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Chapter X 

Nanomechanical Characterization of Soft Materials 

 

A.H.W. Ngan 

 

Abstract This Chapter reviews the creep or viscoelastic deformation behavior of soft materials 

under nanoindentation-type testing. Analysis protocols of nanoindentation based on the Hertzian 

elastic contact theory, linear viscoelasticity analyses, and a more recent rate-jump method, are 

described and assessed. In addition to continuous viscoelasticity, a special type of discrete creep 

deformation, often observed in a wide range of materials during nanomechanical testing, is also 

highlighted. 

 

X.1 Introduction 

The advent of nanomechanical techniques including atomic force microscopy (AFM) and 

nanoindentation has enabled mechanical behavior of materials of micron- and smaller sizes to be 

characterized. However, whereas the load-displacement responses are routinely measured by 

these experimental platforms, these need to be deconvolved in order to obtain intrinsic material 

parameters, such as elastic modulus and yield properties. Despite the continuous development of 

the hardware over the past three decades, this step remains to be very challenging, especially for 

soft materials which exhibit not only purely elasto-plastic but also time-dependent deformation. 

Yet, examples of such materials are ample in many fronts of today’s technology, including 

polymers, gels, low-melting metals tested at room temperature or higher melting metals tested at 

elevated temperatures, and also biological tissues. This Chapter aims at to highlight some 

common experimental features and analysis methods concerning nanomechanical testing of soft 

materials that the author has experience with.  

 

X.2 Common Data Analysis Protocols for Nanoindentation 

 Nanoindentation is the most mature nanomechanical characterization technique 

developed so far. Although nanoindentation was regarded as a special function of an AFM in the 

early days of development, as at today there are a few commercial suppliers selling stand-alone 

nanoindenter machines, while AFMs took a separate line of development. In such commercial 

nanoindenters, a diamond probe, usually a Berkovich tip, is sent down to the sample along a 

vertical travel axis, and nanoscopic force and displacement data are gathered, usually by a 

capacitor gage, during the indentation process on the sample. As mentioned above, the most 
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challenging step, from a user’s point of view, is to deconvolve the force-displacement data to 

obtain material properties. Here, some common data-analysis protocols are reviewed.  

 

Figure X.1  Contact between two axi-symmetric elastic bodies 

 Oliver and Pharr (1992) proposed a procedure to analyze nanoindentation data which has 

become a standard protocol available in the software of all commercial nanoindenters nowadays. 

Their procedure is based on the Hertzian theory for elastic contact (Hertz 1882; Johnson 1999), 

and is applicable to an unloading event which is purely elastic. The Hertzian theory is also 

widely used for analyzing nanoindentation data from experiments carried out in an AFM, 

especially on biological samples (Lekka et al. 1999; Rosenbluth et al. 2006; Cross et al. 2007; Li 

et al. 2008). For these reasons, this theory is briefly outlined here. Figure X.1 shows the plan 

view of the contact area between two axi-symmetric elastic bodies, which represent the tip and 

the sample in the context of nanoindentation. A contact pressure distribution p(s) is generated 

over this contact area, where s is the radial distance from the center. An infinitesimal area dA in 

this contact area is subjected to a point force 𝐹 = 𝑝(𝑠)𝑑𝐴 normal to the area, and from the theory 

of elastic stress potential of half-spaces (Johnson 1999), F produces a displacement field )(ruz  

on the surface of either contacting body along the direction of contact, according to 

r
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E
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

 )1(
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2
  ,      (X.1) 

where E and   are the Young modulus and Poisson ratio of the body, and r the radial distance 

from the position of F. Thus, by the principle of superposition in elasticity, the surface 

displacement of the body is the sum of contributions from all the point forces 𝐹 = 𝑝(𝑠)𝑑𝐴 =

𝑝(𝑠)𝑟𝑑𝜙𝑑𝑟 arising from  𝑝(𝑠), and so is given by  
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In eqn. (X.2), q is the radial distance, from the center of the contact region, of the “field point” 

where 
zu occurs, and a is the radius of the contact region. When applying eqn. (X.1) to eqn. 

(X.2), the infinitesimal area dA is taken as 𝑑𝐴 = 𝑝(𝑠)𝑟𝑑𝜙𝑑𝑟, where 𝜙 is the angular position of 

the “source point” (the point where F acts) from the field point (see Figure X.1), to take 

advantage that the r in dA and in eqn. (X.1) can get cancelled. The inner integral in eqn. (X.2) is 

from r = 0 to t, where  222 sincos qaqt  , and s in 𝑝(𝑠)  is given by   

cos2222 rqqrs  .  

 Suppose that the two elastic bodies, i.e. the specimen surface and the tip, are both 

spherical with radii of curvature R1 and R2 respectively ( 1R  if the specimen surface is flat), 

so that for small values of q (see Figure X.1), the two surfaces are well approximated by 

)2/( 1

2

1 Rqz   and )2/( 2

2

2 Rqz  respectively. The deformation requires that 

huzuz zz  2211
, where h is the relative displacement of the tip into the sample surface, and 

uz1 and uz2 are deformations of the specimen surface and the tip according to eqn. (X.2). 

Therefore, eqn. (X.2) becomes 
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where R and Er, given by )/1()/1(/1 21 RRR   and ]/)1[(]/)1[(/1 2

2

21

2

1 EEEr   , are 

respectively a reduced radius and elastic modulus of the tip-sample contact. Hertz showed that 

the solution to eqn. (X.3) is , where )2/()( ro ERpa   and 

)2/()( ro Eaph   (Johnson 1999). The total indentation load is given by 
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The second equation in X.4 gives 

 
2/3
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and hence, the reduced modulus Er can be obtained from a fit of the load-displacement curve to 

the form 𝑃~ℎ3/2 , provided that R is known. This method of obtaining Er is often used in 

nanoindentation experiments carried out in AFMs, and is in fact incorporated into the analysis 

software of some commercial AFMs. However, the underlying assumption is that the loading 

process is purely elastic. 

2)/(1)( aspsp o 
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(b) 

Figure X.2 (a) Schematic load-displacement graph and (b) sink-in morphology during 

nanoindentation. 

 In the Oliver-Pharr protocol (Oliver and Pharr 1992) adopted by commercial 

nanoindenters, whereas the loading process of a nanoindentation experiment can involve 

plasticity, the onset of a subsequent unloading process is assumed to be purely elastic (Figure 

X.2a). Under this assumption, the tip-sample contact stiffness S at the onset of unloading 

process, defined as dhdPS / , is obtainable from the first two equations in (X.4) as 

c

r
A

S
E

2


       (X.6) 

where 
2aAc    is the projected area of the tip-sample contact circle (Figure X.2b). Thus, the 

elastic modulus Er can be estimated if S and Ac are measured, and at the same time, the hardness 

can also be evaluated as cAPH /max . cA is given from the contact depth ch  at full load, through 

a pre-calibrated tip-shape function )( cc hfA  , but because of the elastic “sink-in” deformation of 

the specimen’s surface (Figure X.2b), ch is not explicitly specified in the P-h curve. For a 

spherical indenter, geometry gives 2

2 2/ Rahc  , and if the sample is initially flat, R = R2, so that 

the indenter displacement at full load is 2

2

max / Rah   from the second equation in (X.4). 

Therefore, 2/maxhhc  . However, this relation is valid only when the sample deforms purely 

elastically. In plastic indentation situations, Oliver and Pharr (1992) proposed that the 

corresponding plastic depth, hf, should be deducted from the h data, i.e. instead of 2/maxhhc  , 

we have 
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Also, from the second equation in (X.4), 2/3)( fhhP  , and from this, the contact stiffness is 

given by 

)(2

3
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fhh

P
S

dh

dP


 .      (X.8) 

Combining eqns. (X.7) and (X.8), we have SPhhc /)4/3( maxmax  , for the case of a spherical 

tip indenting on a flat sample. Oliver and Pharr (1992) proposed the following more general 

formula:  

S

P
hhc

max
max  ,       (X.9) 

where  is a constant for a given indenter. Table X.1_new gives the values of  for different 

indenter geometries. 

 

 

 

 

 

Table X.1    Values of  in eqn. (X.9) 

 

X.3 Viscoelastic Behavior during Nanoindentation 

 The analysis methods based on the Hertzian contact theory outlined above assume that 

the deformation is purely elastic in the relevant part of the load schedule. For soft materials, this 

condition is often not met, even during the unloading process. Figure X.3(a) shows a rather 

extreme case of nanoindentation carried out in amorphous selenium at 24°C (Tang and Ngan 

2005), where the P-h curve bends forward during the initial part of the unload. This signifies 

significant creep deformation: the tip continues to sink into the specimen as it creeps under the 

tip load, even though the load on the tip is reducing. If the Oliver-Pharr method is applied to such 

a scenario, the resultant Er would be negative as shown in Figure X.3(b), since the apparent 

contact stiffness S at the onset of unload is negative. The creep factor in Figure X.3(b) is defined 

as  

Indenter shape 

Spherical and paraboloid ¾ = 0.75 

Flat ended 1 

Conical 
73.0)2(

2



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where
hh  is the creep rate at the end of the hold period just before the unload,  corrS  is a corrected 

elastic contact stiffness (see eqn. (X.29)), and 
uP  is the unloading rate. As will be seen later, C 

measures the relative importance of elastic and creep deformation at the onset of the unloading 

process (Feng and Ngan 2002). The fact that creep is significant is also represented by a high 

value of 
hh  during the load-hold before unload, and in Figure X.3(a), this corresponds to a 

significant drop in the actual load applied onto the sample during the nominal load-hold stage 

prior to unload, due to the increasing spring force in the nanoindenter transducer as the tip sinks 

into the sample. Significant creep during unload, accompanied by a visible forward bending 

“nose” in the P-h curve, is a rather general behavior for soft materials, including polymers and 

biological (e.g. bone and cartilage) samples tested at room temperature, and even metals tested at 

high homologous temperatures relative to their melting points. Even though creep deformation 

may not be as severe as giving rise to an obvious “nose” in the P-h curve, it may still lead to 

significant overestimation of the contact stiffness S and hence the Er estimated from the Oliver-

Pharr analysis (Feng and Ngan 2002). 
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(b) 

Figure X.3. (a) A typical load-displacement curve in amorphous selenium at 311K. (b) Elastic 

modulus of amorphous selenium measured by the Oliver-Pharr method and after creep 

correction. Data from Tang and Ngan (2005).   

As mentioned above, certain commercial AFMs are equipped in their analysis software 

with the Hertzian fit protocol involving eqn. (X.5), where the P-h curve measured during a load 

ramp is fitted with a 𝑃~ℎ3/2 law to obtain the Er value. When creep or any time-dependent 

deformation occurs, the measured Er would be dependent on the load ramp rate, as shown in 

Figure X.4(a) for the case of an oral cancer cell line indented by an AFM tip (Zhou et al. 2012). 

Similar rate-dependent results are often seen in the literature (e.g. Li et al. 2008), and their 

occurrence means that the measured properties are not intrinsic to the sample. 



7 
 

 

(a) 

 

(b) 

Figure X.4. Elastic modulus of UM1 oral cancer cells measured with (a) the Hertzian fit 

protocol in eqn. (X.5), (b) the rate-jump protocol in eqn. (X.5). Data from Zhou et al. 2012. 

 

X.4 Linear Viscoelasticity Analyses of Nanoindentation 

 The viscoelastic behaviors commonly seen in nanoindentation of soft samples have been 

the subject of investigation by linear viscoelasticity analyses (Feng and Ngan 2002; Sakai 2002; 

Cheng and Cheng 2005; Oyen 2006). In one approach, nanoindentation is performed in a 

dynamic mode, involving a small oscillatory load Δ𝑃 = Δ𝑃0 𝑠𝑖𝑛(𝜔𝑡) superimposed on the basic 

load. Because of viscosity, the displacement oscillation will in general exhibit a phase lag 𝜙, i.e.  

Δℎ = Δℎ0 𝑠𝑖𝑛(𝜔𝑡 − 𝜙). In analogy with eqn. (X.6), a storage modulus Er’ and a loss modulus Er” 

can be defined as (Herbert et al. 2008): 


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'
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0

h

P
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E

c

r



  ;  


sin

2
"

0

0

h

P

A
E

c

r



 .   (X.11) 

While Er’ and Er” are easily measured this way, they are usually strong functions of the 

oscillation frequency 𝜔. 

 In a second approach, certain constitutive model is assumed as the intrinsic deformation 

law for the sample, and this is developed into measurables such as a P-h relation, which can then 

be fitted with the experimental data to obtain the coefficients in the model, which are supposed 

to be intrinsic material properties. Most viscoelasticity analyses carried out for nanoindentation 

made use of hereditary integrals (Sakai 2002; Cheng and Cheng 2005; Oyen 2006). Alternatively, 

another very useful technique is Radok’s correspondence principle between linear viscoelasticity 

and elasticity (Radok 1957). As an illustration, consider the Maxwell model of viscoelasticity, 

with the following constitutive relation  
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ij

s

ijij SS
G

e
2

1

2

1
  ,    iiii B 3  (viscoelasticity).  (X.12)  

Here, 3/kkijijijS    is the deviatoric stress, and 3/kkijijije    the deviatoric strain, G 

and B are the shear and bulk modulus respectively, and s  is the shear viscosity. Laplace-

transforming eqn. (X.12) leads to 

** 1

2

1

2

1
ij

s

ij S
sG

e 










,     ** 3 iiii B   (viscoelasticity) (X.13) 

where (  )* denotes the Laplace transform a time-dependent quantity (  ), and s is the transform 

variable. Eqn. (X.13) is of a form analogous to Hooke’s Law for a purely elastic material: 

   ijij S
G

e
2

1
 ,    iiii B 3  (elasticity); 

   **

2

1
ijij S

G
e  ,    ** 3 iiii B   (elasticity).    (X.14) 

Comparing eqns. (X.13) and (X.14) suggests that the Laplace transform of the viscoelastic 

problem can be solved by replacing the elastic constants in the purely elastic problem by the 

following: 

sGG s

1111



;    BB  .     (X.15) 

The problem of indenting on a purely elastic half-space by a conical tip with semi-apex angle  

has been solved by Sneddon (1965) (also c.f. eqn. (X.27)) as 

)(tan
2

)(
1 2 thtP
Er




 .     (X.16) 

Since Er = 4G(3B+G)/(3B+4G), to obtain the corresponding P-h relation in the viscoelastic case, 

application of the transformations in eqn. (X.15) leads to the following transformation of Er:  

 EsB

E

sEE ssrr 
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 3

1

36

1

4

111
2

2

   (X.17) 

where E is the Young’s modulus. Therefore the Laplace transform of the viscoelastic version of 

eqn. (X.16) is 

*2*
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9 
 

Inverse transforming eqn. (X.18) followed by differentiating with respect to t leads to 

dt

hd
dttPtt
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
    (X.19) 

if P(0) = 0.  

 

(a) 

 

(c) (b) 

Figure X.5. Measurement of shear viscosity s in an amorphous Ge-Si alloy thin film. (a) Load 

schedule used. (b) h2 vs t during load hold at Pmax. (c) Arrhenius plot of s, exhibiting an 

activation energy of 0.14eV. Data from Xu (2008). 

 

 Numerical values indicate that the third term in eqn. (X.19) is usually small compared 

with the other two terms. When this third term is ignored, 

dt

hdtP

E

tP

sr
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tan

2

4
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





.    (X.20) 

For a load-hold process up to Pmax following a simple load ramp up to time t1, as shown in Figure 

X.5(a), integrating eqn. (X.20) yields   
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where a and b are constants. Figure X.5(b,c) show load-hold nanoindentation experiments 

carried out in an amorphous Ge-Si thin film (Xu 2008). The h2 vs t plot is linearly in accordance 

with eqn. (X.21). The shear viscosity s can be obtained from the slope of the h2-t plot, and data 

measured at different test temperatures obey an Arrhenius law as shown in Figure X.5(c), with 

an activation energy of ~0.14eV. 

 Constitutive models other than Maxwell can be similarly employed, and if more springs 

and dashpots are involved, more material constants will have to be obtained, and finding them 

can turn out to be a heavy curve-fitting exercise. Unfortunately, in most cases, there is simply no 

reliable guidance to help decide on which law is most suitable for a given material, yet the 

accuracy of such linear viscoelasticity analyses depends on the validity of the assumed 

constitutive law. 

 

X.5 The Rate-jump Protocol of Nanoindentation 

The linear viscoelasticity analyses mentioned above often yield storage (“elastic”) or loss 

(viscous) coefficients which are supposed to be material properties on one hand, but on the other 

hand, are also strongly dependent of the test frequency, or rate of deformation in general. In the 

rheology literature, the rate dependence of such properties is accepted as “intrinsic” to the 

material itself, but in any case, this would still contradict the use of “springs” and “dashpots”, 

supposedly with constant coefficients, in the constitutive law assumed. In an atomic model, the 

spring and dashpot elements in the correct constitutive law should correspond to the conservative 

stretching and permanent slippage or other dissipative events of the interatomic bonds in the 

solid, respectively. The spring elements of the viscoelastic network should therefore be 

characteristic of the nature and architecture of the atomic bonds in the solid, and truly material 

constants independent of the rate of deformation and other extrinsic factors. 

A recent “rate-jump” protocol for carrying out mechanical tests in general has been 

proven to be capable of returning an intrinsic elastic modulus that is independent of the test 

conditions from viscoelastic materials (Ngan and Tang 2009). The key assumption of the 

constitutive law for the material is very mild – a network of any arrangement of (in general) non-

linear viscous dashpots and linear elastic springs, as shown in Figure X.6(a), is assumed to hold 

within a very short time window [tc
-,tc

+] about time tc, at which a sudden step change in either the 

loading rate or the displacement rate, depending on whether the test is load- or displacement-

controlled, is applied on the sample (Figure X.6(b)). The dashpots and springs here are described 

respectively by relations of the form 

  )((dashpot) klijij    ,     (X.22) 

klijklij s  (spring)       (X.23) 



11 
 

where ij and kl  are strain and stress tensors, and a dot above denotes time rate. Note that the 

ij vs kl  relation in eqn. (X.22) is not necessarily linear (i.e. nonlinear viscosity is anticipated), 

and also, any arrangement of the springs and dashpots in the constitutive model is admissible. 

The latter two points are important differences with the linear viscoelasticity analyses described 

in the section above.  

 
(a) 

 
                  (b) 

 
 

 

             (c) 

Figure X.6. (a) A general linear-elastic, nonlinear-viscous solid subjected to boundary load P 

undergoing deformation with boundary displacement . (b) Schematic of a rate jump in P and  

at time tc. (c) An example of the viscoelastic network model of the material: the standard-linear-

solid model, but any other network is admissible.   

A key point to note about the nonlinear dashpots is that, by virtue of eqn. (X.22), a step 

change kl  in the stress rate field at tc, arising from the step change in loading rate in Figure 

X.6(b), does not result in any non-zero change in the strain rate field ij  across the dashpots, 

because although the stress-rate kl  suffers a step jump kl , the stress itself must still be 

continuous across tc. Thus, 0 kl  across tc, and from eqn. (X.22), 0(dashpot)ij , i.e. the 

dashpots, whether they are linear or nonlinear and irrespective of their whereabouts in the 

constitutive network with respect to the springs, do not react to the rate-jump across tc. Only the 

elastic springs react to the rate-jump according to eqn. (X.23), viz 

klijklij s    ,                                                                  (X.24) 
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and ij and kl  are also the overall strain-rate and stress-rate changes of the sample across tc. 

Eqn. (X.24) says that the fields ij  and ij  can be solved as a linear elastic problem, with the 

same elastic spring elements in the original viscoelastic model of the material while the dashpot 

elements are ignored.  

 

 

 

 

 

 

 

Figure X.7. Invariant effective modulus measured using the rate-jump protocol from tensile tests 

on high-density polyethylene. (a) Typical load schedule of nominal stress vs time with a rate 

jump imposed. (b) Response of nominal strain to the load schedule in (a). (c) E values calculated 

using eqn. (X.25) from different experiments with different magnitudes of load-rate jump. Inset 

in (c) shows the load schedules used. Data from Chan and Ngan (2010). 

 The solution of eqn. (X.24), for a given test geometry, would be a linear Δ𝑃̇~Δ𝛿̇  relation 

between the step changes in the load and displacement rates across tc, with the linking 

proportionality constant being a lumped value of the elastic constants in the original viscoelastic 

model after removing all the dashpots. Fitting such a relation to experimental results allows this 

lumped value to be measured as an intrinsic elastic modulus of the material. As a simplest 

illustration, Figure X.7 shows results from macroscopic tensile tests performed on high-density 

polyethylene bars with such a rate-jump protocol applied (Chan and Ngan 2010). Figure X.7(a) 

shows a typical load schedule of nominal stress vs time, where a step change in the stress rate is 

imposed at time marked as 0. The corresponding nominal-strain response is shown in Figure 

X.7(b). From eqn. (X.24), an effective elastic modulus of the material is given by 






























E      (X.25) 

(a) 

 

(c) (b) 
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where /  and / are the stress and strain rates, i.e. the slopes of the graphs in Figure X.7(a,b), 

measured before and after the rate jump and extrapolated to the latter. According to the above 

argument, E should be an intrinsic material constant independent of the test conditions. Figure 

X.7(c) shows the values of E measured using different magnitudes of load-rate jump, and it can 

be seen that E is indeed invariant. 

In any test platform, eqn. (X.24) says that, provided that the load-displacement (𝑃~𝛿) 

relation for a linear elastic specimen during load-ramp is known, the corresponding Δ𝑃̇~Δ𝛿̇ 

relation for a viscoelastic sample can be obtained by the following simple substitutions: 

  ;   ; PP  ;   ; etc.    (X.26) 

In the following, we analyze nanoindentation as carried out in commercial nanoindenters, as well 

as in the AFM. 

 

X.5.1 Rate-jump method in depth-sensing nanoindentation 

 In depth-sensing nanoindentation using the Oliver-Pharr protocol, the elastic modulus 

and hardness are evaluated at the onset of an unloading stage following a load-hold stage (e.g. 

see Figure X.3(a)). The onset point of unloading is therefore a rate-jump point pertinent to the 

above analysis. If the sample is purely elastic, the load-displacement relation is given by eqn. 

(X.6), i.e.  

cr AEdP

dh

2


 .      (X.27) 

Now, for a viscoelastic sample at the onset of unload, carrying out the substitutions in eqn. (X.26) 

in eqn. (X.27) gives 

cruh

uh

AEPP

hh

P

h

2




















,                                                        (X.28) 

where 
hh  and 

uh  are tip speeds just before and just after the unload onset point, and 
hP and 

uP are 

likely the load rates just before and after unload onset. The apparent contact stiffness, measurable 

as the slope of the P-h curve, is  
uu hPS  / , and writing /2 cr AE  as corrS  the “correct” elastic 

stiffness, then a relation between corrS  and S can be obtained from eqn. (X.28) as 

 uhu

h

corr PPP

h

SS 



/1

111












 .     (X.29) 
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Eqn. (X.29) then serves as a correction formula for the viscous effects on the elastic contact 

stiffness (Feng and Ngan 2002; Ngan et al. 2005); the quantities needed for the correction 

include the creep displacement rate 
hh  and load drop rate 

hP  (due to the suspending springs in the 

transducer) at the end of the load hold prior to the unload, and the unloading rate 
uP  (<0), in 

addition to the apparent stiffness dhdPS /  at the onset of unload. If the load-drop due to the 

suspending springs is negligible, then, with the creep factor defined in eqn. (X.10), the following 

can be obtained from eqn. (X.29): 

C
S

Scorr 1      (X.30) 

which further indicates the effects of viscous deformation on the contact stiffness. In extreme 

cases (e.g. Figure X.3), C can be larger than unity, and then the apparent stiffness S will become 

negative. The corrected stiffness corrS  from eqn. (X.29) can be used to replace S in eqns. (X.6) 

and (X.9) to obtain the reduced modulus Er and hardness as in the original Oliver-Pharr protocol 

(Feng and Ngan 2002; Ngan et al. 2005). Eqn. (X.29) also says that if the unloading rate 
uP  is 

very fast, or the hold before unload is very long so that 
hh  and 

hP  become very small, then 

correction is not necessary. However, knowing these conditions a priori would be difficult for 

very soft samples. 

 

Figure X.8. The elastic modulus of mice cortical bone analyzed with the Oliver-Pharr method 

and rate-jump method. The inset shows the identical multi-cycle loading schedule for all the tests, 

in which the elastic modulus was calculated at the onset of each unloading portion. Data from 

Tang (2005) and Tang et al. (2006). 
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 Figure X.8 compares the elastic modulus of mice cortical bone calculated with the rate-

jump and the Oliver-Pharr protocols (Tang 2005; Tang et al. 2006). Here, a multi-cycle loading 

schedule was used to evaluate the elastic modulus at the onset of each unloading cycle. In the 

earlier cycles, the elastic modulus obtained by the Oliver-Pharr method becomes negative due to 

very severe viscoelastic effects, which lead to the “nose” phenomenon in the P-h curve (c.f. 

Figure X.3 for selenium). The rate-jump method is able to turn these cases back to normal with 

positive and rather consistent modulus values. 

 

X.5.2 Rate-jump method in AFM nanoindentation 

         As mentioned earlier, nanoindentation is also routinely carried out in commercial AFMs, 

especially for testing biological tissues and nano-scale objects such as nano-filaments or wires. 

Compared with using a commercial depth-sensing nanoindentation machine, one major 

challenge arises in the AFM, namely, unlike the diamond Berkovich tips usually used in depth-

sensing nanoindentation which are quite durable, AFM tips are much sharper and more fragile, 

and may not survive the many indentations required in obtaining the tip-shape function 

)( cc hfA   (Figure X.2b) from a calibrating sample. In fact, the uncertain shape of AFM tips is 

one major disadvantage involved in the Hertzian fit protocol, since the tip-end radius R has to be 

known when applying eqn. (X.5). To avoid the damaging tip-shape calibration, flat-ended tips 

are recommended for AFM nanoindentation work (Figure X.9), and these can be easily made 

from commercial AFM tips by focused-ion-beam milling. The tip-sample contact size a (c.f. 

Figure X.1) then remains constant for different indentation depths, and a can be obtained easily 

by electron microscope imaging of the tip. Accurate determination of the initial contact point 

would also not be necessary since the contact size a is constant. 

 

 

Figure X.9. Flat-ended tip for AFM nanoindentation, made by cutting a commercial tip by FIB 

milling (side view on left and top view on right; courtesy B. Tang) 
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As discussed above, the usual Hertzian fit method also gives rise to rate-dependent results 

in general, as illustrated in Figure X.4(a). The rate-jump protocol is definitely more attractive, as 

this should return an intrinsic elastic modulus of the sample. Figure X.10(a,b) shows two usual 

designs of commercial AFMs, one in which the tip-cantilever clamp is fixed and the sample 

moves up by displacement  by piezoelectrics (Figure X.10a), and the other where the sample 

sits on a fixed platform while the cantilever clamp moves down by  (Figure X.10b). In either 

case, the cantilever deflects with a displacement ’ at its free end, which is measured by a photo-

diode. The cantilever deflection is related to the photo-diode signal D via a sensitivity constant A, 

i.e. AD' . 

 

(a) 

 
 

(b) 

Figure X.10. Two designs of AFM. (a) Cantilever clamp fixed, sample moves up. (b) Cantilever 

clamp moves down, sample fixed. 

For the first situation in Figure X.10(a), when the sample is purely elastic with tip-sample 

contact stiffness aES r2 (c.f. eqn. (X.6)), the indentation force is given by )'('   SkP , 

where k is the force constant of the cantilever. This can be rearranged as  rE/1'/   , 

where ak 2/ . For a viscoelastic sample under a rate-jump protocol, applying the 

substitutions in eqn. (X.26) gives 















rE
A

D


1




,   (cantilever fixed, sample moves)    (X.31) 

where   is an imposed step change in the movement rate of the sample base (i.e. the input), 

and D
 
is the resultant step change in the rate of the photodiode signal D (the output).  
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 For the second situation in Figure X.10(b) where the cantilever clamp moves, a similar 

analysis gives the following relation instead: 

















 rE
A

D
1




 (sample fixed, cantilever moves). (X.32) 

 In either situation, the rate-jump relation eqn. (X.31) or (X.32) involves two machine 

constants, A the photo-diode sensitivity (i.e. cantilever deflection per unit sensor voltage or 

current generated), and ak 2/  which is a cantilever-tip constant, since both k and a are 

properties of the cantilever-tip. A also depends on the cantilever since different cantilevers will 

have different reflectivity for the laser. Thus, for a given cantilever-tip, if both A and  are pre-

calibrated, eqn. (X.31) or (X.32) can be used to evaluate the Er of an unknown specimen, by 

measuring the D
 
for a step change   imposed at some point during the load schedule. To 

calibrate A and  , single indentations can be performed on two samples with known Er values 

(e.g. one hard one soft), and A and  can then be obtained by solving two simultaneous 

equations of either (X.31) or (X.32) (Tang and Ngan 2011). This amount of calibration involving 

two single indentation tests should be the minimum required to achieve quantitative 

measurements by AFM nanoindentation, and tip damage can be minimized this way.   

 Figure X.4(b) shows the elastic modulus values measured from the same batch of oral 

cancer cells as in Figure X.4(a), using the above rate-jump protocol with three different rate-

jump values of   (Zhou et al. 2012). The measured modulus does not exhibit any dependence 

on the magnitude of the   used, and so this is evidently an intrinsic constant of the cell line.  

 Referring back to Figure X.6(b), while the constitutive law involving eqns. (X.22) and 

(X.23) is expected to hold for a very short time span across the rate-jump time point tc, for time- 

or strain-dependent materials, the constitutive law itself may evolve with time. For such 

materials, the effective elastic modulus measured from the rate-jump protocol would then be the 

material constant at tc. Successive rate-jumps can be imposed along a load schedule to measure a 

series of Er values along the strain path, and these should represent the evolution of the 

constitutive law or structure of the material over time or strain.   

 Although the rate-jump method is useful in returning an intrinsic elastic modulus of any 

viscoelastic sample, the viscous (dashpot) component of the deformation is subtracted out. The 

viscous component can only be obtained from linear viscoelasticity analysis of load-relaxation or 

creep response of the sample using an assumed constitutive model (see eqn. (X.21) and Figure 

X.5), or as the loss modulus by means of dynamic nanoindentation.  
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X.6 Discrete Yield Events in Soft Materials 

Apart from smooth viscoelasticity or creep deformation, discrete plasticity events with 

time-dependent characteristics are also frequently observed in metals and polymers of small 

volumes. The first type of such discrete plasticity is delayed onset of yielding in well-annealed 

metals. It is well-known that annealed metals subjected to nanoindentation often exhibit discrete 

yield point, which marks the onset of plastic deformation. When the load is held at a value 

slightly below the yield point, no yielding or creep occurs initially as expected, but with 

prolonged application of load, a discrete yield event may occur suddenly after some waiting 

time, as shown by the example in Figure X.11. This waiting time is shorter as the load increases 

(Chiu and Ngan 2002), and for a fixed load, it exhibits a stochastic distribution (Figure X.11(b)). 

This delayed yielding behavior is thought to be due to thermally agitated nucleation of incipient 

dislocations within the stressed volume (Ngan et al. 2006).  

 

 

(a) 

 

(b) 

Figure X.11. Delayed incipient plasticity in Ni3Al (111) during load-hold nanoindentation at 

room temperature. (a) Load and displacement versus time, showing the sudden occurrence of a 

discrete yield event during the load-hold. Creep follows immediately after the discrete event. (b) 

Statistical distribution of the waiting time for the discrete yield to occur at 500N. Data from Wo 

et al. (2005). 

 

 Discrete plasticity is not confined to the onset of yielding, but can occur intermittently 

after first yield. Figure X.12(a) shows a type of creep deformation with discrete yield events in 

single-crystalline aluminum micro-pillars under uniform compression at room temperature (Ng 

and Ngan 2007). Figure X.12(b) shows a similar type of discrete creep, superimposed on smooth 

creep deformation, observed during constant-load nanoindentation on high-density polyethylene 

(Li and Ngan 2010). The occurrence frequency of the discrete creep events in polyethylene was 
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found to increase with crystallinity, suggesting that the discrete creep behavior is due to the 

crystal phases in the polymer. The discrete type of creep relaxation events represents an 

interesting contrast to the conventional smooth viscoelastic deformation, and is worthy of more 

investigations in the future. 

 

 

(a) 

 

(b) 

Figure X.12. Successive discrete yield events during load-hold experiments. (a) Aluminum 

single-crystalline micro-pillars subjected to uniform compression at constant load at room 

temperature exhibit a type of creep deformation with discrete jumps (Ng and Ngan 2007). (b) 

High-density polyethylene subject to Berkovich nanoindentation at constant load at room 

temperature exhibits similar creep behavior with discrete jumps (Li and Ngan 2010).  

 

X.7 Conclusions 

 In this Chapter, we have reviewed selected behavior and critical issues when soft 

materials are subjected to nanoindentation-type testing. Soft samples such as polymers, 

biological specimens, glasses approaching glass transition, and so on, often exhibit time-

dependent viscoelastic deformation during nanoindentation testing. Data analysis protocols based 

on Hertzian-type theories are inadequate for such materials, often returning erroneous results. 

Linear viscoelasticity analyses are straightforward to carry out, but the choice of the suitable 

constitutive law is not an easy step, and such analyses often return rate-dependent storage and 

loss coefficients of the model, which is not ideal. A rate-jump protocol can return an intrinsic 

elastic modulus for any general linear-elastic, nonlinear-viscous solid, but no information can be 
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obtained concerning the viscous component of the constitutive law. In addition to continuous 

viscoelasticity, a wide range of materials also exhibit a discrete mode of creep deformation 

during nanomechanical testing.    
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