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On the Convergence of Chemical Reaction
Optimization for Combinatorial Optimization

Albert Y.S. Lam, Member, IEEE, Victor O.K. Li, Fellow, IEEE, and Jin Xu

Abstract—A novel general-purpose optimization method,
chemical reaction optimization (CRO), is a population-based
metaheuristic inspired by the phenomenon of interactions be-
tween molecules in a chemical reaction process. CRO has demon-
strated its competitive edge over existing methods in solving many
real-world problems. However, all studies concerning CRO have
been empirical in nature and no theoretical analysis has been
conducted to study its convergence properties. In this paper, we
present some convergence results for several generic versions of
CRO, each of which adopts different combinations of elementary
reactions. We investigate the limiting behavior of CRO. By
modeling CRO as a finite absorbing Markov chain, we show that
CRO converges to a global optimum solution with a probability
arbitrarily close to one when time tends to infinity. Our results
also show that the convergence of CRO is determined by both
the elementary reactions and the total energy of the system.
Moreover, we also study and discuss the finite time behavior of
CRO.

Index Terms—Chemical reaction optimization (CRO), conver-
gence, convergence rate, finite absorbing Markov chain, first
hitting time.

I. Introduction

CHEMICAL reaction optimization (CRO), as introduced
in [1], is a recently proposed metaheuristic for combina-

torial optimization problems. CRO loosely mimics interactions
of molecules in a chemical reaction, based on the principle
that reactions yield products with the lowest energy on the
potential energy surface (PES). CRO has demonstrated its
splendid performance in solving many real-world optimization
problems, e.g., spectrum allocation in cognitive radio systems
[2], population transition in peer-to-peer live streaming [3],
and task scheduling in grid computing [4]. Recently, it has also
been applied to nonconvex continuous problems [5]. For more
information about the state-of-the-art development of CRO, the
interested reader may refer to [6].
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In this paper, we focus on the combinatorial optimization
problem whose solution space is discrete, usually large and
finite. In general, a combinatorial optimization problem can
be described as follows:

min {C(x)|x ∈ X } (1)

where X ⊂ RN is the set of feasible solutions in the N-
dimensional real number space, C(x) : X → Y ⊂ R is the
cost function, and N is the dimension of the problem. Space X
is constructed according to all the constraints imposed on the
problem. Our goal is to find an optimal solution x∗ in X , which
minimizes the cost function value such that C(x∗) ≤ C(x)
for all x ∈ X . Without loss of generality, we assume that
0 < C(x) < ∞ for all x ∈ X 1, which can easily be satisfied
by adding a sufficiently large number to the objective function
to construct a positive C(x). In this way, C(x) can be viewed
as the potential energy (PE) of the molecules in CRO.

Many theoretical analyses have been conducted to study the
convergence of other popular evolutionary algorithms (EAs),
e.g., genetic algorithm (GA) [8]–[10], simulated annealing
(SA) [11], ant colony optimization (ACO) [12]–[15], and
threshold accepting (TA) [16]. By using the homogeneous
Markov chain, [10] shows that the canonical GAs with pro-
portional selection will never converge to the global optimum,
while its elitist variants do. Reference [11] proves that given a
sufficiently large number of iterations at each temperature, SA
converges almost surely to the global optimum. Reference [15]
gives a short convergence proof for a class of ACO indicating
that the probability of finding an optimal solution tends to
unity when the algorithm is allowed to run forever. Reference
[16] suggests that TA will converge to the global optimum
provided that the corresponding version of SA does. This is
proved under the fact that SA usually belongs to the convex
hull of TA. On the other hand, studies regarding the finite
time behavior of EAs have attracted great attention. Rudolph
[17] summarized some results on the limiting and finite time
behavior of EAs. Reference [18] gives a survey on the time
complexity of EAs for combinatorial optimization developed
in the recent decade. Moreover, the convergence rate and the
expected first hitting time of EAs are also investigated in [19]
and [20], respectively. However, those EAs discussed above
belong to GA or its variants. In other words, only the finite

1Any solution with infinite objective function value is considered as an
infeasible solution [7]. The issue of nonnegativity has been discussed in details
in [5]. Here we make a stronger assumption of precluding the zero objective
function value.

1089-778X c© 2012 IEEE
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time behavior of GA has been studied. To summarize, all these
results explain why the corresponding algorithms work well
in practice.

CRO has been applied to tackle various types of nondeter-
ministic polynomial-time hard (NP-hard) problems. Simula-
tion results show that CRO is very competitive in solving many
real-world NP-hard problems. Although abundant experimen-
tal and empirical research has already been done on CRO,
to the best of our knowledge, no theoretical work has been
conducted to analyze the performance of CRO. It is important
to study the convergence properties of CRO. These properties
allow a better understanding of the algorithm and facilitate
the design of the algorithmic operators. This paper is the first
study of the limiting and finite time behavior properties of
CRO.

Considering the characteristics of CRO’s algorithmic design,
Markov chains offer an appropriate model to analyze its con-
vergence properties. In this paper, we model CRO as a finite
absorbing Markov chain and analyze its convergence based
on the selection of the elementary reactions adopted in the
algorithm and the total energy (TE) of the system. In particular,
we provide a necessary condition for CRO’s convergence
from the perspective of elementary reaction design. With the
optimum reachability condition, we study the influence of the
TE on convergence of several versions of CRO with different
combinations of elementary reactions. A lower bound of TE
that can guarantee CRO’s convergence is derived. Moreover,
we also explore the finite time behavior of CRO.

The remainder of this paper is organized as follows. In
Section II, we revisit CRO and describe the corresponding
terminologies that will appear in the later proofs. In Section III,
we introduce some definitions and model CRO as a finite
absorbing Markov chain. Various results of CRO’s conver-
gence are given in Section IV. In Section V, we study the
finite time behavior of CRO. In Section VI, we discuss the
significance and the limitation of the current convergence
proofs. Section VII concludes this paper by summarizing our
results and proposing potential future work.

II. Chemical Reaction Optimization

In this section, we will first give the basic principles of
CRO, explaining the relationship between chemical reactions
and optimization. Then, we discuss the energy exchanges and
triggering criteria of the elementary reactions in CRO. Next,
we describe the flow of the algorithm, and give a brief survey
on the state of the art of CRO. Finally, we will explain the
unique characteristics of CRO, pointing out the differences
between CRO and other EAs.

A. Basic Principles

CRO introduced in [1] is designed based on the nature
of chemical reactions, where molecules continuously change
in an attempt to attain the lowest free energy. CRO loosely
couples optimization with chemical reactions, and thus the
details of chemical reactions, e.g., quantum and statistical
mechanics, are not captured in the canonical design of CRO.
The manipulated agents in CRO are molecules, each of which

maintains a certain number of attributes, including a molecular
structure, potential energy (PE), kinetic energy (KE), the
number of hits, the minimum hit number, and the minimum
value. These attributes are further illustrated as follows.

1) Molecular structure: It represents the feasible solution
of the optimization problem currently attained by the
molecule.

2) PE: It quantifies the molecular structure in terms of
energy and is modeled as the cost function value of the
optimization problem.

3) KE: It is associated with the degree of the molecule’s
activity. In CRO, it symbolizes the solution’s ability of
jumping out of local optima. The larger the value of
KE, the more likely the molecular structure can have a
rigorous change.

4) Number of hits: It counts the number of hits2 experi-
enced by the molecule.

5) Minimum hit number: We record the hit as the minimum
hit number when the molecule possesses the current best
solution. Thus, the value of (number of hits − minimum
hit number) is the number of hits that the molecule has
experienced without finding a better solution. This is
also used as the criterion for decomposition (one of the
four elementary reactions).

6) Minimum value: It is the cost function value of the
solution generated at the time when the minimum hit
number is updated. In other words, it is the minimum
PE experienced by the molecule itself.

All quantities related to energy (e.g., PE and KE) should
have nonnegative values.

Imagine that there is a closed container with a certain
number of molecules. These molecules collide and undergo
elementary reactions, which may modify their molecular struc-
tures and the attained energies. In other words, elementary
reactions are operators, which update the solutions manip-
ulated by the algorithm. Through a random sequence of
elementary reactions, CRO explores the solution space and
converges to the global minimum. We define four types of
elementary reactions, namely, on-wall ineffective collision,
decomposition, intermolecular ineffective collision, and syn-
thesis, each of which has different characteristics. The two
ineffective collisions (i.e., on-wall ineffective collision and
intermolecular ineffective collision) correspond to the cases,
in which molecules are modified to new molecular structures
close to the original ones, thus enabling the molecules to
search their immediate surroundings on the PES. Conversely,
decomposition and synthesis tend to produce new molecular
structures that may be very different from the original ones.
They provide molecules with the ability to jump to other
regions on the PES for better solutions after conducting a
certain number of local searches. In this way, molecules
explore different parts of the PES (solution space) and the
elementary reactions gradually bring them toward the lowest
energy state. With the four types of elementary reactions, the

2A hit of a molecule corresponds to an attempt at one of the elementary
reactions, regardless of whether or not this reaction actually takes place. Note
that an elementary reaction is only said to have taken place when the new
solutions are accepted.
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system tries to redistribute the energies (PE and KE) among
the different molecules and central energy buffer (buffer).3 As
the process evolves, the molecules get reduced PE. In other
words, the molecules possess molecular structures with lower
and lower PE in each subsequent change. This phenomenon
is the driving force of CRO to ensure convergence to lower
energy state.

B. Elementary Reactions

The energy exchanges and reaction criteria for the four
elementary reactions are explained as follows.

1) On-Wall Ineffective Collision: It happens when a
molecule hits a wall of the container and bounces back.
Its molecular structure does not change (from x to x′) too
rigorously4 in this case since it tries to transform to a new
solution in its neighborhood.5 The change is allowed if

PEx + KEx ≥ PEx′ (2)

where PEx and KEx are the PE and KE of the original
molecule with molecular structure x, respectively, while PEx′

stands for the potential energy of the resultant molecule. If (2)
holds, we calculate the new KE by

KEx′ = (PEx + KEx − PEx′ ) × q (3)

where

q ∈ [KELossRate, 1) (4)

and (1−q) represents the fraction of KE transferred to buffer.
KELossRate is a system parameter that limits the maximum
percentage of KE transferred to buffer in each of the collisions.
For simplicity, we assume that the kinetic energy is transferred
to buffer with the constant rate μ (0 < μ < 1) instead of the
general case given in (4) in the sequel. In this way, a certain
portion of KE will be transferred from a molecule to buffer.
Gradually, when more collisions of this kind take place, total
energy of the molecules decrease and energy in buffer grows.
The energy in buffer can be used to support decompositions.

2) Decomposition: Decomposition refers to the process
that one molecule decomposes into two or more molecules
(assume two here). Decomposition is a more rigorous process
than the on-wall ineffective collision and leads to resultant
molecules with very different molecular structures compared
to that of the original molecule. Let x, x′

1, and x′
2 be the

original and the two new molecular structures, respectively.
Decomposition happens when the molecule itself has sufficient
energy (PE and KE) to satisfy

PEx + KEx ≥ PEx′
1

+ PEx′
2
. (5)

3In the closed container, according to the law of conservation of energy, the
TE comprising all PEs and KEs of all molecules and buffer is constant.

4Rigorousness describes the degree of change in an elementary chemical
reaction. The more rigorous the elementary reaction, the greater the changes
in the molecular structures, energy, and other attributes of the involved
molecules. The corresponding meaning in optimization is the degree of
exploration.

5The precise meaning of the neighborhood for a solution will be explained
in the next section.

When (5) is not satisfied, energy in buffer can be used to
support the reaction if it is sufficient.6 The corresponding
condition becomes

PEx + KEx + buffer ≥ PEx′
1

+ PEx′
2
. (6)

Meanwhile, if (5) holds, we determine the new KEs by

KEx′
1

= temp1 × η (7)

and

KEx′
2

= temp1 × (1 − η) (8)

where temp1 = (PEx + KEx − PEx′
1
− PEx′

2
) and η is a random

number generated from [0, 1]. Otherwise, if (6) is satisfied,
the new KEs are computed by

KEx′
1

= (temp1 + buffer) × η1 × η2 (9)

and

KEx′
2

= (temp1 + buffer − KEx′
1
) × η3 × η4 (10)

where η1, η2, η3, and η4 are randomly generated from the
interval [0, 1]. In the original implementation of CRO [1],
decomposition is triggered by the decomposition criterion
specified with a parameter α, which represents the maximum
time that a selected molecule is allowed to stay in a stable
state. In other words, when the condition

(number of hits − minimum hit number) > α (11)

is met, decomposition will happen to drive the molecule to
search other regions of the PES.

3) Inter-Molecular Ineffective Collision: An inter-
molecular ineffective collision describes the situation when
two or more molecules collide with each other and then
bounce away. This collision is similar to the on-wall ineffective
collision as the molecules try to attain new solutions in their
own neighborhoods. However, no KE is drawn to buffer and
more molecules (also assume two here) are involved. Consider
that x1 and x2 change to x′

1 and x′
2, respectively. The change

will be accepted only if

PEx1 + PEx2 + KEx1 + KEx2 ≥ PEx′
1

+ PEx′
2
. (12)

Their corresponding KEs are determined by

KEx′
1

= temp2 × ξ (13)

and

KEx′
2

= temp2 × (1 − ξ) (14)

where temp2 = (PEx1 + PEx2 + KEx1 + KEx2 − PEx′
1
− PEx′

2
) and

ξ is a random number generated from the interval [0, 1].

6The use of buffer to support a decomposition here is a little bit different
from that adopted in [1]. This minor change depends on how we implement
the algorithm.
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4) Synthesis: A synthesis depicts two or more molecules
(also assume two) that collide and combine into one. There-
fore, the resultant molecular structure would be quite different
from those of the original molecules. Synthesis will happen
only if

PEx1 + PEx2 + KEx1 + KEx2 ≥ PEx′ . (15)

If (15) holds, we calculate the KE of the new molecule by

KEx′ = PEx1 + PEx2 + KEx1 + KEx2 − PEx′ . (16)

The resultant molecule is normally given with larger KE, i.e.,
greater ability to escape from a local minimum in subsequent
elementary reactions involving this molecule. In the imple-
mentation of synthesis, the synthesis criterion is described with
parameter β, which defines the least amount of KE a molecule
should possess. When both reactant molecules have KE lower
than β, that is

KEx1 ≤ β and KEx2 ≤ β (17)

synthesis will be triggered.
As a whole, Conditions (2), (5), (6), (12), and (15) enforce

the conservation of energy.

C. Algorithm

Generally, CRO is composed of three stages: initialization,
iterations, and the final stage. In initialization, we randomly
generate a population of molecules, determine their PEs, and
assign them with proper initial KEs. Other variables and con-
trol parameters (i.e., buffer, KELossRate, α, β, and MoleColl)
are also configured at this stage. Then, CRO enters into the
stage of iterations. In each iteration, we will first decide
whether the collision is uni-molecular or inter-molecular. To
do this, a random variable u (uniformly distributed in the
interval of [0, 1]) is generated and compared with the system
parameter MoleColl. If u is greater than MoleColl, the collision
is considered to be uni-molecular. Otherwise, the collision is
inter-molecular. For a uni-molecular reaction, one molecule
is randomly selected from the population and we check the
decomposition criterion, i.e., (11), against the molecule. If the
decomposition criterion is satisfied, the molecule will undergo
a decomposition; otherwise, an on-wall ineffective collision
results. For an intermolecular collision, two molecules are
randomly chosen and they are checked against the synthesis
criterion, i.e., (17). If the synthesis criterion is met, the
molecules will undergo a synthesis. Otherwise, we will have
an inter-molecular ineffective collision. At the end of each
iteration, the algorithm checks if any new solution with an
objective function value superior to the best-so-far solution
is found. If so, the solution will be kept in memory. This
iteration stage repeats until any one of the stopping criteria is
matched. It may be defined based on the maximum amount of
CPU time used, the maximum number of function evaluations
computed, or the maximum number of iterations performed
without improvements, etc. In the final stage, the solution
with the lowest cost function value (i.e., optimal solution) is
outputted. The pseudocode of CRO is shown in Table I.

TABLE I

Pseudocode of the CRO Algorithm

Stage 1: 1.1: Assign proper values to system parameters: MoleColl,
KELossRate, population size (n), α, and β

1.2: Generate a certain number (n) of solutions randomly,
calculate their cost function values as the PEs, and
initialize other attributes for each molecule

Stage 2: While the stopping criterion not satisfied, do
2.1: Generate u randomly from [0, 1]

If u > MoleColl then
Choose a molecule randomly from the population
If number of hits − minimum hit number ≥ α then

Try decomposition
Else

Try on-wall ineffective collision
Else

Select two molecules (ω1 and ω2) randomly from the
population
If KEx1 ≤ β & KEx2 ≤ β then

Try Synthesis
Else

Try inter-molecular ineffective collision
2.2: If the corresponding collision is triggered then

Substitute the original molecule(s) with the new one(s)
in the population, and update the buffer

Else
Keep the original molecule(s) in the population

2.3: Check if there is any new solution with an objective
function value superior to the best-so-far solution and
update the best solution found

Stage 3: Output the solution with the lowest cost function value

D. A Brief Survey

CRO is the first metaheuristic that mimics chemical re-
actions to construct optimization mechanisms. It was first
proposed in [1], where its applicability in solving two well-
known NP-hard problems in operations research, namely, the
quadratic assignment problem and the resource-constrained
project scheduling problem, and a practical channel assign-
ment problem in wireless mesh networks is demonstrated.
Since then, CRO has been applied broadly to problems in
many different domains.

1) Communications and networking: population transition
problem in peer-to-peer live streaming [3], cognitive
radio spectrum allocation problem [2], [28], and network
coding optimization problem [26].

2) Computing: grid scheduling problem [4].
3) Finance: stock portfolio selection problem [27].
4) Computational intelligence: artificial neural network

training [25] and fuzzy rule learning problem [21].
5) Energy and environment: optimal power flow problem

[22] and sensor deployment problem for air pollution
monitoring [23].

6) Bioinformatics: short adjacent repeat identification prob-
lem [38].

In addition, different versions of CRO have been developed
for different problem types. CRO is originally focused on
combinatorial problems in [1]. We have also developed a
continuous version for the continuous problems in [5] and
the variants with different perturbation functions in [24]. In
order to reduce the influence on performance due to a control
parameter setting, we proposed an adaptive design in [5]
and an adaptive framework in [29] to reduce the number of
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parameters required. More information about the state of the
art can be found in [30].

E. Characteristics

Similar to other metaheuristics, CRO shares many similari-
ties with other EAs. They all are inspired by Nature. In terms
of algorithmic structures, after initialization, they undergo a
certain number of iterations until a stopping criterion has
been satisfied. Each algorithm contains a number of control
parameters and their best values depend on the problem being
solved. The performance of the algorithms usually cannot be
guaranteed and matching between algorithms and problems
depends on the experience and preferences of researchers and
practitioners [31].

However, CRO has some unique features that make it
fundamentally different from other EAs.

1) The manipulated agents are molecules and the events for
manipulating the solutions represented by the molecules
are classified into four kinds of elementary reactions.
In each iteration of the algorithm, only one elementary
reaction will take place, depending on the conditions of
the chosen molecules for that iteration.

2) CRO has a variable population size, which is adap-
tive to the problem being solved. When diversification
is required, decompositions are triggered and more
molecules are created to explore the solution space.
When intensification is preferred, the algorithm initi-
ates syntheses; merging of molecules results in higher
probability for the resultant molecules to be selected for
manipulation.

3) The underlying principle of CRO is the conservation
of energy. The total amount of energy held by the
molecules and the buffer remains constant. During
the process, we redistribute the energies among the
molecules and convert the energy from one form to
another (among PE, KE, and buffer).

4) CRO is proposed as an optimization framework. Dedi-
cated problem-specific heuristics can easily be incorpo-
rated into the elementary reactions.

5) CRO is easy to parallelize. Several CROs can be carried
out simultaneously on the same problem and synchro-
nization among the CROs is, in general, unnecessary.

A more thorough comparison of CRO with other algorithms
can be found in [1].

III. Finite Absorbing Markov Chain Model

By referring to the composition of a molecule given in
Section II-A, a molecule ω can be represented by an element
in the set given by the Cartesian product X × I, where I
characterizes the set of additional information, including KE,
the number of hits, the minimum hit number, and the minimum
value. Thus, a population consisting of n molecules is an
element of (X × I)n. Before showing the definitions and the
results, we first make some assumptions as follows.

A1) Total energy (TE) of the system is finite, that is

TE �
n∑

i=1

(PEi + KEi) + buffer < ∞. (18)

A2) For a combinatorial problem A, we denote the minimum
and maximum cost function values over all solutions in
the solution space X by CA

min and CA
max, respectively such

that CA
min ≤ CA(x) ≤ CA

max, ∀x ∈ X . They also satisfy
CA

min > 0 and CA
max < ∞.

A3) There are a finite number of possible values for KE.
This can be justified as computers can only have finite
numbers of representation of real numbers.

Note that A1) is always satisfied if A2) and A3) are as
long as the initial value of buffer is finite, and this value
is controlled by the user at initialization of the algorithm
mentioned in Section II-C.

Intuitively, a state of the system is determined by the
population of the molecules, each of which is an element of
X × I. As the size of the population changes from time to
time due to decomposition and synthesis, simply constructing
a state of the Markov chain with the size-variant population
will make it extremely difficult to analyze. We have Lemma
1 and Definition 1 to fix the number of variables describing
each state of the Markov chain.

Lemma 1: 7The maximum number of molecules nmax is fi-
nite. ♦

Definition 1 (Pseudo-Molecule): A pseudo-molecule ω∅ is
an imaginary molecule with no attributes. In other words, a
pseudo-molecule does not have a molecular structure, PE, KE,
and other attributes. It is not actually involved in any elemen-
tary reaction, but participates virtually in decomposition and
synthesis. ♦

The purpose of introducing the pseudo-molecule is to keep
the population size of the system constant. Consider a decom-
position that converts ω into ω′

1 and ω′
2. We can interpret it as

ω+ω∅ → ω′
1+ω′

2. Similarly, consider a synthesis that combines
ω1 and ω2 into ω′. It can be interpreted as ω1+ω2 → ω′+ω∅. In
this way, the decomposition and synthesis does not change the
total number of molecules in the system. Note that the original
meanings and implementations of decomposition and synthesis
are still the same. We do not need to consider pseudo-
molecules in on-wall ineffective collisions (e.g., ω → ω′) and
inter-molecular ineffective collisions (e.g., ω1 +ω2 → ω′

1 +ω′
2)

as they always keep the number of molecules unchanged.
After defining a state, we can construct the state space

accordingly.
Definition 2 (State Space): Given a combinatorial problem

A, a state of CRO can be represented by

SA � ωA
1 × ωA

2 × · · · × ωA
nmax

where nmax is the maximum population size given in (25) and
ωi ∈ X × I for 1 ≤ i ≤ nmax. The whole state space of CRO
is defined by

�A = ∪SA. ♦
7The proofs of all the Lemmas, Theorems, and Corollaries are included in

the Appendices.
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A state SA captures the characteristics of CRO at a particular
time instant for Problem A and �A includes all possible states
explored by CRO for Problem A. Although the number of
molecules in the system may change due to decomposition
and synthesis, the introduction of pseudo-molecule makes
the dimensions of the state space unaltered. It is also worth
mentioning that it is not necessary to involve buffer in SA

although buffer may change after an elementary reaction. Due
to the conservation of energy, TE is kept constant in the whole
course of the algorithm. Once the distributions of PE and KE
over the nmax molecules have been specified by ωA

1 , . . . , ωA
nmax

,
buffer can then be determined. Thus the definition of SA

has already captured buffer. We have Theorems 1 and 2 and
Definition 3 to describe the properties of the state space of the
Markov chain, which can be used to model CRO.

Theorem 1: The state space �A is finite. ♦
Here, we consider that CRO evolves in discrete time and

one state is chosen at each time slot. Let SA
t ∈ �A, for t =

0, 1, 2, . . . be the state of the random process at time t. Then,
we have the following result.

Theorem 2: The evolving process of CRO on solving Prob-
lem A can be modeled by a Markov chain {SA

t }+∞
t=0 , where

SA
t ∈ �A for t = 0, 1, . . . ♦
Definition 3 (Optimal State Set of CRO): For a combinato-

rial problem A, �A
opt ⊆ �A is called the optimal state set of

CRO if for all SA in �A
opt, there exists xopt in Xopt, which is

the set of optimal solutions, such that xopt is an entry of the
vector SA. ♦

Note that there may be more than one optimal solution for
Problem A. Definition 3 indicates that each optimal state of
CRO consists of at least one optimal solution.

As seen from Step 2.3 of Table I, the algorithm records
the solution with the best objective function value found. We
formally define the best-so-far solution as follows.

Definition 4 (Best-So-Far Solution): For Problem A, the
best-so-far solution at time t, x

A,bsf
t , is the current best solution

found by the algorithm up to time t, where t = 0, 1, 2, · · · .
♦

When CRO starts, x
A,bsf
0 is chosen from the initial solution

with the lowest cost function value. In the subsequent time
t + 1, x

A,bsf
t+1 is updated by a newly generated solution at time

t + 1, provided that the cost function value of the new solution
is lower than that of x

A,bsf
t . Otherwise, x

A,bsf
t+1 is equal to x

A,bsf
t .

Incorporating the best-so-far solution with the Markov chain
allows us to construct an absorbing Markov chain for CRO.
We first define an absorbing Markov chain as follows.

Definition 5 (Absorbing Markov Chain): Let � be the set
of absorbing states, where the transition probability from an
absorbing state to itself is one. A Markov chain {St}+∞

t=0 is said
to be absorbing if it satisfies

P{St+1 /∈ �|St ∈ �} = 0 t = 0, 1, 2, . . . ♦
Indeed, we do usually record the best-so-far solution in each
iteration in practice (see Table I). Thus, we can model CRO
as an absorbing Markov chain by attaching an additional term
to each state defined in Definition 2, which is

SA
t � x

A,bsf
t × ωA

1 × ωA
2 × · · · × ωA

n

where x
A,bsf
t ∈ X . Hence, in this case, the state space �A,bsf

constituted by SA
t remains finite since the number of different

possible x
A,bsf
t is finite. From now on, we will focus on �A,bsf

instead of �A. To simplify the notation, we abbreviate �
bsf
A

by �A.
Before discussing the convergence proof of CRO, we first

define convergence. Taking into account the probabilistic na-
ture of the state transition behind CRO, we adopt the stochastic
convergence defined in [32].

Definition 6 (Convergence): Given an absorbing Markov
chain {SA

t }+∞
t=0 on the problem A, CRO is said to converge

to the global optimum in probability if it satisfies

lim
t→∞ P{SA

t ∈ �A
opt} = 1. ♦

This implies that CRO will produce a global optimal solution
almost surely as time tends to infinity.

We set up the basic framework for the rest of this paper.
We will utilize an absorbing Markov chain discussed here
to prove the convergence of CRO in the next section. We
summarize this section as follows. We model CRO as a finite
absorbing Markov chain in Theorems 1 and 2, which rely
on the construction of the maximum number of molecules in
Lemma 1, pseudo-molecule in Definition 1, and the state space
in Definition 2. We identify the goal of proving convergence
as reaching a state in the optimal state set defined in Definition
3. According to the characteristics of CRO, we define the
best-so-far solution in Definition 4, which is the key of the
proof. We incorporate this key into the Markov chain model
in Definition 5. Finally, we formally define convergence in
terms of the Markov chain in Definition 6.

IV. Convergence Proof

In this section, we study CRO’s convergence from two
different aspects, i.e., the operator designs for the elementary
reactions and the total energy of the system. They are the
main factors affecting CRO’s convergence. Note that the
convergence considered here is based on Definition 6. Similar
to [33], we present some definitions and lemmas that will be
useful in the proofs before investigating these two factors.

Definition 7 (Non-Recessionary Sequence): Let {σt}+∞
t=0 be

a sequence, where 0 ≤ σt ≤ 1 for all t ≥ 0. The sequence {σt}
is non-recessionary if it satisfies

+∞∏
t=0

(1 − σt) = 0. ♦

We try to relate the convergence of the algorithm to a non-
recessionary sequence with Lemma 2.

Lemma 2: Given an absorbing Markov chain {St}+∞
t=0 , there

exists a non-recessionary sequence {σt}+∞
t=0 such that P{St+1 ∈

�opt|St /∈ �opt} ≥ σt for t = 0, 1, 2, . . . if and only if the
Markov chain is said to be convergent. ♦

With this lemma, we can give a convergence result whenever
the algorithm is associated with a Markov chain that consti-
tutes a non-recesionary sequence.
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A. A Short Intuitive Proof

Before we start the detailed convergence proof, we give
the underlying intuitive ideas. Solutions explored by the
algorithm are maintained by the molecules and the four
types of elementary reactions transform the solutions explored.
The on-wall and inter-molecular ineffective collisions try to
exploit local regions looking for the local minima. In order to
prevent the algorithm from getting stuck at some local minima,
decompositions and syntheses jump the algorithm to other
regions for further exploration. If the algorithm is allowed
to run infinitely, the process continues and the algorithm can
check every region. Thus, a global optimum can be located
eventually. Since the best-so-far solution is updated from time
to time, the global optimum found will not be missed when
the algorithm terminates.

Assume that the operators are designed properly such that
they are recurrent, i.e., the probability of transiting from
solutions i to j, p(i → j) > 0 for all i, j ∈ X . Because of
the independence of different iterations, after t iterations, the
probability for a nonoptimum solution not reaching a global
optimum is (1−p)t . Hence, the probability for a nonoptimum
solution reaching a global optimum is 1 − (1 − p)t → 1
as t → ∞. Therefore, CRO converges to a global optimum
solution with probability one when time tends to infinity.

B. Sketch of the Detailed Proof

As mentioned in Section II-E, elementary reactions and
energy manipulation are the key characteristics of CRO. Thus,
we demonstrate the proof at two levels. We start with oper-
ator (elementary reaction) designs. First, we examine some
examples of operators used in the literature and then model
the operators together with the solution space as a solution
graph. Next, we introduce optimum reachability, a property
of a solution graph, and give the necessary condition for the
convergence of CRO in the context of the optimum reachable
solution graph. Note that the result is not restricted to the
examples provided; it gives the baseline to design operators
in order to drive convergence of the algorithm. In other
words, this provides guidelines to design operators for good
performance.

Next, we analyze the convergence in terms of energy.
We study several variants of CRO with different subsets of
elementary reactions. We show that CRO will converge only
when all the four elementary reactions are included in the
algorithm. The four elementary reactions can complement
each other in the way they manipulate the energy so that the
algorithm will continue to strive for better solutions but will
not get stuck in local minima.

C. Operator Designs

In Section II, we introduce the four elementary reactions of
CRO and present their triggering conditions. We also provide
ideas on how to design operators for the elementary reactions.
The general rule is that the on-wall ineffective collision
and the inter-molecular ineffective collision are responsible
for neighborhood search8 while decomposition and synthesis

8For a given solution, neighborhood search produces a new solution in the
neighborhood of that solution.

mainly explore regions in the solution space farther away
from the existing ones. We usually regard the two ineffective
collisions as intensification or exploitation, whereas the other
two refer to diversification or exploration.

However, there is no strict requirement for the definition of
the neighborhood of a solution in CRO. Roughly speaking,
those solutions with relatively slight changes to a specific
solution constitute the neighborhood for that solution, but this
is not always the case. Consider the pseudo-Boolean problem
[34] as an example, where a solution is a binary vector. We
may apply the one-bit change operator (e.g., adopted in [4]) to
the on-wall ineffective collision, where x′ is produced from the
neighborhood of x. We randomly select one bit of the vector
and then flip it, for example

[0 1 1 0 1 0]︸ ︷︷ ︸
x

→ [0 1 1 0 0 0]︸ ︷︷ ︸
x′

.

Thus, the solution [0 1 1 0 1 0] has six candidates in its
neighborhood. In another case, we may also employ the
bitwise change operator with probability 1/n (e.g., adopted
in [20]) in the on-wall ineffective collision, where n is the
length of the bit string of a solution. Each bit is flipped with
the probability 1/n, for example

[0 1 1 0 1 0]︸ ︷︷ ︸
x

→ [0 0 1 0 0 0]︸ ︷︷ ︸
x′

with the flipping probability equal to 1/6. In this case, there
are 26 = 32 candidates in the neighborhood for each solution.
Besides the on-wall ineffective collision, these neighborhood
search operators can also be used in the inter-molecular
ineffective collisions.

As for decomposition and synthesis, examples of their
operator designs adopted from [4] are shown as follows.

1) Decomposition (half-random change)

[0 1 1 0 1 0] → [0 0 1 0 1 1] + [1 1 1 0 0 0]

where the first generated solution inherits the same value
in the odd positions from the original solution and
randomly choose value for the even positions while the
second solution inherits the even positions. The nonin-
herited positions of the resultant solutions are randomly
generated.

2) Synthesis (half recombination)9

[0 0 1 0 1 1] + [1 1 1 0 0 0] → [0 0 1 0 0 0]

where the new solution has the same entries in the
first half positions as those in the first original solution,
and its remaining entries are inherited from the second
original solution.

In fact, there are numerous ways to design operators for the
four elementary reactions. Essentially, all operators define the
one-hop candidates of solutions, which are defined as follows.

Definition 8 (One-Hop Candidate Set): Consider a time-
variant operator 	t : X → X , which can change with time
t. 
	t

(x) denotes the one-hop candidate set of the solution

9This operator is also called one-position exchange in [4].
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Fig. 1. Example of the static directed graph G(V, E) with V = 6 under
operator 	.

x ∈ X at time t and it consists of all possible solutions that
can be generated by using operator 	t on x only once. ♦

Despite the operators can be designed to vary with time,
for simplicity, in this paper we assume that they are time
invariant, i.e., being kept constant during the whole evolving
process of CRO. This assumption is realistic as most operators
are time-invariant in most applications of CRO, e.g., [1]–
[5]. Accordingly, the one-hop candidate set 
	(x) ⊆ X
is fixed for each x ∈ X . With this assumption, the tuple
(X , (
	(x), x ∈ X )) can be associated with a static directed
graph G(V, E), where the vertex set V is X and the edge set
is defined based on 
	(x) = {i|(x, i) ∈ E}. We call G(V, E) a
solution graph. Fig. 1 gives a typical example of such a graph.
In this example, it can be observed that 
	(x1) = {x2, x3, x4},

	(x2) = {x2, x5, x6}, 
	(x3) = {x1, x2, x6}, 
	(x4) =
{x3, x5}, 
	(x5) = {x2, x6}, and 
	(x6) = {x2}. Note that a
solution graph defines what solutions can be reached from
a particular solution with a specific operator. Consider two
solutions x and x′. An edge (x, x′) means that the probability of
moving to x′ from x is larger than or equal to zero. The actual
probability also depends on the energy of the molecule holding
x. If no such edge exists, the probability is equal to zero.

We define a property of the solution graph related to
optimality as follows.

Definition 9 (Optimum Reachability): A static directed
graph G(V, E) is said to be optimum reachable, if
∀x /∈ X − Xopt, there exists an optimum solution xopt ∈ Xopt

such that we can find at least one directed path from x to
xopt, that is

x = v0 → v1 → v2 → · · · → vl = xopt

on G(V, E), where l is the number of hops that x needs to get
to xopt. ♦

Let G(V, Eowi), G(V, Edec), G(V, Eimi), and G(V, Esyn)10

be the corresponding solution graphs induced by on-wall
ineffective collision, decomposition, inter-molecular ineffec-
tive collision, and synthesis, respectively. Then, we have the
following necessary condition for CRO’s convergence.

Theorem 3: Let G(V, E) be the solution graph for CRO,
where E = Eowi ∪ Edec ∪ Eimi ∪ Esyn. If the initial solutions

10A synthesis involves the interaction of two molecules, e.g., x1 + x2 → x′.
We define 
(x1) as all possible solutions produced when x1 encounters any
solution x2 ∈ X . Solution graph G(V, Esyn) is constructed based on this
definition.

Fig. 2. Example of the solution graph G(V, E) with V = 5.

are randomly generated, the necessary condition for CRO to
converge to an optimal solution is

G(V,E) is optimum reachable. ♦
This says that if the solution graph is not optimum reach-

able, then the algorithm will not converge to an optimal
solution.

D. Total Energy of the System

Here, we study the impact of TE, defined in (18), on
CRO’s convergence. All the following results are accountable
under the assumption that the solution graph G(V, E) of CRO
is optimum reachable, which is the necessary condition for
CRO to converge. Here, we consider four versions of CRO
composed of different combinations of elementary reactions:

1) on-wall ineffective collision only;
2) on-wall ineffective collision and decomposition;
3) on-wall ineffective collision and synthesis;
4) all four elementary reactions.
These versions can be realized by setting the parameter

MoleColl and manipulating the decomposition or synthesis
criteria. For example, setting MoleColl to zero will result in
a CRO with on-wall ineffective collisions and decompositions
only, i.e., Version II. If we further set α to ∞, we will not have
any decomposition, i.e., Version I. We assume that a solution is
also included in its own one-hop candidate in any elementary
reaction, i.e., a solution is allowed to remain unchanged in a
successful on-wall ineffective collision.11

We formally define local optima as follows.
Definition 10 (Local Optimum): Given an operator 	, the

solution x is called the local optimum if its cost is smaller than
or equal to that of any of its one-hop neighbors, i.e., C(x) ≤
C(x′), ∀x′ ∈ 
	(x), where 
	(x) is the one-hop candidate set
of the solution x ∈ X .

With this definition, a global optimum is also a local
optimum but the converse is not true. Consider the example
given in Fig. 2, which is the solution graph of CRO solving a
particular problem. There are five feasible solutions and their
corresponding cost function values are C1 = 3, C2 = 1, C3 = 5,
C4 = 2, and C5 = 4. It can be observed that Solutions 2 and
4 are the local optima while Solution 2 is the only global
optimum.

With Lemma 3, we show that CRO will not get stuck in a
local optimum.

11In such a case, we still consider that an on-wall ineffective collision has
taken place since KE and other attributes of that molecule may change.
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Lemma 3: Let Xlocal be the set of local optima, which also
include all global optima. A molecule cannot always attach
to the same solution x other than global or local optima, x /∈
Xlocal. In other words, the probability of the molecule getting
stuck in a nonoptimum after t iterations equals zero when time
t tends to infinity. ♦

We can also interpret Lemma 3 as follows: for any given
ε1 > 0, there exists a corresponding natural integer δ1 > 0
such that the probability of a molecule staying continuously
at a solution other than any optima for time t > δ1 is less than
ε1. Indeed, the description is true by letting

δ1 = � log ε1

log(1 − Pmin
x→x′ )

�.

Lemma 4: If only on-wall ineffective collisions are allowed,
for every number ε2 > 0, there exists a corresponding δ2 >

0 (representing the number of successful collisions that have
taken place) such that after a molecule ω has experienced on-
wall ineffective collisions t times, where t > δ2, its KE at time
t, denoted by KEω(t), is smaller than ε2, i.e., KEω(t) < ε2.
♦
Lemma 4 implies that a molecule’s KE will be exhausted in
finite time if it is involved in on-wall ineffective collisions
only. From Lemmas 3 and 4, we can draw Conclusion 1.

Corollary 1: With on-wall ineffective collisions only, when
time t goes to infinity, the molecule will finally reach and stay
at a local optimum with probability one.

Therefore, we can show the following impossibility theorem
for Version I.

Theorem 4 (for Version I): Regardless of TE, CRO with
on-wall ineffective collisions only cannot be guaranteed to
converge to the global optimum, with the exception that the so-
lution graph G(V, E) is complete. ♦

However, we can propose a variant of Version I, which can
converge to the global minimum, as follows.

Corollary 2: There is a variant of CRO with on-wall in-
effective collisions only that allows the molecules to regain
energy from buffer when the following condition holds:

(number of hits − minimum hit number) ≥ ϑ (19)

where ϑ is introduced here as a parameter of CRO. For a
problem A, it will converge to the global optimum if the
molecule’s energy, i.e., KEω + PEω, is always larger than or
equal to CA

max after each energy regain, where CA
max is the

maximum cost function value. ♦
With the results obtained for Version I, we can show con-

vergence results for Versions II, III, and IV in the following.
Theorem 5 (for Version II): Regardless of TE, CRO with

on-wall ineffective collisions and decompositions only cannot
be guaranteed to converge to the global optimum in probabil-
ity, with the exception that G(V, Eowi) is complete. ♦

Theorem 6 (for Version III): Regardless of TE, CRO with
on-wall ineffective collisions and syntheses only cannot be
guaranteed to converge to the global optimum in probability,
with the exception that Gowi(V, E) is complete. ♦

Theorem 7 (for Version IV): Given a problem A, CRO with
all four elementary reactions can be guaranteed to converge to

the global optimum, as long as the total energy satisfies the
condition TE ≥ 2CA

max. ♦
The results in this subsection suggest that in general we

should apply CRO with all the four elementary reactions (at
least with the on-wall ineffective collision, decomposition, and
synthesis) and make the total energy TE sufficiently large (e.g.,
larger than or equal to 2CA

max) by controlling the initial buffer
value and the initial population size so as to guarantee its
convergence.

V. Finite Time Behavior of CRO

Many important optimization problems are NP-hard, e.g.,
the traveling salesman problem (TSP), the minimum graph
coloring problem (GCP), the knapsack problem (KP) [35].
They are practical in the sense that many problems in science
and engineering can be reduced from these NP-hard problems,
e.g., VLSI design problems reduce to TSP [36], wireless
sensor network scheduling problems to GCP [37], and DNA
sequencing problems to KP [38]. Metaheuristic methods, such
as CRO, are very useful in solving such problems since
they can usually find the optimal or near-optimal solutions
in a tolerable period of time but there is no guarantee. In
this section, we study the finite time behavior of CRO. We
first introduce the convergence rate and the first hitting time
and then discuss how they can be utilized to evaluate the
performance of the algorithm.

Definition 11 (Convergence Rate): Given an absorbing
Markov chain {St}∞t=0 and the optimal state space �opt, the
convergence rate at time t is defined by

πt = P{St ∈ �opt} t = 0, 1, 2, . . . ♦
The convergence rate at time t is given by the probability
that CRO reaches the optimal state by that time. Intuitively, it
shows how likely CRO can converge to the global optimal
solution in probability at a specific time. With a similar
definition of convergence rate, (1 − πt) is considered the
convergence rate in [19] and [20]. We adopt Definition 11
to fit the characteristics of CRO better. We can reformulate πt

as follows:

πt = 1 − P{St /∈ �opt}

= 1 − P{S0 /∈ �opt}
t−1∏
i=0

P{Si+1 /∈ �opt|Si /∈ �opt}

where P{S0 /∈ �opt} depends on the initialization stage of the
algorithm. As usual, if we generate the initial set of molecules
randomly in the solution space, we have P{S0 /∈ �opt} =
(1−||Xopt||

||X|| )n. Therefore, the convergence rate at time t is mainly
determined by the sequence {P{Si+1 /∈ �opt|Si /∈ �opt}}t−1

i=0 . By
inspecting the solution graph G(V, E) of CRO, it can be ob-
served that there are two factors affecting the formation of the
sequence {P{Si+1 /∈ �opt|Si /∈ �opt}}t−1

i=0 , namely, the solution
graph corresponding to the elementary reaction realized, and
the KE of the molecules. The former probably changes with
time due to the random sequence of the elementary reactions
realized while the latter influences the acceptance of new
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TABLE II

Parameters for VCRO−1, VCRO−2, VCRO−3, and VCRO−4

Parameter Value
KELossRate 0.8

VCRO−1, α 3
VCRO−3 Initial KE 5−initial PEa

Initial buffer 0
KELossRate 0.8

VCRO−2, α 10
VCRO−4 Initial KE 5−initial PEa

Initial buffer 0
a In this way, the total energy of the system is equal to the maximum cost
function value, i.e., TE = 5, which can guarantee CRO’s convergence by
Corollary 2.

solutions in the graph at different times. In particular, when
the operators used in the four elementary reactions are defined,
their solution graphs G(V, Eowi), G(V, Edec), G(V, Eimi), and
G(V, Esyn) can be determined. However, the graphs realized at
time t are decided by all parameters, values of the molecular
attributes (e.g., number of hits and minimum hit number),
and some random variables (e.g., u given in Section II-C).
Similarly, KE for each molecule also depends on the CRO
parameters and variables. In short, the convergence rate of
CRO is significantly impacted by the problem characteristics,
the operators configured for elementary reactions, and the
parameters configured in CRO.

Definition 12 (First Hitting Time): We introduce a nonde-
creasing sequence {Zt}∞t=0 such that Zt = 1(St ∈ �opt), where 1
denotes the indicator function, i.e., Zt equals one if an optimal
solution is found in one of the iterations 0, 1, 2, . . . , t, or is
equal to zero otherwise. The first hitting time Tf refers to the
iteration when a global minimum is found by the algorithm
the first time, i.e., Tf = min{t ≥ 1 : Zt = 1}. ♦

Then, we have the expected first hitting time as

E[Tf ] =
∞∑
t=1

tP{St ∈ �opt ∩ St−1 /∈ �opt}

=
∞∑
t=1

tP{St ∈ �opt|St−1 /∈ �opt}P{St−1 /∈ �opt}

=
∞∑
t=1

t[P{St ∈ �opt} − P{St ∈ �opt|St−1 ∈ �opt}

× P{St−1 ∈ �opt}]

=
∞∑
t=1

t[P{St ∈ �opt} − P{St−1 ∈ �opt}]

=
∞∑
t=1

t(πt − πt−1). (20)

We can see that the convergence rate and first hitting time
are related. Once again, the first hitting time or its expected
value are related to the characteristics of the problem, the
operators, and all the parameters configured in CRO. On the
other hand, by the Markov inequality [39] and Chebyshev’s
inequality [40], we also have

P{Tf < t} ≥ 1 − E[Tf ]

t

and

P{|Tf − E[Tf ]| < t} ≥ 1 − V [Tf ]

t2

where V [Tf ] is the variance of Tf and t > 0 can be interpreted
as the time when the algorithm terminates (see stopping crite-
ria). These inequalities can be used as bounds for the efficiency
of an algorithm. Although it is hard to determine E[Tf ] and
V [Tf ] exactly, we may estimate these values by repeated trials,
which gives us a way to predict the performance of CRO for
a particular problem. For instance, consider the example in
Fig. 2, in which we employ the variant of CRO described in
Corollary 2. For comparison, we consider two different sets
of parameters listed in Table II and the resultant algorithms
are called VCRO 1 and VCRO 2. The algorithm is set to
run until it reaches an optimum and we record the numbers
of iterations required as the first hitting time. After repeating
the algorithm for a sufficiently large number of runs (say,
10 000 times), we obtain estimations of the expected value and
variance for the first hitting time of VCRO 1 and VCRO 2
as E1[Tf ] = 10.06 and V1[Tf ] = 170.47, and E2[Tf ] = 16.77
and V2[Tf ] = 388.15, respectively. Accordingly, for VCRO 1,
we have

P{Tf < t} ≥ 1 − 10.06

t
(21)

and

P{10.02 − t < Tf < t + 10.02} ≥ 1 − 170.47

t2
. (22)

Similarly, for VCRO 2, we have

P{Tf < t} ≥ 1 − 16.77

t
(23)

and

P{16.77 − t < Tf < t + 16.77} ≥ 1 − 388.15

t2
. (24)

From the above inequalities, we can easily draw some con-
clusions, e.g., the optimal solution can be reached in 69
(calculated based on 22) iterations using VCRO 1 or 105
(calculated based on 24) iterations using VCRO 2, with a
probability larger than 95%. To enrich the results, we introduce
another variant of CRO, which is similar to the previous one
by replacing the neighborhood search operator with a random
search operator (i.e., randomly pick a solution in the search
space when the operator is called). We employ the same sets
of parameter values of VCRO 1 and VCRO 2 and name the
corresponding algorithms VCRO 3 and VCRO 4. We also
plot the probability lower bounds (21) and (23) in Fig. 3 to see
how the performances of VCRO 1, VCRO 2, VCRO 3, and
VCRO 4 change with time. Such kinds of results are valuable
when we decide the stopping criterion in terms of iterations.
It can also be observed from Fig. 3 that VCRO 1 (VCRO 3)
converges faster than VCRO 2 (VCRO 4). This means that
the first set of parameter values in Table II outperforms the
second set. Moreover, VCRO 3 and VCRO 4 converge faster
than VCRO 1 and VCRO 2, and thus, the random search
operator is better at solving the problem than the neighborhood
search operator.
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Fig. 3. Probability lower bound for the example.

The above method for evaluating the performance of an al-
gorithm is not only restricted to a particular problem instance.
However, once the performance for a problem instance has
been determined, the results can be inferred to other instances
of the same problem and similar problems.

VI. Discussion

In this section, we will discuss the results obtained, some
issues raised in the convergence proofs, and the work on the
finite time behavior of CRO.

A. What Do the Convergence Proofs Mean?

Theorem 1 proves that the state space of CRO is finite,
and Definition 5 suggests that it may be appropriate to model
CRO as an absorbing Markov chain. Thus, CRO can be
modeled by a finite absorbing Markov chain, which gives
us a proper framework for tackling the convergence proofs.
Lemma 2 tells us that CRO’s convergence can be proved
by finding a non-recessionary sequence. Theorem 3, which
studies the impact of operators, gives a necessary condition for
the convergence. That is, the solution graph of CRO should be
optimum reachable. From the perspective of the total energy
of the system, Theorems 4–7 analyze the convergences of
several versions of CRO, composed of different combina-
tions of elementary reactions. We show that CRO requires
at least three elementary reactions (i.e., on-wall ineffective
collision, decomposition, and synthesis) to converge to the
global optimum and the least amount of total energy required
to guarantee convergence is 2CA

max. This amount of energy
will enable CRO to have infinite number of decompositions
and syntheses, which ensure that CRO will not get stuck at
local optima. Corollary 2 demonstrates that a variant of CRO,
which consists of on-wall ineffective collisions only but allows
recycling of energy from buffer back to the molecules can also
be guaranteed to converge to the global optimum. As a whole,
the convergence proofs offer some guidance on how to design
CRO to guarantee its convergence.

B. What Does the Work on the Finite Time Behavior of CRO
Mean?

This paper considers the convergence rate and the first
hitting time, which are two major metrics to assess the
performance of CRO in finite time. However, we find that
their calculations depend on the problem types, the operators
designed for each reaction, and the parameter set in CRO.
Consequently, before conducting further theoretical studies on
convergence rate and first hitting time, we need to identify
certain types of problems and specific operators.

C. Limitations

To the best of our knowledge, this work is the first ana-
lytical study on the convergence of CRO. However, there are
still some limitations, which present opportunities for future
search.

1) Inefficient Search: Although we give the conditions of
convergence guarantee, the efficiency of CRO may be low
when the algorithm behaves like a random search to traverse
the whole PES, rather than focusing on some promising
regions where global optima are more likely to reside. We
have not discussed how to design the operators and to set the
parameter values for CRO to enhance its efficiency for a given
problem.

2) Long Searching Time: In the current proofs, time is
allowed to go to infinity to ensure the convergence to global
optimum. Nonetheless, since there is no guarantee for the first
hitting time, the actual time for convergence may be very long.
In other words, we need more analysis on the convergence rate
and the first hitting time.

3) Combinatorial Problems: This paper is restricted to
combinatorial problems, which may be modeled as a finite
Markov chain. However, many optimization problems have
continuous solution space. In this case, there are infinite
number of states and the methods used here are no longer
appropriate.

VII. Conclusion and Future Work

In this paper, we analyzed CRO and provided some con-
vergence properties of CRO under the framework of Markov
process. First, we showed that CRO can be modeled as a finite
absorbing Markov chain. Then, we analyzed its convergence
from two aspects, including the operators and the total energy
of the system. The corresponding results were: 1) a necessary
condition for CRO’s convergence is that the solution graph
must be optimum reachable; 2) canonical CRO can only be
guaranteed to converge to the global optimum when it is
composed of at least three types of elementary reactions (i.e.,
on-wall ineffective collision, decomposition, and synthesis)
and it has at least 2CA

max total system energy; and 3) a variant
of CRO where the molecule is allowed to automatically absorb
energy from the central energy buffer can converge with the
on-wall ineffective collisions only. These results provided us
with some insight into the characteristics of CRO, which is
helpful to future designs. Finally, we discussed the significance
of the proofs and the limitations of this paper.



616 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 17, NO. 5, OCTOBER 2013

In the future, further analytical research on CRO will be
carried out in the following three directions.

1) More studies will be conducted to study the finite time
behavior of CRO. In particular, we will investigate the
effect of the system parameters used in CRO on its
convergence rate and on the first hitting time.

2) We will explore the impact of different operator designs
on the efficiency of CRO.

3) Theoretical analysis on the convergence of CRO for
continuous problems will also be studied.

APPENDIX A

PROOF LEMMA 1

By A1), TE is finite. By the conservation of energy, TE of
the system is a constant in the whole process of searching.
The maximum number of molecules in the population at any
time is bounded above by

nmax = � TE

CA
min

� < ∞ (25)

where CA
min > 0 by A2).

APPENDIX B

PROOF OF THEOREM 1

For the combinatorial optimization problem A, we have
a finite number of feasible solutions, which implies that X
is finite. This also implies that the number of possible cost
function values, i.e., PE, is finite. By A3), the number of
possible values of KE is also finite. Moreover, both the number
of hits and the minimum hit number are bounded by α, which
is a predefined integer parameter. Following the finiteness of
PE, there are a finite number of possible minimum values.
Therefore, the set X × I for a molecule is finite. Thus, with
Lemma 1, the state space �A is finite.

Appendix C

Proof of Theorem 2

According to the pseudocode of CRO given in Table I, it
can be observed that the system state SA

t+1 at time t + 1 is only
dependent on the state SA

t at time t. Namely, we have

P{SA
t+1 ∈ �A|SA

0 , SA
1 , · · · , SA

t } = P{SA
t+1 ∈ �A|SA

t } (26)

where P{·|·} is the transition probability. Equation (26) is the
Markov property, and thus, {SA

t }+∞
t=0 is a Markov chain with

state space �A.

Appendix D

Proof of Lemma 2

Only if (⇒) part: We show that if the transition proba-
bility sequence from a transient state to an absorbing state
constitutes a non-recessionary sequence, then the Markov
chain and thus the algorithm converges. For t = 0, 1, 2, . . . ,

P{St+1 ∈ �opt|St /∈ �opt} ≥ σt implies P{St+1 /∈ �opt|St /∈
�opt} ≤ 1 − σt . Define

P̃(t) �
t∏

i=0

P{Si+1 /∈ �opt|Si /∈ �opt}. (27)

Then, we have

lim
t→∞ P̃(t) =

+∞∏
i=0

P{Si+1 /∈ �opt|Si /∈ �opt}

≤
+∞∏
i=0

(1 − σi) = 0.

Obviously, P̃(t) ≥ 0 for all t. Thus 0 ≤ limt→∞ P̃(t) ≤ 0 gives
limt→∞ P̃(t) = 0. Since {St}+∞

t=0 is an absorbing Markov chain,
immediately we have

P{St+1 /∈ �opt|St ∈ �opt} = 0

and

P{St+1 ∈ �opt|St ∈ �opt} = 1.

Therefore

P{St+1 /∈ �opt}
=P{St+1 /∈ �opt|St ∈ �opt}P{St ∈ �opt}

+ P{St+1 /∈ �opt|St /∈ �opt}P{St /∈ �opt}
=P{St+1 /∈ �opt|St /∈ �opt}P{St /∈ �opt}

=P{S0 /∈ �opt}
t∏

i=0

P{Si+1 /∈ �opt|Si /∈ �opt}

=P{S0 /∈ �opt}P̃(t). (28)

As limt→∞ P̃(t) = 0, we have limt→∞ P{St /∈ �opt} = 0. In
other words

lim
t→∞ P{St ∈ �opt} = 1 − lim

t→∞ P{St /∈ �opt} = 1.

Therefore, the algorithm will eventually reach the optimal state
as long as the time allowed to evolve is sufficiently long.

If (⇐) part: We try to show that a convergent Markov chain
will result in a non-recessionary sequence. If Markov chain is
convergent, by Definition 6, we have

lim
t→∞ P{St ∈ �opt} = 1

which is equivalent to

lim
t→∞ P{St /∈ �opt} = 1 − lim

t→∞ P{St ∈ �opt} = 0.

Then by (28), we have

lim
t→∞ P̃(t) = lim

t→∞
P{St /∈ �opt}
P{S0 /∈ �opt}

=
1

P{S0 /∈ �opt} lim
t→∞ P{St /∈ �opt} = 0.

According to the definition of P̃(t), i.e., (27), we get
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+∞∏
i=0

P{Si+1 /∈ �opt|Si /∈ �opt} = 0.

Let σi = 1 − P{Si+1 /∈ �opt|Si /∈ �opt}, i.e., 1 − σi = P{Si+1 /∈
�opt|Si /∈ �opt}, for i = 0, 1, 2, . . . , then we have

+∞∏
i=0

(1 − σi) = 0.

By Definition 7, {σt}+∞
t=0 is a non-recessionary sequence. Mean-

while, we also have

P{St+1 ∈ �opt|St /∈ �opt} = 1 − P{St+1 /∈ �opt|St /∈ �opt}
= σt ≥ σt, t = 0, 1, 2, . . .

Appendix E

Proof of Theorem 3

This can be proved by contraposition. If the solution graph
of CRO is not optimum reachable, there exists a solution
x̃ ∈ X −Xopt such that the vertex of x̃ on the graph can never
reach any one of the optimal solutions. Meanwhile, as the
initial solutions of CRO are generated randomly, the system
may result in the initial set of molecules, each of which corre-
sponds to the same x̃, with probability 1

||X ||n > 0, where ||X ||
represents the cardinality of X and n is the initial population
size. When this happens, P{St+1 ∈ �opt|St /∈ �opt} = 0 for
t = 0, 1, 2, . . . . According to Lemma 2, σt equals zero for
t = 0, 1, 2, . . . . Thus, there does not exist a non-recessionary
sequence satisfying the condition given in Definition 7. Hence,
we have

lim
t→∞ P{St ∈ �opt} ≤ 1 − 1

||X ||n < 1.

Therefore, CRO will not converge to the optimal solution
almost surely if its solution graph G(V, E) is not optimum
reachable. In other words, the solution graph G(V, E) being
optimum reachable is the necessary condition for CRO con-
vergence.

Appendix F

Proof of Lemma 3

Suppose that a molecule currently carries a nonoptimum
solution x. By Definition 10, there always exists at least
one x′ ∈ 
	(x) such that C(x′) ≤ C(x). Let Px→x′ (t) be
the probability of a molecule moving from x to x′ on the
PES at time t. Since the energy condition of the elementary
reaction corresponding to 	, e.g., (2) always holds, Px→x′ (t)
is always larger than zero for t = 0, 1, 2, . . . , irrespective of
the KE value of the molecule. Let Pmin

x→x′ = min{Px→x′ (t) :
t = 0, 1, 2, · · · }; obviously Pmin

x→x′ > 0. Thus, the probability
for the molecule staying at x at time t is less than one, i.e.,
Px→x(t) ≤ 1 − Pmin

x→x′ < 1. Therefore, we have

lim
t→∞[Px→x(0)Px→x(1) · · · Px→x(t)] ≤ lim

t→∞(1 − Pmin
x→x′ )t = 0

which indicates that the probability for a molecule getting
stuck at a nonlocal optimum is negligible.

Appendix G

Proof of Lemma 4

KEω(t) represents the KE of molecule ω at time t and
the initial KE of ω is denoted by KEω(0). The maximum
amount KE that ω can have is KEω(0) + (CA

max − CA
min).

Consider the δ2 times of successful collisions which have
happened at time t′, where t′ ≥ δ2 because some collisions
may fail, i.e., not satisfying (2). KEω(t′) is upper bounded
by (KEω(0) + CA

max − CA
min) × μδ2 , where μ is the rate of KE

transferred to buffer described in Section II-B1. Trivially, we
have KEω(t) ≤ KEω(t′) for all t ≥ t′. We can set

δ2 = �log
ε2

KEω(0) + CA
max − CA

min

/ log μ�.

Note that δ2 ≤ t′ only accounts for the successful collisions.
By Lemma 3, t′ is finite and so is δ2.

Appendix H

Proof of Theorem 4

With on-wall ineffective collisions only, molecules will not
collide or interact with each other based on the definition
of the on-wall collision given in Section II-B1. So, each
molecule explores the solution space independently and each
can be considered a separated system (since energy can only be
transferred in one direction from molecules to buffer). Without
loss of generality, we assume that there is only one molecule
ω in the system. According to Lemma 4, its kinetic energy
KEω will approach zero in finite time. Since this theorem is
an impossibility result, it is sufficient to prove it by giving a
counterexample.

Consider the example given in Fig. 2 again. Let X̂ =
{3, 4, 5}. Consider the case that the molecule ω always shuffles
around Solution 4 (i.e., move within X̂ ), such that it never
visits Solutions 1 and 2. This means that ω always gets stuck
in the local optimum Solution 4. By Lemma 4, there exists a
time t′ < ∞ such that when t > t′, we have KEω(t) < 3. If ω

is at Solution 4 at time t′, its KE can never help ω jump out
of the local optimum hereafter. Mathematically, we have

P{St+1 ∈ �opt|St /∈ �opt} = 0, t = t′, t′ + 1, t′ + 2, . . .

In this case, if ω does not visit Solutions 1 and 2 before t′, it
will never be able to determine the global optimum Solution
2.

Since the initial solution attached to ω is generated ran-
domly, we have probability 3/5 that ω falls in X̂ . Let x(t)
be the solution carried by ω at time t ≥ 0. There exist many
sequences [x(0), x(1), . . . , x(t′)] such that x(t) ∈ X̂ , 0 ≤ t ≤
t′ − 1 and x(t′) = 4. One such sequence is [3, 3, . . . , 3, 4]: ω

picks Solution 3 initially. It stays at Solution 3 until t′ − 1
and reaches Solution 4 at time t′. Without loss of generality,
assume that the collision always produces a solution in the
neighborhood evenly. Since Solution 3 has three solution
candidates in its neighborhood (i.e., Solutions 2, 3, and 4),
the probability of ω reaching a solution in its neighborhood
in one collision is 1

3 . The probability of generating such a
sequence is 1

5 × ( 1
3 )t

′
.
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As there are many sequences resulting in x(t′) = 4, the
probability of the molecule shuffling around Solution 4 until
time t′, denoted by P̂ , is bounded by

0 <
1

5
× (

1

3
)t

′
< P̂ <

3

5
.

As P̂ corresponds to the probability of some cases that will
never result in the global optimum, we have

lim
t→∞ P{St ∈ �opt} ≤ 1 − P̂ < 1.

This implies CRO Version I is not convergent in probability.
However, there is an exception when the solution graph

G(V, E) is complete.12 This means that for each solution all
other solutions are its one-hop candidates. In other words, the
following inequality:

P{St+1 ∈ �opt|St /∈ �opt} > 0, t = 0, 1, 2, · · ·
will always hold regardless of the energy due to Lemma
3. This can be seen as the global minimum x∗ is in the
neighborhood of all other solutions with cost function values
higher than C(x∗) and moving from a solution with higher
cost to another solution with lower cost in its neighborhood
is always possible. Let σt = P{St+1 ∈ �opt|St /∈ �opt} for
t = 0, 1, 2, . . . , then the sequence {σt}+∞

t=0 is non-recessionary.
According to Lemma 2, CRO will converge to the global
optimum in probability.

Appendix I

Proof of Corollary 2

As the solution graph G(V, E) is optimum reachable, for
any solution xi ∈ X −Xopt there exists at least one path from
xi to xopt: xi = v0 → v1 → v2 → · · · → vl = xopt. Meanwhile,
in each energy regain, the condition KEω + PEω ≥ CA

max will
allow the molecule to escape from any local optimum. In
other words, the probability of moving from vj to vj+1 on
the above path within ϑ steps, denoted by P(vj → vj+1), is
always greater than zero, for j = 0, 1, . . . , l(xi)−1.13 Thus, the
probability for the molecule moving from xi to the optimum
solution in lϑ iterations, denoted by P(xi), is larger than zero,
i.e., P(xi) = P(v0 → v1)P(v1 → v2) · · · P(vl−1 → vl) > 0.
Define T (xi) = lϑ < ∞ to be the expected time for molecule
moving from xi to xopt and let T ∗ = max{T (xi) : xi ∈ X−Xopt}.
Then at any time t = 0, 1, . . . , there exists at least a
t′ ∈ {t + 1, t + 2, · · · , t + T ∗} such that

P{St′+1 ∈ �opt|St′ /∈ �opt} > 0.

In other words, within any interval of T ∗, there will be a
positive value of P{St′+1 ∈ �opt|St′ /∈ �opt}. Without loss of
generality, assume that ti ∈ {iT ∗ +1, iT ∗ +2, · · · , (i+1)T ∗}, i =
0, 1, 2, . . . be the time taking aforementioned positive values.
Thus, we can construct a non-recessionary sequence {σt}+∞

t=0
by setting σti = P{Sti+1 ∈ �opt|Sti /∈ �opt}, i = 0, 1, 2, · · ·

12For example, the bitwise change operator described in Section IV-C is a
representative operator that makes the solution graph complete.

13The number of steps l to reach an optimum depends on the starting point
xi.

and σt = 0 otherwise. In this way, we always have P{St+1 ∈
�opt|St /∈ �opt} ≥ σt for t = 0, 1, 2, · · · . By Lemma 2, this
variant of CRO is convergent.

Appendix J

Proof of Theorem 5

Note that the total energy TE has a finite value by Assump-
tion A1). By Lemma 1, the maximum number of molecules
is nmax. Since each decomposition produces at least one more
molecule, with on-wall ineffective collisions and decompo-
sitions only, the number of times that the decomposition
happens is finite and bounded above by nmax − 1. Evidently,
there exists t′ < +∞ such that when t > t′, there are
no more decompositions. In the meantime, the probability
of having a nonoptimal state at time t′ + 1 is positive, i.e.,
P{St′+1 /∈ �opt} > 0. After time t′, only on-wall ineffective
collisions can take place. The remainder of the proof follows
Theorem 4.

Appendix K

Proof of Theorem 6

The proof is similar to that of Theorem 5. Each synthesis
always reduces the number of molecules by at least one. After
a finite time t′, there is only one molecule left, and no more
synthesis. In this way, the algorithm degenerates to Version I
which only allows on-wall ineffective collisions.

Appendix L

Proof of Theorem 7

By Lemma 4, a molecule’s KE will be exhausted in fi-
nite time due to on-wall ineffective collisions. Moreover, by
Lemma 1, the maximum number of molecules is bounded
above. Thus, once there is more than one molecule in the
system, a synthesis will happen in finite time almost surely
since it is triggered when the involved molecules possess
KE less than or equal to β due to the on-wall ineffective
collisions. If there is no decomposition, syntheses will happen
until only one molecule is left. Consider the worst case with
only one molecule in the system. We can guarantee that a
decomposition can happen when TE ≥ 2CA

max. This can be
seen by (5) and each of the two resultant molecules has PE at
most CA

max. 2CA
max is the sufficient amount of energy to support

a decomposition and it will surely happen in finite time. As
a result, synthesis and decomposition will be continuously
triggered in a roughly alternative manner. Furthermore, the
molecule can obtain sufficient KE to avoid getting stuck
in a local optimum, which may be encountered in on-wall
ineffective collisions or inter-molecular ineffective collisions,
via random combinations of decompositions and syntheses
with probability larger than zero in finite time. This situation
is similar to the variant of CRO discussed in Corollary 2. Thus
the rest of the proof follows Corollary 2.
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