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A Multi-Layer Market for Vehicle-to-Grid Energy
Trading in the Smart Grid

Albert Y.S. Lam, Longbo Huang, Alonso Silva
University of California, Berkeley
Email: {ayslam, huang, asilva} @eecs.berkeley.edu

Abstract—In this paper, we propose a novel multi-layer market
for analyzing the energy exchange process between electric vehicles
and the smart grid. The proposed market consists essentially of two
layers: a macro layer and a micro layer. At the macro layer, we
propose a double auction mechanism using which the aggregators,
acting as sellers, and the smart grid elements, acting as buyers,
interact so as to trade energy. We show that this double auction
mechanism is strategy-proof and converges asymptotically. At the
micro layer, the aggregators, which are the sellers in the macro
layer, are given monetary incentives so as to sell the energy of
associated plug-in hybrid electric vehicles (PHEVs) and to maximize
their revenues. We analyze the interaction between the macro and
micro layers and study some representative cases. Depending on
the elasticity of the supply and demand, the utility functions are
analyzed under different scenarios. Simulation results show that the
proposed approach can significantly increase the utility of PHEVs,
compared to a classical greedy approach.

I. INTRODUCTION

The rising oil prices combined with the ongoing trend for de-
veloping environmental-friendly technological solutions, implies
that electrically-operated vehicles will lie at the heart of future
transportation systems. In particular, it is envisioned that plug-in
hybrid electric vehicles (PHEVs), which are essentially electric
vehicles equipped with storage devices, will constitute one key
component towards realizing the vision of green, environment-
friendly transportation networks. For instance, it is forecast that
up to 2.7 million electric vehicles will be put on the road in the
United States, by 2020 [1].

The presence of energy storage devices implies that PHEVs
can not only serve as a green means of transportation, but also,
if properly configured, they can function as a “moving” energy
reservoir that can store and, possibly, supply power back to
the power grid. While current PHEV deployment are mostly
concerned with grid-to-vehicle interactions, enabling two-way
vehicle-to-grid (V2G) interactions between the grid and PHEVs,
has recently started to receive considerable attention both in
research and standardization agencies [2], [3], [4], [5], [6] and
is expected to lie at the heart of the emerging smart grid system.

Enabling V2G interactions has several advantages such as
providing a backup power source during outages or supplying an-
cillary services back to the grid for regulation services. However,
in order to fully reap the benefits of V2G systems, several key
challenges must be addressed at different level such as control,
communications, implementation, and market mechanisms. In
[7], the authors propose a scheme that uses PHEV batteries to
absorb the randomness in intermittent wind power generation.
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The authors in [8] study the use of game theory for providing
frequency regulation through V2G operation. Using the PHEVs
as storage units is studied and analyzed in [9] while communica-
tion architectures suitable for V2G systems are discussed in [10].
Further, the authors in [11] considers the problem of optimally
providing energy and ancillary services using electric vehicles.

Clearly, most existing work are focused on implementation,
communication, and energy transfer in V2G systems. However,
the need for energy transfer and exchange from PHEVs to the
grid has also an economic aspect that must be addressed. In
this respect, the work in [12] sheds a light on this aspect by
investigating the price and quantities exchanged if the PHEVs
and the grid elements form an energy trade market. Beyond [12],
little work seems to have been focused on the economics of V2G
exchanges which are essential for a better understanding on the
potential of using V2G in future power grid systems.

The main contribution of this paper is to propose a general
framework and algorithm for studying the economics of the mar-
ket emerging between PHEVs, aggregators, and the smart grid
elements. To address this problem, we propose a multi-layered
market mechanisms in which the agreggators, the PHEVs, and
the grid elements can decide on the quantity and prices at which
they wish to trade energy while optimizing the tradeoff between
the benefits (e.g., revenues) and costs from this energy exchange.
In this proposed market, first, the aggregators and the smart grid
elements (e.g., substations) submit their reservation prices and
bids so as to agree on a price and energy trading mechanism.
These interactions are modeled using a double auction whose
result is then fed back into the second layer, which deals with
the management of PHEV resources at each aggregator. In this
layer, within each PHEV group, the aggregator negotiates with
the PHEVs to settle for an agreement on the resource usage.
In particular, the aggregator will announce its energy buying
price to the PHEVs, and each PHEV determines how much
energy it is willing to supply to the aggregator. The outcome
of this layer is directly linked to the previous market due to
the fact that the aggregator has to carefully balance its earnings
from the energy market and its payments to the PHEVs within
its group. Hence, unlike existing work such as in [12], the
proposed scheme depends, not only on pricing issues, but also
on modeling the PHEVs-to-aggregator interactions (from an
economical perspective) as well as on providing incentives for
the PHEVs to participate in the foreseen market and, hence, it can
leverage V2G, for improving the overall smart grid performance.
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Fig. 1. The two-layer market model. The numbers in the figure correspond to
the step numbers in Algorithm 1.

We characterize the equilibria resulting from the proposed multi-
layered market and we show their existence. Further, using linear
approximation techniques we provide a large-system analysis
on the economics of V2G energy trading. Using simulations,
we assess the properties and performance of the energy trading
mechanisms resulting from proposed scheme and we show that
our approach can significantly increase the utility of PHEVs.

The rest of this paper is organized as follows: In Section
I, we present the proposed system model. In Section III, we
analyze the system for different PHEV energy supply costs.
Simulation results are discussed and analyzed in Section IV
while conclusions are drawn in Section V.

II. SYSTEM MODEL AND PROPOSED MARKET MECHANISM

Consider a smart grid system consisting of K grid elements
(e.g., substations) with L = {1,..., K} denoting the set of
all such elements. In this grid, N electric vehicles aggregators
are deployed. We let N' = {1,..., N} denote the set of all
aggregators. Each aggregator n € N manages a group of PHEVs
denoted by Z,, = {1,..., I,}. In this model, we are particularly
interested in smart grid elements that are unable to meet their
demand and, hence, need to buy energy from alternative sources
such as the PHEV aggregators. Hence, hereinafter, all grid
elements are referred to as buyers while the aggregators are
referred to as sellers.

The energy exchange process between the aggregators and the
grid elements is modeled using a two-layered market model as
shown in Fig. 1 with the utility company’s control center acting
as a middleman that handles the prospective energy trading
mechanisms. On the one hand, at the first layer, referred to as
the macro layer, the aggregators and the grid elements interact
so as to trade energy. At this layer, the buyers wish to optimize
their performance and meet their demand by buying energy from
the PHEVs through the aggregators while the aggregators wish
to strategically choose their price and quantity to trade so as
to optimize their revenues. On the other hand, at the second
layer, referred to as the micro layer, the aggregators must interact
with the PHEVs so as to optimize the energy resources and
provide incentives for the PHEVs to actually participate in the

trade. Clearly, the outcomes of these two layers are coupled
and, thus, any market solution must take into account this inter-
layer dependence. Below, we discuss and analyze, in details, the
market operation at each layer.

A. Macro Layer

Auction theory is essentially an analytical framework used
to study the interactions between a number of sellers, each of
which has some commodity or good to sell (in this example, the
commodity is power), and a number of buyers interested in ob-
taining the good so as to optimize their objective functions [13].
The outcome of an auction is the price at which the trade takes
place as well as the amount of good sold to each buyer. The
use of game-theoretic techniques has recently emerged as a
suitable approach for analyzing and predicting the outcomes of
an auction. At the macro layer of our model, we propose a double
auction model [14], [15], [12] using which the aggregators and
the smart grid elements can exchange energy. For instance, at
this layer, each potential seller or aggregator n € A sends the
quantity of energy A,, that it intends to supply and its reservation
price S, to the auctioneer. The reservation price sent by the
potential sellers corresponds to the minimum price at which
the seller is willing to sell its offered amount of energy. Each
buyer k£ € K proposes a bid By and the quantity it requests,
denoted by X}, to the auctioneer. Here, we are mainly focused on
the interactions between buyers and sellers in a certain window
of time during which the bids and reservation prices do not
vary. This can correspond to an energy trading market in which
decisions are based on medium or long-term energy needs such
as in a day-ahead market. In each round, each aggregator n
decides its own A,, with the fixed S,,. After receiving all A,,’s,
the auctioneer determines the price P(A) of the energy, where
A= (A,,1 <n < N), and @,(A), which corresponds to the
total quantity sold by aggregator n, Vn € A/, by a double auction.

Here, we propose a double auction mechanism based on [14],
[12], [16], [15] and which proceeds as follows:

o The sellers are ordered in an increasing order of their
reservation price. W.l.o.g. we consider
S1 <8 <...< Sy. (1)
o The buyers are ordered in a decreasing order of their
reservation bids. W.l.o.g. we consider
By > By >...> Bg. 2)
o If two sellers (respectively, buyers) have equal reservation
prices (bids), they are aggregated into one single “virtual”
seller (or buyer).
o We generate the supply curve (selling reservation price .S,
versus the amount of energy put out for sale A,,)
o We generate the demand curve (offered bids Bj versus
quantity needed X}).
o We find an intersection point.

This intersection is at the level of a certain seller L and
buyer M, such that By, > Sp and Bjp;41 < Spy1. Having
found seller L and buyer M, the proposed double auction dictates
that the first L — 1 and M — 1 buyers will participate in the
energy trading. Seller L and buyer M do not participate in this



trade which allows to match the total supply and demand while
maintaining a strategy-proof mechanism [15].

Thus, all sellers with index n < L and all buyers with
index k < M become the participants in the double auction at the
macro layer. Subsequently, the trading prices for the sellers and
the buyers can be chosen within any point in the range [Sr,, Ba/]
[16]. For any action choice A (or A,,,Vn € N) by the sellers
(i.e. aggregators), given seller L and buyer M at the intersection,
we consider that all sellers ¢+ < L and buyers k < M trade at a
price P(A), given by

P(A) = SL(A) ';BM(A)7 3)
where the dependence on A is due to the fact that each A can
give different interaction points with the demand and supply
curves, and thus we can have different L and M.

At the end of the auction, numerous criteria can be used for
determining the amount of traded energy between each one of
the L —1 sellers and M —1 buyers. We adopt the approach of [15]
in which the volume is divided so as to ensure a strategy-proof
auction. Using this approach, the total quantity Q,,(A) sold by
any PHEV group n, for a given choice A is:

Ay if S X > Y Ay
Qn(A)={ (A, —0)F ifn=L—1, 4)
0 ifn>L-1,

where (z)* = max{0,z} and VU is the oversupply, i.e., ¥ =
L—1 M-1

Zj:l Aj— Zk:l X

B. Micro Layer

The micro layer deals with the interactions between the aggre-
gators and the PHEVs. At this layer, each aggregator announces
a price p, to its PHEVs by

DPn = ’77LP(A),VTL S N, (@)
where 0 < 7, < 1 is the commission rate. The price difference,
P(A) — py, is the commission (i.e., cost of management) earned
by aggregator n from its managed PHEVs. This commission
provides a profitable monetary incentive for each aggregator to
help the PHEVs in their market participation. and maximize their
profits. Essentially, each PHEV ¢ € 7,, determines its available
supply a; € [0, a"®], with a]"®* being the amount of energy the
owner of PHEV ¢ can afford to sell, i.e., after reserving enough
for its own use, so as to maximize a well-defined utility function
(defined later in this section). For the same type of vehicle, a
PHEV which needs more reserve for its proper operation has a

lower a;"**. In fact, we have
I

A,n:i:ai,VneN. (6)

=1
Let a,, = (a;,1 <14 < I,) be the action of the PHEVs in group
i. Aggregator n determines the actual quantity g;(a,,Q@,(A))
allocated to PHEV ¢ in group n proportional to a; by

a;
i\Any, Wn A)==——— n A , 7
s, QnlA) = 5= X Qu(A) ™
and thus
I’V‘L
Qn(A) =" gi(a,, Qu(A)),Vn € N. ®)
i=1

Consider that each PHEV ¢ € 7,, imposes a cost of discharging

its battery to supply energy to its aggregator. We denote this
cost by ¢;(a), where a is the amount of energy sold by PHEV
1. We assume that during each transaction, each PHEV will try
to maximize its utility (representing the profit) by choosing the
amount of energy a; as follows:

a; = arg max u;(a;) = arg H}f}X{Pn (an) —ci(a)},  (9)
where u;(-) and ¢;(-) accounts for the utility function and
the inconvenience cost (e.g., for not having enough energy to

operate normally, for discharging the battery, etc.) of PHEV 1,
respectively.

C. Market Mechanism

For analyzing the interaction between the macro and micro
layers, we propose the algorithm shown in Algorithm 1, which
is used to find the market equilibrium P*; A¥. This proposed
algorithm terminates when a pre-determined number of iterations
t™a* has been reached or the percentage change of the market
price is less than a certain threshold €.

Algorithm 1 Market Mechanism
1: For all k£, buyer k submits its bid By and its requested
amount X, to the auctioneer
2:t+1
3. repeat
For all n, aggregator n submits its reservation price S,
and its proposed supply A,,, by (6), to the auctioneer
5.  The auctioneer implements a double auction and deter-
mines the market price P(¢), by (3), and the allocated
quantity @Q,,, by (4), for aggregator n for all n
6:  For each aggregator n, the selling price p,, by (5), is
announced to its PHEVs
7. For each PHEV 1, it determines its proposed selling
amount a; by maximizing its utility according to p,,, by
(9), and returns a; back to its aggregator
8:  Each aggregator n sums up all a;’s from its PHEVs by

(6)
9: t+t+1 O o)
10: until ¢ > ¢mx or [Pl —| < ¢

As we can see in simulation later, Algorithm 1 performs
very efficiently and converges within a few step to the market
equilibrium.

III. LINEAR APPROXIMATION FOR LARGE SYSTEMS

In a practical smart grid, both the number of PHEVs and smart
grid elements are expected to be large. Hence, it is of interest
to analyze the behavior of the proposed market mechanism
in large-scale systems. Hereinafter, for simplicity, we restrict
our attention to case in which N and M are sufficiently large
such that the corresponding supply and demand curves can be
approximated by a linear function, depending on the distribution
of aggregators’ reservation price (buyers’ bids). Thus, we assume
that the reservation prices S, from each aggregator can be
ordered into a line with each point being one unit apart. Fig. 2
shows one example of the supply and demand curves, each of
which is approximated by one single linear function. Since the
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Fig. 2. Supply and demand curves

focus of this work is on the supply side, we will study different
types of supply curves while maintaining a fixed demand curve.

A. Linear Cost Function with Homogeneous PHEVs

Here, we consider that the cost function of PHEV 7 is a linear
function with respect to the amount of energy it provides, i.e.,
¢i(a) = n;a, within a certain interval [0, a#*]. If the amount of
energy to be sold exceeds a;*®*, the cost will become infinite.
Note that this case also takes into account the inconvenience cost.
Then, PHEV ¢’s utility function is given by u;(a) = (v, P—n;)a.
The problem PHEV ¢ needs to address is the following:

u; = maximize u;(a;).
a; €[0,aa]

We note that, a PHEV can always decide not to participate in
the market in which case it maximum utility will be u] = 0. As
a result, the maximum utility in (10) is always nonnegative. In

this case, the solution a; of (10) is
axf _ a;nax lf 7 Z DPns

else.

(10)

Z 0 (11
We can then subdivide the set of PHEVs Z,, in two dis-
joint sets Z\") and Z\?, such that 7" U Z? = 7, where
ar =0,¥i € IV, and af = a™>, Vi € I, Thus, we obtain
An=Zai=Zai+Zai. (12)
i€n eV iez®
Since for all i € L(Ll), af = 0, then Ziezﬁf) a; = 0, and in
consequence
Ap = Z a; = Z ai®x,
iez? i€
1) Linear Approximation: Consider the linear case as in
Fig. 2(b). The PHEVs are price takers and the supply and demand
curves are given by
Supply(P,Q) = «aP, (14)
Demand(P,Q) = Qo — BP. (15)
Here Q) is the total demand from all the buyers and P is the
price determined from the double auction in the macro layer.
Also, o will depend on IT(LQ) for all aggregator n. In that case, the
equilibrium price P* and the quantity sold Q* can be determined
when the supply meets the demand, i.e.,
Supply(P*, Q") = Demand(P*, Q*) = aP* = Qo — P*,
or equivalently, when

13)

* QO
P = ot s (16)

The utility for each PHEV 4 in group n will be thus given by

S mQ
D If n; > 225, ;

2) If n; < % then a;

then a; = 0 and v = 0.

= a]"™ and

* * % ’YnQO max
u; = (VP —mni)a; = ( —772‘> a; . (17)
( )
The total utility U,, of aggregator n is given by
'YnQO
Un «, ﬁa QO = ( - Th) aénax (18)
@000 = 2 (@5

From this simple example, ceteris paribus, we can deduce the
following properties:

1) If the supply slope of a market 1 is higher than that of a
market 2, i.e., a1 > o, then the utility gained in market 1
is smaller than that in market 2.

2) If the demand slope of a market 1 is higher than that of a
market 2, i.e., 51 > [, then the utility gained in market 1
is smaller than that in market 2.

3) If the total possible demand of a market 1 is higher than
that of a market 2, i.e., Q} > @32, then the utility gained in
market 1 is greater than that in market 2.

B. Quadratic Cost Function
Each PHEV ¢ will supply the following amount of energy:

a»f — |:pn(an> - 771‘:|a1

¢ 21)1; 0
where [z]§ = min [max[z,0],y|. For ease of analysis, we
assume that a; < ;" for all 7. Then, we have:

a — .
a; = w) and A;kl = Cnpn(an)

¢ 2’UZ'
1 i
Cy, = d d,= —.
In this case, A}, is the supply from one aggregator and A} is
the slope of the supply curve, i.e., « = A’. Thus, we have, by
a derivation similar to that of (16),
* QO
A+ 6
Hence, we can use the following iterative procedure to find the
market price:

; 19)

- dna (20)

where

3y

(22)

o In iteration ¢, with A,,(¢) computed, we obtain the optimal

price P*(t) = %.

¢ In iteration ¢ + 1, we compute the new supply quantity by

(20), ie., A, (t+ 1) = Cpyn P*(t) — d.
Based on the above observation, we have the following simple
lemma characterizing the necessary conditions under which there
exists market equilibria, i.e., (20) and (22) both hold.

Lemma 1: The following conditions are necessary for the
above iterative process to converge to a market equilibrium
(P*,A):

Proof: In equilibrium, this price must result in a supply that
is exactly equal to the resulting A, i.e.,

Cr
An = # - dn- (24)
This gives rise to the following condition on A,,:
AR+ (B + dn) A + By — CoyaQo = 0. (25)



Note that the above argument also shows an interesting fact that
there is an implicit iteration for the market price P as follows:

Qo

P = . 26
Cn'YnP*_dn+ﬁ ( )

This similarly implies that the fixed point should satisfy:
CrnP™ + (B — dn)P* — Qo = 0. @7

It is not difficult to see that (27) will always have a nonnegative
solution since d, — f8 + \/(ﬂ —dp)?2 4+ 4Chv,Qo > 0. Now
for (25) to have a nonnegative solution, we only need [d,, —
CnynQo > 0, because then we have:

_5 —d, + \/(5 ¥ dn)2 — 4(ﬂdn - Cn’YnQO) > (. (28)

2
This completes the proof of the lemma. ]
IV. SIMULATION RESULTS

For simulations, we consider a smart grid in which a number
of aggregators sell their energy surplus to smart grid elements
(buyers) through a utility company. The simulation setting is as
follows. Each aggregator manages a certain number of PHEVs,
randomly generated in the range of [500,1000]. Each PHEV
has a maximum battery capacity of 250 miles with power
consumption 22kWh per 100 miles [17], [18] out of which
an arbitrary amount of energy, between 30 and 100 miles, is
reserved for the PHEV’s private use. The reservation prices of the
aggregators are uniformly selected in [10, 50] dollars/MWh while
the buyers’ bids are randomly chosen from [15, 60] dollars/MWh.
Each buyer requests energy demand with the amount chosen in
[20, 60] MWh. The commission rate is set to 7y, = 0.91,Vn € N.
Each PHEV ¢ has random cost function parameters 7; € [10, 50]
and v; € [1000, 2000] for quadratic cost function and 3; = 0 for
the linear cost function. The algorithm always starts by setting
a; = a™®* Vi € I,,,Yn € N.

A. Small Numbers of Buyers and Aggregators

First, we simulate cases with small numbers of buyers and
aggregators. We consider 5 buyers (K = 5) in each case and
we compare our two-layer approach with a greedy approach,
in which each PHEV always proposes to sell a;"®*. Fig. 3
shows the average results of 1000 independent simulation runs
for each case. Figs. 3(a) and 3(b) present the average utility
per aggregator corresponding to the linear and quadratic cost
functions, respectively. We can see that our approach always
yields a higher average utility than the greedy scheme, as shown
in Figs. 3(a) and 3(b). For linear cost functions, we can see that
the average utility starts by increasing with /V but then, it starts to
decrease when the number of aggregators reaches that of buyers
(N = 6). This result is due to the fact that, for small NV, an
increase in the number of participating aggregators leads to a
larger amount of energy sold which, subsequently, improves the
average utility. However, when N > 6, an increase in the number
of aggregators N will yield a decrease in the settled price which
leads to a decrease in the utility. For quadratic cost functions,
the average utility increases with [N since more aggregators can
participate in the market which results in a larger amount of
total energy sold. Hence, in general, the equilibrium trading price
decreases with NV since an increase in the number of aggregators
leads to an increased competition which subsequently imposes
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Fig. 3. Basic simulations for small numbers of buyers and aggregators.

a lower price. Note that it is possible to have an situation with
zero total utility (i.e., no energy being sold). Thus our mechanism
weakly dominates.

Fig. 3(c) shows the average number of iterations required to
reach an equilibrium. Clearly, as more aggregators participate in
the market, the number of iterations till convergence increases.
Moreover, Fig. 3(c) shows that the convergence time is faster in
the case with quadratic cost. With a linear cost function, each
PHEV ¢ takes either O or a}"®* in each iteration, and thus, the
algorithm will oscillate more around the equilibrium point before
convergence. With a quadratic cost function, due to the concavity
of the utility, the algorithm moves toward the equilibrium in a
smoother manner which is further corroborated in the subsequent
simulations.

B. Large Numbers of Buyers and Aggregators

Here, we simulate cases in which a large number of buyers
(K = 1000) and aggregators (N = 1000) are deployed so as to
verify the analytical results induced from the linear approxima-
tion studied in Section III-A. As previously mentioned, when N
(K) increases, the supply (demand) curve approaches a linear
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function as all random numbers are generated uniformly. We
first study the results with a fixed demand curve (i.e. with 3
and @ fixed) and they correspond to cases in which the value
evolves in a particular simulation. Fig. 4! shows the results for
linear PHEV cost functions when the algorithm iterates. Fig.
4(a) gives the total utility computed from the double auction
for each iteration while having the corresponding supply and
demand curves shown in Fig. 4(b). 2 In Fig. 4, we can also see
that the total utility decreases with the supply slope («). For
example, consider iterations 1 and 2. For these two iterations,
we can see that oy is larger than oy while the utility gained
in iteration 1 is smaller than that in iteration 2. We also study
the quadratic PHEV cost functions and the results are shown in
Fig. 5.! Clearly, with the quadratic cost function, the algorithm
converges faster and smoother. Next, we study the results for six
different demand curves with a fixed supply curve (i.e. « fixed).
Fig. 6'2 shows the six cases with a fixed Q. These results are

IThe numbers in Subfigure (b) correspond to iteration/case numbers in
Subfigure (a). For clearer demonstration, In Subfigure (b), only the curves
corresponding to the first few iterations/cases are given.

2For clarification, Fig. 4(b) shows the part of the whole graph near the
intersection points only.

also aligned with those of Section III-A: the larger the f3, the
smaller the utility.

V. CONCLUSION

In this paper, we have proposed a multi-layer game-theoretic
framework for modeling the market that enables aggregators,
PHEVs, and the smart grid elements to exchange energy. The
proposed framework consists of two layers: a macro layer and a
micro layer. At the macro layer, the smart grid elements, which
act as energy buyers buyers and the aggregators, which act as
energy sellers, engage in a double auction so to determine the
amount of energy that will be traded along with the associated
trading price. At the micro layer, each aggregator assists its
managed PHEVs in maximizing their utilities which captures
the profits from the energy exchange. A novel mechanism
is proposed to coordinate the interaction between the macro
and micro layers. We have analyzed the system performance
resulting from the proposed approach for several cases, including
large-scale deployments. Simulation results have shown that our
mechanism is always better than the greedy approach and verify
some of our analytical results.
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