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Abstract 

Cyber-physical security of smart grid under attacks is a serious issue today. The technique of state estimation has 

been employed in such a large-scale system to ensure the reliability. Successful attacks on tampering these readings 

were shown for linear state estimation. For the more realistic nonlinear state estimation are used in real systems, the 

attack that requires the knowledge of system states (which are difficult to obtain, even for insiders) was proposed. Up 

to our best knowledge, there are no research results that are able to give an attack to any buses without the knowledge 

of system states. This research paper provides such an attack. Demonstrations on IEEE test system show that the 

smart grid can be exploited by launching such attacks even without system state information. The strategy to generate 

such an attack is simple and easy to implement. Thus, the results in this paper show that a more realistic threat to the 

smart grid system. Hopefully the community could revisit the tampered reading detection algorithms to come up with 

a more sophisticated solution to avoid this vulnerability. 
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1. Introduction 

Cyber Physical System (CPS) is an integrated system in which computational elements collaborate to 

control physical entities. CPS was regarded as a top-priority research area since 2007 [1]. Being a critical 

infrastructure, smart grid is a typical example of CPS (e.g. with the sensors and smart meters as the 

physical entities, the SCADA (Supervisory Control and Data Acquisition) control system as one of the 

computational elements). The current trend of smart grid is to provide on-demand power supply 

according to real-time user requirements [2]. One of the major security concerns of a smart grid system is 

on the communications of the cyber components (i.e. software in the SCADA system) and the physical 

components (i.e. sensors/meters). Several attacks indicate that the physical components, such as smart 

meters, can be compromised in order to misuse private customer data or manipulate meter readings [3].  

To ensure the reliability of such a system, the following system monitoring procedure is being used. 

Meters (sensors) are placed at different (critical) points of the system and the status of the system can be 

computed/predicted to make sure that the system is in a secure state. Example readings from these meters 

include bus voltages, bus power injections, and branch power flows [4]. The readings are transmitted 

from the meters to the SCADA system and the state of the system will be estimated (this process is called 

"state estimation"). In the computation of the state estimation, the electricity flows in the smart grid are 

needed to be modeled. There are two approaches: Alternating Current (AC) model and Direct Current 

(DC) model. The AC model is more realistic and the flow is usually modeled by a set of nonlinear 

equations while the DC model is a simplified model to approximate the AC model. The DC model is not 

as accurate as the AC model and the flow is only modeled by linear equations. The state of the system 

(i.e., the output of the state estimation) is usually represented by a vector of state variables (e.g. voltage 
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magnitudes and angles for different buses). The values of these state variables are used to control or 

adjust the smart grid components.  

The bad news is that existing hacking techniques are able to compromise meters with malicious attacks. 

In view of this, there exist methods to detect whether the readings have been tampered (or are incorrect 

due to other reasons). These methods are referred as "bad data detection methods (algorithms)" [5]. Most, 

if not all, of these methods rely on the same principle: if the readings (measurements sent back from the 

meters) are bad (e.g. being tampered), the difference between these observed readings and the computed 

readings based on the estimated state variables. This difference is called "residual" and this observation is 

referred as the "residual principle". 

Recently, a new class of man-in-the-middle attacks, namely false data injection attacks (FDIAs) was 

first proposed in [6]. They successfully showed that FDIAs could bypass existing bad data detection 

algorithms for the DC power flow model. Such an attack, if successful, would mean a big loss to the 

system [7]. For example, [7] illustrated that for the IEEE 14-bus system, if the output of the generator on 

one bus was modified and this attack lasted for one week, it would bring more than 4.7 million dollars 

benefits to the generation company.  

While FDIAs were widely explored in DC model [6], the proposed adversary models could not be 

applied to AC power flow model [8]. Paper works towards constructing FDIAs in AC power flow model 

were very few [9]-[11]. [9], [10] concentrated on how many and which measurement should be tampered 

in the AC model with the knowledge of system states. These system states were usually stored in the 

secure part of the SCADA system and were difficult to access (even for insiders). [11] followed the work 

in [9] and proposed a feasible approach to obtain those system states. Their analysis can only cover some 

of the buses which they called "injection-bus", but not all. So up to our best knowledge, there are no 

research results that are able to give an attack to any buses. This research paper provides such an attack. 

The difficulty for constructing stealthy errors in AC model lied on the complexity of the set of 

nonlinear equations. It is not easy to construct a set of tampered readings to satisfy the equations so that it 

can bypass the bad data detection algorithm. Also, for AC model, the number of measurements is also 

more than that of DC model, which increases the difficulty of the problem. 

The main contribution of this paper is to present a simple strategy to launch FDIA against nonlinear 

state estimation from the attacker's perspective. This strategy can be applied to any types of buses without 

the knowledge of system states. One theorem is introduced to show that it is likely to find such an attack 

vector when satisfying a simple rule. Two realistic attack goals are considered: random false data 

injection attacks, in which the attacker wants to inject any attack vectors as long as leading some wrong 

state variables in AC power flow model and specific false data injection attacks, in which the attacker 

wants to inject specific error into state variables in AC power flow model. This paper then proposes a 

procedure to generate such attack and illustrates that it is possible to construct attack vectors against 

nonlinear systems through simulations on several IEEE test systems (IEEE 14-bus, 30-bus, and 118-bus). 

The rest of this paper is organized as follows. Some preliminaries of nonlinear state estimation in a 

smart grid system are given in Section 2. In Section 3, models of launching FDIAs in nonlinear system 

are introduced. Section 4 presents the evaluations on the proposed attacks and Section 5 concludes the 

paper. 

2. Nonlinear State Estimation 

Consider a set of measurements given by the vector ( )z h x e  , where x  is state vector, ( )h x is a 

function vector relating z to x  and 1 2[ , ,..., ]T

me e e e  is the vector of measurement errors. In an AC 

power flow model, there are 2 1l   elements in a state vector, which can be represented as 

2 3 1 2[ , ,..., ,V ,V ,...,V ]T

l lx                                                                                                                    (1) 
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where ,Vi i is voltage angle and voltage magnitude at bus i .Without loss of generality, bus 1  is chosen 

as the reference 1( 0)  . Furthermore, measurements include real/reactive power injections and 

real/reactive power flows. More details about measurements can be found in [4]. 

When given measurement vector z , state variables are often estimated by weighted least-square 

criterion (WLS), maximum likelihood criterion and minimum variance criterion. These criterions are the 

most popular methods when dealing with state estimation problem, thus are used in this paper. The WLS 

estimator is used to minimize the following objective function: 

2 1

1

( ) (z h (x)) [z h(x)] [z h(x)]

m

T

i i ii

i

J x R R



                                                                                 (2) 

where: 

(1) [ ] 0iE e  ,where 1,2,...,i m ; 

(2) Measurement errors are independent (i.e. [ ] 0i jE e e  ); 

(3) 11 22,[ ] {R ,R ...,R }T

nnR E e e diag   and iiR  is the variance of the error in measurement i .  

2.1. Bad data detection(BDD) 

State variables in control center will be re-estimated when the system is injected by either minor 

physical errors or malicious attacks. Most BDD programs use "residual principles" to detect the presence 

of bad measurements. Upon detection of bad data in smart meters, the identification can be accomplished 

by further processing residuals. Measurement residuals (differences between observed measurements and 

estimated measurements) can be represented as, 

ˆ(x)r z h                                                                                                                                              (3) 

Mostly, 2 Test is used to test whether there exists bad measurements, 2

( ),(1 )( ) m nJ x    , where 

2

( ),(1 )m n    denotes the value in 2  distribution table with a significance level  and the degree of 

freedom v m n  . 

3. False Data Injection Attacks in AC Model 

Since intruding the control center is quite difficult, system states ( )x cannot be easily obtained in 

reality, the assumptions in the smart grid environment are summarized as follows: 

 Control center cannot be read or falsified by anyone, including system operators; 

 Attacker needs to know the topology of the system; 

 Attacker only has resources to intrude (read/modify) at most f meters among all meters (knowledge 

about complete measurement information is not necessary). 

It needs to be pointed out that in previous works [9], [10], which constructing FDIAs in nonlinear 

systems, do pose strong requirements for the attackers. They require the attackers to know the topology of 

the targeted system. Moreover, the attackers need to get the knowledge of the system states, which is in 

general not easy to obtain, even for insiders. Notwithstanding, it is important for security researchers to 

derive one kind of attack without the knowledge of system states, which can inject errors on any buses in 

nonlinear system. The rest of this section first gives basic principles on adversary models in nonlinear 

systems. Then two kinds of attacks are addressed: random false data injection attacks and specific false 

data injection attacks. Both attacks are under the realistic attack scenarios that the attacker is limited to 

modify any f meters. The first attack is to generate an attack vector without considering the impacts on 

estimated state variables (system states) in the control center. The whole system may be disordered when 
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launching this kind of attack. The second kind of attack is more focused and it tries to generate specific 

errors on targeted state variables. In this case, the attacker does not need to concern if his attack impacts 

other state variables when attacking the chosen one(s). 

3.1. Basic principle 

It is noted that there are m measurements 1 2(z ,z ,...z )T

m and n  state variables 1 2( , ,..., )T

nx x x  in a 

smart grid system. The relationship characterized between iz and x is the function h ( )i x , as is discussed 

in Section 2. Let 
az z a  be the measurements after attacks, where z is the current measurements and 

a is referred as the stealthy attacks [12]. The 
2L norm of the measurement residual after an attack, can be 

represented by 

ˆ ˆ(x ) z a (x )a a bad badr z h h                                                                                                            (4) 

where ˆ(x )badh is denoted as the vector of estimated state variables obtained from az . 

As discussed above, BDD computes the difference between az and ˆ(x )badh . Theorem 1 shows a 

simple criterion that makes az bypass BDD based on residual principle when all measurement information 

can be collected by the attacker. In details, the attack vector a can be computed as 0 0a a r  , where 0a  

is an arbitrary vector and 0r is its residual. In other words, there exists a way of calculating an attack 

vector that can bypass the detection quite easily. 

Theorem 1: Assume that the meter errors are very small (in the parameters given by IEEE test 

systems, it is about 410 ), there always exists a stealthy attack a  that can bypass the bad data detection 

scheme without detected when there exists a vector 0a , which can make the nonlinear system observable. 

Proof: When there exists a malicious vector 0a that can lead to an estimation of state estimation in the 

nonlinear system, it is easy to compute the system residual 0r by Equations (3). Based on the assumption 

that the meter errors are very small, we can have 

0 0 0
ˆ0 (x )z a r h                                                                                                                                 (5) 

where 0
ˆ(x )h is the state variables estimated by 0 0z a r  . 

Considering if an attack 0 0a a r  , the measurement residual ar  (after attack a ) can be described as,  

0 0 0
ˆ(x )ar z a r h                                                                                                                                 (6) 

Since observability is defined as the ability to uniquely estimate the system states using the given 

measurements [13], a  will have a unique vector of state variables (denoted as 0x̂ ). That is, 0ar  . The 

attack 0 0a a r  can bypass the bad data detection scheme. Therefore, the proof is complete. 

3.2. Random false data injection attack 

In a random FDIA, the attacker intends to find any attack vector a as long as it can result in a wrong 

estimation of state variables [6]. As discussed earlier, the attacker can get the knowledge of system 

topology ( )h  . When considering the network parameters are time invariant, it is feasible to perform the 

process of constructing random FDIAs based on THEOREM 1. Assume that the attacker can read/modify 

at most any f meters in a smart grid system. Let 
1

( ,..., z )
f

T

i iz z and
1

( ,..., z )
i if

T

a a az z . And let 

( )acount z z  denotes the number of meters need to be modified in set pS , where pS is the meter set 
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includes all critical meters [14] and at least one meter exists in every critical k-tuple within the system. 

Algorithm 1 is the pseudocode of constructing random false data injection attacks on behalf of an 

attacker. The input of this algorithm is the topology information (i.e. admittance matrixes). The output of 

this algorithm is to return an attack vector ( a ). Step 3-18, it tests whether there exists a solution 0

kx based 

on z  and ( )h  , where k is the iteration index. The iteration index k  is closely based on 0a  since z  is 

fixed. When considering Step 16, if ( )count a f , the attack vector does exist. Specifically, in each 

iteration, the measurement function 0( )kh x  and measurement Jacobian 
0

H kx x
 are calculated based on 

equations of different measurement types [4]. Furthermore, gain matrix 0( )iG x  can be computed as: 

0 0

1

0( ) H Hk k

i

x x x x
G x R

 
                                                                                                                          (7) 

 

Algorithm 1 Random FDIA of Nonlinear SE 

Input: 

 Admittance matrixes ( )h  ; 

 A set of current measurements {z }i ; 

 Number of meters that can be read/modified, f . 

Output: 

 Random false data injection attack az . 

  1: Initialize a random nonzero attack vector 0 1(a )m ; 

  2: Initialize 1

0 (0,0,...0,1,1,...,1)Tx  ; 

  3: for 1:100i   do 

  4: Compute 0(x )ig  based on 1( ) ( ) [ ( ) ] [z h( )]Tg x J x x h x x R x        ; 

  5: Compute 0(x ) (x) xiG g   ; 

  6: if 0(x )iG is positive definite && 100i   then 

  7:  Compute 0

ix  by 
0

1

0 0( ) [ ( ) ] [z h( )] | i

i i T

x x
G x x h x x R x


     ; 

  8:  if 0

ix    then 

  9:   1 1 1

0((H R H ) H R (z a )) ziT i iTa h      ;  

10:   Go to Step 16; 

11:  end if 

12: else 

13:  Go to Step 1; 

14:    end if 

15: end for 

16:  if ( )count a f ; then 

17:  return a ; 

18: end if 

 

Measurements can be modified by intruding the smart meters. By launching such attacks, arbitrary or 

specific errors ( )c can be successfully injected on state variables (in control center). 

3.3. Specific false data injection attack 

The specific FDIAs are the attacks that can generate specific errors on state variables without being 
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detected. As is discussed earlier in this paper, the attacker does not need to consider the impacts on other 

state variables when attacking the targeted ones. To construct an attack vector with specific errors on x , 

the attacker needs to find a p-sparse vector kx x  , which satisfies  

1 1

0( ) ( )kT k k kTH R H x H R z a                                                                                                              (8) 

Noted that z  is the current measurement vector and 0a  is a non-zero random selected attack vector. 

Equation (8) can be reformulated as a NP-Complete problem [15]: The computation of non-zero elements 

of ˆ ˆ( )kx x  satisfying kAx b  are at most q . 

Note that attacker cannot obtain state variables by accessing the control center. This paper gives a 

heuristic method to construct a set of attack vectors with their corresponding estimated state variables. 

The attacker can then pick up ideal attacks by using the least smart meters (when injecting specific 

errors c  onto state variables). If there are multiple attacks that can fulfill the requirements above, the 

attacker can select a vector a  with the smallest number of modified meters. This enables the attacker to 

inject an attack with meters as few as possible. 

4. Experimental Results 

In this section, the proposed FDIAs are validated through experiments based on IEEE test systems, 

including 14-bus, 30-bus and 118-bus systems. The dataset used in this section can be found in [16]. This 

paper primarily focuses on the feasibility of generating FDIAs against AC power flow model as well as 

the efforts needed for a successful attack. The information of state variables and measurements within 

various IEEE test systems is given in Table 1 and   is set to be 2.0 .  

Table 1. Number of state variables and measurements in the IEEE test systems 

IEEE Bus System 14-bus 30-bus 118-bus 

No. of voltage measurements 2 2 4 

No. of real power inject measurements 7 15 39 

No. of reactive power inject measurements 7 15 39 
No. of real power flow measurements 8 23 111 

No. of reactive power flow measurements 8 23 111 

No. of total measurements 32 78 304 
No. of state variables 27 59 235 

4.1. Time and probability 

The performance of probability of constructing random FDIAs is first evaluated when f is not fixed. 

The experiments are performed as follows. Let the parameter f  varies from 1  to maximum number of 

meters in each system. For each f , randomly choose f  meters to attempt an attack vector construction. 

Repeat this process 1000 times and estimate the success probability fp = # successful trials/1000.  

Fig. 1(a) shows the relationship between the probability of finding proposed attacks and the percentage 

of modified meters. It can be seen that the probability increases as the number of modified measurements 

increases. Attack can be constructed with the probability close to 100% when f  is large. For example, 

probability is 100% when f  is set to 59.38%, 76.92%, 80.26% of the whole measurements for IEEE 14-

bus, 30-bus and 118-bus respectively. For example, the attacker can always find a random FDIA in IEEE 

14-bus system, when he can modify at least 19 smart meters. 

As is shown in Fig. 1(b), constructing specific FDIA is more challenging for the attacker. The aim of 

specific FDIAs is to inject specific errors on state variables. Monte Carlo method is used to perform the 

experiments. These experiment results demonstrate that FDIAs in nonlinear systems can be systematically 

constructed by algorithms proposed in this paper. Also the results show that it is possible and practical to 
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launch FDIAs in nonlinear system with the knowledge of system's topology but without the knowledge of 

system states. 

      
(a)                                                                                                 (b) 

Fig. 1. Probability of finding an attack: (a) random FDIAs and (b) specific FDIAs. 

Table 2. Time and Probability on Random FDIAs 

IEEE Bus System Timing Cost(s) Probability 

14-bus 0.164-1.513 47.43% 

30-bus 0.395-2.207 55.40% 
118-bus 2.946-6.955 61.73% 

 

When f  is set to be 0.3f   (# of meters), based on evaluation objectives, two indices are analyzed: 

timing cost that constructs an attack vector and probability that the attack can be successfully constructed 

among 1000 trials for each test system, which is shown in Table 2. When the attack is feasible, the speed 

for generating such an attack is fairly quick. Moreover, the time is mainly spent on Cholesky factorization. 

Despite the fact that the topology of nonlinear system is more complex, the execution time of our method 

(2946-6955 ms) is comparable to that of [8] (0.55-8549.6 ms).  

4.2. Impacts on state variables 

The impacts after random FDIAs are analyzed. A good attack is defined as successful injecting large 

errors on x .  

 
(a)                                                                                                 (b) 

Fig. 2. State variables (voltage magnitudes and angles) range after attacks in IEEE 30-bus system. 

Fig. 2. shows the maximum and minimum values of voltage magnitudes and angles of all buses among 

1000 times attacked by random FDIA in IEEE-30 bus system. From analyzing our results, FDIA can 

inject errors at most 5 times larger than original estimated magnitudes (for example, the range of voltage 

magnitude at bus 11 is [0.5411,5.4699]  and the original estimated voltage magnitude at bus 11 is 

1.0820 ), and can inject errors that change the angle to nearly 180. Since these results are based on 1000 
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trails, reinforce these conclusions are very convincing. 

5. Conclusion  

This paper proposes a false data injection attack against nonlinear state estimation in a cyber-

adversarial system (i.e. smart grid). The innovative idea of this algorithm is that it does not need the 

knowledge of system state and can inject errors into an AC power flow system without being detected. 

This paper strengthens the attacks to cyber-adversarial systems, and therefore research on protections in 

with cyber-adversarial systems will be in a greater need in near future. Furthermore, this work focuses on 

the smart grid environment, the general application and infrastructure work can be extended to other 

domains, such as aviation cyber-physical systems or smart micro-grids. 
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