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Abstract 

 

Compositional data is non-negative data subject to the unit sum constraint. The logistic 

normal distribution provides a framework for compositional data when it satisfies sub-

compositional coherence in that the inference from a sub- composition should be the 

same based on the full composition or the sub-composition alone. However, in many 

cases sub-compositions are not coherent because of additional structure on the 

compositions, which can be modelled as process(es) inducing change.  

 

Sometimes data are collected with a model already well validated and hence with the 

focus on estimation of the model parameters. Alternatively, sometimes the appropriate 

model is unknown in advance and it is necessary to use the data to identify a suitable 

model. In both cases, a hierarchy of possible structure(s) is very helpful. This is evident 

in the evaluation of, for example, geochemical and household expenditure data.  

 

In the case of geochemical data, the structural process might be the stoichiometric 

constraints induced by the crystal lattice sites, which ensures that amalgamations of 

some elements are constant in molar terms. The choice of units (weight percent oxide or 

moles) has an impact on how the data can be modelled and interpreted. For simple 

igneous systems (e.g. Hawaiian basalt) mineral modes can be calculated from which a 

valid geochemical interpretation can be obtained.  

 

For household expenditure data, the structural process might be how teetotal households 

have distinct spending patterns on discretionary items from non-teetotal households.   

 

Measurement error is an example of another underlying process that reflects how an 

underlying discrete distribution (e.g. for the number of molecules in a sample) is 

converted using a linear calibration into a non-negative measurement, where 

measurements below the stated detection limit are reported as zero. Compositional 

perturbation involves additive errors on the log-ratio space and is the process that does 

show sub-compositional coherence.  

 

The mixing process involves the combination of compositions into a new composition, 

such as minerals combining to form a rock, where there may be considerable knowledge 

about the set of possible mixing processes.  

 

Finally, recording error may affect the composition, such as recording the components 

to a specified number of decimal digits, implying interval censoring, which implies 

error is close to uniform on the simplex.  

 

In summary, analysis of compositional data may require accounting for the following 

sequence of processes:  

 

Underlying generation process -> Measurement error -> Closure -> Compositional 

perturbation -> Mixing process - >Recording error.  

 

Key words: compound compositions, mixing process, closure, compositional data, 

detection limits 

 



1   Introduction 
 

Compositional data is non-negative data subject to the unit sum constraint. (Aitchison 1982) provides a 

framework based on the logistic Normal distribution, which is appropriate for data that satisfies sub-

compositional coherence, i.e., where conclusions about a sub-composition should be the same based on 

the full composition or the sub-composition alone. This approach has been strongly criticised by (Scealy 

and Welsh 2014)), who have argued that this principle unreasonably excludes other appropriate models 

for compositional data. If we could identify a reasonable process that led to the models proposed by 

(Scealy and Welsh 2011) and (Butler and Glasbey 2008), we would consider their approaches to be 

reasonable, however they have not proposed any such process. We certainly agree (as, ironically, does 

Aitchison himself who highlights amalgamation processes in (Aitchison 2005) !) that it is not always the 

case that the full composition satisfies the principle and it is helpful to consider the complete cycle of 

processes that yield any specific dataset in order to identify a suitable analysis of the data. 

 

These processes might look like this sequentially: 

 

Underlying generation process -> Measurement error -> Closure -> Compositional perturbation -> 

Mixing process ->Recording error 

 

In the case of geochemical data, the underlying generation process might be the stoichiometric constraints 

induced by the crystal sites which ensures that amalgamations of some elements are constant in molar 

terms, while for household expenditure data, the underlying generation process might include that teetotal 

households have distinct spending patterns on discretionary items from non-teetotal households. These 

processes are discussed further in the relevant examples below. 

 

Measurement error is discussed in more detail below – it covers errors introduced in the measurement 

process. 

 

Closure means imposition of the unit sum constraint through dividing by the total. 

 

Compositional perturbation involves additive errors on the log-ratio space. 

 

Mixing process involves the combination of compositions into a new composition, such as minerals 

combining to form a rock. 

 

Recording error affects the composition in a linear manner, such as recording the components to a 

specified number of decimal digits, implying interval censoring, as addressed by (Leung 2015). 

 

2 Measurement error 

 
Measurement error affects the raw measurements on the original scale and may reflect an underlying 

discrete distribution that is converted using a linear calibration into a non-negative measurement, where 

measurements below the stated detection limit are reported as zero. This can be conceptualised as the 

measurement process identifying atoms (or molecules) of the specified element, suggesting that the molar 

fraction is the key determinant for detection, which can be approximated in terms of some scaling of parts 

per million. If we model this as a Poisson process, this implies that the variance of the measurement 

process is equal to the mean of the Poisson process, so a mean of 1 has an expected percentage error of 

100% (because the mean and standard deviation are both 1), explaining why the “detection limit” may 

correspond to counts greater than 1 in order to control the percentage error (e.g. a cut-off of 4 corresponds 

to an expected percentage error of 50%). This non-constant error is contrary to standard Normal 

distribution assumptions, but for measurements well above the detection limit should map well onto the 

Lognormal distribution, which is known to approximate the Poisson distribution well as long as the mean 

is not too small, and hence be consistent with the Logistic Normal distribution for the composition. As 

will be illustrated in the first example, using a standard multiplicative adjustment for non-detection zeroes 

may distort any structure in the dataset. 

   



3 First expository example 
 

This is an example about mineral composition for samples from a mine recorded as parts per million, with 

Table 1 showing the minimum, median and maximum compositions. 

 

Table 1 Minimum, median and maximum compositions in parts per million 

 

Platinum Gold Silver Residual  

 0.1   1   10 999,988.9 

 1.0  10  100 999,889.0 

10.0 100 1000 998,890.0 

 

In this example, the sub-composition of Gold, Silver and Platinum is the same for the 3 samples, but the 

full composition is very different, because of the large (nearly) constant residual.  

 

We can see that the important process that determines the viability of these samples for mining is the log-

ratio of the aggregate of the three precious metals to the (nearly constant) residual and we can assume the 

metal ratios are fixed, whether for stoichiometric or other reasons. 

 

However, what we record is perturbed by the measurement process, which is here assumed for the three 

precious metals to be independent Poisson with the mean in ppm and a detection limit of 5ppm, so any 

measurements less than 5ppm are rounded down to zero, which corresponds to a percentage error of about 

45% at the detection limit, suggesting that a censored Lognormal distribution should be a realistic model. 

 

Clearly, Gold is unlikely to be detected in the minimum sample and may not be detected in the median 

sample and Platinum will not be detected in the majority of samples. 

 

If we use the standard multiplicative adjustment for zeros as proposed by (MartÌn-Fernandez, Barcelo-

Vidal and Pawlowsky-Glahn 2000), (i.e. 0.65 x detection limit), we can see in Figure 1 that there is a 

distorted picture of the relative proportions, because platinum is measured as a constant for the majority 

of the samples, rather than adjusting proportional to the other two metals, so the adjustment creates 

structure that does not exist. 

 

Fig 1 LR Adj Plat/Silver By LR Adj Gold/Silver 

 



 
 

This example shows clearly the need to properly model censoring for values below the detection limit 

rather than making arbitrary zero adjustments, if we are to correctly understand and model the underlying 

process. 

 

 

4   Second expository example 
 

This is an example about percentages of household expenditure on different categories of expenditure for 

a limited number of categories, where some households spend no money on alcohol (as they are teetotal, 

which we assume has no effect on core item spending but is all available for discretionary spending) and 

others spend no money on white goods (which we assume is occurs 20% of the time for all households 

and is paid from savings, so it does not affect the relative proportions for the other components). We 

assume that the core spending is 30% of income, alcohol spending is 5% of income (if not teetotal) and 

white goods (if any) is 10% of income. Within Alcohol, we can see that the relative proportions relate to 

whether these are Poor or Rich households, with poor households spending relatively more on Wine and 

beer. Note that amalgamating alcohol with discretionary spending avoids the zeroes in alcohol 

expenditure, but this amalgamation loses the information that links the alcohol breakdown to Poor/Rich 

households. 

  

Table 2 shows four sample observations illustrating the four possible types of expenditures with or 

without zeroes. There is then some perturbation to reflect random variation, around these values. 

 

Table 2 Household expenditure percentages with presence/absence of zeroes. 

 

Wine/beer Spirits Alcohol White 

goods 

Core Discretionary Poor/Rich 

0.0% 0.0% 0.0% 0.0% 30.0% 70.0% P 

4.0% 1.0% 5.0% 0.0% 30.0% 65.0% P 

1.0% 3.5% 4.5% 9.1% 27.3% 59.1% R 

0.0% 0.0% 0.0% 9.1% 27.3% 63.6% P 

 

Clearly, the expenditure categories are arbitrary and could be amalgamated, which is contrary to the 

principles of log-ratio analysis. 

 

In this case, white goods are only purchased rarely, so zeros reflect the rarity of the expenditure rather 

than failure to ever purchase.  

 

Clearly, any model for this process, must allow for the possibility that teetotal households may have 

structurally different expenditure patterns, as proposed by (Aitchison 2003) and (Bacon-Shone 2003) and 

can be handled as a mixture process and we must also examine how white goods purchases affect the 

relative proportions of other expenses (if at all). 

 

If we have enough data to ensure that the perturbation has little impact, it is easy to show that 

discretionary expenditure decreases 1% for each 1% in increase in alcohol, but only 0.7% for each 1% 

increase in white goods (see Figure 2). Similarly, we can see that alcohol does not affect core 

expenditure, but a 1% increase in white goods yields a 0.3% decrease in core expenditure (Figure 3). Note 

that these effects are linear on the simplex, not on the log-ratio space. This does not mean that log-ratio 

modelling is not useful, as it is essential for modelling the perturbation effects. 

 



Fig 2 Pr Discr pert by Pr Alcohol and Pr White Goods 

 
 
 

Parameter Estimates 
Term   Estimate Std Error t Ratio Prob>|t| 
Intercept  0.7018889 0.001457 481.72 <.0001* 
Pr Alcohol   -1.047124 0.045305  -23.11 <.0001* 
Pr White Goods   -0.712838 0.030105  -23.68 <.0001* 

 
Fig 3 Pr Necess pert by Pr Alcohol and Pr White Goods 

 
 



 

Parameter Estimates 
Term   Estimate Std Error t Ratio Prob>|t| 
Intercept  0.2981111 0.001457 204.60 <.0001* 
Pr Alcohol  0.0471245 0.045305 1.04 0.3128 
Pr White Goods   -0.287162 0.030105  -9.54 <.0001* 
 
 

5   Third expository example 

 
This is an example about mineral composition where there is a stoichiometric constraint (e.g. in a crystal 

structure, any replacement of one element by another element at a specific lattice site must occur in a 

integer molar ratio). 

 

Our simple example, with the minimum, median and maximum data points shown in Table 3, is the 

mineral olivine in which Fe and Mg substitute into specific lattice sites, with two end-members, fayalite 

(Fe rich) and forsterite (Mg rich). Si stays close to constant throughout the range of Mg-Fe variability of 

olivine. Our dataset shows the full range from one end-member to the other. If expressed in weight terms, 

there is a linear constraint for Mg and Fe, with apparently arbitrary coefficients, while if expressed in 

molar element terms the constraint is simply Mg + Fe = constant (see Figure 4), while Si varies relative to 

Mg+Fe and this part of the variability can be easily modelled using log-ratios (see Figure 5). 

 

Table 3 Si,Mg,Fe composition of olivines in molar proportions, showing the end members and median 

olivine composition 

 

Si  Mg Fe Structural Formula 

0.3333  0.3333 0.3333 Olivine 

0.3333  0 0.6667 Fayalite 

0.3333  0.6667 0 Forsterite 

 

As noted in (Grunsky and Bacon-Shone 2011), the linear integer constraints mean that any meaningful 

analysis must be in molar element terms to see the integer coefficients and must encompass the constraint 

before modelling the remaining variability in the data, using compositional perturbation, i.e. log-ratio 

modelling to examine if Si depends on the Mg/Fe ratio. 



Fig 4 Ternary Plot for Molar proportions 

 
 
 

Fig 5 LR(Si/(Fe+Mg)) By LR(FE/MG) 

 
 

 
 



Summary of Fit 
 
RSquare 0.023011 
RSquare Adj  -0.0214 
Root Mean Square Error 0.005377 
Mean of Response 0.499716 
Observations (or Sum Wgts) 24 
 
 

Parameter Estimates 
Term   Estimate Std Error t Ratio Prob>|t| 
Intercept  0.4991969 0.001313 380.19 <.0001* 
LR(FE/MG)   -0.000511 0.00071  -0.72 0.4792 
 

 

6 Discussion 
 

These three examples all show the need to recognize that although the final dataset we analyse may be 

compositional data, it is essential in some cases to identify the likely process that generated the dataset, 

which may include binary, integer and conditional processes, amalgamation and constraints (e.g. 

stoichiometry), and that we can then avoid the distortions caused by blindly applying zero adjustments 

and by insisting that all data follow log-ratio processes. 
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