-sized PFSPs. Examples of such methods are branch and bound approaches 

(Chung et al., 2002). In addition to exact algorithms, heuristics and meta-heuristics have also 

been introduced to find approximate solutions within reasonable computational cost. Since 

most existing heuristic methods, such as constructive heuristics and improvement heuristics, 

tend to perform poorly on large-sized PFSPs (Ceberio et al., 2014), a wide range of meta-

heuristics have been applied to address the PFSPs (Zobolas et al., 2009). 

To deal with uncertainties in a flowshop, the simulation-based meta-heuristics (SBM) have 

been successfully developed to construct and evaluate candidate solutions. In these approaches, 

a discrete-event simulator is usually incorporated into a meta-heuristic (Wang et al., 2013), 

such as genetic algorithm (GA) (Dugardin et al., 2010), immune algorithm (Zandieh and 

Gholami, 2009), ant colony optimisation (ACO) algorithm (Ahmadizar et al., 2010), and 

hybrid meta-heuristics (Safari and Sadjadi, 2011), etc. As an iterative procedure, the meta-

heuristic guides its subordinate heuristics to iteratively produce high-quality candidate 

solutions until a termination criterion is met. In the SBM, the performance of candidate 

solutions is estimated over iterations using the discrete-event simulator. Accordingly, the 

computation time of such an evaluation process inevitably greatly increases with the growth of 

the number of candidate solutions or simulation replications. The main disadvantage of SBM 

technique therefore lies in the large computation time required for performance evaluation 

under uncertainties (Dugardin et al., 2010).  

To overcome such drawback, some effective approaches have recently been proposed for 

scheduling under uncertainties. Instead of estimating the performance of all candidate solutions, 

http://en.wikipedia.org/wiki/Candidate_solution
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these approaches only evaluate a number of promising candidate solutions by a time-

consuming simulator. Zhang et al. (2012) developed a hybrid particle swarm optimisation (PSO) 

algorithm for stochastic job shop scheduling problems. They first adopted the lower bound of 

the objective value to give a quick performance evaluation on candidate solutions, and then 

only the ones in the satisfactory regions were further estimated using a discrete-event simulator. 

Moreover, to determine the promising candidate solutions for further optimisation under 

uncertainties, both Horng et al. (2012) and Juan et al. (2014) applied the stochastic simulation 

model with less simulation replications for performance evaluation.  

Despite an increasing amount of research interest in developing new SBMs, few research 

works have been reported on improving their computational performance for scheduling 

problems under uncertainties. 

This paper therefore presents an effective SBM to address the PFSPs under stochastic 

processing times. Enlightened by the works of Zhang’s (2012), Horng’s (2012), and Juan et al. 

(2014), we incorporate an efficient two-stage simulation-based model into a hybrid estimation 

of distribution algorithm (EDA) to generate good-quality schedules with less computational 

effort.  

The EDA was first introduced by Mühlenbein and Paass (1996) as an alternative to 

conventional evolutionary algorithms (EA). Different from conventional EAs, EDA adopts a 

probabilistic model to generate the offspring. This model is established by learning from an 

elite set of individuals in the previous population. As an effective method to inherit good genes 

over generations, EDA has recently been successfully used to a wide range of combinatorial 

optimisation problems (Hauschild and Pelikan, 2011), such as the PFSP and its variants. 

Jarboui et al. (2009) presented an efficient EDA to solve the PFSP with total flow time 

minimisation. For the same scheduling problem, Zhang and Li (2011) improved the EDA 

efficiency by incorporating the longest common subsequence into the probabilistic model. 

Wang et al. (2013) developed an effective EDA to minimise the makespan of the distributed 

permutation flowshop. More recently, Ceberio et al. (2014) introduced a probabilistic distance-

based ranking exponential model, named the Mallows model, to construct EDA solutions. To 

further investigate the performance of EDA for the PFSP, hybridisation of EDA with other 

meta-heuristics has also been studied. Liu et al. (2011) hybridised EDA with PSO to allow 

social information sharing among candidate solutions. Moreover, Tzeng et al. (2012) 

incorporated the idea of ant colony system (ACS) into EDA to schedule a permutation 

flowshop. 

The proposed two-stage simulation-based hybrid EDA (TSSB-HEDA) differentiates itself 
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from the conventional EDA by two mechanisms, namely a two-stage simulation model (TSSM) 

and a self-adaptive learning mechanism (SALM). To reduce the computation cost of TSSB-

HEDA, TSSM first employs a regression-based meta-model to provide a rough estimation of 

candidate solutions, and only a number of promising ones are identified and further evaluated 

using a discrete-event simulator. Moreover, to prevent EDA from early search stagnation, 

TSSB-HEDA employs both the probabilistic model of EDA and genetic operators of GA to 

produce offspring individuals. Motivated by the idea of neural network training, SALM 

dynamically adjusts the ratio of offspring generated by the probabilistic model to avoid being 

trapped into premature convergence. An extensive search of literature on PFSP suggests that 

not much research effort has been devoted to applying EDA to schedule the permutation 

flowshop under uncertainties. 

The rest of the paper is organised as follows. Section 2 presents the mathematical 

formulation of PFSP. Section 3 describes the proposed TSSB-HEDA in details. To validate the 

performance of TSSB-HEDA under stochastic processing times, simulations are conducted and 

the computation results are analysed in Section 4. Finally, in Section 5, we conclude the paper 

and discuss some topics for future research. 

 

2. Problem description 

The PFSP is a well-known combinatorial optimisation problem. In the classical PFSP, a 

finite set J = {1, 2, … , n} of n jobs are firstly released simultaneously to the shop floor, and 

then are processed on a finite set M = {m1, m2,… , mm} of m machines with no pre-emption 

allowed. Each job j, j∈J, consists of m operations that have to be processed on the machines in 

the order of m1, m2,… , mm. All the jobs have deterministic processing times and follow the 

same processing order on each machine.  

In the real-world manufacturing environments, however, a variety of unexpected events, 

such as tool wear, equipment failure, operator unavailability, and quality issues, may lead to 

uncertain processing times (Lawrence and Sewell, 1997). This paper describes the processing 

time uncertainty using the level of processing time variation (LPTV), which is described as 

follows: 

 
 LPTV E P

 
 (1)   

where E(P) and σ indicate the expected value and the standard deviation of processing time, 

respectively. According to formula (1), a larger LPTV may result in a large deviation between 

the expected and the actual processing times. For example, suppose E[P] of a job equals 15 
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time units, LPTV values of 0.2 and 0.4 lead the standard deviation of actual processing time 

from E[P] to be 3 and 6 times units respectively. 

The objective of PFSP in this study is to determine a feasible permutation  to minimise the 

makespan, i.e. the maximum completion time of all operations. With consideration of 

processing time uncertainty, we formulate the PFSP as follows: 

  ,( )n mmin E C  
   

 (2)   

Subject to the following constraints: 

 1 1,1 ,1( ) ( )C SP 
 

(3) 

 1,1 ,1 ,1( ) ( ) ( ), 2,...,j j jC C SP j n    
 

(4) 

 1 1 1, , 1 ,( ) ( ) ( ), 2,...,i i iC C SP i m    
 

(5) 

  1, , , , 1 , , ;( ) ( ) ( ) ( ) 2,..., 2,...,j j j ji i i iC max C C SP i m j n       
 

(6) 

Where  

i:   machine index, 1 ≤ i ≤ m 

j:      job index, 1 ≤  j  ≤ n 

j :  j
th

 job in permutation  1,..., n   , 1 ≤  j  ≤ n 

,( )j iC  : completion time of Job j  on machine i 

,( )j iSP  : stochastic processing time of Job j  on machine i                                           

 

3. Details of the proposed two-stage simulation-based hybrid EDA (TSSB-

HEDA) 

3.1 The framework of TSSB-HEDA 

As a relatively new paradigm of EAs, EDA reproduces the offspring from a probabilistic 

model, rather than crossover and mutation operators used in traditional GAs. The probabilistic 

model describes statistical information of elite individuals from previous generations, and 

therefore is capable of predicting the most promising search area. As an iterative procedure, 

EDA includes the following steps (Pan and Ruiz, 2012): (1) Randomly generate an initial 

population; (2) Choose some good individuals to construct the elite set; (3) Establish the 

probabilistic model from the elite set; (4) Generate new individuals from the estimated 

probabilistic model; (5) Steps 2-4 are repeated until a stopping criterion is satisfied. 
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Since new populations are generated entirely from the probabilistic model, EDA may not 

generate diversified individuals. It tends to trap into premature convergence after some 

generations (Chen et al., 2010).  Incorporation of meta-heuristics, particularly GA, might be an 

effective approach to avoiding premature convergence. Although the genetic operators of GA, 

such as crossover and mutation, can provide the population diversity by perturbing the good 

solution structure, few studies on the integration of GA with EDA have been reported. Some 

existing hybrid frameworks mainly include ACGA (Chang et al., 2009) and eACGA (Chen et 

al., 2012). In these hybrid approaches, the probabilistic model of EDA and genetic operators of 

GA are alternated to produce the offspring over a predefined number of generations.  No 

adaptive strategy is adopted to guide the process of population generation. 

Fig. 1 illustrates the framework of the proposed TSSB-HEDA, which is differentiated from 

the conventional EDA by the two-stage simulation model (TSSM) and hybridisation of EDA 

and GA. To provide an efficient method for performance evaluation, TSSB-HEDA incorporates 
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TSSM into EDA to estimate the performance of offspring individuals under stochastic 

processing times. Furthermore, to preserve the population diversity, both the probabilistic 

model of EDA and genetic operators of GA are applied to create new individuals in this study. 

Enlightened by the weight training process of neural networks, the EDA participation ratio 

EDAR , indicating the ratio of individuals generated by the probabilistic model, is dynamically 

adjusted by a self-adaptive learning mechanism (SALM). The rest of Section 3 first provides 

a detailed explanation of TSSM and the hybrid EDA with genetic operators, and subsequently 

follows the complete procedure of TSSB-HEDA. 

 

3.2 The Two-stage simulation model (TSSM) under stochastic processing times 

TSSB-HEDA applies the TSSM to reduce the computation cost of performance evaluation 

considering processing time uncertainty. In the first stage, a regressing-based meta-model is 

applied to estimate the performance of candidate solutions, so that a number of promising ones 

can be quickly determined. From these selected solutions, a discrete-event simulator is then 

used in the second stage to obtain a more accurate evaluation. 

3.2.1 Stage I: using the regression-based meta-model for performance evaluation  

In the real-world manufacturing systems, processing time uncertainty may advance or 

postpone job processing, and in turn lead to deviations between the planned and the actual 

schedules. The effect of schedule deviations, if not be properly compensated by the slack or 

idle time on the machines, could eventually degrade schedule performance (Saad, 2003; Wang 

and Choi, 2014). Accordingly, less slack or idle time on the machines may result in significant 

degradation of schedule performance. Moreover, the configuration of permutation flowshop 

systems, including the number of jobs to be processed, the number of machines, and LPTVs of 

machines may influence the performance degradation of the planned schedule. To estimate the 

schedule performance in a realistic permutation flowshop, there is therefore a need to develop 

an effective method to predict the performance degradation of planned schedules.  

Simulation modelling and analysis on manufacturing systems are often complicated, time-

consuming, and challenging. Due to the robust and fast decision support in the decision-

making process, meta-modelling techniques, including regression and neural network models, 

have been widely applied to predict the simulation results in real-world manufacturing 

environments. Instead of an actual simulation model, a meta-model approximates a functional 

relationship between simulation input parameters and system responses (Yu and Popplewell, 

1994; Vinod and Sridharan, 2011). Since regression analysis is one of the commonly used 
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methods for finding such functional relationship, it has been applied to establish the meta-

model to evaluate the schedule performance in this study.  

To obtain a number of promising candidate solutions, the multiple linear regression meta-

model is firstly applied to estimate the degradation of schedule performance (DSP) with 

processing time uncertainty. The makespan of the actual schedule, i.e. ASM , is then computed 

as follows: 

 
 AS PSM M DSP 

  
(7) 

where PSM  represents the makespan of the planned schedule. Based on ASM , the promising 

candidate solutions can be easily identified.  

The DSP of a planned schedule may be affected by machine size, job size, LPTV, and the 

slack ratio (SR). The SR, describing the slack per processing time of a planned schedule, is 

measured by  

 
1 1

 
m n

ij ij

i j

SR S P
 

    
(8) 

where m  denotes the number of machines, n  represents the number of jobs to be processed, 

ijS  and ijP indicate the free slack and the processing time of job j on machine i respectively.  

 

In the literature of scheduling under uncertainties, free slack is commonly applied to 

estimate the robustness of a given schedule (Xiong et al., 2013). It is therefore used in this 

study to define the SR. Different from idle time, free slack in a permutation flowshop is 

measured by the amount of time that an operation could be right-shifted without delaying its 

start on the next machine. The difference between free slack and idle time of a given schedule 

is depicted in Fig. 2. 

To predict the DSP  of a planned schedule, we adopt job size, machine size, LPTV, and SR 

as the independent variables, and the multiple linear regression meta-model is accordingly 

established as follows: 
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0 1 1 2 2 3 3 4 4 5 1 2 6 1 3

7 1 4 8 2 3 9 2 4 10 3 4

 DSP x x x x x x x x

x x x x x x x x e

      

   

      

      
(9) 

where 1x , 2x , 3x , and 4x represent job size, machine size, LPTV, and SR; 0  is the constant; 

1 , 2 , 3 , and 4 denote the coefficients corresponding to job size, machine size, LPTV, and 

SR; 5 , 6 ,…, 10 are the coefficients corresponding to the interaction effects between job size, 

machine size, LPTV, and SR; e  is the error.  

The meta-model is often constructed in a three-step process (Hurrion and Birgil, 1999; 

Vinod and Sridharan, 2009). First, a factorial experimental design is conducted to obtain a set 

of simulation results. The meta-model is then established using either regression or neural 

network techniques. Finally, a validation test on the developed meta-model is conducted by 

comparing predicted results with simulation results. In this study, the simulation results under 

stochastic processing times (to be presented in Section 4.2) are used to build the meta-model 

shown in formula (9). After obtaining the multiple linear regression meta-model, the 

performance of candidate solutions can be roughly estimated according to formula (7), and 

accordingly the best   100% 0,1  
 
ones can be chosen to establish a set of promising 

solutions p  for further performance evaluation. 

3.2.2 Stage II: using the discrete-event simulator for performance evaluation 

In this stage, only the promising solutions p
 
are further estimated using a discrete-event 

simulator. To model the manufacturing process in a permutation flowshop, processing time 

uncertainty is considered in this simulator, which is described below.  

Algorithm I: The discrete-event simulator  

Step 1: Set the number of simulation replications simN  and counter 1n  . 

Step 2: Initialise the level of processing time variation (LPTVk) for each machine kM . 

Step 3: Allocate the jobs to machines according to the job sequence of a candidate solution.  

Step 4: Following the processing route in a permutation flowshop (i.e. from the first 

machine to the last machine), the actual completion times of jobs on each machine 

kM are obtained as follows: 

Step 4.1: Identify the first unprocessed job j on machine kM  and record its start time. 

Step 4.2: Apply a truncated normal distribution (to be detailed in Section 4.1) to 

generate actual processing time of job j on machine kM . 
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Step 4.3: Obtain the completion time of job j on machine kM by summing its start time 

with its actual processing time. 

Step 4.4: If all the jobs assigned to machine kM  have been completed, record their 

completion times; otherwise, return to step 4.1. 

Step 5: Record the simulated makespan under stochastic processing times as n

simM , i.e. the 

completion time of the last job on the last machine. 

Step 6: If simn N , return the average simulated makespan over simN  simulation replications 

as 
1

simN
n

avg sim sim

n

M M N


 ; otherwise, set 1n n   and return to step 3. 

Based on the above simulator, avgM is used to evaluate the candidate solutions of p . To 

model the manufacturing process in a permutation flowshop, this simulator employs a 

large 100simN   for performance evaluation under stochastic processing times, inevitably 

resulting in a costly and time-consuming evaluation process.  

3.3 The hybrid EDA with genetic operators 

TSSB-HEDA employs both TSSM and genetic operators to address the PFSPs with 

processing time uncertainty. The details of TSSB-HEDA are described as follows. 

3.3.1 Solution encoding and initial population  

TSSB-HEDA applies the permutation-based encoding scheme to represent individual 

solutions. Such a method has been widely adopted for permutation flowshop scheduling during 

the past decades (Wang et al., 2010; Gao et al., 2011; Li and Pan, 2014). For example, as a 

solution to a PFSP with 4 jobs, job sequence {1, 4, 2, 3} shows that job 1 is first scheduled, 

then successively followed by job 4, job 2, and job 3. To better cover the promising regions of 

the entire search space, TSSB-HEDA generates the initial population randomly.  

3.3.2 Selection 

 The probabilistic model of EDA is established based on an elite set of individuals, which are 

selected from previous population using a selection operator. To reduce the computation time 

of performance evaluation under stochastic processing times, TSSM adopts a regression-based 

meta-model to determine some promising individuals, which are further estimated using a 

simulator, i.e. Algorithm I. Since different methods are used to estimate the individual fitness in 

TSSB-HEDA, it is not suitable to select good individuals from the population only depending 

on their fitness values. Therefore, a modified linear rank selection is employed to choose part 
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of individuals with good performance under stochastic processing times.  

The modified linear rank selection involves two steps: (1) the individuals are ranked in 

ascending order of the estimated fitness under stochastic processing times, which is the 

reciprocal of the objective function. Based on the regression-based meta-model, the worst 

  (1 ) 100% 0,1     individuals are first identified and sorted. Then, using Algorithm I, the 

rest   100% 0,1   individuals are evaluated and sorted; (2) the individuals are selected 

with the probability: 

 
( )

k
i
k k

i i i

k k

x P

P x r r


    (10) 

where kP  denotes the k
th

 population of TSSB-HEDA,
k

ix  and i

kr represent the i
th

 individual and 

its rank in population kP  respectively. To produce the elite set for the probabilistic model 

construction, such selection process continues until 100% ( [0,1])    individuals of current 

population have been chosen. 

3.3.3 Probabilistic model  

Instead of using genetic operators, the probabilistic model is applied in the conventional 

EDA to guide the exploration of the search space. It therefore affects the EDA performance 

substantially. To address the PFSP with total flow time minimisation, Jarboui et al. (2009) 

developed an effective probabilistic model with consideration of both job order in the sequence 

and similar job blocks of selected elite parents. In their proposed model, the probability for 

selecting job j at position k, i.e.  jk , is computed as follows: 

 

 

  
1

1
k

jk j k

jk

lk l kl

 


 








   
(11) 

where jk  represents the number of times that job j appears before or at position k in the 

selected individuals augmented by a given constant 1 ;  1j k



 denotes the number of times that 

job j appears immediately after the job at position k−1 in the selected individuals augmented by 

a given constant 2 ; k indicates the set of jobs that are not scheduled until position k. 

Such a probabilistic modelling method has its own disadvantage when applied to solve the 

PFSP. According to the definition of  1j k



, it equals zero when 1k  , since no job can be 

positioned before job j if it is selected as the first job to be processed. This may lead the 

probability of positioning any job at position 1 to be zero. Therefore, instead of being 

determined by the genetic information of the elite set, the first job in the sequence is randomly 
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chosen. To overcome such drawback, we apply a new probabilistic model to determine 
jk  as  

  

  
1

1

,
1

, 2,3...,

k

k

jk

jkl

jk
jk j k

lk l kl

k

k n






 

 








 


  
 
 






 
(12)

 

Based on formula (12), the job assigned to a specific position k in the sequence can be 

determined by the probability of jk . For each generation,
 

100% ( [0,1])EDA EDAR R  offspring 

are generated by the probabilistic model. 

3.3.4 Crossover and mutation 

To prevent EDA from being trapped into premature convergence, genetic operators, namely 

crossover and mutation, are adopted to generate part of population. As the primary genetic 

operator, crossover guides the exploration of new promising regions in the search space. It 

usually produces the offspring by interchanging parts of their parents (genes) (Huang et al., 

2015). TSSB-HEDA applies the order crossover to generate the offspring, which is explained 

as follow: two parents are first divided into three parts by selecting two random cut points. 

Then the middle parts of two children are then directly inherited from their parents, and the 

remaining genes of child 1 are filled following the job order appeared in parent 2. Similarly, the 

remaining genes of child 2 are determined based on parent 1. An example of order crossover is 

illustrated in Fig. 3.  

 

To preserve the population diversity, mutation changes one or more genes in a chromosome 

from its initial state (Choi and Wang, 2012). TSSB-HEDA adopts the pairwise interchange 

mutation to swap two randomly selected jobs of the individual, as illustrated in Fig. 4.  

For each generation of TSSB-HEDA, the order crossover is performed to generate 

(1 ) 100% ( [0,1])EDA EDAR R    of new individuals, and each of them is mutated with rate mp . 
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3.3.5 Self-adaptive learning mechanism  

To improve the population diversity of EDA, both the probabilistic model of EDA and 

genetic operators of GA are adopted to produce the offspring. The proposed TSSB-HEDA 

applies a self-adaptive learning mechanism (SALM) to determine the EDA participation ratio, 

which indicates how many individuals of a population are produced by the probabilistic model.  

SALM is based on the weight training process of neural network, which has been adopted by 

Agarwal et al. (2006) to address the traditional flowshop scheduling problems. In their research 

work, a set of weights were used to construct solutions by perturbing the data of original 

scheduling problem. To iteratively improve the solutions, they employed a learning approach to 

dynamically change the weights by reinforcement and backtracking. The set of weights were 

reinforced if an iteration resulted in improvement, and were backtracked to the best set of 

weights so far if there was no improvement over a certain number of iterations. 

Inspired by the work of Agarwal et al. (2006), SALM uses both reinforcement and 

backtracking to adjust the EDA participation ratio EDAR . The idea of reinforcement originates 

from the weight training process of neural network. If the best individual found so far improves, 

we record EDAR  at current population as the best one and then reinforce its change from 

previous generation using a reinforcement factor (RF). Thus, if EDAR
 
increases from its 

previous value, more offspring are sampled from the probabilistic model at the next generation. 

Otherwise, fewer offspring are produced using the probabilistic model. If no improvement 

happens at an iteration, a perturbation strategy is used to update EDAR , which allow either 

slightly increase or decrease the number of offspring generated by the probabilistic model. In 

addition to reinforcement, SALM allows backtracking to a previous EDAR  according to the 

predefined tolerate iterations with no improvement (TINI). If the best individual does not 

improve for consecutive TINI generations, EDA may produce offspring with similar structure 

and tend to get trapped into premature convergence. Therefore, backtracking is performed by 

changing the current EDAR  to the best one so far.    The procedure of SALM is detailed below. 

 
Algorithm II: SALM 
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Step 1:
 
Find the best individual in the current generation i. If it provides the best makespan so 

far, record the makespan as the best makespan bM
 
and the current i

EDAR  as the best 

EDA participation ratio EDABR .  

Step 2: If the TINI counter k TINI and improvement of bM
 
occurs at current generation i, 

set 1k  and use one of the following strategies to reinforce the EDA participation 

ratio at generation i+1, i.e. 1i

EDAR   . In these two strategies, RF indicates the 

reinforcement factor.  

(a)   1 1 1,1 , 0i i i i i i

EDA EDA EDA EDA EDA EDAR min R RF R R if R R       
 

(b)   1 1 1,0 , 0i i i i i i

EDA EDA EDA EDA EDA EDAR max R RF R R if R R         

Step 3: If k TINI and no improvement of bM occurs at current generation i, set 

1k k  and select one of the following strategies to update the EDA participation 

ratio at generation i+1, i.e. 1i

EDAR  . In these two strategies, r represents a uniformly 

random number from [0, 1] and  is the learning rate.
 

(a)  1 ,1 , 0.5i i

EDA EDAR min R r if r    
 

(b)  1 ,0 , 0.5i i

EDA EDAR max R r if r      

Step 4: If k TINI and no improvement of bM occurs during the past TINI generations, set 

1k  and 1i

EDA EDAR BR  .  

 
After the offspring are produced by the probabilistic model and genetic operators, SALM is 

applied to adjust the EDA participation ratio. We initialise the TINI counter 1k  and the EDA 

participation ratio 50%EDAR  when SALM is implemented for the first time. 

3.3.6 Stopping criterion 

A variety of stopping criteria have been considered in the literature of EDA, such as the 

number of generations (Wang et al., 2013), the number of consecutive generations with no 

improvement (Zhang and Li, 2011), the number of examined solutions (Chen and Chen, 2013), 

and bound of computation time (Jarboui et al., 2009), etc. Similar to that of Wang et al. (2013), 

the maximum number of generations is adopted as the stopping criterion of TSSB-HEDA. 

3.4 Complete procedure of TSSB-HEDA 

According to the detailed description above, the complete procedure of TSSB-HEDA is 



15 

 

described as follows: 

Notation: 

simN :       the number of simulation replications 

sP :           the size of population 

 :     the ratio of population related to identifying promising individuals for further 

performance evaluation 

 :           the ratio of population related to establishing the probabilistic model of EDA 

TINI :      tolerate iterations with no improvement of SALM 

RF :        reinforcement factor of SALM 

 :           the learning rate of SALM 

k :           the TINI counter of SALM 

EDAR :      the EDA participation ratio 

cS :          the best individual of current population
 

bS :          the best individual found so far 

CurGen : the current generation index 

MaxGen : the maximum  number of generations 

 
Algorithm III: TSSB-HEDA 

Step 1: Set the algorithm parameters simN , sP , mP , ,  ,
 
  ,

 
TINI  ,

 
RF  , MaxGen . Let 

1CurGen  , 1k  , and 50%EDAR  ; 

Step 2:   Randomly initialise a population of sP  individuals; 

Step 3:   Estimate the initial population under stochastic processing times using the TSSM 

and choose the best one as bS ; 

Step 4:   Identify sP 
 
individuals to establish the elite set e ; 

Step 5:   Construct the probabilistic model of EDA using e  according to formula (12);  

Step 6:  Apply the constructed probabilistic model to sample and generate EDA sR P offspring; 

Step 7: Apply the order crossover and the pairwise interchange mutation to generate  

(1 )EDA sR P   offspring; 

Step 8:   Employ the TSSM to determine the best individual of the current population under 

stochastic processing times, i.e. cS , and then update b cS S
 
if the expected 

makespan of cS  is less than that of bS ; 
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Step 9:   Perform SALM to adjust EDAR . 

Step 10: If CurGen MaxGen , return bS ; otherwise, let 1CurGen CurGen 
 
and return 

to step 4. 

 

4. Computational experiments 

The proposed TSSB-HEDA is coded in the Netbeans
TM

 development environment 7.4 and 

performed on a PC with Intel®  Core
TM

 i5 2.7GHz processor and 6GB memory. To validate the 

effectiveness of TSSB-HEDA, we designed and conducted three experiments, which are 

detailed in the following sections. 

4.1 Design of experiments 

The first experiment constructs the regression-based meta-model to predict the DSP of 

planned schedules under stochastic processing times. Instead of conducting a full factorial 

experiment, the second experiment applies the Taguchi experimental design to identify the near 

optimum values of key parameters in TSSB-HEDA. After these two experiments, TSSB-HEDA 

is well prepared to address the PFSP under stochastic processing times, and its performance 

with makespan criterion is subsequently analysed in the third experiment.  

To model the processing time uncertainty in a permutation flowshop, the actual job 

processing time P is generated from a normal distribution with its expected value of ( )E P  and 

the standard deviation of σ. To guarantee job processing time to be non-negative in these three 

experiments, we adopt a left-truncated normal distribution at zero, i.e.  2~ ( ),P N E P   where 

 0,P  . For the second and the third experiments, TSSB-HEDA and the compared 

algorithms are terminated when 10×n generations are reached, where n is the number of jobs. 

4.2 Development of regression-based meta-model for DSP Estimation 

To obtain the regression-based meta-model for DSP estimation, it is necessary to first 

generate the simulation results that describe the effect of simulation inputs, including job size, 

machine size, LPTV, and SR, on the performance degradation of planned schedules under 

stochastic processing times. The levels of these four simulation inputs used in the experiment 

are presented in Table 1.  
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For each possible combination of simulation inputs, an experimental PFSP with processing 

time uncertainty is generated. To solve this problem, a job sequence is first randomly generated 

and converted into a feasible schedule with a specific SR. The makespans of such schedules 

under stochastic processing times and deterministic processing times, i.e.  and , are 

subsequently obtained. Lastly, the degradation of schedule performance of a planned schedule, 

i.e. DSP, is computed as 

 
 1AS PSDSP M M 

  
(13) 

Such process continues until each combination of the simulation inputs in Table 1 has been 

examined. Therefore, a total of 625 (5×5×5×5 = 625) simulation experiments are conducted to 

generate the simulation results. 

 

 

Based on the simulation results, multiple linear regression analysis has been applied to 

establish the meta-model using formula (9). Accordingly, the proposed regression-based meta-

model is obtained as follows: 

 
1 2 3 4 1 2

1 3 1 4 2 3 2 4 3 4

0.04497 0.00019 0.00593 2.10028 0.16319 0.00002

0.00266 0.00033 0.02441 0.00358 1.71680

DSP x x x x x x

x x x x x x x x x x

      

      
(14) 

To evaluate the effectiveness of the developed meta-model, Table 2 gives the results of 

analysis of variance with 5% significance level for the meta-model. According to Table 2, the 

following observations are made: (1) The regression-based meta-model is 

statistically significant because of the small p-value (less than 0.05); (2) The correlation of 

coefficient R
2
 (larger than 0.95) implies that the meta-model can explain over 95% of the 

variance in the estimated performance degradation. These observations indicate that the 
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regression-based meta-model is statistically adequate to fit the simulation results under 

stochastic processing times.  

To further test the validity of the developed meta-model, we consider two typical PFSPs, i.e. 

50×10 and 100×20, in which the expected processing times are generated from the uniform 

distribution with range [1, 20]. For these two PFSPs, different values of LPTV and SR are 

adopted as the inputs of the simulation model. LPTV is chosen to be 0.15, 0.25, 0.35, and 0.45. 

SR can be 0.26, 0.34, and 0.42. Table 3 presents the DSPs obtained using the discrete-event 

simulator and the predicted DSPs using the meta-model for the chosen LPTVs and SRs. It is 

clear that the percentage deviation between the meta-model results and the simulation results is 

less than 5%, indicating that the developed meta-model provides a good prediction of DSP 

under stochastic processing times.  

 

4.3 Parameter tuning of TSSB-HEDA 

The performance of TSSB-HEDA depends on the values of some important parameters, 

such as sP (the size of population),  (the ratio of population related to identifying promising 
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individuals for further performance evaluation),  ( the ratio of population related to 

establishing the probabilistic model of EDA), mp (mutation rate),  (the learning rate of 

SALM), TINI  (tolerate iterations with no improvement of SALM), and RF
 
(reinforcement 

factor of SALM). To determine the near optimum values of these parameters, Taguchi 

experiments (Taguchi, 1986) are conducted on a moderate-size PFSP with 50 jobs and 10 

machines. In this PFSP, LPTVs of machines and expected job processing times are uniformly 

generated in the ranges [0.1, 0.5] and [1, 20], respectively. Compared with a 

full factorial experiment, the Taguchi method is capable of reducing the number of experiments 

substantially (Naderi et al., 2010).  

Seven key parameters of TSSB-HEDA and their different factor levels considered in 

Taguchi experiments are presented in Table 4. Accordingly, an orthogonal array L18 (6
1×3

6
)  

shown in Table 5 is established by MINITAB 16 for parameter tuning. Rather than performing 

6
1×3

6
= 4,374 experiments in a full factorial design, we only conduct a total of 18 Taguchi 

experiments to identify the near optimum values of these seven parameters. For each of the 

Taguchi experiment, TSSB-HEDA with a specific level combination of factors is first run 

separately 20 times for the same experimental PFSP under stochastic processing times. The 

average of simulated makespans, i.e. the value of response variable (RV) in a Taguchi 

experiment, is then determined. Based on RV values, the average response at each factor level 

is obtained and presented in Fig. 5. 
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To further analyse the significance of individual factor in TSSB-HEDA, Table 6 ranks the 

factors according to their Delta statistics, which is the difference between the highest and 

lowest average of RV. The rank of a factor shows its relative importance to the performance of 

TSSB-HEDA. 

 

From the ranks in Table 6, it is clear that   has the most significant effect on the 

performance of TSSB-HEDA. Although a large   may result in a more accurate performance 

estimation of candidate solutions under stochastic processing time, the large computation cost 

of modelling processing time uncertainty has to be considered. As shown in Fig. 5, the 

performance of TSSB-HEDA improves slightly once   is larger than 0.3. The parameter   of 

0.3 is therefore adopted in this study to prevent large computation time. The value of sP is 

likewise set to 300 when considering the amount of computation cost. For the parameters 

associated with SALM, the moderate values of TINI  and RF  can help avoid large fluctuation 

of the EDA partition ratio, and hence may provide a better balance between population 

diversity and convergence performance. Furthermore, the values of  , mp , and  can be easily 

determined by Fig. 5. From the above analysis, all the key parameters of TSSB-HEDA are 

accordingly set as:
 

0.30  , 300sP  , 0.15  , 0.10mp  , 0.05  , 30TINI  , 

and 1.10RF  .        

4.4 Performance evaluation of TSSB-HEDA 

Different from traditional EDA for permutation flowshop scheduling in a static environment, 

the proposed TSSB-HEDA is characterised by using TSSM and genetic operators to construct 

solutions considering processing time uncertainty. Therefore, to evaluate the effectiveness of 

TSSB-HEDA, it is compared with three scheduling algorithms, namely simulation-based 
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hybrid EDA (SB-HEDA), TSSB-EDA with no genetic operators (TSSB-EDA), and TSSB-GA. 

The brief explanation of these compared scheduling algorithms is shown below: 

 SB-HEDA: This algorithm is the same as TSSB-HEDA, except for applying a time-

consuming simulator to estimate all candidate solutions rather than some selected 

promising ones. Compared with TSSB-HEDA, SB-HEDA provides a more accurate 

performance estimation of candidate solutions, so that it tends to outperform TSSB-

HEDA in terms of solution quality. However, with respect to computational efficiency, 

SB-HEDA is more costly and time-consuming since it takes ( )sO P  time for 

performance evaluation, while TSSB-HEDA takes about  ( ) ( 0,1 )sO P   time for 

such task. 

 TSSB-EDA: Rather than hybridising the probabilistic model of EDA with genetic 

operators of GA for population generation in TSSB-HEDA, this algorithm only applies 

the probabilistic model to produce the offspring. 

 TSSB-GA: Similar to TSSB-HEDA, the initial population is randomly generated and 

two genetic operators, namely order crossover and swap mutation, are adopted to 

produce the offspring. The crossover and mutation rates are empirically fixed at 0.8 and 

0.1, respectively.  

To have a fair comparison, the key parameters of SB-HEDA, TSSB-EDA, and TSSB-GA, 

such as sP , MaxGen , and simN , have the same values as those used in TSSB-HEDA. Moreover, 

all these four algorithms are stopped after 10×n generations. This experiment is conducted on 

the well-known Taillard’s benchmark problems with m = 5, 10, and 20 and n = 20, 50, 100, and 

200 (Taillard, 1993). Ten instances are considered for each PFSP, in which the LPTVs of 

machines are generated from the uniform distribution with range [0.1, 0.5]. To compare 

schedule performance of TSSB-HEDA, SB-HEDA, TSSB-EDA, and TSSB-GA, we perform the 

four algorithms 10 times for each instance and measure the solution quality of each instance 

group by the minimum relative percentage deviation (denoted as min ), the average relative 

percentage deviation (denoted as avg ), and the maximum relative percentage deviation 

(denoted as max ). These three performance measures are computed as follows: 

 

 10

1

100
10

r r

alg best

min r
r best

BS S

S

  
  
 
 

   
(15) 
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1

100
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r r
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max r
r best

WS S

S

  
  
 
 

   
(17) 

where r

algBS ,
r

algAS , and 
r

algWS  respectively denote makespans of the best, average, and worst 

solutions obtained using a specific algorithm for instance r ; r

bestS  represents the 

minimum  makespan among the solutions generated using all compared algorithms for instance 

r . 

Table 7 shows the experiment results of SB-HEDA and TSSB-HEDA under stochastic 

processing times. According to the experiment results, the following are observed: (1) SB-

HEDA performs better than TSSB-HEDA in terms of min , avg , and max . The good 

performance of SB-HEDA lies in evaluating all the offspring individuals by the time-consuming 

simulator; (2) since the difference in the performance of SB-HEDA and TSSB-HEDA is not 

significant, TSSM is found to be effective to estimate the schedule performance considering 

processing time uncertainty.  
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Different from the conventional EDA, TSSB-HEDA hybridises EDA with GA to address the 

PFSP under stochastic processing times. Therefore, to further validate the effectiveness of 

TSSB-HEDA, it is compared with TSSB-EDA and TSSB-GA. The experiment results in Table 

8 indicate that TSSB-HEDA performs significantly better than either TSSB-EDA or TSSB-GA. 

Furthermore, max of TSSB-HEDA is less than min  of TSSB-EDA and TSSB-GA for all the 

test problems, which shows the superiority of the proposed TSSB-HEDA. 

 

 

To further investigate the performance of the proposed TSSB-HEDA, the computation time 

of TSSB-HEDA, SB-HEDA, TSSB-EDA, and TSSB-GA are compared. Table 9 summarises 

the average CPU times in seconds of these four algorithms. From this table, the following 

conclusions can be made: 

(1) SB-HEDA is computationally more expensive than TSSB-HEDA, although it provides 

slightly better results, as shown in Table 7. TSSB-HEDA is computationally more 

efficient than SB-HEDA because it only applies the time-consuming simulator to 

evaluate a small portion of a population, i.e.  ( 0,1 )sP   , rather than the whole 

population. 

(2) As a hybridisation of EDA and GA, the average CPU time of SB-HEDA is between 

those of TSSB-EDA and TSSB-GA. 
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5. Conclusion 

In this paper, an effective two-stage simulation-based hybrid EDA (TSSB-HEDA) is 

presented to address the permutation flowshop scheduling problems with processing time 

uncertainty. To reduce the computation cost of evaluating the offspring, TSSB-HEDA employs 

a novel two-stage simulation model (TSSM) for performance estimation. In the first stage of 

TSSM, a regression-based meta-model is adopted to provide a quick performance evaluation 

on offspring individuals, and only a number of promising ones are subsequently estimated in 

the second stage using a relatively time-consuming simulator. Furthermore, to enhance the 

population diversity of EDA, TSSB-HEDA applies both the probabilistic model of EDA and 

genetic operators of GA to produce the offspring. Inspired by the idea of neural network 

leaning, a self-adaptive learning mechanism (SALM) is established to determine the ratio of 

offspring generated by the probabilistic model. 

To validate the performance of TSSB-HEDA, it has been compared with three scheduling 

algorithms, namely simulation-based hybrid EDA (SB-HEDA), TSSB-HEDA with no genetic 

operators (TSSB-EDA), and TSSB-GA. The experiment results on the well-known Taillard’s 

benchmark problems show that TSSB-HEDA can maintain a good balance between schedule 

performance and computation time. Such a quality-time balance is resulted from the efficiency 

of TSSM in estimating the schedule performance with processing time uncertainty, and SALM 

in dynamically adjusting the ratio of individuals generated by EDA to avoid early search 
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stagnation. Since real-world manufacturing suffers a variety of uncertainties, future research 

may extend the proposed TSSB-HEDA to deal with other unexpected events in a permutation 

flowshop, such as rush order and machine breakdown. Furthermore, another research direction 

can focus on exploring possible hybridisation of EDA with other effective meta-heuristics to 

enhance the population diversity.  
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