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An Optimal and Distributed Method for Voltage
Regulation in Power Distribution Systems

Baosen Zhang, Member, IEEE, Albert Y.S. Lam, Member, IEEE, Alejandro D. Domínguez-García, Member, IEEE,
and David Tse, Fellow, IEEE

Abstract—This paper addresses the problem of voltage regula-
tion in power distribution networks with deep-penetration of dis-
tributed energy resources, e.g., renewable-based generation, and
storage-capable loads such as plug-in hybrid electric vehicles. We
cast the problem as an optimization program, where the objective
is to minimize the losses in the network subject to constraints on
bus voltage magnitudes, limits on active and reactive power in-
jections, transmission line thermal limits and losses. We provide
sufficient conditions under which the optimization problem can be
solved via its convex relaxation. Using data from existing networks,
we show that these sufficient conditions are expected to be satisfied
by most networks. We also provide an efficient distributed algo-
rithm to solve the problem. The algorithm adheres to a communi-
cation topology described by a graph that is the same as the graph
that describes the electrical network topology.We illustrate the op-
eration of the algorithm, including its robustness against commu-
nication link failures, through several case studies involving 5-, 34-,
and 123-bus power distribution systems.
Index Terms—Distributed algorithms, distribution network

management, optimal power flow, voltage support.

I. INTRODUCTION

E LECTRIC power distribution systems will undergo rad-
ical transformations in structure and functionality due to

the advent of initiatives like the US DOE Smart Grid [1], and
its European counterpart Electricity Networks of the Future
[2]. These transformations are enabled by the integration of
1) advanced communication and control, 2) renewable-based
variable generation resources, e.g., photovoltaics (PVs), and
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3) new storage-capable loads, e.g., plug-in hybrid electric
vehicles (PHEVs). These distributed generation and storage
resources are commonly referred to as distributed energy
resources (DERs). It has been acknowledged (see, e.g., [3])
that massive penetration of DERs in distribution networks is
likely to cause voltage regulation problems due to the fact
that typical values of transmission line resistance-to-reactance,

, ratios are such that bus voltage magnitudes are fairly
sensitive to variations in active power injections (see, e.g., [4]).
Similarly massive penetration of PHEVs can potentially create
substantial voltage drops [5]. The objective of this paper is to
address the problem of voltage regulation in electric power
distribution networks with deep penetration of DERs.
As of today, voltage regulation in distribution networks is ac-

complished through tap-changing under-load transformers, set
voltage regulators, and fixed/switched capacitors. While these
devices—the operation of which is mechanical in nature—are
effective in managing slow variations (on the time-scale of
hours) in voltage, their lifetime could be dramatically reduced
from the increased number of operations needed to handle faster
voltage variations due to sudden changes (on the time-scale
of minutes) in active power generated or consumed by DERs.
An alternative to the use of these voltage regulation devices
for handling fast variations is to utilize the power electronics
interfaces of the DERs themselves.
While active power control is the primary function of these

interfaces, when being properly controlled, they can also pro-
vide reactive power. Thus, they provide a mechanism to control
reactive power injections, which in turn can be used for voltage
control (see, e.g., [6], [7]). In this regard, there are existing PV
rooftop and pole-mounted solutions that provide such function-
ality (see, e.g., [8], [9]). These solutions are endowed with wire-
less [8], and power-line communications [9], which is a key for
controlling a large number of devices without overlaying a sepa-
rate communication network. Additionally, as noted earlier, bus
voltages in a distribution network are sensitive to changes in ac-
tive power injections. Thus, storage-capable DERs, and demand
response resources (DRRs), provide a second voltage control
mechanism as they can be used, to some extent, to shape active
power injections.
This paper proposes a method for voltage regulation in

distribution networks, the topology of which is described
by a connected tree, that relies on the utilization of reac-
tive-power-capable DERs, and to some extent, on the control
of active power injections enabled by storage-capable DERs
and DRRs. This method is intended to supplement the action of
conventional voltage regulation devices, while 1) minimizing

0885-8950 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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their usage by handling faster voltage variations due to changes
in renewable-based power injections, and 2) having them
intervene only during extreme circumstances rather than minor,
possibly temporary, violations. In this regard, in subsequent
developments, we assume that there is a separation in the
(slow) time-scale in which the settings of conventional voltage
regulation devices are adjusted and the (fast) time-scale in
which our proposed method operates. For instance, the settings
of conventional devices can be optimized every hour in an-
ticipation of the overall change in load (e.g., air conditioners
being turned on in a hot afternoon). Then, within each hour,
our method is utilized to regulate voltage in response to fast
variations in DER-based power injections. A more detailed
description of the ideas above is provided in Section II-B.
The voltage regulation problem can be cast as a optimization

programwhere the objective is tominimize network losses1 sub-
ject to 1) constraints on bus voltage magnitudes, 2) upper and
lower limits on active and reactive power injections, 3) upper
limits on transmission line flows, and 4) upper limits on trans-
mission line losses. The decision variables are the bus voltages;
however the actual control mechanism to fix these are the reac-
tive (and to some extent the active) power injections.
The contributions of this paper are two-folded. First, we es-

tablish sufficient conditions under which the voltage regulation
problem can be solved via an equivalent semidefinite program-
ming (SDP) problem that results from convexifying the original
one. This equivalence also leads to a simple method to estab-
lish whether or not the original problem has a feasible solution
based on the solution of the convexified problem. However, it
is important to note that even if the convexified SDP provides
the solution to the original optimization problem, existing al-
gorithms for solving SDPs are not computationally efficient for
solving large problems [10]. Therefore, these algorithms are not
practical for realizing our ideas in a realistic power distribution
network with thousands of buses. Furthermore, even if there is
a centralized solver with sufficient computing power, the com-
munication infrastructure may not be able to reliably transmit all
problem data to a centralized location with small enough delays.
This is where the second contribution of our work lies—the de-
velopment of a distributed algorithm for efficiently solving con-
vexified SDPs on tree networks. As will be shown later, a key
feature of this distributed algorithm is that it is robust against
communication failures.
Various previous works that addressed the voltage regulation

problem in distribution networks also cast it as an optimiza-
tion problem; however, in contrast with our work, the solution
methods proposed in these earlier works are sub-optimal, and in
most cases, they rely on a centralized decision maker that has
access to all the data defining the problem [11], [12]. For ex-
ample in [13], the authors propose the use of reactive-power-ca-
pable DERs for voltage control and the objective is to minimize
the DER reactive power contributions subject to the power flow
equations and other constraints. However, the solution approach
proposed in [13] relies on linearizing the power flow equations

1Any strictly increasing objective function can be used, and all the results in
this paper remains unchanged. We focus on loss minimization due to its rele-
vance for long-run economic savings.

around some operating point, rendering a linear program; there-
fore, this approach provides a sub-optimal solution. In the same
vein, and although the objective function is different to the one
considered in [13], the solution proposed in [14] also relies on
linearization.
Other optimization-based approaches to address the voltage

regulation problem in distribution networks rely on optimal
power flow (OPF) solvers developed for transmission networks
(see, e.g., [15], [16]). For instance, in [16], the authors use a
Newton-type method to solve the Lagrange dual of the opti-
mization program they consider in their problem; however,
since the primal problem is, in general, not convex, there is
no guarantee that the solution of the dual problem is globally
optimal, or even physically meaningful.
The key to solve the voltage regulation problem is to formu-

late it as a rank-constrained SDP [17], where the decision vari-
able is a positive semidefinite matrix constrained to have rank
1. This constraint, in general, makes the problem non-convex.
The problem can be convexified by dropping the rank-1 con-
straint—the conundrum is then to establish when the solution
of the convexified problem also provides a global solution to
the original non-convex problem.
Recently there has been a sequence of papers on attempting

to answer the question above spurred by the observation in [18]
that the convex relaxation noted above is tight for many IEEE
benchmark transmission networks. Several independent works
provided a partial answer: the convex relaxation is tight if the
network has a tree topology and certain constraints on the bus
power injections are satisfied [19]–[21]. All these results, which
are particularly relevant for distribution networks, were unified
and strengthened in [22] through a investigation of the under-
lying geometry of the optimization problem. It is important to
note that, even in the situations where the convex relaxation is
tight, there might be multiple locally optimal solutions to the
original optimization problem and local search algorithms may
not converge to the globally optimal one (see [20] for a further
discussion on this). Finally, it is well known (see, e.g., [23]) that
solution methods to OPF-type problems for transmission net-
works tend to perform poorly in distribution networks due to
the values.
An independent—but related—work has recently appeared

in [24]. Although, a direct comparison of both works is diffi-
cult due to the difference in assumptions and constraints (for
example [24] does not require all buses to have DERs), the so-
lution method proposed by the authors in [24] is also globally
optimal; however, their solution method requires a centralized
processor, whereas as it is shown later, our solution method is
amenable for a distributed implementation. With respect to this,
recent independent works to ours are [25] and [26]. Specifically,
the authors in [25] proposed a distributed algorithm to solve
convex relaxations for OPF-type problems in general networks,
whereas the authors in [26] considered demand response in the
distribution network.
This paper builds on the results of [19] and [22] (and their

journal versions, [27] and [42], respectively) and extends them
by taking into account the reactive power injections, and con-
sidering tight voltage magnitude constraints. Related previous
results either: 1) ignore reactive power (e.g., [22], [27]–[29]),
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2) assume there are not active lower bounds (e.g., [18], [26]), or
3) assume that there are no voltage upper bounds (e.g., [28]).
The remainder of this paper is organized as follows.

Section II discusses the voltage regulation problem and formu-
lates its solution as an optimization problem. Section III states
the main theoretical result of the paper, while Section IV pro-
vides a sketch of its proof (the complete proof is provided
in Appendix). Section V proposes a distributed algorithm to
solve the optimization problem, the performance of which is
illustrated in Section VI via case studies. Concluding remarks
are presented in Section VII.

II. PRELIMINARIES AND PROBLEM FORMULATION

This section introduces the model for the class of power dis-
tribution systems considered in this work; in the process, rel-
evant notations used throughout the paper are also introduced.
Subsequently, we discuss the problem of voltage regulation in
distribution networks with deep DER penetration. Additionally,
we articulate a potential solution that coordinates 1) the uti-
lization of conventional voltage regulation devices for handling
slower voltage variations, and 2) the use of DERs and DRRs for
handling faster variations. The section concludes with the for-
mulation of an optimization problem that enables the realization
of 2) above.

A. Power System Distribution Model

Consider a power distribution network with buses. As of
today, such networks are mostly radial with a single source of
power injection referred to as the feeder (see, e.g., [30]). Thus,
the network topology can be described by a connected tree, the
edge set of which is denoted by , where if is con-
nected to by a transmission line.We write if bus is con-
nected to bus and otherwise, and to denote a trans-
mission line connected between buses and . Typical examples
of power distribution networks with such tree topologies are the
IEEE 34- and 123-bus distribution systems; the topologies of
these systems, which are used in the case studies of Section VI,
are displayed in Figs. 7 and 8, respectively.
Let denote bus voltage, and define the corre-

sponding bus voltage vector . Sim-
ilarly, let and denote the active and reactive power injec-
tions in bus , respectively, and define the corresponding active
and reactive power injection vectors,
and , respectively. Let ,
with , denote the admittance2 of line , and
let denote bus shunt admittance. Then, the power
flow equations can be compactly written as

(1)

where is the bus admittance matrix (we use to
denote the th entry of a matrix ), denotes the
Hermitian transpose of , and returns the diagonal

2We adopt the standard assumption that, in normal operating conditions, lines
are inductive and the inductive effects dominate resistive effects (see, e.g., [31].
Additionally, although the convention is to write , we chose
to flip the sign of the imaginary part as it simplifies subsequent developments.

of a square matrix as a column vector. The active power flow
through each transmission line is given by

(2)

whereas the reactive power flow through each transmission line
is given by

(3)

where .

B. Voltage Control in Networks With Deep DER Penetration
The objective of the paper is to address the problem of voltage

regulation in power distribution networks with deep penetration
of DERs; specifically, the focus is on the problem of mitigating
voltage variability across the network due to fast (and uncon-
trolled) changes in the active power generated or consumed by
DERs. To this end, we rely on 1) the use of the power elec-
tronics interfaces of the DERs to locally provide some limited
amount of reactive power; and 2) to some extent, on the use
of storage-capable DERs and DRRs to locally provide (or con-
sume) some amount of active power. In other words, we have a
limited ability to shape the active/reactive power injection pro-
file. With respect to this, it is important to note that this ability to
shape the active/reactive power injection profile, which in turn
will allow us to regulate voltage across the network, is intended
to supplement the action of conventional voltage regulation de-
vices (e.g., tap-changing under-load transformers, set voltage
regulators, and fixed/switched capacitors).
In practice, in order to realize the ideas above, we envision

a hierarchical control architecture, where there is a separation
in the (slow) time-scale in which the settings of conventional
voltage regulation devices are adjusted via the solution to some
optimization problem, and the (fast) time-scale in which voltage
regulation through active/reactive power injection shaping is ac-
complished. Then, given that fast (and uncontrolled) changes
in the DERs active generation (consumption) might cause the
voltage to deviate from this reference voltage, a second opti-
mization is performed at regular intervals (e.g., every minute).
The timeframe in which the settings of conventional devices are
decided and the reference setting of DERs/DRRs is graphically
depicted in Fig. 1. The solution of this minute-by-minute opti-
mization will provide the amount of active/reactive power that
needs to be locally produced or consumed so as to track the
voltage reference. In order words, the minute-by-minute opti-
mization provides the reference values for the amount of ac-
tive/reactive power to be collectively provided (or consumed)
on each bus of the network within the next minute by reac-
tive-power-capable and/or storage-capable DERs and DRRs.
These reference values are then passed to the DER/DRR local
controllers, which will adjust their output accordingly—note
that the time-scale in which DER/DRR local controllers act (on
the order of milliseconds (see, e.g., [32], [33]), is much faster
than the minute-to-minute optimization. Here, it is important to
note that the DERs and DRRs only attempt to correct voltage
deviation from the nominal value due to variations in power in-
jections around the power injection profile used to set the con-
ventional voltage regulation devices.
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Fig. 1. Time-scale separation between the instants in which the settings of con-
ventional voltage regulation devices are decided, and the instants in which the
reference of DER and DRRs are set.

C. Voltage Regulation via DERs/DRRS: Problem Formulation
As stated earlier, the focus of this paper is on developing

mechanisms to mitigate voltage variability across the network
due to fast (and uncontrolled) changes in the active generated or
consumed by DERs; thus, subsequent developments only deal
with the inter-hour minute-by-minute optimization mentioned
above. As argued in Section II-B, we assume that at the begin-
ning of each hour, the settings of conventional voltage regula-
tion devices are optimized, which in turns prescribe the values
that each individual bus voltage can take to some voltage ref-
erence . In order to achieve the voltage regulation goal
above, we rely on a limited ability to locally produce and/or con-
sume some limited amount of active/reactive power, and cast the
voltage regulation problem as an optimization program with the
objective of minimizing network losses.
Let . The total losses in the network

are given by , and the voltage
regulation problem can be formulated as

(4a)

(4b)
(4c)
(4d)
(4e)
(4f)
(4g)

(4h)

The constraints in (4b) capture the voltage regulation goal. The
constraints in (4c) and (4d) describe the limited ability to con-
trol active/reactive power injections on each bus ; and

, denote the upper (lower) limits on the amount of active
and reactive power that each bus can provide, respectively. The
constraints in (4e) capture line power flow limits, while (4f) im-
poses loss limits on individual lines. Without loss of generality,
and to ease the notations in subsequent development, hereafter
we assume for all . Note that active power and
reactive power need not be controllable at every bus. If for a par-
ticular bus they are not controllable, in the optimization problem
we set the bus active and/or reactive power upper and lower
bounds to be equal, which essentially fixes the active and/or re-
active on that bus.

The optimization problem in (4) is difficult for two reasons:
1) it is not convex due to the quadratic relationship between
bus voltages and powers; and 2) depending on the size of the
network, there could potentially be a large number of variables
and constraints. Sections III and IV address 1) by convexifying
the problem in (4), while Section V addresses 2) by proposing
a computationally efficient distributed algorithm to solve the
resulting convexified problem.

III. CONVEX RELAXATION
In this section, we state the main theoretical result, which is

that under certain conditions on the angle differences between
adjacent buses and the lower bounds on reactive power injec-
tions, the nonconvex problem in (4) can be solved exactly by
solving its convex SDP relaxation. We note that the SDP relax-
ation is not the only possible convex relaxation, e.g., [24] pro-
poses a SOCP relaxation. In order to state the SDP relaxation,
it is convenient to rewrite the problem in (4) in matrix form.

A. Voltage Regulation Problem Formulation in Matrix From

Let , with and all other entries equal
to zero, and define , and

. Then, the active and reactive power in-
jections in bus are given by , and

, respectively, where is the trace operator. For
each , define a matrix , with its entry
given by

if
if and
if and
otherwise.

(5)

The active power flow through the line is given by
. Let . Then, we can rewrite (4)

as

(6a)

(6b)
(6c)
(6d)
(6e)
(6f)

Note that the outer product is a positive semidefinite
rank-1 matrix. Conversely, given a positive semidefinite
rank-1 matrix, it is always possible to write it as an outer
product of a vector and itself. Thus, we can rewrite (6) as

(7a)

(7b)
(7c)
(7d)
(7e)
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(7f)
(7g)

where the rank-1 constraint in (7g) makes the problem not
convex.

B. Convexification
The problem in (7) is not convex due to the rank-1 constraint

(7g); by removing it, we obtain a relaxation that is convex:

(8a)

(8b)
(8c)
(8d)
(8e)
(8f)

This convex relaxation is not always tight since the rank of the
solution to (8) could be greater than 1. Thus the solution to (8)
does not always coincide with the solution to (7). However, by
imposing two conditions that are widely held in practice, the
non-convex problem in (7) can be solved exactly by solving (8),
as stated in the following theorem.
Theorem 1: Consider a power distribution network with a

tree topology. Define to be the smallest positive solution
to the equation , with given in (2) for

; and if , and
if . Let . Suppose

satisfies

(9)

and reactive power injection lower bounds satisfy

(10)

with ,
where is the set of all neighbors of and

. Let be an optimal solution to
the relaxed problem in (8). Then
1) If is rank 1, then for some vector

. Furthermore, is the optimal solution to the voltage
regulation problem stated in (4).

2) If , then there is no feasible solution to the
voltage regulation problem stated in (4).

3) If (8) is infeasible, then the the voltage regulation problem
stated in (4) is infeasible.

The theorem is proved for a two-bus network in Section IV by
studying the geometry of the feasibility set of the original
problem in (6) and that of its convex relaxation in (8). The
intuition and geometric insight developed by studying the
two-bus network carries over to a general tree network and the
full proof is provided in the Appendix.

IV. SKETCH OF THEOREM 1 PROOF
The insights into Theorem 1 are obtained by studying the ge-

ometry of the sets that result from the constraints on line power

Fig. 2. Active line flow region , the reactive flow region , and the linear
transformation between them.

flows and power injections as described in (4c)–(4f). This geo-
metric view was explored in previous works [19], [22]. Here, we
revisit the results of [22] and generalize them to include limits
on reactive power injections.

A. Active and Reactive Line Flow Regions
First, recall from (7b) that . Then,

let and denote the regions that contain
all the and that can be achieved from
(2) and (3) by varying between 0 and ; it is easy to see
that for , (2) and (3) are linear transformations
of a circle. Thus, as depicted in Fig. 2, the active and reac-
tive line flow regions and are ellipses. The center of

is . Its major axis is parallel to
and has length , while its minor axis

is parallel to and has length . Both el-
lipses are related by a linear invertible mapping: ,
with

(11)

The line flow constraints in (4e) and the thermal loss con-
straints in (4f) appear as linear constraints on the line flow
regions as shown in Fig. 3. Thus, for each line , we
can replace both constraints by a single one, which has the
form of the line flow constraint for properly defined upper
limits. We adopt this convention in subsequent developments.
Furthermore, since the ellipses have empty interior, this flow
constraint can be translated into angle constraints on of the
form . Conversely, an angle constraint on can
be converted into a flow constraint. Let and denote,
respectively, line angle-constrained active and reactive
line flow regions. Then we have

B. Feasible Region of a Two-Bus Network
Consider a system with only two buses connected by a line

(1, 2), with and denoting the active (reactive)
power injections on bus 1 and 2, respectively; for a two-bus
system, and .
The relaxed problem in (8) convexifies the feasible region of the
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Fig. 3. Flow region under thermal loss constraints (left) and line flow con-
straints (right). The bold curves indicate the feasible part.

Fig. 4. Angle-constrained active line flow region and its convex hull (filled in
blue region) when relaxation is tight (left) and when relaxation does not provide
solution to the original problem (right).

problem (7) by filling up the corresponding ellipses as shown
in Fig. 4. Note that since the objective is to minimize the total
power loss (i.e., ), the solution to the relaxed problem
will be in the lower left part of the relaxed feasible region. The
relaxation is tight if the relaxed solution lies on the boundary of
the ellipse, so that a rank-1 solution is recovered.
The condition in (9) is a constraint on the maximum angle dif-

ference across the line. Intuitively, this angle constraint is such
that only the lower left part of the line flow ellipses is feasible.
For example, this condition is satisfied by the angle-constrained
regions in Fig. 4; this figure shows the intersection of bus power
constraints with the angle-constrained active injection regions.
In Fig. 4(a), both bus power constraints are upper bounds. Since
the optimal solution of the power loss problem occurs in the
lower left corner, the convex relaxation is tight; this is an ex-
ample of Case 1 in Theorem 1. In Fig. 4(b), both bus power
constraints are lower bounds; in this case the optimal solution
is inside the ellipses and therefore . On the other
hand, the original problem is infeasible; this is an example of
Case 2 in Theorem 1.
It is important to note that the observations made in

Fig. 4 hold as long as the angle-constrained injection region
only includes the lower left half of the ellipse (as described by
(9)). From thermal data for some common lines in [30], we ex-
pect the angle to be within . Even for a relatively
small ratio of 2, and
the condition is always satisfied. Therefore in most
practical networks, it is expected that the thermal constraints in
the network are small enough that the condition in (9) should
be satisfied almost always.
The second condition in (10) is to ensure that the reactive

lower bound is large enough such that for all feasible

Fig. 5. Active power injection region (left) and reactive power injection region
(right) under reactive power injection lower bound.

. If the reactive lower bounds are tight at the optimal solution
of the relaxed problem, then the rank of the optimal matrix
is not necessarily 1. Fig. 5 shows the reason the condition on
the reactive power lower bounds is needed. Fig. 5(b) gives the
reactive injection region with a tight reactive lower bound on
bus 2. Fig. 5(a) shows the corresponding active power injection
region. Observe that it is possible for the optimal solution of
the relaxed problem to be of rank 2, while the original problem
remains feasible. The condition rules out this phenom-
enon by ensuring that the reactive power lower bounds are never
tight.

C. General Tree Networks

The geometrical intuition developed for the two-bus network
carries over to a general tree network due to the fact that flows
on each line are independent (no cycles), and active and reac-
tive power injections can be described, respectively, as linear
combinations of active and reactive line flows. These are the
main ideas used in proving Theorem 1; the interested reader is
referred to the Appendix for the full proof.

V. DISTRIBUTED ALGORITHM FOR SOLVING
THE CONVEXIFIED PROBLEM

In Section III, we showed that the SDP program in (8) is
a convex relaxation of the voltage regulation problem in (4).
Since the objective is to regulate the voltages in the presence
of fast-changing power injection that, e.g., arise from renew-
able-based generation, the optimization problem needs to be
solved no slower than the time-scale at which these injections
significantly change. General-purpose SDP solvers scale poorly
as the problem size increases [10]. Thus, for large distribution
networks with hundreds or thousands of buses, solving the SDP
problem in a minute to sub-minute scale is challenging. Further-
more standard solvers for SDP problems are centralized; i.e., it
is assumed that all the data defining the problem is available
to a single processor. However, the communication infrastruc-
ture in a distribution network may not be able to transmit all the
data to a centralized location fast enough. By exploiting the tree
structure of distribution networks, we propose a distributed al-
gorithm to solve (8) that only requires communication between
neighboring buses. This communication requirement is reason-
able since that neighboring buses are typically physically closest
to each other as well. Therefore any wireless communications
technology (and obviously power line communication) would
enable nearest neighbors to communicate to each other.
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A. Algorithm Derivation

The proposed algorithm consists of two stages: local opti-
mization and consensus. In the local optimization stage, each
node solves its own local version of the problem. In the con-
sensus stage, neighboring nodes exchange Lagarangian multi-
pliers obtained from the solutions to their corresponding local
optima, with the goal of equalizing the angle differences across
a line from both of its ends.
Let be the set of buses directly connected to bus by

transmission lines, together with bus itself, i.e.,
. For a matrix , let denote the

submatrix of whose rows and columns are in-
dexed according to . Similarly, for the vector ,
is the corresponding -dimensional vector indexed by . We
can rewrite (8) as3

(12a)

(12b)
(12c)
(12d)

(12e)
(12f)
(12g)

where is the Hadamard product. It is easy to verify that (12a),
(12b), (12c), (12d), and (12e) are equivalent to (8a), (8b), (8c),
(8d), and (8f), respectively, as in (8c), in (8d), and in
(8f) have non-zero elements only at , , , .
Since the network is a tree, the maximal cliques are the set of
adjacent nodes connected by an edge. Consequently,
for all is equivalent to because the set of 's includes
all the maximal cliques of the network [34], [35]. Constraints
(12f) and (12g) are added to ensure that all 's coordinate to
form ; in other words, , the 's computed from

and should be the same.
Let be the Lagrange multiplier of (12f) for and sim-

ilarly for (12g). By relaxing (12f) and (12g), the augmented
objective function is

(13)

where is also Hermitian, and its entry is 1)
if , if , and 2)

if . With (13), problem (12) can be divided into

3Note that the loss constraint in (8e) is not present in (12). From Section III,
both loss and active power flow constraints can be thought of as constraints
on the angle difference between two buses; therefore it suffices to consider the
minimum of these two angle constraints. Also, there is a one to one mapping
from an angle constraint to active power flow constraints. Thus, without loss
of generality, we can assume that the minimum angle corresponds to the active
power flow constraint.

separable subproblems and the th subproblem corresponds to
bus , defined as follows:

(14a)

(14b)
(14c)
(14d)

(14e)

We denote the feasible region described by (14b)–(14e)
together with of Subproblem by . Define

. The gradient of
at is , which is the th element of the optimal

of determined by solving the th subproblem (14).
Similarly, that of at is . Therefore, the gradient
of is then . Let and
be and determined at time , respectively. By
gradient ascent, at time , we update by

(15)

where and are the step size and at time ,
respectively. The value of can be directly computed
from as . The Lagrange multiplier is
only defined for the line and the two buses at the ends
of the edge, i.e., buses and , are required to manipulate .
The purpose of (15) is to make and as close to each
other as possible with the help of . The iteration in (15) can
be computed either by bus or by bus and it is independent
of all other buses and edges. Whenever both the th and th
subproblems have been computed and so and have
been updated, then can then be updated by using (15).
The optimization problem comprised of (13), together with

all the constraints (14b)–(14e), imposed on the subproblems, is
a dual problem of (12). When all 's are optimal, will
be equal to for all 's and thus the duality gap is zero.
Accordingly, we can construct the optimal of problem (7g)
from the values of the 's. Algorithm 1 can be seen as a dual
decomposition algorithm, where the constraints on the consis-
tence of line flows are dualized. Due to the convexity of (12),
Algorithm 1 converges to the optimal solution [36]. The itera-
tive algorithm (15) is a subgradient method and several step size
rules can be applied to specify , e.g., constant step size, and
non-summable diminishing step size , where
[37].

Algorithm 2 Distributed Algorithm

Given an -bus network

1.while for any do
2. for each bus (in parallel) do

3. Given , solve (14)
4. Return

5. end for
6. Given and , update with (15) (in parallel)

7.end while
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Fig. 6. A 5-bus example. (a) Network structure. (b) Convergence curve.

TABLE I
BUS INFORMATION OF THE FIVE-BUS EXAMPLE

B. Feasibility
When the buses determine their own limits on active and reac-

tive powers independently, an infeasible problem might result,
i.e., an empty feasible region. When there exists a central au-
thority having all the bus power information, we can check the
feasibility easily. Otherwise, it is necessary for the buses to de-
clare infeasibility.
One sufficient condition for infeasibility of the problem is

that there exists an infeasible subproblem (14) for any bus. If
any bus finds an infeasible subproblem, it is sufficient to say
that the whole problem is infeasible. To proceed further, the bus
with an infeasible subproblem should adjust its own active and
reactive power limits so as to make the subproblem feasible. A
necessary and sufficient condition for infeasibility is that
and never match for some when Algorithm 1
evolves. If this happens on edge , either bus or bus or
both constitute the infeasibility.

C. Numerical Performance Enhancements
Consider the five-bus network in Fig. 6(a), and its corre-

sponding model parameters as given in Table I. Assuming that
all 's are updated at the end of each iteration, the progress
of Algorithm 1 (the curve without power flow constraints) and
the target optimal objective value are shown in Fig. 6(b). At
iteration 20, when we sum the objective function values of
all the subproblems, the sum still has around 20% difference
to the optimal one. Even for a small network, it may take a
long time for the algorithm to converge to the global optimal
solution. Next, we provide some enhancements that improve
the algorithm convergence speed.
1) Power Flow Constraints: Constraint (14e) means that the

active power can flow in any direction on the edge as
long as its magnitude does not exceed the limit . Assume
that the global optimal solution exists. Our decomposition
allows us to compute separately by buses and , in which
each bus determines its local version of , e.g., for bus

. Then (15) brings both and towards by just
equalizing and . If the feasible regions and
are smaller, it will be easier for (15) to reduce the discrepancy
between and .
The additional assumption we make is that all buses are net

consumers of active power except the feeder; that is,
for . For faster convergence rate, we assume that
active power flows from buses to along the edge with

, i.e., . Note this assumption is not necessary for
the theoretical results in Section III, but it makes the algorithm
much simpler. In practice, DERs are currently not allowed to
cause reverse current flow due to protection issues, but it would
be interesting to generalize our algorithm to also handle this
case. With this assumption, we can re-write (14e) as

(16)
(17)

from the perspectives of buses and , respectively. We can ac-
tually replace (14e) for of Subproblem by (16) and sim-
ilarly (14e) for of Subproblem by (17). If we apply the
same logic to all edges connecting to bus , we can construct a
smaller feasible region for Subproblem . For the edge ,
the constructions of and can help and converge
to faster.
With this modification, the progress of the algorithm for the

five-bus example is also depicted in Fig. 6(b), where we can see
that the algorithm converges faster.
2) Feasible Solution Generation: When the algorithm con-

verges, we have that

(18)

which holds when all its associated 's are optimal; this is
equivalent to have both of the following held:

(19)
(20)

In other words, Algorithm 1 tries to find the optimal active
and reactive power pair for each bus by manipu-
lating 's defined for the corresponding lines. The more lines
are connected to a bus (i.e., the more 's it involves), the
more difficult (19) and (20) hold. The pair affects the

pair through . Consider the situation where edge
is the only line connected to bus except for bus . When

becomes optimal, it helps bus converge in the sense
that this reduces the variations of induced from bus
. When Algorithm 1 evolves, the of leaf bus con-

verges first as a leaf bus has only one edge. Then, we have the
buses connected to the leaf buses converged. We continue this
process and finally go up to the feeder.
For any leaf node , we have and ,

where bus is the only bus connected to bus . When the al-
gorithm evolves, we obtain from the solution of the th
subproblem (14) when and are
equal to and , respectively. Once we have fixed ,
we can add the constraint to the th subproblem
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for bus by passing a message containing the value of
from bus to bus . In matrix form, this constraint is equiv-
alent to and

, where , with
if and , if and , and

otherwise; and , with
if and , if

and , and otherwise. In this case, we reduce
the -bus network into the -bus one by removing bus .
When all other buses with positive active power flown from bus
(i.e., ) have been fixed and “removed”, bus
becomes a leaf bus in the reduced network. This process con-

tinues until we find all . The global solution
can be constructed from those 's. However, for any

bus , if we fix and to values that are not optimal, these
errors will make its connecting bus being fixed afterwards re-
sult in incorrect and , which are not optimal either. To
achieve this, we observe and for a certain time pe-
riod and check if their variations are significant. Assume that at
time , we can keep track of the previous 's and the current

, i.e., . We can say
that has converged if its cumulative change is less than a
certain threshold (e.g., ), i.e.,

(21)

with a similar condition for the reactive power.
3) Hot Start: The problem needs to be solved repeatedly;

when there are changes to the active/reactive limits at any bus,
we apply Algorithm 1 to the problem again. In each update,
we usually have small variation between the new and the
previous ones and also for . Thus, in subsequent instances
of the problem, the optimal angle difference across each line
usually does not vary significantly. Therefore, we can set
with the optimal which can be determined from the previous
optimal .

VI. CASE STUDIES
We test the performance of Algorithm 1 on the IEEE 34- and

123-bus test systems [38]; the data for these systems can be
found in [39]. The topology for the 34-bus system is displayed in
Fig. 7, while the topology for the 123-bus system is displayed in
Fig. 8. All simulations were performed on a MacBook Pro 6.2,
and each one was terminated when 300 iterations were reached.
Assume that, for both test systems, the nominal load on each

bus , denoted by , is specified by the datasets in [39]. Ad-
ditionally, we assume that connected to each bus , there are
energy storage devices and PV-based electricity generation re-
sources, which can supply active power, denoted by , to
the bus locally, i.e., their net effect is to reduce the load. If all

is consumed locally, then the active power injection at
bus will be . The computed optimal

will then be adjusted by con-
trolling the amount of power from the PV devices which will
be stored at the local storage device. Let be the nominal re-
active power injection at bus . By following [32], the power
electronics interface of the PV installations is assumed to be

Fig. 7. 34-bus system: electrical network graph. There are tap changing trans-
formers between buses 7 and 8, buses 17 and 18, and buses 17 and 23.

Fig. 8. 123-bus system: electrical network graph. There are tap changing trans-
formers between buses 12 and 13, buses 28 and 33, and buses 72 and 73. Every
load bus is assumed to have some capability to provide reactive power, propor-
tional to their active power demands.

able to supply reactive power in a range that is sufficient to
cancel the nominal reactive power. Therefore, we assume that
the reactive power can be adjusted in the ranges specified by 1)

, if , and 2) otherwise.
We consider the one-minute resolution irradiance data in

Fig. 9(a), which correspond to a particular day in November
2011 collected at the University of Nevada [40]; the 's
vary in accordance to the variation of this irradiance data.
Assume that the PV systems connected to bus can provide up
to 20% of the nominal load at that bus. Thus, the maximum

, which is proportional to the respective , is different
for different buses. As it can be seen in Fig. 9, since there is
only radiation between the th and st minutes, for all
numerical examples, we define a time horizon of ,
and execute Algorithm 1 every minute within this time horizon.
Recall that Algorithm 1 requires inputs of Lagrange multipliers
as the starting points. In minute , where , the
inputs to Algorithm 1 are the Lagrange multipliers computed
by Algorithm 1 at time . Moreover each Lagrange mul-
tiplier is only stored and manipulated by the two buses at the
two ends of the corresponding transmission line. Initially, i.e.,
at , the Lagrange multipliers are computed from the
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Fig. 9. Irradiance of a particular day in November 2011 [40]. (a) Entire Time
Horizon. (b) Minute 781 to 840.

Fig. 10. Objective function values computed by the distributed algorithm. (a)
34-bus system. (b) 123-bus system.

Fig. 11. Active and reactive power injections at various buses in the 34-bus
network. (a) Active power injections. (b) Reactive power injections.

nominal system settings. At each step, we check if Algorithm 1
converges with a stopping criterion. It is deemed converged if
the Euclidean norm of the change of the Lagrange multiplier is
smaller than some tolerance, i.e., .
In order to check if the distributed algorithm can achieve the

global optimum, we compare the objective function values com-
puted by the distributed algorithm to those by the centralized
solver (e.g., SDP3 or SeDuMi [41]); the results are plotted in
Fig. 11. The active and reactive power injection at various buses
in the 34-bus network are shown in Fig. 10(a) and (b), respec-
tively. As observed in Fig. 11, for the 34-bus system, we can
see that the distributed algorithm converges to the optimum all
the time, whereas for the 123-bus system convergence occurs
most of the time. In Fig. 11(b), the dropping lines correspond to
the non-convergent cases where the convergence fails because
the pre-defined 300 iterations allowed were exhausted. In this
case, the value from the previous solution is used. As shown in
the simulation, the voltages are still maintained at their refer-
ence values. In the 34-bus and 123-bus systems, the centralized
solver failed to solve the system due to convergence issues.

Fig. 12. Voltage profile over time at representative buses. The proposed voltage
regulation method is able to keep the voltages constant at their perspective ref-
erences values. (a) 34-Bus Network. (b) 123-Bus Network.

Fig. 12 displays the voltage profile at various representative
buses of the 34- and 123-bus test system over a one-hour pe-
riod with high variability in the 's caused by the high-vari-
ability irradiance period displayed in Fig. 9(b). This one-hour
period corresponds to the portion of the daily irradiance profile
in Fig. 9(a) between the st and th minutes. For this sim-
ulation, the settings of the conventional voltage regulation de-
vices are kept at the values given in [39], whereas the 's in
(4b) result from the solution to the power flow equations for the
nominal 's as specified in [39]. The fact that all the voltages
displayed in Fig. 12 remain at their reference value illustrates
the effectiveness of our proposed voltage regulation method to
mitigate the effect of fast-varying power injections arising from
PV systems. If a system does use the reactive capability of the
DERs and experiences high penetrations of solar-based genera-
tion, the voltages could exceed design tolerances by fluctuating
outside the prescribed magnitude interval .
Fig. 13 shows the computational times corresponding to each

test system; here we only consider the CPU time spent on the
SDP solver and assume that communication overheads can be
neglected. In our simulation, we implement the algorithm itera-
tively; in each iteration, we solve the subproblems sequentially.
In Fig. 13, each subfigure contains two curves. One (distributed)
is to sum the CPU times of the subproblems which need the
longest CPU time in each iteration. In other words, we only
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Fig. 13. Computation time of the distributed algorithm. (a) 34-bus system.
(b) 123-bus system.

Fig. 14. Time it takes for Algorithm 1 to converge under the presence of com-
munication link failures.

consider the most demanding subproblem in each iteration and
then sum the CPU times spent on these subproblems in all iter-
ations. The average CPU computation time for the three cases
are 1.28 s, 3.33 s, and 19.69 s, respectively, which are substan-
tially shorter than the one-minute cycles considered.
Next, we show that the distributed algorithm is robust against

random communication link failures.Wemodel communication
failures as packets drops. This means that, at a given iteration,
the Lagrangemultiplier transmitted on any particular edge could
be lost with probability , independent of all other transmis-
sions. Fig. 14 shows the average time of convergence needed
over the day for the 34-bus network for , and

; convergence is always achieved.
Remark 1: The results displayed in Fig. 11 correspond to a

centralized solution of (8); however, we also performed simu-
lations using a centralized solver (SeDuMi) to obtain a solution
to (12). However, the algorithm failed to converge most of the
time even for the 34-bus network. We suspect that since there
are duplicated variables in (12), a naive implementation would
be rather inefficient; however, a more careful centralized imple-
mentation (using, e.g., an SOCP formulation) will likely speed
up (12).

VII. CONCLUDING REMARKS

We proposed a convex optimization based method to solve
the voltage regulation problem in distribution networks.We cast
the problem as a loss minimization program. We showed that
under broad conditions that are likely to be satisfied in prac-
tice, the optimization problem can be solved via its convex re-
laxation. We then proposed a distributed algorithm that can be
implemented in a network with a large number of buses; we
demonstrated the effectiveness and robustness of the algorithm
with two case studies.
As noted earlier, the proposed voltage regulation method is

intended to supplement the action of conventional voltage regu-
lation devices. In this regard, throughout the paper, we assumed
that there is a separation in the (slow) time-scale in which the
settings of conventional voltage regulation devices are adjusted
and the (fast) time-scale in which our proposed method oper-
ates. With respect to this, a research direction worthy exploring
is to carefully consider the coupling across the two time-scales
and study the interplay between the optimal use of conventional
voltage regulation devices in longer time-scales, and the use
of our voltage regulation method in shorter time-scales. This
would allow us to, e.g., study the trade-offs between the loca-
tion and number of conventional voltage regulation devices, and
the location and number of DERs and DRRs with capability of
providing reactive power.

APPENDIX

Proof of Theorem 1: The first and third cases are clear. The
interesting case to prove is to show that if the matrix has
rank higher than 1, there is no rank-1 matrix that results in
a feasible solution.
The requirement that for is to

ensure that the reactive lower bound is in fact never tight
for all the nodes in the network. Let be the parent of
and be a child of . Since we assume that power always
flow from parents to children in the network, and from the
angle constraint in (9), . Over
this range, . This corresponds to the intuition that
reactive power should flow up the tree to support the voltage.
Note that an inductive line is very lossy in terms of reactive
powers, therefore might receive or supply reactive power
to . The is monotonic in starting at until
it reaches is minimum at an angle of . Let

, then

. Thus, if , the lower bounds on
the reactive power injections are never tight.
To finish the proof we need to introduce some notations from

[22]. For a bus network, let be the set of angle con-
straints, one for each line. Then, the angle-constrained active
power injection region is the set of all active power injection
vectors that satisfy the line angle constraints, i.e.,

, , . Let
be the Cartesian product region of the active line

flow regions, then . Let be a
matrix with the rows indexed by the buses and the columns in-
dexed by the ordered pair of edges, i.e., if is connected
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to , both and are included; thus if
or , and otherwise. is a gener-

alized edge to bus incidence matrix, and i.e., the
power injection region is obtained by a linear transformation of
the product of line flow regions.
Similarly, is the product region of the reactive line

flow regions. Then, for all , by stacking the 's as de-
fined in (11) into a block diagonal matrix
, i.e., , we obtain the global transform

between and . The angle-constrained reactive power injec-
tion region is given by .
Since by construction the lower bounds on the reactive power

injection are never tight, we can ignore them from now on. Let
be the feasible region of the original problem (6), that is,

, , , ,
, , . We can equivalently

write as , where is the flow
region satisfying the real power constraints, that is,

. is the flow region
satisfying the reactive power constraints, that is,

. Since and are defined
by linear inequalities, they are convex. However, is not.
Let be the feasible region of the relaxed problem (8). It

turns out that , is convex,
and contains .
Now we need to define the Pareto-front of a set. Let
, we say is Pareto-optimal if such that
with strict inequality in at least one coordinate. The set

of Pareto-optimal points is called the Pareto-front of , and
labeled . When minimizing a strictly increasing function,
the optimal is always achieved in the Pareto-front. Therefore to
show the second statement in the theorem, it suffices to show
the following lemma.
Lemma 2: Suppose is not empty, then .
Suppose the lemma is true, then if the optimal solution of the

relaxed problem (8) is of rank 2, then must be empty.
The proof of this lemma is similar to Lemma 4 in [22]. Let

be the optimal solution of the relaxed problem,
its corresponding active flow vector

and be the corresponding reactive power flow vector.
It suffices to show that if , then
for every . Once this fact is established, the rest of the
proof is the same as the proof of Lemma 4 in [22]. Suppose
that , but for some . Then there
exists such that . Let

. Since

Therefore is a better feasible flow on the line ,
which contradicts the optimality of .
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