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Premise of research. Early-divergent angiosperms typically possess hermaphroditic flowers but often lack
any biochemically mediated self-incompatibility mechanism. Although outcrossing is generally promoted in
these taxa by protogyny, which is effective for precluding autogamy (self-fertilization within a flower), other
mechanisms are necessary to prevent geitonogamy (self-pollination between different flowers within an in-
dividual). In this article we investigate the occurrence and efficacy of inter- and intraindividual floral syn-
chrony for preventing geitonogamy in the early-divergent angiosperm Desmos chinensis (Annonaceae) within
the context of the overall floral biology and pollination ecology of the species.

Methodology. We assess the floral phenology (at the flower, individual plant, and population levels), floral
scent chemistry, pollination ecology, and breeding system of D. chinensis.

Pivotal results. Desmos chinensis is pollinated by small Amystrops beetles (Nitidulidae) that are attracted
by floral scent. Although the flowers are hermaphroditic and self-compatible, population genetic analysis
indicates that the species is likely to be predominantly xenogamous (outcrossing): most of the genetic diversity
occurs within populations, with evidence of extensive gene flow. The flowers are protogynous, with anthesis
lasting ca. 27 h and with a 6-h nonsexual interim phase separating the functional pistillate and staminate
phases. Although protogyny is an effective mechanism to prevent autogamy, it cannot prevent geitonogamy.

Conclusions. We demonstrate the existence of inter- and intraindividual floral synchrony in D. chinensis,
in which pistillate- and staminate-phase flowers rarely coexist within an individual, thereby largely precluding
the possibility of geitonogamy. We suggest that inter- and intraindividual floral synchrony may be much more
common than previous studies suggest. Since the phenomenon is known from several phylogenetically disparate
lineages in the family and has possibly evolved independently, it may endow a significant selective advantage for
promoting xenogamy.

Keywords: Annonaceae, breeding system, floral scent, floral synchrony, pollination, xenogamy.
Introduction

Biochemically mediated self-incompatibility mechanisms are
widespread in angiosperms, effectively suppressing inbreeding
depression in populations and hence increasing reproductive
fitness. Self-incompatibility has been implicated as one of the
key evolutionary innovations that enabled the rapid diversi-
fication of angiosperms during the Cretaceous (Whitehouse
1950; Zavada and Taylor 1986; Igic et al. 2008) and is likely
to have evolved independently in different lineages (Charles-
worth et al. 2005) since different genetic control mechanisms
exist, expressed in either the gametophytic or the sporophytic
generations (Allen and Hiscock 2008). Self-incompatibility has
been shown to be lacking inmany early-divergent angiosperms,
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however, including the Amborellaceae and some Nymphaeales
and Magnoliales, such as the Annonaceae and Magnoliaceae
(Bernhardt and Thien 1987; Dieringer and Espinosa 1994;
Allen and Hiscock 2008; Pang and Saunders 2014). It has been
hypothesized that the deleterious genetic consequences arising
from the absence of self-incompatibility in these early-divergent
lineages may be offset by selective advantages arising from the
ability to reproduce under unfavorable conditions, such as iso-
lated populations where there are constraints on the number
of genetically distinct individuals and periods where polli-
nator availability is limited (Barrett and Eckert 1990; Lloyd
1992; Goodwillie et al. 2005; Pang and Saunders 2014). Self-
compatible early-divergent angiosperms have nevertheless been
shown to exhibit a diversity of alternative mechanisms that
promote outcrossing (xenogamy) by reducing self-fertilization
and biparental inbreeding, including intrafloral dichogamy (the
temporal separation of pistillate and staminate function in her-
maphroditic flowers), herkogamy (the spatial separation of pol-
len presentation and receipt in hermaphroditic flowers), floral
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synchrony, and the evolution of structurally or functionally
unisexual flowers (Endress 2010; Pang and Saunders 2014).
Achieving high levels of xenogamy is clearly of considerable
importance, even in plants that are self-compatible.

This study evaluates the effectiveness of inter- and intra-
individual floral synchrony for promoting xenogamy in Des-
mos chinensis, a representative of the early-divergent angio-
sperm family Annonaceae. As with many Annonaceae species,
D. chinensis flowers are hermaphroditic and protogynous,
with anthesis extending over a 2-d period andwith the pistillate
phase occurring 1 d ahead of the staminate phase. Inter- and
intraindividual floral synchrony involves two distinct pheno-
logical cohorts within the population so that all the flowers
borne concurrently on an individual are synchronized in the
same sexual phase, ensuring that the transfer of pollen between
flowers can occur only between different individuals. This
type of floral synchrony has been reported in several early-
divergent angiosperm families, including the Eupomatiaceae
(Endress 1984), Canellaceae (Wilson 1982), and Annonaceae.
The Annonaceae is perhaps the best-studied family in terms of
this mechanism, with reports of floral synchrony in several dis-
parate lineages, viz., subfam. Malmeoideae tribe Maasieae
(Maasia; Rogstad 1994, as Polyalthia) and subfam. Anno-
noideae tribes Annoneae (Annona; Murray and Johnson 1987,
as Rollinia; Lora et al. 2011), Guatterieae (Guatteria; Webber
2002), and Uvarieae (theDasymaschalon-Desmos-Friesodielsia
clade; Pang and Saunders 2014; X. Guo, personal communi-
cation). The occurrence of this type of floral synchrony in such
disparate evolutionary lineages suggests that it is functionally
very significant.

Inter- and intraindividual floral synchrony have not received
much attention, however, probably because they are difficult to
detect in the field: in order to reveal floral synchrony, it is
necessary to monitor floral phenological changes in multiple
individuals over several consecutive days, an undertaking that
is beyond the scope of many studies. We suggest that the phe-
nomenon is likely to be much more common in early-divergent
angiosperms than existing reports suggest. Despite evidence
for the independent evolution of floral synchrony in disparate
lineages in the Annonaceae, the genetic consequences of the
mechanism have never been assessed. This study describes the
floral biology and pollination ecology ofD. chinensis, including
observations of floral phenology, floral thermogenesis, floral
scent chemistry, and assessments of effective pollinators and
plant breeding system. Floral thermogenesis and scent chem-
istry analysis can provide convincing evidence to support the
pollination ecology of D. chinensis, as they are often strongly
associated with pollinator behavior. In particular, we use ge-
netic diversity and gene flow within and between populations
to evaluate the efficacy of floral synchrony for promoting out-
crossing.

Material and Methods

Study Site

Field observations were conducted in Hong Kong, China,
where Desmos chinensis is a common and dominant under-
story species, particularly in natural lowland forests and ar-
tificially managed feng shui woods near villages. Three popu-
This content downloaded from 147.00
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lations were selected for the study, viz., Lung Fu Shan Country
Park (lat. 22716′N, long. 114707–08′E), Pokfulam Country
Park (lat. 22715–16′N, long. 114707–09′E), and Ho Sheung
Heung feng shui wood (lat. 22730′32–47″N, long. 114706′20–
28″E). All three sites support healthy populations of D. chi-
nensis with abundant pollinators. Voucher herbarium speci-
mens have been deposited in the University of Hong Kong
herbarium (C.C. Pang PCC06, Aug. 22, 2011; C.C. Pang
PCC10, Sept. 1, 2011).

Floral Phenology

Phenological studies were conducted over four consecutive
flowering seasons (2008–2011) in order to identify the timing
and duration of floral sexual stages and to evaluate possible
synchrony in anthesis at individual and population levels. A
total of 200 flower buds from 20 individuals were tagged and
monitored every day until sexual maturity. Observations were
subsequently taken at 2-h intervals until the end of the sta-
minate phase. The onset and duration of stigmatic receptivity,
presence or absence of stigmatic exudate, and color changes
in the stigmas were recorded throughout the pistillate phase.
Stigmatic receptivity was determined by immersing the stig-
mas in 3% hydrogen peroxide (H2O2) solution and observing
bubble formation (Dafni 1992), which is the result of peroxi-
dase enzyme activity (Galen and Plowright 1987). The presence
of stigmatic exudate was observed to be correlated with stig-
matic receptivity and was accordingly used as supporting evi-
dence for determining the onset of the pistillate phase (Dafni
1992). The staminate phase was recognized by anther dehis-
cence, with the timing and duration of pollen availability and
associated color changes recorded throughout the staminate
phase. The presence of a sexually nonfunctional interim phase
between the end of the pistillate phase and the onset of the sta-
minate phase was also assessed.

Inter- and intraindividual floral synchrony were investigated
by surveying 10 individual plants over 10 consecutive days
in the Ho Sheung Heung population in the summer of 2008
(Pang and Saunders 2014). The simultaneous occurrence of
pistillate-, interim-, and staminate-phase flowers within and be-
tween individual plants was determined.

Assessment of Floral Visitors

Observations of floral visitors were conducted by surveying
a total of 100 flowers from 16 individual plants in both Lung
Fu Shan and Ho Sheung Heung populations in 2010 and 2011.
Flowers were observed throughout anthesis at 2-h intervals
to record the arrival and departure patterns of the floral visi-
tors. The following criteria were used to determine whether
floral visitors were effective pollinators: (1) relative visitation
rates; (2) the coincidence of visits and the duration of pistil-
late or staminate phases in the flowers; (3) the attachment of
D. chinensis pollen grains to the floral visitors, determined us-
ing LM and/or SEM; and (4) evidence of movement of floral
visitors between flowers of different anthetic phases.

A sample of each species of floral visitor was immobilized
in an Eppendorf tube containing absorptive paper soaked with
chloroform. After checking for the presence of attached pollen
grains, the insects were stored in 70% alcohol for further as-
8.031.043 on August 16, 2016 00:02:43 AM
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sessment and/or identification. Floral visitors were identified
to genus level by entomologists from the Natural History Mu-
seum in London.

Floral Thermogenesis and Floral Scent Analysis

Temperature measurements inside the floral chambers of 10
D. chinensis flowers were recorded using a digital temperature
datalogger (Testo 176-T4, Germany), with type-K thermo-
couples that have an accuracy of50.37C. Measurements were
taken at 15-min intervals from the start of the pistillate phase
until the end of the staminate phase. Ambient temperatures
outside the floral chamber were collected simultaneously using
an identical cross-calibrated temperature sensor.

Floral scents were collected from different anthetic phases
using a solid-phase microextraction (SPME) fiber with a 65-mm
divinylbenzene/polydimethylsiloxane coating mounted on a
manual sampling device (Supelco, Bellefonte, PA). Flowers were
placed in previously unused polypropylene bags that were
sealed to limit air movement (Azuma et al. 2001). A purified
SPME fiber was inserted into the bag and exposed for 2 h to
enable adsorption of volatile compounds; the fibers were then
transferred to the School of Biological Sciences at the Univer-
sity of Hong Kong for gas chromatography–mass spectrome-
try (GCMS) analysis. An Agilent 6890N gas chromatograph
(Agilent Technologies, Palo Alto, CA) was used, coupled with
an Agilent 5973 mass selective detector with a 30# 0.255-mm
i.d. DB-WAX capillary column and a 0.25-mm film (J and W
Scientific, Folsom, CA). Helium was selected as the carrier gas,
with an injection temperature of 2507C for 1 min to allow va-
porization of volatile compounds. The oven was maintained
at 507C for the first 5 min, raised by 57C min21 to 2307C,
and then maintained at 2307C for 20 min. Electron ionization
mass spectrometry was used with an acquisition range of 30–
650 m/z. The volatile compounds were identified by compar-
ing their mass spectra against the NIST 02 MS library bundle
(National Institute of Standards and Technology, Gaithers-
burg, MD). Compounds with estimated identity likelihoods
below 80% were considered unknown (Ratnayake et al. 2007;
Pang et al. 2013). Kovats index values were calculated against
n-alkane standards to confirm compound identity of chemicals
with retention times longer than 5 min (Kovats 1965).

Plant Breeding System

The breeding system of D. chinensis was assessed using two
approaches: field-based controlled pollination experiments and
lab-based inter–simple sequence repeat (ISSR) analysis. The
controlled pollination experiments were conducted during the
peak flowering season when the maximum number of flowers
was available. All flowers were covered with durable fine-mesh
chiffon bags before they reached sexual maturity to ensure ex-
clusion of floral visitors (Dafni 1992). The range of possible
controlled pollination experiments was limited by the presence
of the pollination chamber and the large number of stamens,
which restrict the possibility of floral manipulations including
emasculation: previous experience has shown that the removal
of petals and/or stamens typically results in abscission of the
entire flower. A total of four controlled pollination treatments
were undertaken (adapted from Dafni 1992), using toothpicks
This content downloaded from 147.00
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to artificially pollinate flowers: (1) the control, in which flowers
were not bagged and were left to freely pollinate; (2) a test for
geitonogamy, in which flowers were bagged prior to anthesis
and then artificially pollinated using pollen from another flower
of the same individual that had previously been bagged; (3) a
test for xenogamy, in which flowers were bagged prior to an-
thesis and then pollinated with pollen from a different indi-
vidual (at least 10 m distant); and (4) a test for autogamy, in
which flowers were bagged prior to anthesis and left unpol-
linated. If protogyny is demonstrated, treatment 4 can also be
regarded as a test for agamospermy.
Bags were not removed until fruit maturity to prevent rip-

ening monocarps from being taken by birds. The number of
developing fruits in each treatment was counted at 2-wk in-
tervals until fruit maturity. Failure of fruit set was indicated by
the abscission of the entire flower. Self-incompatibility was es-
timated by calculating the index of self-incompatibility (ISI), in
which the number of flowers that set fruit after self-pollination
is divided by the number resulting from cross-pollination (e.g.,
Bawa 1974; Zapata and Arroyo 1978; Stephenson et al. 2000;
Igic and Kohn 2006). ISI values were used to define the fol-
lowing categories: 0 p entirely self-incompatible, 0–0.2 p
mostly self-incompatible, 0.2–1p incompletely self-compatible,
and 1p entirely self-compatible.
For the ISSR analysis, young leaf samples from designated

individuals were collected and dried using silica gel. Leaf sam-
ples (20 mg/individual) were ground over liquid nitrogen using
an autoclaved mortar and pestle, and the total DNA was iso-
lated using a DNeasy plant kit (Qiagen, Hilden, Germany) and
stored at 2207C. A total of 100 primers, 15–23 nucleotides in
length (USB ISSR primer, oligonucleotide set 100/9; Biotech-
nology Laboratory, University of British Columbia, Vancou-
ver), were screened and eight primers used for single-primer
PCR amplifications. PCR amplifications were performed in a
GeneAmp PCR system 2700 (Applied Biosystems, Carlsbad,
CA), after which the products were stored at 47C.
PCR products were loaded onto 1.8% agarose gels in #1

TAE buffer with SYBR Safe DNA gel stain (Invitrogen, Hong
Kong, China). The gels were run at constant voltage (Culley
andWolfe 2001), and the gels were visualized under ultraviolet
light using a UVP gel documentation system. Fragment sizes
were estimated based on a 100-bp DNA ladder (Fermentas,
Hong Kong, China), and their sizes were used to assign loci for
each primer. Bands were scored as diallelic for each assigned
locus, and POPGENE version 1.32 (Yeh et al. 1997) was used
to analyze the data, assuming that populations were in Hardy-
Weinberg equilibrium at all loci.

Results

Floral Phenology

Seven different stages of floral development are apparent in
Desmos chinensis as follows:
Stage I (fig. 1A): early bud (5–6 d). The flower buds are

green and orientated more or less horizontally. The buds are
initially completely enclosed by the three sepals but subse-
quently begin to separate, exposing the outer petals, after 2 or
3 d; the outer petals remain closed, and hence the inner petals
are not visible.
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Stage II (fig. 1B): petal separation (2–3 d). The flower
buds gradually become pendent as their weight increases. The
outer petals enlarge slightly and separate, exposing the inner
petals. The base of each inner petal is constricted and slightly
curved inward to form the floral chamber, which becomes fully
This content downloaded from 147.00
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developed in the later stages. Both whorls of petals remain
green.

Stage III (fig. 1C): petal elongation (5–6 d). The petals
remain green, and the buds remain pendent. Both petal whorls
elongate, although growth of the outer whorl exceeds that of
8.031.043 on August 16, 2016 00:02:43 AM
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Fig. 1 Flower-level phenological changes inDesmos chinensis. A, Stage I: early bud; B, stage II: petal separation; C, stage III: petal elongation
D, stage IV: floral chamber formation, showing basally constricted petals;E, stage V: pistillate phase, showing anAmystrops beetle inside the opened
pollination chamber; F, stage VI: interim phase, with the inner petals artificially separated; G, stage VII: staminate phase, with the inner petals
artificially separated, showing dehiscent stamens; H, mature pistillate-phase flowers.
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the inner whorl. The basal constriction of the inner petals is
obvious, although this is not evident in the outer petals.

Stage IV (fig. 1D): floral chamber formation (ca. 10 d).
Both petal whorls continue to enlarge, and the bud reaches its
maximum size toward the end of this stage. The base of the
outer petals becomes constricted and inwardly curved, con-
tributing to the formation of the floral chamber. The chamber
has four apertures that allow floral visitors to access the re-
productive organs of the flower: three of the apertures are
located between the basal margins of contiguous inner petals
and are loosely occluded by the basal constrictions of the
three outer petals, and the other aperture is located at the top
of the basal constriction of the inner petals, directly above the
gynoecium. The petals begin to turn pale yellow toward the
end of this stage.

Stage V (fig. 1E): pistillate phase (ca. 18 h). The flowers
remain pendent, and pigmentation of the petals intensifies to
bright yellow, with the basal parts of both petal whorls turn-
ing red near the reproductive organs. The flowers emit a sweet
odor, which is particularly intense in the morning (0600–0800
hours). The onset of stigmatic receptivity in the early morning
(ca. 0400 hours) continues until late evening of the same day
(ca. 2200 hours; fig. 2); this is associated with the formation of
stigmatic exudate (a in fig. 2) and a color change in the stig-
mas, which turn greenish-yellow. The staminal connectives also
change from green to yellow, although the stamens remain
tightly packed and the anthers do not dehisce. Beetle pollinators
were observed arriving at the flowers and entering the polli-
nation chamber at the beginning of this phase (b in fig. 2).

Stage VI (fig. 1F): interim phase (ca. 6 h). This stage lasts
from 2200 to 0400 hours the next day (fig. 2). Stigmatic re-
ceptivity diminishes, and the stigmas become dry (c in fig. 2)
and turn olive-yellow. The floral scent also diminishes, with
almost no odor apparent toward the end of the interim phase.
The orientation and color of petals remains unchanged from
the pistillate phase.

Stage VII (fig. 1G): staminate phase (ca. 3 h). This stage
lasts from 0400 to 0700 hours (fig. 2). The flowers remain
pendent, and the thecae dehisce as the stamens begin to ab-
scise (d in fig. 2), with the stamens typically remaining sus-
pended from the receptacle by the extended spiral secondary
wall thickenings of the tracheary elements. The stigmas also
abscise from the ovaries, and the petals fall from the flower one
by one (e in fig. 2), encouraging the departure of pollinators
(f in fig. 2).

The anthetic period of the flower therefore lasts for ca. 27 h.
The assessment of flowering patterns at the population level
sc
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reveals that the timing of sexual maturation of flowers within
an individual plant is synchronized over the anthetic period. A
cohort of flower buds on each individual enters the pistillate
phase concurrently at about 0400 hours on day 1; these flow-
ers subsequently progress to the staminate phase on day 2,
during which time there are no other flowers on the same in-
dividual entering the pistillate phase (table 1). Another cohort
of mature flowers develops in the morning of day 3, in which
the flowers entering the pistillate phase are not (or are very un-
likely to be) pollinated within the same individual, as staminate-
phase flowers are absent that morning. The cycle continues in
a synchronized manner, with a new cohort of mature flowers
occurring every 48 h in each plant.

Assessment of Floral Visitors

The insect most commonly observed visiting D. chinensis
flowers was a small beetle (ca. 2 mm long, abdomen ca. 1.3 mm
wide) belonging to the genus Amystrops (Nitidulidae; fig. 3A,
3B). A total of 37 Amystrops individuals were observed from
19 of the 100 flowers surveyed. The average number of bee-
tles recorded in these 19 flowers was 1.95 (SD p 1.13), and
the maximum number of beetles found in a single pollination
chamber was five. The majority of Amystrops beetles were
observed arriving and entering the floral chambers of pistillate-
phase flowers between 0600 and 0800 hours (a in fig. 2), where
they remained until the end of the staminate phase, finally de-
parting as the petals abscise. Pollen grains were observed at-
tached to the abdomen, thorax, and legs of the beetles (fig. 3C).
Only two individuals of an unknown species of curculionid
beetle were observed visiting the flowers in the entire study
period; this species was accordingly not considered an effective
pollinator.
The petals provided a landing platform for the beetles be-

fore they entered the floral chamber via the apertures between
the inner petals. Although it was difficult to determine the ac-
tivities of the pollinators inside the floral chamber without
opening the floral chamber and disturbing them, they appeared
to make contact with the stigmas during the pistillate phase of
the flowers.

Floral Thermogenesis and Floral Scent Analysis

Temperatures within the floral chamber were not signifi-
cantly higher than ambient levels, irrespective of phenological
stage, and hence there is no evidence for floral thermogenesis
in D. chinensis. The flowers emit a strong fragrance from the
Fig. 2 Timing of phenological events of flowers of Desmos chinensis during sexually functional phases. a p start of stigma exudation and
ent emission, b p arrival of pollinators, c p drying of exudate and lowering of scent emission, d p anther dehiscence and release of pollen

grains, e p abscission of petals, f p departure of pollinators.
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start of the pistillate phase; the scent is most intense in the early
morning (ca. 0600 hours), diminishing toward the end of the
pistillate phase until the flowers become almost odorless dur-
ing the nonreceptive interim and staminate phases.

A total of 79 volatile compounds were detected in the floral
scents of pistillate-, interim-, and staminate-phase flowers using
GCMS (table 2). Of these, nine, five, and eight compounds were
unique to the three phases, respectively.

Plant Breeding System

The controlled pollination experiments were conducted in
both Lung Fu Shan and Ho Sheung Heung populations dur-
ing the peak flowering season in 2009. In total, 96 flowers
This content downloaded from 147.00
All use subject to University of Chicago Press Terms
were used in the four treatments: 36 flowers for the control
(treatment 1), 8 flowers for the test for geitonogamy (treat-
ment 2), 32 flowers for the test for xenogamy (treatment 3),
and 20 flowers for the test for autogamy (treatment 4). The
sample size for the test of geitonogamy was constrained by the
limited number of pistillate- and staminate-phase flowers borne
concurrently within a single individual.

All flowers in the test for autogamy (treatment 4) withered
and abscised within 2–7 wk (fig. 4), and consequently no fruit
set was observed. The percentage fruit set (10 wk after polli-
nation) resulting from the tests for geitonogamy, xenogamy,
and the control were 75.0%, 81.3%, and 27.8%, respectively
(fig. 4). No abscission of flowers occurred within the first 2 wk,
irrespective ofwhether fertilization had occurred. Fruit loss in all
8.031.043 on August 16, 2016 00:02:43 AM
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Table 1

Number of Pistillate-Phase and Staminate-Phase Flowers on 10 Individuals of Desmos chinensis, Monitored over 10 Consecutive Days
Individual
Day
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
1
 0, ?
 9, ?
 0, ?
 3, ?
 2, ?
 0, ?
 0, ?
 1, ?
 0, ?
 0, ?

2
 2, 0
 0, 9
 12, 0
 0, 3
 0, 2
 0, 0
 3, 0
 5, 1
 8, 0
 0, 0

3
 0, 2
 10, 0
 0, 12
 7, 0
 3, 0
 0, 20
 0, 3
 0, 5
 0, 8
 0, 0

4
 4, 0
 0, 10
 4, 0
 1, 7
 0, 3
 1, 0
 2, 0
 4, 0
 6, 0
 0, 0

5
 0, 4
 8, 0
 0, 4
 5, 1
 7, 0
 0, 11
 1, 2
 0, 4
 2, 6
 37, 0

6
 0, 0
 1, 8
 8, 0
 0, 5
 0, 7
 3, 0
 2, 1
 2, 0
 1, 2
 0, 37

7
 0, 0
 10, 1
 0, 8
 2, 0
 3, 0
 0, 13
 0, 2
 0, 2
 0, 1
 15, 0

8
 0, 0
 0, 10
 15, 0
 0, 2
 0, 3
 9, 0
 1, 0
 1, 0
 8, 0
 0, 15

9
 0, 0
 5, 0
 2, 15
 1, 0
 4, 0
 0, 9
 0, 1
 0, 0
 0, 8
 7, 0

10
 0, 0
 0, 5
 8, 2
 0, 1
 0, 4
 9, 0
 2, 0
 0, 0
 3, 0
 0, 7

Pistillate-phase flowers
available for geitonogamy
 0
 11
 10
 6
 0
 0
 3
 5
 3
 0
Note. For each individual, values shown are number of pistillate-phase flowers, followed by number of staminate-phase flowers. Co-occurrence
of pistillate- and staminate-phase flowers is underlined. Table adapted from Pang and Saunders (2014).
Fig. 3 Amystrops sp. (Coleoptera: Nitidulidae), the effective pollinator of Desmos chinensis. A, Dorsal view. B, Ventral view. C, Pollen
grains of D. chinensis deposited on the legs and abdomen. Scale bars: A, B p 0.5 mm; C p 0.1 mm.
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the treatments gradually decreased 2–9 wk after pollination. All
the artificially pollinated flowers were kept bagged after polli-
nation, and therefore loss of developing fruits was presum-
ably due to inbreeding depression and/or failure of fertilization
rather than frugivory. The high levels of fruit set following
geitonogamy and xenogamy indicate that selfing is possible;
the ISI was correspondingly high (0.92).

A total of 78 ISSR loci were scored from eight primers using
24 individuals from the Lung Fu Shan population and 22 in-
dividuals from the Pok Fu Lam population. Bands ranged in
size from 230 to 2200 bp, and the number of amplified ISSR
fragments ranged from 5 to 13 bands/primer, with an average
of 9.75. Various parameters describing the population genetic
structure were calculated (table 3).

Discussion

Floral Biology and Pollination Ecology

Desmos chinensis flowers are clearly protogynous, with an-
thesis extending over 27 h, from 0400 hours with the onset of
stigmatic receptivity to 0700 hours the following day when
the petals abscise. The pistillate and staminate phases are sep-
arated by a 6-h nonsexual interim phase that effectively pre-
cludes autogamous self-pollination.

Beetles belonging to a species in the genus Amystrops (Ni-
tidulidae) were the major floral visitors to D. chinensis that
entered the floral chamber. ThisAmystrops species fulfils all the
criteria for determining effective pollination: the arrival and
departure times of the beetles coincided with the floral repro-
ductive phases, and pollen grains ofD. chinensiswere observed
not only attached to the bodies of the beetles (fig. 3C) but also
on beetles collected from pistillate-phase flowers, providing
unequivocal evidence of interfloral movement. Nitidulid beetles
are commonly reported as pollinators of other Annonaceae
species (Silberbauer-Gottsberger et al. 2003; Saunders 2012).
Flowers of D. chinensis show many characteristics typical of
cantharophily, including a partially enclosed pollination cham-
ber with small apertures, pale-colored petals, and hairy ovaries
surrounded by tightly packed stamens with extended connec-
tives (van Heusden 1992; Saunders 2012).

The Amystrops beetles are likely to be attracted to the
flowers by the strong scent that is emitted at the start of the
pistillate phase. GCMS analysis of the floral volatiles indicates
that beetle attractants and putative sexual pheromone mim-
etics are likely to be important components of the fragrance.
Several of the compounds identified from the floral scent
of D. chinensis have previously been reported to be either
attractants or sexual pheromones for Coleoptera, including
(Z)-3,7-dimethyl-1,3,6-octatriene, R,S-linalool, 3,7-dimethyl-
2,6-octadien-1-ol, benzaldehyde, heptacosane, octacosane, penta-
cosane, phenol, tetradecane, tetratriacontane, a-caryophyllene,
and a-cubebene (Jürgens et al. 2000; El-Sayed 2006 and refer-
ences therein). In addition, phenol-2,4-bis-(1,1 dimethylethyl),
3,7-dimethyldecane, caryophyllene, dodecane, dodecanoic
acid, eicosane, heneicosane, and phenylacetaldehyde oxime,
which are also identified from the floral scent, have previously
been reported to be attractants or sexual pheromones for other
insect orders, including Diptera, Homoptera, Hymenoptera,
Isoptera, Lepidoptera, Orthoptera, and Trichoptera, and are
This content downloaded from 147.00
All use subject to University of Chicago Press Terms
therefore also potential attractants for Amystrops (references
in El-Sayed 2006).
Some of the compounds recorded here from the floral scent

of D. chinensis have previously been reported as insect repel-
lents, however, including benzaldehyde, d-limonene, and naph-
thalene (Azuma et al. 2001;Wyatt 2003; El-Sayed 2006). These
compounds possibly repel herbivorous insects that would be
ineffective pollinators.
Plant Breeding System

The absence of fruit-set in the test for autogamy (treatment
4) indicates that spontaneous self-pollination does not occur
in D. chinensis. This is undoubtedly due to the existence of
protogyny, in which a 6-h nonsexual interim phase separates
the pistillate and staminate phases (fig. 2). The existence of
protogyny furthermore allows treatment 4 to be interpreted as
proof that agamospermy does not occur. The absence of au-
togamy and agamospermy clearly confirms the requirement for
pollen transfer between flowers and is consistent with the ob-
servations of floral visits by Amystrops beetles.
The difference in levels of fruit-set (fig. 4) resulting from the

control (treatment 1, with 27.8% fruit-set) and the test for xe-
nogamy (treatment 3, with 81.3% fruit-set) indicates that nat-
ural fruit-set is likely to be limited by pollen transfer. This is
probably due to the restricted availability of pollinators, al-
though this problem may be site dependent, as fruit-set is likely
to vary between populations and possibly also between flower-
ing seasons due to fluctuations in pollinator availability (Mayer
et al. 2011). Comparisons of ISI values for other species (e.g.,
Bawa 1974; Zapata and Arroyo 1978; Stephenson et al. 2000;
Igic and Kohn 2006) suggest that D. chinensis (ISI p 0.92) is
likely to be highly self-compatible and that a genetically con-
trolled self-incompatibility mechanism is unlikely to operate.
Desmos chinensis shows a high level of genetic variability

within populations (table 3) in comparison with other long-
lived perennial woody species (Hamrick et al. 1992; Ge and
Sun 1999) and other reported Annonaceae species, inferred
using ISSR markers (Ratnayake et al. 2006; Attanayake 2010)
and RAPD markers (Huang et al. 2000; table 4). The fact that
ca. 90% of total genetic diversity (HT p 0.31; table 3) in
D. chinensis is due to within-population diversity (HS p 0.28;
table 3) suggests that the two populations have similar levels
of genetic diversity due to extensive gene flow; this is con-
firmed by the high level of gene flow between populations
calculated (Nm p 5.07; table 3). The coefficient of genetic
differentiation between populations (GST) value of 0.09 (ta-
ble 3) represents the level of gene differentiation among popu-
lations and is indicative of the breeding system; the value for
D. chinensis is lower than that typical of most selfing species
(GST p 0.523) and mixed-mating species (GST p 0.243) and
is closer to that of outcrossing species (GST p 0.118; Loveless
and Hamrick 1984). This suggests that the genetic diversity
within D. chinensis populations is very high but that there is
poor differentiation among populations due to outcrossing
and frequent gene flow. Hamrick et al. (1992) further suggested
that the genetic variability within populations of wind-
dispersed species (GST p 0.077) is higher than that of animal-
dispersed species (GSTp 0.099). The results forD. chinensis are
8.031.043 on August 16, 2016 00:02:43 AM
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therefore consistent with observations that it is animal dispersed
and predominantly outcrosses.

Floral Synchrony

Anthesis is clearly synchronized within individuals of D. chi-
nensis so that almost all flowers borne concurrently are in the
same reproductive phase, either pistillate (on the first day of an-
thesis) or staminate (on the second day of anthesis). Two phe-
nological cohorts are furthermore evident at the population
level so that individuals bearing predominantly pistillate-phase
flowers co-occur with others bearing predominantly staminate-
phase flowers, thereby promoting xenogamy. The data pre-
sented in table 1 show the number of pistillate-phase flowers
borne on 10 individuals over 10 d; each of these flowers pro-
gresses to form the same number of staminate-phase flowers
the following day, enabling inferences to be drawn regarding
the number of pistillate-phase flowers that could potentially
have been pollinated by staminate flowers borne concurrently
on the same plant. Of the total 294 flowers observed (exclud-
ing data from the first day, for which data on the number of
staminate-phase flowers are not available), only 38 (12.9%)
could potentially have been fertilized by geitonogamy; this is
substantially lower than that predicted if equal numbers of
This content downloaded from 147.00
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pistillate- and staminate-phase flowers had coexisted on each
individual.

Geitonogamy is not entirely precluded, however, as occa-
sional disruption of intraindividual flowering synchrony oc-
curs (also observed in Rollinia jimenezii var. nelsonii: Murray
and Johnson 1987; table 1). Flower buds in some individuals
were occasionally observed to begin anthesis a day earlier than
expected (e.g., individual 3, during weeks 8–10; table 1); these
flowers therefore coincide with staminate-phase flowers within
the same individual, enabling geitonogamy. These rare oppor-
tunities for geitonogamy might provide reproductive assur-
ance. Although not evident in the data presented here, it can
also be conjectured that occasional disruptions in intraindi-
vidual synchrony may enable an individual in one cohort to
switch to the other cohort, thereby increasing genetic mixing
during reproduction.

It has been suggested that species showing inter- and intra-
individual floral synchrony are likely to exhibit stamen abscis-
sion immediately after the end of anthesis (Endress 2010), since
the retention of such stamens would decrease the efficacy of the
synchrony because of the continued availability of older pol-
len or else would require increased time between floral cohorts.
The abscission of stamens in D. chinensis at the start of the
staminate phase (ca. 0400 hours) is followed by petal abscission
Fig. 4 Percentage of Desmos chinensis fruits developing, following different pollination treatments.
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approximately 2 h later (e in fig. 2), which in turn encourages
the departure of the pollinators (f in fig. 2). In D. chinensis,
stamens therefore abscise from late-anthetic flowers ca. 22 h
before the next cohort of flowers begin anthesis (fig. 2).

Species with inter- and intraindividual floral synchrony are
likely to maximize reproductive efficiency by having short an-
thesis periods, although these are often separated by nonflow-
ering days (Endress 2010). Anthesis inD. chinensis is only 27 h
long, and the rapid termination of staminate function (typically
by 0700 hours on day 2; fig. 2) enables the next cohort of
flowers to develop the following day, thereby eliminating the
need for nonflowering days.

Results from the controlled pollination experiments clearly
indicate that D. chinensis is self-compatible; although autog-
amy is precluded by protogyny, comparable levels of fruit-set
were obtained in the tests for geitonogamy and xenogamy
(75.0% and 81.3%, respectively; fig. 4). The high level of fruit-
set following artificial geitonogamous pollination is not ob-
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served under natural pollination conditions because of the ef-
fects of inter- and intraindividual floral synchrony, and this ex-
plains the population genetic structure in whichmore than 90%
of genetic diversity is distributed within populations rather than
between populations.
Pollen flow and seed dispersal are generally believed to be the

main factors influencing gene flow (Levin and Kerster 1974;
Levin 1981; Loveless and Hamrick 1984). As the two popula-
tions of D. chinensis included in the ISSR analysis are con-
nected with woodland and shrubland, pollen movement and
seed movement between populations is possible. Floral syn-
chrony inD. chinensis increases opportunities for beetle move-
ment between plant individuals and presumably also between
populations, as the number of individuals bearing pistillate-
phase flowers at any one time is presumably half of the entire
population. There is no evidence, however, that the members
of the two floral cohorts are fixed every flowering season;
outcrossing can therefore probably occur between every indi-
vidual within a population over multiple years.

Conclusions

As with many members of the early-divergent angiosperm
family Annonaceae, Desmos chinensis is pollinated by small
nitidulid beetles. The beetles are attracted by sweet floral scents
that contain volatile compounds that have previously been
demonstrated to be effective beetle attractants.
The flowers are hermaphroditic and protogynous, with an-

thesis extending over 27 h and with the pistillate and staminate
phases separated by a 6-h nonsexual interim phase. Although
controlled pollination experiments show that D. chinensis is
highly self-compatible, the population genetic study based on
ISSR markers reveals that the species predominantly outcrosses
under natural conditions; most of the genetic diversity is dis-
tributed within populations, suggesting that gene flow between
populations is high. The dominance of outcrossing can partly be
explained by protogyny, which is an effective mechanism for
preventing autogamy. Protogyny cannot prevent geitonogamy,
however. We hypothesize that in the absence of a biochemi-
cally mediated self-incompatibility mechanism, outcrossing has
been promoted by the evolution of inter- and intraindividual
floral synchrony, in which pistillate-phase and staminate-phase
flowers are rarely borne on the same individual concurrently,
thereby precluding transfer of pollen between flowers. This type
Table 4

Comparison of the Mean Genetic Diversity within Populations between Desmos chinensis and Other Annonaceae Species
Genetic parameter

Asimina
triloba
Desmos
chinensis
Hubera
korinti
Monoon
coffeoides
8.031.
 and C
Uvaria
semecarpifolia
043 on August 16, 20
onditions (http://www
Long-lived woody
perennial species
16 00:02:43 AM
.journals.uchicago.edu/
Outcrossing animal-
pollinated species
P (%)
 64.0
 88.3
 49.1
 68.8
 66.0
 49.3
 47.6

A
 1.64
 1.830
 1.491
 1.688
 1.487
 1.76
 1.72

Ae
 …
 1.475
 1.329
 1.425
 1.370
 1.20
 1.22

h
 .250
 .280
 .185
 .242
 .216
 .148
 .163
Source. Uvaria semecarpifolia (Attanayake 2010); Monoon coffeoides (Ratnayake et al. 2006, as Polyalthia coffeoides); Hubera korinti
(Ratnayake et al. 2006, as Polyalthia korinti); Asimina triloba (Huang et al. 2000); long-lived woody perennial species and outcrossing animal-
pollinated species (Hamrick et al. 1992).
Note. P p percentage of polymorphic loci; A p mean observed number of alleles; Ae p effective number of alleles; h p gene diversity (Nei

1987).
Table 3

Genetic Variability within and among Populations
of Desmos chinensis Based on ISSR Data
Populations
Genetic parameter
 Lung Fu Shan
 Pok Fu Lam
 Pooled
n
 24
 22
 46

P (%)
 78.21
 88.46
 91.30

A 5 SD
 1.78 5 .42
 1.88 5 .32
 1.91 5 .29

Ae 5 SD
 1.48 5 .40
 1.47 5 .32
 1.52 5 .33

Ho 5 SD
 .40 5 .28
 .44 5 .21
 .47 5 .21

h 5 SD
 .27 5 .20
 .29 5 .16
 .31 5 .16

HS 5 SD
 …
 …
 .28 5 .02

HT 5 SD
 …
 …
 .31 5 .02

DST
 …
 …
 .028

GST
 …
 …
 .090

Nm
 …
 …
 5.07
Note. A p mean observed number of alleles; Ae p effective
number of alleles; DST p total genetic diversity distributed among
populations; GST p coefficient of genetic differentiation between
populations; h p gene diversity (Nei 1987); Ho p Shannon’s infor-
mation index; HS p within-population gene diversity; HT p total
genetic diversity in pooled populations; ISSR p inter–simple sequence
repeat; n p sample size; Nm p level of gene flow between popula-
tions; P p percentage of polymorphic loci; SD p standard deviation.
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of floral synchrony is likely to be very effective at preventing
geitonogamy in D. chinensis since fewer than 5% of pistillate-
phase flowers are shown to coincide with staminate-phase flow-
ers on the same individual.

Inter- and intraindividual floral synchrony has rarely been
reported in the Annonaceae, although we suggest that it may
be much more common than this limited number of reports
would suggest; most studies of the floral biology of Annonaceae
species do not include assessments of sexual functioning of
flowers at the population level over several days. The reports
that do exist, however, are from species that are phylogeneti-
cally very disparate, suggesting that the phenomenon is likely to
This content downloaded from 147.00
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have evolved independently in multiple different lineages. This
provides circumstantial support for the selective advantage of
inter- and intraindividual floral synchrony in self-compatible
species with protogynous flowers.
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