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Thyroid hormones are emerging regulators of testicular function since Sertoli, germ, and
Leydig cells are found to express thyroid hormone receptors (TRs). These testicular cells
also express deiodinases, which are capable of converting the pro-hormoneT4 to the active
thyroid hormone T3, or inactivating T3 or T4 to a non-biologically active form. Furthermore,
thyroid hormone transporters are also found in the testis. Thus, the testis is equipped
with the transporters and the enzymes necessary to maintain the optimal level of thyroid
hormone in the seminiferous epithelium, as well as the specific TRs to execute thyroid
hormone action in response to different stages of the epithelial cycle of spermatogene-
sis. Studies using genetic models and/or goitrogens (e.g., propylthiouracil) have illustrated a
tight physiological relationship between thyroid hormone and testicular function, in particu-
lar, Sertoli cell differentiation status, mitotic activity, gap junction function, and blood–testis
barrier assembly. These findings are briefly summarized and discussed herein.
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INTRODUCTION
Thyroid hormones play a crucial role in regulating development,
differentiation, and metabolism in multiple mammalian tissues.
Testis was regarded as a thyroid hormone unresponsive organ for
many years. In the past two decades, however, mounting evidence
has emerged demonstrating the presence of functional thyroid
hormone receptors (TRs) in the testis (1, 2). These findings illus-
trate that thyroid hormones likely play an important role in testis
function. Studies have demonstrated that thyroid hormones most
notably T3 (3,5,3′-tri-iodothyronine) regulates Sertoli cell prolif-
eration and differentiation during testis development including
the assembly of the blood–testis barrier (BTB) (3–5). Moreover,
it also induces Leydig cell differentiation and stimulates steroido-
genesis in the rat testis (6). Several idothyronine deiodinases and
thyroid hormone transporters have been identified in the testis
(7–10), illustrating that these enzymes and transporters necessary
to maintain the homeostasis of thyroid hormone are present in
the testis. It is generally accepted that thyroid hormone acts as an
important regulator in testis development. However, few studies
focused on the role of thyroid hormone in regulating spermato-
genesis in adult testis. Studies in recent years have suggested that
altered thyroid status in adult males is associated with abnormal
spermatogenesis, reducing sexual activity and impeding fertility
(11–15), illustrating the crucial relationship between thyroid hor-
mones and maturation status of Sertoli cells. In fact, TRα1 is a
reliable marker of Sertoli cell maturation because its expression is
considerably down-regulated in adult testes, and continual expres-
sion of TRα1 illustrates delayed Sertoli cell maturation in adult
mice (16, 17). There are also reports in recent years that thyroid
hormone is crucial to maintain gap junction (GJ) and BTB func-
tion, as well as BTB maturation during postnatal development.
Our goal in this mini-review is to focus on the role of thyroid

hormone and junction dynamics, in particular, the BTB function
during spermatogenesis, providing an update on the current sta-
tus of research in this area. We also highlight research areas that
deserve attention in future studies. We first provide a brief out-
line regarding the role of thyroid hormone in testis development
and testicular function since this information is closely related to
the emerging field in which thyroid is a major player in junction
dynamics during spermatogenesis.

THYROID HORMONE ACTION
Thyroxin (3, 5, 3′, 5′-tetraiodothyronine, T4) is the major form
of thyroid hormones released by the thyroid gland into the sys-
temic circulation. Thyroxin, however, is a pro-hormone, which
must be converted to tri-iodothyronine (3, 5, 3′-tri-iodothyronine,
T3), which takes place primarily in the liver and kidney. T3 is
the bioactive form of thyroid hormone that has high affinity for
nuclear TRs (18, 19). A small amount of T3 and reverse T3 (rT3),
however, is also produced by the thyroid gland (20). T3 mediates
its effects via genomic and also non-genomic pathways. For the
classical genomic pathway, T3 mediates its effects by TRs. In the
nucleus, TRs usually forms heterodimers with retinoid X recep-
tor (RXR), and this complex further binds to thyroid response
elements (TRE) in the promoter region of a target gene to reg-
ulate gene transcription (21). In addition, thyroid hormone also
regulates the release of thyrotrophin-releasing hormone (TRH)
by the hypothalamus and of thyroid-stimulating hormone (TSH)
by the pituitary gland (21) to serve as a feedback loop in the
hypothalamic–pituitary–thyroid axis to maintain the physiologi-
cal level of thyroid hormone in the systemic circulation. In contrast
to the genomic pathway, which has a relatively long response
time, ranging from hours to days, non-genomic pathways have
short latency and are not affected by transcription or translation
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inhibitors. Thyroid hormone binds to the binding elements such
as integrin αvβ3 located at the plasma membrane or within a cell to
exert its effects. These non-gemonic effects include the regulation
of ion influxes, kinase signaling pathways, amino acid accumula-
tion,extracellular nucleotide levels, and vimentin phosphorylation
via non-receptor protein kinases downstream (10). While T4 is a
pro-hormone, it can bind to TRs but with low affinity, and the T4
liganded-TR is less stable versus the T3-liganded-TR. Nonetheless,
T4 serves as an agonist to TRs at appropriate concentration (22),
which also depends on receptor isoform and the presence of cel-
lular cofactors (e.g., thyroid hormone receptor-associated protein
220, TRAP200) (23). In addition to the genomic pathway, T4 also
initiates rapid non-genomic response by binding to integrin αvβ3
in the plasma membrane, leading to an increase in cellular amino
acid accumulation (24–26). Collectively, these findings illustrate
T4 has a limited functional role in mammalian cells.

THYROID HORMONE RECEPTORS IN TESTICULAR CELLS
Thyroid hormone receptors (TRs) are able to mediate the effects
of thyroid hormone via classical genomic pathway via two genes,
THRA (TRα) and THRB (TRβ). Alternative splicing gives rise to
several TR isoforms: TRα1, α2, α3, and β1, β2, β3 (21). It is known
that TRβ2 is restricted to the anterior pituitary and hypothala-
mus (27), and TRβ3 is highly expressed in liver, kidney, and lung
(28). Although TRα2 and TRα3 mRNA are detected in Sertoli
cells, these receptors do not have T3-binding capacity (2, 29–31).
But they may exert dominant negative effects by binding to TRE
to suppress gene transcription (32, 33). More important, TRα1
and TRβ1 are the functional TR isoforms by mediating T3 sig-
naling, and also T4 but to a lesser extent. Both TRα1 and TRβ1
were shown to be expressed by Sertoli and germ cells through-
out development in the rat testis (1). These two TR isoforms are
abundantly expressed in neonatal Sertoli cells, suggesting that Ser-
toli cells might be the target cell type for T3 in the developing
testis. A study using TRαKO or TRβKO mice has demonstrated
that TRα1 is the crucial TR isoform, which mediates T3 effects
in neonatal Sertoli cells (34). In fact, TRα serves as a reliable
marker of Sertoli cell maturity. Persistent expression of TRα in
adult testes is a reliable indicator of undifferentiated Sertoli cells,
such as in neonatal mice (4, 35, 36) and in mice following deletion
of A-kinase anchoring protein 9 (AKAP9) that impedes Sertoli cell
differentiation (37). Recently, a transgenic model in which mice
expressed a dominant negative TRα1 only in Sertoli cells was gen-
erated. By using TRαAMI-SC mice, T3 was shown to be a potent
regulator to arrest Sertoli cell mitotic proliferation, which is medi-
ated by an activation of TRα1 via the Cdk4/JunD/c-myc pathway
(38). This finding is consistent with earlier reports that neonatal
hypothyroidism induced in mice or rats by neonatal treatment
with a goitrogen leads to an increase in Sertoli cell number and
daily sperm production, concomitant with an increase in testis
weight, due to a failure of Sertoli cell differentiation, making them
mitotically active (4, 36, 39, 40). Also, in rodents when Sertoli
cells cease to divide at age ~15- to 17-day postpartum (dpp) to
become fully differentiated, this event coincides with a surge in
T3 that peaks in the systemic circulation (41), illustrating a rec-
iprocal relationship between T3 and Sertoli cell mitotic activity
and differentiation status. Collectively, these findings illustrate T3

is a regulator of Sertoli cell mitotic function and differentiation
status in the testis. Furthermore, TRs are detected in germ cells
by immunohistochemistry (1). For instance, TRα1 is expressed
by spermatogenic cells from intermediate spermatogonia to mid-
cycle pachytene spermatocytes (1), suggesting that T3 may also
play a role in germ cell meiotic development. Additionally, TRs are
also expressed by Leydig cells in the interstitial compartment of
immature testes (1). In fact, it was reported that Leydig cell differ-
entiation and steroidogenesis in postnatal rat testes were affected
by T3 (42).

IODOTHYRONINE DEIODINASES IN TESTIS
T4 released by the thyroid gland is the pro-hormone, which is
converted to bioactive T3 by deiodination of T4 catalyzed by type
1 and type 2 deiodinase (D1 and D2; deiodinase is also known
as iodide peroxidase), usually takes place in the liver and kidney
(43) (Figure 1). Both the active hormone T3 and pro-hormone
T4, however, can also be inactivated via deiodination by type 3
deiodinase (D3), converting into biologically inactive metabolites
3,3′-diiodothyronine (T2) and 3,3′,5′-tri-iodothyronine (reverse
T3 or rT3) (43, 44), respectively (Figure 1). Thus, unlike D1 and
D2 that activates thyroid hormones, D3 is an inactivator of thy-
roid hormones, serving as a modulator of intracellular thyroid
hormone levels and action. All three deiodinases are detected in
developing and adult testes (45). In developing testis, D3 is the pre-
dominant deiodinase and then its activity declines in adult testes
(45), whereas D2 is the predominant activating deiodinase in the
testis (42). D2 is abundantly expressed in elongated spermatids,
whereas its expression could not be detected in Sertoli cells or
other germ cells, suggesting that thyroid hormones might play a
role in regulating spermatogenesis, specifically on spermiogenesis
(9). However, the precise cellular localizations of D1 and D3 in the
testis remain unclear. Earlier study has demonstrated that severe
hypothyroidism may affect fertility in both sexes (46). Unexpect-
edly, mice lack either D1, D2 or both D1 and D2 are fertile and
display normal serum T3 level (47–49). These findings indicate
that in mice, D1 or D2 is not indispensable for maintaining serum
T3 level, and D1 or D2-mediated local production of T3 is not
likely to be the only source of T3 in the testis. Interestingly, knock-
out (KO) of D3 cause impaired fertility in mice, suggesting that
D3 may play a more important physiological role in the testis (50).
Thus, further studies are necessary to investigate the precise role
of deiodinases in the testis.

THYROID HORMONE TRANSPORTERS IN TESTICULAR CELLS
Since TRs and deiodinases are located intracellularly in mam-
malian tissues including the seminiferous epithelium in testes,
thyroid hormones have to be transported across cell membranes
before they can be activated by deiodinases, such as from T4 to T3,
to mediate the effects via TRs or be inactivated, such as from T3 to
T2 or T4 to rT3. While there is no specific membrane bound
TRs, several membrane bound drug transporters are putative
transporters of thyroid hormones that include monocarboxylate
transporter (MCT) 8, MCT10, and organic anion-transporting
polypeptides (OATPs) (51, 52). MCT8 is a specific thyroid hor-
mone transporter. Unlike MCT8, MCT10 not only transports
thyroid hormones but also aromatic amino acid. Both of MCTs
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FIGURE 1 | A schematic drawing to illustrate the physiological role
of thyroid hormoneT3 on testis function. This schematic drawing was
prepared based on findings in the literature as discussed herein (see text
for details). In short, T4 is the principal thyroid hormone produced by the
thyroid gland and released into the systemic circulation. T4, however, is a
pro-hormone, which is being activated via the action of deiodinases D1
or D2, mostly in the liver and kidney but also the testis, to form T3, the
activated thyroid hormone. However, D1, D2, and D3 deiodinases are
also found in the testis. The use of goitrogen [e.g., propylthiouracil (PTU)]
can block the production of T4 by thyroid gland, which was used to
examine the effects of thyroid hormones on testicular function. D3
deiodinase, unlike D1 and D2 deiodinases that activates T4 to T3,
de-activates T4 or T3 to rT3 or T2, respectively, which are inactivated
thyroid hormones, providing a crucial mechanism to regulate intracellular
thyroid hormone action in cells, such as in Sertoli and/or germ cells in the
testis. It is known that high level of T3 inhibits Sertoli cell proliferation and
promotes Sertoli cell differentiation, whereas low level of T3 causes
delayed Sertoli cell proliferation and differentiation. It is noted that at
puberty (∼12 years of age) in men or by day ∼15-17 day in rodents, there
is a surge in T3 level in systemic circulation, coinciding with Sertoli cell
differentiation when Sertoli cells cease to divide (see text for details).
T4, 3,5,3′,5′-tetraiodothyronine; T3, 3,5,3′-tri-iodothyronine; rT3, 3,3′,
5′-tri-iodothyronine; T2, 3,3′-diiodothyronine; PTU, propylthiouracil; SC,
Sertoli cell; BTB, blood-testis barrier.

prefer T3 over T4, and MCT10 is even more efficient than MCT8 in
transporting T3 across plasma membranes (53). However, studies
have shown that MCT8 KO, MCT10 KO, and MCT8/MCT10 dou-
ble KO mice are all fertile in both sexes, supporting the notion that
other thyroid hormone transporters may compensate the loss of
MCT8 and MCT10 (54). Additionally, OATPs are able to transport
steroid conjugates, prostaglandins, bile acids, drugs, and thyroid
hormones (55). Several OATP family members have been detected
in the testis (56). For instance, OATP-F, a homolog of OATP1C1,
displaying high affinity for T4 and rT3, has been detected in human

Leydig cells (57). OATP6A1, originally identified as a cancer/testis
antigen also called SLCO6A1, is predominantly expressed in nor-
mal testes (58). In addition, two spliced variants of OATP3A1
called OATP3A1-V1 and OATP3A1-V2 have also been detected
in germ cells and Sertoli cells, respectively (59). The rat gonad-
specific transporter (GST)-1 and GST-2, which are members of
OATPs family are highly expressed in Sertoli cells, spermatogo-
nia, and Leydig cells (60), which may also be involved in T3 and
T4 transport across the plasma membrane. A recent study has
demonstrated that MCT8 and OATP1C1 are crucial to maintain
the thyroid hormone homeostasis in the mouse brain (61), and
OATP14 is a high affinity transporter for T4 at the blood–brain
barrier (62). Much research is needed to delineate the physiological
role of OATPs and MCTs in regulating thyroid hormone transport
across the BTB.

EFFECTS OF THYROID HORMONES ON SERTOLI CELL
PROLIFERATION, DIFFERENTIATION, AND BTB ASSEMBLY
Propylthiouracil is a goitrogen that inhibits the enzyme thyroper-
oxidase by blocking the production of T4 from thyroglobulin in the
thyroid,causing hypothyroidism. It also inhibits 5′-deiodinase that
converts T4 to T3. Thus, PTU is a widely used thiouracil-derived
drug used to treat hyperthyroidism (63, 64). PTU-induced neona-
tal hypothyroidism by treating neonatal rats from birth was shown
to increase rat testis weight and daily sperm production of up to
80 and 140%, respectively (35, 36). Further studies demonstrated
that this was the result of Sertoli cell proliferation and a delay
of Sertoli cell maturation (5). Furthermore, the Sertoli cell BTB
failed to assemble by 15–25 dpp even though some tight junction
(TJ) structures were detected by electron microscopy at these ages,
but extensive network of TJ ultrastructure and basal ectoplasmic
specialization (ES) analogous to age-matched control rats was not
found in these rats treated with PTU from birth to age 25 dpp (5).
Conversely, neonatal hyperthyroidism was found to stimulate Ser-
toli cell differentiation, rendering Sertoli cells ceased to proliferate
by age 12 versus ∼15–17 dpp in normal rats, thereby reducing
the testis weight in adult animals at age 100 dpp by almost 50%
(3). These findings suggest that thyroid hormone regulates testis
development by modulating Sertoli cells mitotic activity, differen-
tiation status, and the BTB assembly. Table 1 summarizes some of
the known effects of thyroid hormone T3 on Sertoli and Leydig
cell function in the testis.

THYROID HORMONES, GAP JUNCTION, AND
EPITHELIAL/ENDOTHELIAL BARRIER FUNCTION
Gap junctions are intercellular channels, which mediate direct
communication between neighboring cells. These channels allow
passage of ions and small molecules, usually <1–1.5 kDa, and are
involved in several physiological processes, such as cell growth,
apoptosis, and differentiation (82–85). Connexin 43 (Cx43) is
the predominant GJ protein in the testis (84, 86), it is expressed
by Sertoli cells, germ cells, as well as Leydig cells in the testis
and found at the Sertoli cell–cell and Sertoli–germ cell inter-
face (87, 88). Although the Cx43 germ line KO mice died shortly
after birth due to heart defects, deletion of Cx43 was shown to
induce germ cell deficiency in the testis of developing embryo
(89). Interestingly, Sertoli cell-specific Cx43 KO (SC-Cx43 KO)
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Table 1 | Effect of thyroid hormoneT3 on testes.

Cell type Effects: stimulation (+), inhibition (−) Reference

Sertoli cell Proliferation (−) (3, 4)

Differentiation (+) (3, 4, 39)

ABP production (−) (65)

AR (+) (30)

Aromatase (−) (66, 67)

Connexin 43 (+) (68)

ER (−) (69)

GLUT1 (+) (70)

IGF-1 (+) (71)

Inhibin (+) (3)

Lactate (+) (39)

NCAM (−) (72)

Nidogen (+) (73)

p21Cip1 (+) (74, 75)

p27Kip1 (+) (74, 75)

Testosterone metabolism aromatization (−) (39)

Type IV collagen (−) (73)

Vimentin phosphorylation (+) (76)

Leydig cell Differentiation (+) (77, 78)

Steroidogenesis (+) (79)

StAR protein (+) (79–81)

ABP, androgen binding protein; AR, androgen receptor; ER, estrogen receptor;

GLUT1, glucose transporter-1; IGF-1, insulin-like growth factor-1; NCAM, neural

cell adhesion molecule.

mice have smaller testes, and the seminiferous tubules of these
KO mice contain mitotically active Sertoli cells and early sper-
matogonia but not any other germ cell types since spermatogonia
failed to differentiate into spermatocytes beyond type A to enter
meiosis (90). It is noteworthy that Sertoli cells of SC-Cx43 KO
mice remained proliferative in adult mutant mice (16, 90), anal-
ogous to the phenotypes of Sertoli cells in the goitrogen-induced
hypothyroidism model. These findings also illustrate that Sertoli
cell maturation is perturbed following deletion of Cx43 in these
mutant mice. TRα1 mRNA expression was also found to be up-
regulated by 20- and 60-dpp in the testis of SC-Cx43 KO mice
versus the age-matched control (16). It is noted that TRα1 is abun-
dantly expressed in the testis during neonatal period but rapidly
declines in adulthood in normal rats (21). These findings thus
illustrate an inactivation/deletion of Cx43 causes an upregulation
of TRα1, which may mediate thyroid hormone action on Sertoli
cell differentiation. Taken collectively, these data thus demonstrate
unequivocally that Cx43 plays a crucial role in spermatogenesis
and testis development, which is also involved in thyroid hormone
action in the testis. In fact, studies have shown that thyroid hor-
mone may inhibit Sertoli cell proliferation by up-regulating Cx43
expression (68, 91). However, the precise mechanism remains
unknown. In tumor cells, overexpression of Cx43 induces cyclin-
dependent kinase inhibitor (CDKI) p27Kip1 level (92). Consistent
with this finding, in vitro studies have shown that T3 up-regulates
p27Kip1 and p21Cip1, which, in turn, may play a role in down-
regulating Sertoli cell proliferation (74, 75, 93). It is also likely that

thyroid hormone regulates Cx43 expression, which in turn induces
the expression of maturation/differentiation markers p27Kip1 and
p21Cip1 via a yet-to-be defined signaling pathway, leading to an
arrest of Sertoli cell proliferation. This possibility must be carefully
evaluated in future studies to define the physiological relationship
between Cx43 and thyroid hormone action in the testis as well as
the involving signaling molecules.

While studies using goitrogen and Sertoli cell-specific Cx43 KO
models have demonstrated the physiological relationship between
thyroid hormone action, Cx43-based GJ function and spermato-
genesis (e.g., differentiation of spermatogonia to spermatocytes
and the onset of meiosis), in particular, the impact of T3 on
Sertoli cell BTB assembly, the molecular mechanism(s) under-
lying these observations remain unknown. An early report has
demonstrated that treatment of chick with thiouracil that inhibits
T3 production also delays the development of interdigitation of
the lateral plasma membrane between adjacent corneal endothe-
lial cells whereas thyroxine treatment accelerates development of
endothelial cell lateral borders (94). These findings are physiologi-
cally important to studies in the testis since Sertoli cell cytoplasmic
processes create interdigital association with different germ cell
types at a Sertoli:germ cell ratio of ∼1:30-1:50 during spermato-
genesis, requiring extensive interactions between Sertoli and germ
cells at the plasma membranes, supporting the notion that T3
may play a role in junction dynamics in the seminiferous epithe-
lium. It is likely that T3-mediated Cx43-based GJ function may be
crucial to these events. It is logical to use the goitrogen-induced
hypothyroidism model in both neonatal and adult rats to examine
changes in junction dynamics at the BTB and also Sertoli–germ
cell interface during spermatogenesis in future studies.

CONCLUDING REMARKS AND FUTURE PERSPECTIVES
Herein, we provide an update on the role of T3 on Sertoli cell mat-
uration, differentiation and BTB assembly during development.
Figure 1 summarizes the latest findings regarding the role of thy-
roid hormones in Sertoli cell proliferation, differentiation, and
BTB assembly based on several reports in the last two decades
investigating the role of thyroid hormones on testis function.
However, there is a lack of data regarding the mechanism(s) by
which T3 affects BTB developing at ~15- to 21-dpp in rats. Does
this involve changes in the spatiotemporal expression, localiza-
tion, and/or intrinsic activity of actin regulatory proteins, such as
Arp2/3 (actin-related protein 2/3) complex (a branched actin poly-
merization inducing protein), palladin (an actin bundling/cross-
linking protein), Eps8 (epidermal growth factor receptor pathway
substrate 8, an actin barbed end capping, and bundling protein),
which affect organization of actin microfilaments at the BTB?
Does this involve changes in the endocytic vesicle-mediated pro-
tein trafficking, thereby impeding localization of adhesion protein
complexes at the Sertoli cell–cell interface? What is the effect on
the actin microfilament organization at the ectoplasmic special-
ization following knockdown of D1, D2, and/or D3 in Sertoli cells?
Many of these questions will need to be addressed before we can
gain some insightful information on the role of thyroid hormone
on junction dynamics in the testis. Furthermore, selenium, a key
element to maintain spermatogenesis and male fertility (95), is the
prosthetic group of deiodinases, as such selenocysteine that plays
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an important role in determining the free circulating level of T3
in the mammalian body. As such, the involvement of selenium
in thyroid hormone action should also be considered in future
studies.
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