
Title PERGA: A Paired-End Read Guided De Novo Assembler for
Extending Contigs Using SVM and Look Ahead Approach

Author(s) Zhu, X; Leung, HCM; Chin, FYL; Yiu, SM; Quan, G; Liu, B; Wang,
Y

Citation PLoS ONE, 2014, v. 9 n. 12, article no. e114253

Issued Date 2014

URL http://hdl.handle.net/10722/217758

Rights Creative Commons: Attribution 3.0 Hong Kong License

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/38082958?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


RESEARCH ARTICLE

PERGA: A Paired-End Read Guided De Novo
Assembler for Extending Contigs Using
SVM and Look Ahead Approach
Xiao Zhu1., Henry C. M. Leung2., Francis Y. L. Chin2, Siu Ming Yiu2,
Guangri Quan3, Bo Liu1, Yadong Wang1*

1. Center for Bioinformatics, School of Computer Science and Technology, Harbin Institute of Technology,
Harbin, Heilongjiang, China, 2. Department of Computer Science, University of Hong Kong, Hong Kong, 3.
National Pilot School of Software, Harbin Institute of Technology, Weihai, Shandong, China

*ydwang@hit.edu.cn

. These authors contributed equally to this work.

Abstract

Since the read lengths of high throughput sequencing (HTS) technologies are short,

de novo assembly which plays significant roles in many applications remains a

great challenge. Most of the state-of-the-art approaches base on de Bruijn graph

strategy and overlap-layout strategy. However, these approaches which depend on

k-mers or read overlaps do not fully utilize information of paired-end and single-end

reads when resolving branches. Since they treat all single-end reads with

overlapped length larger than a fix threshold equally, they fail to use the more

confident long overlapped reads for assembling and mix up with the relative short

overlapped reads. Moreover, these approaches have not been special designed for

handling tandem repeats (repeats occur adjacently in the genome) and they usually

break down the contigs near the tandem repeats. We present PERGA (Paired-End

Reads Guided Assembler), a novel sequence-reads-guided de novo assembly

approach, which adopts greedy-like prediction strategy for assembling reads to

contigs and scaffolds using paired-end reads and different read overlap size

ranging from Omax to Omin to resolve the gaps and branches. By constructing a

decision model using machine learning approach based on branch features,

PERGA can determine the correct extension in 99.7% of cases. When the correct

extension cannot be determined, PERGA will try to extend the contig by all feasible

extensions and determine the correct extension by using look-ahead approach.

Many difficult-resolved branches are due to tandem repeats which are close in the

genome. PERGA detects such different copies of the repeats to resolve the

branches to make the extension much longer and more accurate. We evaluated

PERGA on both Illumina real and simulated datasets ranging from small bacterial

OPEN ACCESS

Citation: Zhu X, Leung HCM, Chin FYL, Yiu SM,
Quan G, et al. (2014) PERGA: A Paired-End Read
Guided De Novo Assembler for Extending Contigs
Using SVM and Look Ahead Approach. PLoS
ONE 9(12): e114253. doi:10.1371/journal.pone.
0114253

Editor: Yan Zhang, Harbin Medical University,
China

Received: August 13, 2014

Accepted: November 5, 2014

Published: December 2, 2014

Copyright: � 2014 Zhu et al. This is an open-
access article distributed under the terms of the
Creative Commons Attribution License, which
permits unrestricted use, distribution, and repro-
duction in any medium, provided the original author
and source are credited.

Data Availability: The authors confirm that all data
underlying the findings are fully available without
restriction. The simulated reads data are available
from https://github.com/hitbio/PERGA. The E.coli
real short reads data can be downloaded from
http://bix.ucsd.edu/projects/singlecell/nbt_data.html.
The S.pombe real short reads data are available
from NCBI website http://www.ncbi.nlm.nih.gov/sra/
?term5ERX174934. The human chromosome 14
real data are available from GAGE project http://
gage.cbcb.umd.edu/data.

Funding: This work was partially supported by the
National Nature Science Foundation of China
(61173085, 61102149 and 11171086), the National
High-Tech Research and Development Program
(863) of China (2012AA020404, 2012AA02A602
and 2012AA02A604), the Hong Kong GRF (HKU
7111/12E, HKU 719709E and 719611E), the
Shenzhen Basic Research Project
(NO.JCYJ20120618143038947), and the
Outstanding Researcher Award (102009124). The
funders had no role in study design, data collection
and analysis, decision to publish, or preparation of
the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

PLOS ONE | DOI:10.1371/journal.pone.0114253 December 2, 2014 1 / 27

http://creativecommons.org/licenses/by/4.0/
https://github.com/hitbio/PERGA
http://gage.cbcb.umd.edu/data
http://gage.cbcb.umd.edu/data
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0114253&domain=pdf


genomes to large human chromosome, and it constructed longer and more

accurate contigs and scaffolds than other state-of-the-art assemblers. PERGA can

be freely downloaded at https://github.com/hitbio/PERGA.

Introduction

The high throughput sequencing (HTS) technologies have emerged for several

years [1, 2] and are widely used in many biomedical applications, such as large

scale DNA sequencing [3], re-sequencing [4] and SNP discovery [5, 6], etc.

However, since the length of reads generated by HTS technologies (typically 50–

150 base pairs [7–9]) are much shorter than those of the traditional Sanger

sequencing (typically about 800 base pairs [10]), and the per-base sequencing

error is high [11], the short read assembly is still a great challenge for genome

sequencing.

The overlap-layout strategy and the de Bruijn graph strategy are two major

approaches for assembly. The overlap-layout-based approaches firstly compute

the overlaps among reads, and then assemble according to the read overlaps, and

it consists of the greedy extension strategy and the overlap graph strategy as two

subcategories.

The greedy extension approach was applied by first several de novo assemblers

for the HTS data, such as SSAKE [12], VCAKE [13], SHARCGS [14]. In these

assemblers, reads are stored in a prefix/suffix tree to record overlaps, and assembly

is performed based on base-by-base 39 extension according to the simple greedy

heuristics of selecting the base with maximum overlap or using the most

commonly represented base. In order to prevent mis-assembly, when there are

more than one feasible extension due to sequencing errors or similar regions in

the genome, the extension will stop. As a result, short contigs will be produced

and the genome sequences cannot be reconstructed completely. In many

situations, the erroneous extensions (in the multiple feasible extensions) can be

detected if the assemblers try to extend for a few bases, e.g. erroneous extensions

due to sequencing error at the end of a read usually cannot be extended in later

steps (dead ends [15]) and multiple extensions due to sequencing error in the

middle of a read should be extended to the same nucleotide in later steps (bubbles

[15]). Besides constructing short contigs, these assemblers store the reads and

their reverse complements inefficiently, so their memory consumptions are

usually very large (especially when there are huge number of erroneous reads with

high sequencing depth), which limits their application for large amount of HTS

datasets.

To avoid the disadvantage of the greedy extension strategy, Edena [15] and

CABOG [16] adopt the overlap graph strategy. This approach constructs an

overlap graph in which a vertex represents a unique read and an edge connects

vertices u and v if and only if u and v overlap each other sufficiently. Assembly is

PERGA: A Paired-End Read Guided De Novo Assembler

PLOS ONE | DOI:10.1371/journal.pone.0114253 December 2, 2014 2 / 27



performed by simplifying the graph based on topologies, such as transitive edges,

dead ends and bubbles. Each simple path in the simplified graph represents a

contig. This approach is also not suitable for HTS data because they require

enormous computations to detect overlaps among a great amount of reads.

Recently, new methods based on read overlaps using Burrows-Wheeler Transform

[17], such as SGA [18] and fermi [5], could assemble larger amount of HTS data.

However, they require much more computations to construct a FM-index [19].

The Celera Assembler [20] based assembler MaSuRCA [21] transforms the high

coverage data into low coverage but long super-reads to dramatically reduce the

overlap computations, which makes it more popular.

The de Bruijn graph strategy, which was firstly introduced in EULER [22], is

particularly suitable for short reads of HTS technologies. This strategy can help to

reduce the large amount of computations of read overlaps or the construction of

FM-index of the overlap-graph approach, and Velvet [23], EULER-SR [24],

ALLPATHS [25], ABySS [26], IDBA [27], IDBA-UD [28], SOAPdenovo [29],

adopt this strategy. This approach breaks up each read into a collection of

overlapping k-substrings, called k-mers, to construct a de Bruijn graph. In the

graph, a vertex represents a unique k-mer and an edge connects vertices u and v if

and only if u and v overlapped by k–1 nucleotides and appear consecutively in a

read. The graph will then be simplified by removing dead ends and merging

bubbles and a simple path in the simplified graph represents a contig. As the k-

mers have fixed length and erroneous k-mers can be detected from their low

sampling rates, the de Bruijn graph consumes much less memories than the

overlap graph. However, most of them only use a fixed k-mer size except IDBA

and IDBA-UD. Since small k values will lead to better connectivity with much

more branches due to repeat segments larger than k, whereas large k will result in

worse connectivity with more gaps due to missing k-mers [28]. Most of these

assemblers just pick an intermediate k to compromise these two problems. IDBA

[27] and IDBA-UD [28] give better results by iterating the k-mer sizes from kmin

to kmax by using small k to resolve gaps and large k to resolve branches.

There are two common problems on the above assemblers.

1) Un-fully utilized information of paired-end and single-end reads

Paired-end reads information usually was used for assembling contigs to scaffolds,

however, different overlap lengths of paired-end reads and single-end reads

usually were not considered when assembling reads to contigs. Thus, some

branches that can be resolved using this information become unsolvable. IDBA-

UD applies paired-end reads aligned to the same contig for extending the contig

(local assembling). However, paired-end and single-end information were

considered at equal weight and the number of reads support each branches and

the length of overlaps of each supported reads was not considered.

In fact, paired-end reads should be used in the highest priority to resolve

branches. Given a branch with two possible extensions (or outgoing edges), one

extension is well supported by enough paired-end reads, whereas the other

PERGA: A Paired-End Read Guided De Novo Assembler

PLOS ONE | DOI:10.1371/journal.pone.0114253 December 2, 2014 3 / 27



extension has more single-end reads but without well supported paired-end reads,

then assembler should extend the contig to the one with more well supported

paired-end reads and treat the other as incorrect. If there are no available paired-

end reads, single-end reads should be used to determine the correct extension.

Assemblers stop when there is more than one choice for extension without

considering the different overlapped lengths supporting each extension. Instead,

they usually treat all single-end reads larger than a threshold (or a rate) equally.

Given a branch with two possible extensions (or outgoing edges), assembler

should extend the contig to the one with more supporting reads and treat the

other as incorrect. Even when the numbers of reads supporting both extensions

are the same, assembler should extend the contig to the extension with much

longer overlaps because short overlapped reads may due to sequencing errors or

short repeats.

2) Tandem repeats

Because of error in recombination or genome duplication, many repeats are short

tandem repeats (e.g., ,100 bp) with the occurrence positions of the repeats are

close in the genome (e.g. distance of two adjacent occurrences ,100 bp) (File S1–

S2). These tandem repeats will introduce branches which are difficult to be

resolved using the existing assemblers. Assemblers based on overlap-layout

strategy stop when there are more than one choice for extension. For de Bruijn

graph, these tandem repeats will introduce complicated branches in the de Bruijn

graph and existing assemblers cannot correctly separate the different copies of

repeats to their correct positions while assembling. For such branches, the existing

assemblers usually stop to avoid introducing assembly errors, thus resulting short

assembly size.

In order to fully utilize the information in reads for resolving branches in

assembling, we introduce PERGA (Paired-End Reads Guided Assembler), a novel

de novo sequence reads assembler which adopts greedy-like prediction strategy for

assembling reads to form contigs and scaffolds. The main contributions of PERGA

are as follows.

1) Utilizing information in paired-end and single-end reads. Instead of using

single-end reads to construct contigs, PERGA uses paired-end reads and

different read overlap size thresholds ranging from Omax to Omin to resolve the

gaps and branches. In PERGA, contigs are extended based on base-by-base

extension. Paired-end reads are aligned to contigs for determining possible

extensions. When there are not many paired-end reads in some genome

regions, single-end reads with variable overlap sizes from larger threshold

Omax to smaller threshold Omin are applied to handle branches and gaps. Large

overlap size O § Omax is used in priority to extend contigs to resolve

branches; and if there are missing overlaps for larger O, then a degressive

smaller O will be used to obtain better connectivity to resolve gaps until the

read overlap is found before O5Omin.

PERGA: A Paired-End Read Guided De Novo Assembler

PLOS ONE | DOI:10.1371/journal.pone.0114253 December 2, 2014 4 / 27



2) SVM navigation model for determining branch. When there are multiple

possible extensions (due to sequencing error or repeats), PERGA will

determine which extension is more likely based on branch features, i.e. read

coverage levels at the branch site and locally, path weight, gap size (see

Materials and Methods). By constructing decision models using machine

learning approach (SVM) based on these features, PERGA can determine the

correct extension in 99.7% of cases. Note that PERGA will also determine the

case and stop extending the contig when both extensions are likely to be

correct.

3) Look ahead approach. As there are still some mis-predictions (about

0.1,0.3%), and when the confidence of the prediction is low, PERGA will

check all these extensions and determine whether these extensions are due to

sequencing errors or repeats. If the multiple extensions are due to sequencing

errors (the extensions are similar and converge to the same nucleotide within

short distance), PERGA will merge the extensions together to form a single

contigs. If the branches were introduced due to short tandem repeats

(extensions are different, do not converge and supported by paired-end reads

with vary insert distance), PERGA will detect their overlap and separate

different copies of repeats to resolve the branches.

In summary, PERGA combines principles of traditional overlap-graph based

approaches with novel heuristics for extending a path and resolving the paths at

branches. More specifically, it employs four heuristics, from the most conservative

to the most relaxed as follows. i) at each point, use compatible paired-end reads to

extend the path; ii) if no paired-end reads are available, extend with single-end

reads, starting from those with the maximum overlap; iii) for multiple feasible

extensions, use a machine learning method (SVM) to distinguish one path, taking

into account read coverage levels at the branch site and locally, path weight, gap

size; iv) if indistinguishable, employ look-ahead approach to search for possible

short stretches of sequencing errors that can be bridged and possible short tandem

repeats whose different copies can be separated, before terminating the extension

at the branch.

According to our experiments, PERGA gave better performance than other

assemblers (Velvet, ABySS, IDBA-UD, CABOG and MaSuRCA) with longer and

more accurate contigs (scaffolds) with moderate memory because of its greedy-

like prediction model, look-ahead approach and variable overlap size approach to

fully utilize the information of paired-end and single-end reads in resolving

branches in more accurate way while assembling.

Materials and Methods

Figure 1 shows the overview of the proposed approach of PERGA, which consists

of assembly of reads and assembly of contigs (i.e., scaffolding) as its two phases. In

phase 1, a k-mer hash table, which is used to represent read overlaps by the

consecutive k-mers, is constructed from the set of input reads, and then PERGA

PERGA: A Paired-End Read Guided De Novo Assembler

PLOS ONE | DOI:10.1371/journal.pone.0114253 December 2, 2014 5 / 27



uses paired-ends and variable read overlap sizes thresholds from Omax to Omin to

extend contigs. A greedy-like prediction strategy in which a k-mer is chosen as a

start of contig extension is performed iteratively in the 39 direction one base at a

time until there are either no overlapping reads or a repeat is found, and then the

contig will be extended on the 59 end in the same way. For each base extension,

PERGA prefers the reads having more overlaps with contigs and uses the reads

having the most represented base for extension. When extending a base, PERGA

Figure 1. Workflow of PERGA. There are two phases for PERGA. assembly of reads and assembly of
contigs. (A) Phase 1, assembly of reads. k-mer hash table is firstly constructed using paired-end reads for
k5Omin, then contigs are extended iteratively one base at a time (left feedback loop) at 39 end by using paired-
end reads in high priority, and variable overlap size thresholds ranging from Omax to Omin (right feedback loop)
if there are no paired-ends. (B) Phase 2, scaffolding. Paired-end reads are used to order and orient contigs, fill
intra-scaffold gaps to generate larger scaffolds.

doi:10.1371/journal.pone.0114253.g001

PERGA: A Paired-End Read Guided De Novo Assembler

PLOS ONE | DOI:10.1371/journal.pone.0114253 December 2, 2014 6 / 27



firstly uses paired-end reads to navigate contig extension with the highest priority,

as it can resolve the branches caused by repeats smaller than the insert size with

much more confidence than those using single-end reads. However, as there may

be genome regions with low sequencing depth and insufficient paired-end reads,

PERGA uses single-end reads to extend contigs in such regions by applying the

variable overlap size ranging from larger Omax to smaller Omin to resolve repeats of

sizes smaller than Omax and to resolve gaps due to the missing large overlaps.

Due to existence of repeats in genome or sequencing errors in reads, there may

be branches which have more than one feasible extension with various read

occurrences when extending contigs. Instead of stopping the extension, PERGA

records the branch information to generate hyperplanes for the paired-ends and

single-ends respectively by Support Vector Machine (SVM) method. Finally, these

two SVM models are used to determine whether to extend or stop for branches

while assembling, and in most cases, branches can be correctly resolved.

However, there are also a few exceptions (branches that are incorrectly stopped

or extended) when using the SVM models to decide the navigation. These

situations can be resolved by looking ahead to find the feasible paths to resolve the

incorrect stops and incorrect extensions. This look-ahead approach can make the

contig much longer with fewer mis-assemblies. Note that PERGA determines

whether the branches is due to sequencing errors or repeats based on the

properties of extended paths and will resolve these two kinds of branches using

different methods.

Besides look-ahead approach, PERGA also handles erroneous bases in reads

using topological structures, which is similar to the removals of dead ends and

bubbles for de Bruijn graph based approaches. During extension, errors at ends of

reads will lead to dead ends, and the other errors in the inner part of reads will

cause bubbles, PERGA deals with dead ends with lengths smaller than read length

and tolerates bubbles with sizes no more than Omin. In PERGA, the dead ends

containing erroneous k-mers will be excluded from assembly by other correct

reads during extension; and the bubbles in reads are deemed as valid substitution.

In phase 2, paired-end reads are aligned onto contigs and are used to order and

orient contigs to form scaffolds (i.e., ordered sets of contigs with gaps in between).

Then, the overlap sizes and the gap sizes for the linked neighboring contigs are

computed, and the overlapped neighboring contigs are merged to form longer

contiguous sequences, and the gapped neighboring contigs are processed using a

local assembly approach to close their intra-scaffold gaps to generate longer

contiguous sequences. Unlike SOAPdenovo [29] which trims k bases to exclude

erroneous bases at contig ends when scaffolding, PERGA corrects such erroneous

bases by pair-wise alignment of the overlapped ends of the neighboring contigs.

Finally, the scaffold sequences are generated to form the resultant assembly

according to the overlaps and the gap sizes of the contigs in scaffolds.

The details of each step will be described one by one in the following sections.

PERGA: A Paired-End Read Guided De Novo Assembler

PLOS ONE | DOI:10.1371/journal.pone.0114253 December 2, 2014 7 / 27



Assembly of reads to contigs

The first phase of PERGA is to assemble reads into contigs using a greedy-like

prediction method based on paired-end reads information (if possible) and then

single-end reads. The algorithm starts with a k-mer at the end of an unused read

and treats it as contig. PERGA iteratively aligns paired-end reads to contigs and

tries to extend it at both ends. In order to determine the possible extension, either

A, C, G or T, a SVM model is used to determine whether PERGA should extend

the contig using the nucleotide with maximum supports from aligned paired-end

reads (instead of extending the contig only when all aligned reads support the

same extension as other greedy algorithms) based on the properties of aligned

reads. Besides, even when the SVM model cannot determine whether extending

the contig or not, PERGA will try to extend the contigs with all possible

nucleotides and determine which nucleotide should be used to extend the contig

by the later steps (look-ahead approach). After extension, errors in aligned reads

can be identified and be corrected for later extension. Details of the assembling

step are described as follows.

Construct k-mer hash table

PERGA applies a k-mer based, cost effective approach to perform read alignments.

Overlaps of two reads can be represented by their consecutive common k-mers,

for example, two reads overlap with w nucleotides should share w – k +1

consecutive k-mers. Thus, PERGA uses a hash table to store occurrences of k-mers

in reads. We refer occurrence of a k-mer as the positions on reads it appears. Note

that a k-mer may occur in multiple reads and a k-mer and its reverse complement

are stored at the same entry; and the occurrences of each k-mer are stored in an

ascending order according to their reads, so that reads can be aligned onto contigs

in a fast way. Moreover, in order to reduce the memory consumption, PERGA

only samples ten percent of all the k-mers of a read at its both ends, and these k-

mers at read ends are used to align reads to contig in an effect way while

assembling.

Align reads to contig

Paired-end reads information is used to extend a contig before single-end reads

information because it can resolve longer repeats, i.e., up to the insert size of

paired-end reads. PERGA automatically infers the mean insert size as well as the

standard deviation of the paired-end reads that have been assembled onto contigs.

Only those two ends which are aligned in correct directions, i.e. pointed to each

other on different strands, are used to extend contigs.

PERGA extracts the paths that will be assembled in near genome region along

with assembly, and reads having a large portion of aligned bases (e.g.,.90%) with

the paths will be considered to be correctly aligned. Therefore, some reads from

other genome regions with only a few aligned bases at the ends will be prevented

from the assembly, thus reduce the adverse impact of the short repeats at the reads

ends and improve the significance of the correctly aligned reads while assembly,

and the prevented reads can be placed to their correct place onto other genome

PERGA: A Paired-End Read Guided De Novo Assembler

PLOS ONE | DOI:10.1371/journal.pone.0114253 December 2, 2014 8 / 27



regions (Figure 2A). As shown in Figure 2B, PERGA aligns paired-end reads onto

a single contig. Reads with one end totally aligned to the contigs and the other end

partially aligned to the contig are used to determine the extension of contig.

When starts the extension of a contig, the k-mer at end of a read is selected as

the start contig, and the contig is extended iteratively using SVM model to

eliminate sequencing errors and avoid the impacts of short repeats by applying the

variable overlap size approach based on single-end reads. When the contig is long

enough for using paired-end reads, extension will be applied using paired-end

reads in the highest priority to avoid repeats shorter than the insert size.

Moreover, when the start k-mer contains sequencing errors, it typically has low

frequency in k-mer hash table, and such k-mers are excluded from the start

construction of a contig. When PERGA cannot determine the extension from the

aligned paired-end reads, single-end reads information, including paired-end read

Figure 2. Align reads to contig for extension. (A) Align reads to contig. The path of nearby genome region is extracted according to the reads that are
partially aligned onto contig, then new reads having more than 90% aligned bases with the path will be considered correctly aligned; otherwise, they should
be aligned onto other genome regions rather than at that position. (B) Extension using paired-end reads. Contig is extended at the 39 end according to the
reads in Pool 1 and whose mates in Pool 2. There are two candidate bases ‘C’ and ‘T’, and ‘C’ is well supported by the mates in the two pools, whereas ‘T’
has no paired-end reads support, thus ‘C’ will be chosen to append onto the contig. (C) Extension using single-end reads. When assemble the grey color
region which cannot be assembled by paired-end reads and the reads in Pool 1 have no mates in Pool 2, the reads in Pool 1 are used as single-end reads to
extend the contig.

doi:10.1371/journal.pone.0114253.g002

PERGA: A Paired-End Read Guided De Novo Assembler

PLOS ONE | DOI:10.1371/journal.pone.0114253 December 2, 2014 9 / 27



with one end aligned to the end of a contig and the other end unaligned, is used to

determine the extension of contig (Figure 2C).

Utilizing information in paired-end and single-end reads

Since the alignment of single-end reads are less confident than the paired-end

reads especially when the length of aligned region O is short, single-end read

information is used carefully from reads with large O to reads with small O.

PERGA determines the possible extension using reads with O larger than a larger

threshold Omax then to smaller threshold Omin iteratively. Thus, if PERGA can

determine the extension using reads with large O confidently, it will not consider

those reads with small O. In Figure 3, the contig is extended by reads 1 and 2 (O

§6) and resolves the repeat AAT in reads 5 and 6 from other genome regions,

and if there are no reads having O §6, then smaller O §5 will be applied again in

the same way. Moreover, the read overlap approach can resolve repeats in the

reads without overlaps among each other, e.g., GCA from reads 1, 2, 5 and 6.

SVM navigation model

When extending contigs, there may be more than one feasible extension with

various supporting reads that are mainly due to repeats or sequencing errors, i.e.

there is a branch (Figure 4). When determining correct extension at branch,

PERGA records the branch information as features (maxOcc, secOcc, covRatio,

gapLen), where maxOcc is the number of reads supporting the majority

nucleotide, secOcc is the number of reads supporting the second majority

nucleotide, covRatio is the ratio of the average number of aligned reads (per

nucleotide) at the extending ends (within two read lengths) to the average number

of aligned reads for the contig, gapLen is the distance of the previous completely

aligned reads to the contig end. The idea is that for a branch, if its maxOcc and

secOcc differ a lot (e.g., secOcc/maxOcc ,0.7), the feasible extension

corresponding to the maxOcc is usually a correct extension; otherwise, the

extension corresponding to maxOcc might be incorrect and should be stopped for

further checking. A branch with low gapLen suggests that the number reads

aligned to the end of contig is high and the maxOcc should be a correct extension,

and a branch with covRatio larger than one suggests that there is a repeat nearby

and PERGA should extend more carefully.

For training the SVM prediction models, we recorded the branches of the four

features while assembling, and treated each branch as a point in a four-

dimensional space in which these points can be used to draw a hyperplane by

machine learning approach to separate the branches that should be continued or

stopped. By comparing them to the reference while assembling, these branches

can be classified into correct extension, wrong extension, correct stop and wrong

stop. We used these points as training dataset to train the SVM model, and

labelled each branch as CONTINUE if the branch is a correct extension or a

wrong stop that should be continued; otherwise it is a STOP branch that should

be stopped.

PERGA: A Paired-End Read Guided De Novo Assembler

PLOS ONE | DOI:10.1371/journal.pone.0114253 December 2, 2014 10 / 27



Based on training dataset on branches, PERGA can determine the cases whether

we should extend a contig using the majority nucleotide or not. A support vector

machine method using polynomial kernel function K(x, y)5,x, y. 6(1+,x,

y.)2, where x, y are vectors containing branch information, ,x, y. is the dot

product of x, y being constructed based on the four features and is used to

determine if a contig should be extended. Note that PERGA will firstly determine

the correct extension using features calculated based on aligned paired-end reads.

If PERGA fails to decide whether to extend the contig, it will recalculate the

features using aligned single-end reads from O § Omax to Omin and will

determine when to extend the contig.

Look-ahead approach

Since SVM is not perfect for all of the branches, there are a few low confident cases

when using the SVM models to decide whether to extend a contig or not. For

these cases, PERGA looks ahead to find all feasible extensions. Starting from the

branches, PERGA extracts all paths that will be appended to contig using the

reads, and compares the sequences of these paths. Based on the assumption that if

the multiple extensions are due to repeats, it will be hard to get a highly agreed

consensus sequence than the case that the multiple extensions are due to

Figure 3. Example of the variable overlap size approach for contig extension. Suppose k5Omin53 and
Omax56. There are 6 reads, reads 1–4 are the reads that can be assembled onto the contig, while reads 5–6
are the reads that should be assembled onto other regions. The contig is extended using O >6 by reads 1–2,
and if there are no reads having O >6, then smaller O >5 will be used in the same way until the contig can be
extended successful. AAT is a repeat that can be resolved by O >4 and GCA is another repeat that has been
resolved by reads as such reads do not overlap each other.

doi:10.1371/journal.pone.0114253.g003

Figure 4. The SVM model to resolve branches. The maxOcc and secOcc should differ as much as possible, the covRatio should be near 1.0 and the
gapLen should be as short as possible. Otherwise, contig should be extended more carefully.

doi:10.1371/journal.pone.0114253.g004

PERGA: A Paired-End Read Guided De Novo Assembler

PLOS ONE | DOI:10.1371/journal.pone.0114253 December 2, 2014 11 / 27



sequencing errors, PERGA calculates the ratio of the majority nucleotide at each

position and assumes the majority nucleotide is incorrect if its ratio is less than

0.9. If there are less than 3 incorrect nucleotides, the extension will continue using

the majority nucleotide, otherwise, PERGA will determine if the branches is due

to short tandem repeats.

Deal with short tandem repeats

As our observations, there are some short repeats with lengths less than the read

length, and some of them have a short distance, e.g., less than a read (File S1–S2).

Such repeats may cause ambiguities while assembling, thus should be resolved for

better accuracy. If the path overlap is significant (e.g.,.10 bp) (e.g., path P1 and

P2 overlaps in Figure 5), which usually means that there is another repeat in

nearby genome region that will be assembled recently, and the two paths can be

merged and the aligned reads on path P2 will be adjusted according to the overlap,

and the extension will continue according to the path (e.g., P1) at the branch;

otherwise, It usually means that these repeat copies are from different genome

regions with a large distance, and the extension should stop to prevent assembly

errors.

When there are more than one repeat after merging overlapped paths, PERGA

firstly calculates the mismatched base count of each path comparing to contig,

and then computes the distance of the paired ends of each path that one end

aligned on the path and the other end aligned on contig. For each path, if its

mismatched base count is significant (e.g.,.2) and its distance is much different

from the insert distance (e.g., difference.2 * standard deviation of insert

distance), which usually means that the repeat copy (i.e., the path) may come

from other genome regions in high probability rather than from the branch, so

such paths will be invalid and be removed together with their aligned reads, and

these removed reads can be used for later assembly of other genome regions.

Handling erroneous bases

Erroneous bases in reads for HTS data can make the assembly problem much

more complex and error-prone, and cannot be easily solved by paired-end reads

and variable overlap size approach. To resolve ambiguities arising due to

sequencing errors, PERGA applies a method similar to the approach based on

topological structures [15, 23, 26]. Errors at the ends of reads usually lead to short

dead ends which are likely to be terminated prematurely, and errors in the inner

part of reads will cause small bubbles in which the two paths have similar bases

with the same starting and ending reads (Figure 6). Note that such dead ends and

bubbles are checked in reads rather than in contigs, and PERGA checks such

errors and corrects them for later extensions. It checks the similarity between a

read and the contig according to topological structures, and if similarity is high,

say §95%, then the read is assembled onto contigs; otherwise, the read will be not

assembled onto contigs, instead, it might be assembled into other genome regions

with higher similarity.

PERGA: A Paired-End Read Guided De Novo Assembler

PLOS ONE | DOI:10.1371/journal.pone.0114253 December 2, 2014 12 / 27



Assembly of contigs

PERGA assembles generated contigs into larger scaffolds using paired-end

information similar as existing assemblers. In this procedure, reads are aligned

onto contig ends to order and orient contigs to generate scaffolds. After

constructing scaffolds, PERGA merges the overlapped neighboring contigs, fills

intra-scaffold gaps, and generates consensus sequences to give final assembly

(Figure 1B). Detailed scaffolding method is described in the following subsec-

tions.

Reads alignment

If one end of a paired-end read uniquely aligned onto one contig and the other

end uniquely aligned onto another contig, these two contigs should appear

adjacently in the genome. Note that reads aligned to multiple contigs should not

be considered. As reads with both ends aligned to the same contigs does not

provide extra information for constructing scaffold, PERGA aligns reads to the

end of contig, called linking region, which has 2 kbp by default.

Linking contigs to scaffolds

Since reads may be sampled from positive strand or negative strand randomly and

whether a contig sequence represents the positive strand or negative strand is

Figure 5. The approach to separate repeat R to its two copies R1 and R2. (A) The branch is caused by different copies of repeat R (bold red). (B) The
two copies of repeat R are resolved by two paths P1 and P2. P1 and P2 are extracted according to the reads at that branch, and the suffix of P1 overlaps the
prefix of P2, then the reads of P2 are adjusted to their correct positions.

doi:10.1371/journal.pone.0114253.g005

Figure 6. Scheme for removing erroneous bases. Erroneous bases in reads will cause dead ends and bubbles that can be implicitly resolved as these
errors can be masked by these correct reads. Reads with low similarities probably can be assembled onto other contigs with higher similarity.

doi:10.1371/journal.pone.0114253.g006

PERGA: A Paired-End Read Guided De Novo Assembler

PLOS ONE | DOI:10.1371/journal.pone.0114253 December 2, 2014 13 / 27



unknown, there are four valid placements fP1,P2,P3,P4g for two adjacent contigs

(A, B) as shown in Figure 7. The relative positions and directions of the contigs

can be determined from the aligned paired-end reads. However, because of

sequencing errors and misalignment, the relative direction and position of two

contigs can be different using different paired-end reads. In order to determine

the correct relative direction and position of contigs, a scaffold graph G~(V ,E) is

constructed over the set of linking regions V to capture all placements of adjacent

contigs by the set of edgesE. In the graph, placement weight is defined as the

number of paired-end reads support each placement of two linking regions vi and

vj in distinct contigs, and each edge eij~(vi,vj) is associated with a quaternion

(N1,N2,N3,N4), where Ni is the weight for placement Pi. Only uniquely aligned

reads are used to construct graph to prevent introducing errors by repeats.

Contigs are linked based on a greedy approach. A contig longer than the linking

region size is randomly selected as the initial scaffold to be extended. The

extension is performed iteratively by including the neighboring contigs to the

right, and once a contig is included in a scaffold, its orientation is assigned

according to the placement. Extension is performed iteratively and is terminated

until no neighboring contigs or multiple candidates undifferentiated which one is

correct. When the extension is terminated from the 39 end, the 59 end will be

extended in a similar fashion (Figure 8). After contigs are linked, their orders and

orientations in scaffolds will be determined.

Overlap between contigs

To generate final scaffolds, it is necessary to compute the distance between each

two adjacent contigs in scaffolds, which may be overlapped or have gaps in

between. For overlapped contigs, the overlapped region will be detected and the

Figure 7. Four placements for two adjacent contigs. Placements depicted at bottom correspond to the ones in top table. Adjacent contigs (bold arrows)
are placed based on their aligned read pairs. Grey arrows indicate reverse complements of contigs. Contig orientation (‘+’/‘2’) in top table is the contig
orientation in scaffolds.

doi:10.1371/journal.pone.0114253.g007

PERGA: A Paired-End Read Guided De Novo Assembler

PLOS ONE | DOI:10.1371/journal.pone.0114253 December 2, 2014 14 / 27



two contigs should be merged into a single contig. For contigs with gaps in

between, the gap size will be computed according to the paired-end reads that link

the two contigs.

PERGA firstly estimates the gap size between adjacent contigs in scaffolds.

Given the paired-end reads with ends a and b aligned to different contigs A and B,

respectively, the gap size g can be estimated by g~m{l1{l2, where m is the mean

insert size, l1 is the distance from 59 end of read a to the gap margin of contig A, l2
is the distance from 59 end of read b to gap margin of contig B. In practice, there

can be multiple such paired-ends aligned onto two adjacent contigs, thus the final

gap size d(A,B) can be inferred by

d(A,B)~
1
n

Xn

i~1

gi

where n is the number of read pairs between contigs A and B.

PERGA further checks the inferred gap size. If the inferred gap size is a large

positive number, there is probably a gap between contigs with the estimated gap

size; and if the gap size is a large negative number, there is probably an overlap. If

the gap size is not significant, further check is needed by comparing the prefix and

suffix of the two contigs.

When the gap size is a large negative number or insignificant, the two contigs

may overlap with certain proportion. Because of sequencing error and mistakes in

assembling, the overlapping sequence may not be exactly the same. PERGA

performs the pair-wise sequence alignment to capture the overlaps. If an overlap is

larger than 3 and is agreed with the estimated gap size, this pair of contigs will be

recorded as overlapping contigs and merged into a single contig; otherwise, there

will be a gap between them.

Gap filling

After estimating gap size between adjacent contigs, it is necessary to fill the gap

regions for better continuity by local assembly using paired-end reads with one

end aligned onto contigs and the other end aligned in gap regions. Most of the

Figure 8. Scheme for contigs linking. The first link round (right) extends contigs by paired-end reads from the starting contig A to the right until no
extension are possible, then the second link round (left) is carried out from A to the left in the same way. Scaffold is a linear structure of a set of linked contigs
(bottom) that have been ordered and oriented.

doi:10.1371/journal.pone.0114253.g008

PERGA: A Paired-End Read Guided De Novo Assembler

PLOS ONE | DOI:10.1371/journal.pone.0114253 December 2, 2014 15 / 27



sequences in gap regions are repetitive sequences, thus gap filling can be used to

resolve such repeats. As the sequences adjacent to gap regions have been

recognized, repetitive sequences in gap regions can be easily reconstructed by local

assembly which is based on the algorithm of assembly of reads for PERGA using

paired-ends.

Consensus sequences are generated from contigs in scaffolds considering their

overlaps and gaps. If adjacent contigs are overlapped, then they will be merged;

and if contigs are gapped, the gap region between these contigs will be filled with

ambiguous bases (‘N’).

Datasets

We evaluated the performances of PERGA on both simulated and real datasets of

Escherichia coli, Schizosaccharomyces pombe and human chromosome 14

(details are shown in Table 1) with reference sizes ranging from 4.6 Mbp to

88.3 Mbp (million base pairs). The simulated Illumina paired-ends datasets were

generated using GemSIM [30] with various coverages 50x, 60x, 100x for E.coli

(can be downloaded from https://github.com/hitbio/PERGA), 50x for S.pombe,

50x for human chromosome 14; and the real Illumina E.coli paired-end reads data

were downloaded from http://bix.ucsd.edu/projects/singlecell/nbt_data.html, with

standard genomic DNA prepared from culture, with coverage around 600x, the

real S.pombe data were downloaded from NCBI (SRA accession: ERX174934), the

real human chromosome 14 data were downloaded from http://gage.cbcb.umd.

edu/data, this dataset had already been error-corrected using Quake [31] by

Salzberg et al [32]. We evaluated the performance of PERGA on resolving

branches using SVM prediction model and look-ahead approach. We also

compared the performance of PERGA in assembling with other leading state-of-

the-art assemblers, including IDBA-UD (v1.0.9) [28], ABySS (v1.3.2) [26], Velvet

(v1.2.01) [23], and overlap-based assemblers SGA (v0.9.20) [18], CABOG (v7.0)

[16] and MaSuRCA (v2.2.1) [21].

To evaluate the performances of each assembler, we used the length of N50 to

evaluate their length metrics, and we used BLASTN (v2.2.25+) [33] to align the

contigs and scaffolds to reference to evaluate their accuracy by using reference

covered ratio, number and lengths of mis-assemblies. If a contig (or scaffold)

entirely matches with the reference with similarity ,95%, it is considered as a

mis-assembled contigs. As Velvet is a scaffold-only assembler for paired-ends data,

we split the scaffolds at the positions of poly-N to get the contigs for comparisons.

Note that repeats from different genomic regions will be collapsed into a single

copy which can be aligned to more than one location or in disjoint locations when

using BLASTN, and we also deem that all those genomic locations are covered by

these repeats.

We tested the performance of SVM approach as well as the look ahead

approach first. The results were shown in Tables 2–3. And then, we compared the

performance of PERGA to other leading state-of-the-art assemblers, the main

PERGA: A Paired-End Read Guided De Novo Assembler

PLOS ONE | DOI:10.1371/journal.pone.0114253 December 2, 2014 16 / 27

https://github.com/hitbio/PERGA
http://bix.ucsd.edu/projects/singlecell/nbt_data.html
http://gage.cbcb.umd.edu/data
http://gage.cbcb.umd.edu/data


items of the results were listed in Tables 4–11 with details in Tables S1–S8 in File

S1.

The experiments for the simulated reads data were carried out on a 64-bit

Linux machine with an Intel(R) Core-2 CPU 2.53-GHz supplied with 3 GB

memory except the experiments for CABOG. The experiments for CABOG and

the real reads data were carried out on an Intel(R) Xeon(R) Core-8 CPU 2.00-

GHz server supplied with 24 GB memory.

Results and Discussion

Performance of greedy-like prediction model

The performance of our greedy-like SVM prediction model was assessed by

counting the numbers of correctly and incorrectly predicted extensions and stops

for all branches during the assembling step. To evaluate the greedy-like prediction

model independently, statistics were calculated when the look-ahead approach

was not used. The statistical results are shown in Table 2. By constructing the

decision models using machine learning approach, PERGA can determine the

correct extension in 99.7% of cases for the simulated reads data D1,D3. And

PERGA also determines the stop cases that both extensions are likely to be correct.

PERGA can produce only a few incorrect extensions and incorrect stops (less than

0.1%).

Table 1. Datasets D1,D8 for assemblies.

Datasets D1 D2 D3 D4 D5 D6 D7 D8

Organism E.coli K12 MG1655 S.pombe 972 h- Human chr14

Ref. size 4.64 Mbp 12.59 Mbp 88.29 Mbp

Data type simulated simulated simulated real simulated real simulated real

Read length 100 bp 100 bp 100 bp 100 bp 100 bp 100 bp 100 bp 101 bp

#Reads (million) 261.16 261.4 262.3 2614.2 263.1 263.3 2622.1 2616.3

Cov. depth 506 606 1006 6006 506 526 506 406

Insert size (bp) 370¡56 370¡58 366¡59 215¡11 370¡57 380¡82 366¡49 158¡17

The RefSeq for E.coli K12 MG 1655 is NC_000913.2; the RefSeq for S.pombe 972 h- are NC_003424.3, NC_003423.3, NC_003421.2, NC_001326.1; the
refSeq for human chromosome 14 is NT_026437.12.

doi:10.1371/journal.pone.0114253.t001

Table 2. Statistical results for greedy-like prediction model.

Datasets Correct extensions Incorrect extensions Correct stops Incorrect stops

D1 70299 (99.70%) 60 (0.09%) 123 (0.17%) 26 (0.04%)

D2 84829 (99.74%) 46 (0.05%) 148 (0.18%) 25 (0.03%)

D3 136309 (99.82%) 48 (0.04%) 169 (0.12%) 27 (0.02%)

doi:10.1371/journal.pone.0114253.t002

PERGA: A Paired-End Read Guided De Novo Assembler

PLOS ONE | DOI:10.1371/journal.pone.0114253 December 2, 2014 17 / 27



Performance of look-ahead approach

Although the performance of SVM prediction model is good, PERGA still has

some incorrect extensions and stops with low confidence. These low confident

predictions can be resolved by the look-ahead approach. Table 3 shows the

number of correct and incorrect navigations for low confident branches when

applying this approach to resolve branches due to sequencing errors and short

tandem repeats on the datasets D1,D3. The statistics for sequencing errors were

calculated independently without considering short repeats; and for the low

confident branches with unsatisfied properties due to sequencing errors, further

check was applied to determine if these branches were due to short tandem repeat.

For the branches due to sequencing errors, most of them can be correctly

resolved in high probability (about 98%) with low error rate (about 2%), which

makes PERGA generates long and accurate contigs. According to Table 2 and

Table 3, less than 1% of the branches (D1,D3) are adjusted by this approach. As

look-ahead approach is very effective, the mis-prediction branches can be easily

handled by this approach.

From the table, it can be seen that about one third of the branches do not satisfy

the properties for branches due to sequencing error. These branches will be

further checked according to the properties for branches due to short repeats.

Among these branches, there were only a few incorrect navigations (,2%). Thus,

the overall correct navigations for look-ahead approach, after dealing with

sequencing errors and short tandem repeats, were more than 99% of cases.

Table 3. Statistical results for look-ahead approach.

checking sequencing errors checking short repeats Overall

Datasets Correct navi. Incorrect navi. Sum Correct navi. Incorrect navi. Sum Correct navi.

D1 448 (97.60%) 11 (2.40%) 459 174 (98.31%) 3 (1.69%) 177 445 (99.3%)

D2 443 (98.44%) 7 (1.56%) 450 174 (99.43%) 1 (0.57%) 175 442 (99.8%)

D3 485 (98.98%) 5 (1.02%) 490 223 (98.24%) 4 (1.76%) 227 481 (99.2%)

doi:10.1371/journal.pone.0114253.t003

Table 4. Evaluation for E.coli simulated short reads data (D1, 506).

Contigs Scaffolds

k/O N50 (kbp) Cov. (%) Misass. (#/sum) N50 (kbp) Cov. (%) Misass. (#/sum) Time (min) Mem. (GB)

PERGA O§25 174.7 100.0 0 174.7 100.0 0 3 0.9

IDBA-UD default 112.6 99.98 2/559 148.5 99.98 1/321 11 0.6

ABySS k545 119.2 99.90 0 119.2 99.42 1/3617 9 1.0

Velvet k545 108.1 99.76 7/6658 148.3 99.89 1/1596 3 0.9

SGA O§31 24.1 98.57 0 95.5 98.59 1/4120 43 0.6

CABOG default 83.1 99.03 1/2638 88.5 99.03 1/2638 77 2.6

MaSuRCA default 172.8 87.98 4/560k 172.8 87.98 4/560k 16 2.2

doi:10.1371/journal.pone.0114253.t004

PERGA: A Paired-End Read Guided De Novo Assembler

PLOS ONE | DOI:10.1371/journal.pone.0114253 December 2, 2014 18 / 27



In summary, the greedy-prediction navigation model resolved most (.99%) of

the branches, and then the look-ahead approach further resolved most (.99%) of

the low confident branches. Therefore, after combining the greedy-like prediction

model and look-ahead approach, PERGA can produce long and accurate contigs.

Performance on E.coli genome

Table 4 shows the performances of PERGA as well as other assemblers on the 50x

simulated paired-end reads dataset D1. PERGA generated the longest contigs in

N50 measures, highest reference coverage and the most accurate result with no

mis-assemblies. PERGA and Velvet were the fastest assemblers among seven

assemblers with moderate memory usage and were about 3 times faster than

IDBA-UD and ABySS, since SGA uses the FM-index to compute the read overlap,

and CABOG computes the read overlaps between each other, thus they cost more

time while assembling (43 minutes and 77 minutes). MaSuRCA generated 4 mis-

assembled contigs (560 kbp) while PERGA did not. This is because that PERGA

handles branches for extension much more carefully, it utilizes the greedy-like

prediction SVM models which contains much branch information to give much

better extensions, and PERGA distinguishes sequencing errors and repeats for

branches using the look-ahead approach to decide the correct extensions. Thus,

Table 5. Evaluation for E.coli simulated short reads data (D2, 606).

Contigs Scaffolds

k/O N50 (kbp) Cov. (%) Misass. (#/sum) N50 (kbp) Cov. (%) Misass. (#/sum) Time (min) Mem. (GB)

PERGA O§25 173.9 99.99 0 173.9 99.99 0 3 1.0

IDBA-UD default 124.6 99.99 0 173.9 99.97 0 13 0.6

ABySS k545 119.2 99.92 0 135.0 99.56 1/25k 10 1.1

Velvet k545 125.2 99.79 6/4451 148.5 99.87 0 5 1.0

SGA O§31 23.5 98.35 0 95.4 98.48 1/492 50 0.6

CABOG default 68.4 98.72 0 77.1 98.64 1/4996 98 2.6

MaSuRCA default 156.4 94.25 2/257k 156.4 94.25 2/257k 19 2.2

doi:10.1371/journal.pone.0114253.t005

Table 6. Evaluation for E.coli simulated short reads data (D3, 1006).

Contigs Scaffolds

k/O N50 (kbp) Cov. (%) Misass. (#/sum) N50 (kbp) Cov. (%) Misass. (#/sum) Time (min) Mem. (GB)

PERGA O§25 174.7 99.99 0 174.7 99.99 0 5 1.2

IDBA-UD default 124.6 99.99 0 148.6 99.96 2/1723 21 0.7

ABySS k545 126.2 99.90 1/524 135.0 90.89 4/206k 16 1.7

Velvet k545 117.5 99.75 9/7347 148.5 100.0 0 7 1.4

SGA O§31 21.7 98.16 0 105.6 98.46 2/1024 103 0.6

CABOG default 37.3 93.63 1/61k 56.7 93.56 1/65k 209 2.6

MaSuRCA default 148.8 98.89 2/54k 172.2 92.15 4/371k 29 2.4

doi:10.1371/journal.pone.0114253.t006

PERGA: A Paired-End Read Guided De Novo Assembler

PLOS ONE | DOI:10.1371/journal.pone.0114253 December 2, 2014 19 / 27



PERGA can provide fewer but longer contigs than the others without producing

erroneous contigs.

When the number of reads in the dataset increases, the running times of all the

other assemblers increase (Table 5 for dataset D2). However, the running time of

PERGA does not increase significantly and is still the fastest assembler. The

contigs and scaffolds produced by PERGA have the largest N50 and coverage with

no mis-assemblies. Because of the increase in sequencing depth, IDBA-UD and

Velvet performed better than on D2 with contig N50 increased from 112.6 kbp

and 108.1 kbp to 124.6 kbp and 125.2 kbp respectively with less assembly errors,

whereas MaSuRCA had lower N50 size than on D1. PERGA and IDBA-UD had

the largest scaffold sizes (173.9 kbp), whereas the results of other assemblers were

much shorter (only around 140 kbp). MaSuRCA tended to produce more

erroneous contigs and scaffolds, which decreased its genome coverage. Compared

with other assemblers, SGA and CABOG produced shorter contigs and scaffolds

with longer running times. The coverage of all assemblers on D1 and D2 are much

the same and they do not differ much between contigs construction and scaffolds

production.

For the simulated 100x dataset D3 (Table 6), since the sequencing depth is

high, all assemblers generated similar numbers of contigs with similar coverage in

both contigs and scaffolds except ABySS and MaSuRCA which dropped from

Table 7. Evaluation for E.coli real short reads data (D4, 6006).

Contigs Scaffolds

k/O N50 (kbp) Cov. (%) Misass. (#/sum) N50 (kbp) Cov. (%) Misass. (#/sum) Time (min) Mem. (GB)

PERGA O§25 133.5 99.99 1/207 154.8 99.99 1/207 21 3.8

IDBA-UD default 106.8 99.93 1/2105 148.5 99.98 0 31 2.0

ABySS k545 96.0 93.61 4/293k 113.4 91.45 5/372k 64 0.3

Velvet k545 82.8 95.25 11/212k 95.5 86.21 5/633k 33 5.1

SGA O§31 19.3 98.06 0 21.3 98.15 1/411 357 5.9

CABOG Could not be run correctly as it required lots of disk space that exceeded our machine

MaSuRCA default 72.3 97.33 6/126k 77.6 97.29 7/129k 118 2.5

doi:10.1371/journal.pone.0114253.t007

Table 8. Evaluation for S.pombe simulated short reads data (D5, 506).

Contigs Scaffolds

k/O N50 (kbp) Cov. (%) Misass. (#/sum) N50 (kbp) Cov. (%) Misass. (#/sum) Time (min) Mem. (GB)

PERGA O§25 255.4 99.91 0 386.7 99.90 0 8 1.7

IDBA-UD default 137.7 99.99 3/966 254.7 99.08 6/100k 31 1.3

ABySS k545 181.8 99.78 12/9k 211.0 76.72 21/2.7M 25 1.6

Velvet k545 158.6 99.74 15/6k 293.2 99.74 8/8k 11 1.9

SGA O§31 43.0 98.12 1/214 155.1 98.95 4/27k 103 2.0

CABOG default 139.6 95.24 3/218k 157.1 90.88 6/778k 243 2.5

MaSuRCA default 417.9 90.76 6/1.3M 417.9 90.76 6/1.3M 43 2.7

doi:10.1371/journal.pone.0114253.t008

PERGA: A Paired-End Read Guided De Novo Assembler

PLOS ONE | DOI:10.1371/journal.pone.0114253 December 2, 2014 20 / 27



99.90% to 90.89% and from 98.89% to 92.15% because of the mis-assembled 4

scaffolds (206 kbp) and mis-assembled 4 scaffolds (371 kbp) for ABySS and

MaSuRCA, respectively. MaSuRCA had the most erroneous scaffolds, CABOG

generated 1 mis-assembled contig (61 kbp) and 1 mis-assembled scaffold

(65 kbp), thus its genome coverage dropped to 93.5%. From the experiments on

D1,D3, it can be observed that CABOG may be not suitable for high coverage

data since its contigs (scaffolds) sizes decreased with the increasing coverage

depth, and it can also be seen that the overlap-based assemblers (SGA and

CABOG) is not suitable for high coverage data. PERGA also was the fastest

assembler and produced the most accurate results while others all produced

several mis-assembled contigs (scaffolds). In all experiments on simulated data,

PERGA did not produce any mis-assembled contigs and scaffolds while the other

assemblers mis-assembled some reads in some datasets.

We further used the downloaded E.coli dataset D4 with coverage ,600x to

highlight the performance of PERGA on high coverage data, and compared its

performances with other assemblers. CABOG could not be run on D4 because it

required lots of disk space that exceeded the server. Before assembling, paired-end

reads data were corrected using Quake [31], and the results were shown in

Table 7.

Table 9. Evaluation for S.pombe real short reads data (D6, 526).

Contigs Scaffolds

k/O N50 (kbp) Cov. (%) Misass. (#/sum) N50 (kbp) Cov. (%) Misass. (#/sum) Time (min) Mem. (GB)

PERGA O§25 37.0 98.97 17/71k 70.3 98.97 17/73k 7 1.7

IDBA-UD default 32.1 98.54 28/140k 54.0 97.56 35/247k 31 1.3

ABySS k545 33.3 98.20 44/73k 35.7 96.29 48/230k 21 0.8

Velvet k545 28.7 97.36 26/175k 42.3 95.86 29/391k 6 3.9

SGA O§31 21.3 97.10 16/38k 39.1 97.32 21/100k 114 2.0

CABOG default 22.3 95.12 8/71k 49.4 98.95 11/396k 705 7.3

MaSuRCA default 36.2 97.0 17/210k 64.7 93.71 20/672k 70 2.7

doi:10.1371/journal.pone.0114253.t009

Table 10. Evaluation for human chromosome 14 simulated short reads data (D7, 506).

Contigs Scaffolds

k/O N50 (kbp) Cov. (%) Misass. (#/sum) N50 (kbp) Cov. (%) Misass. (#/sum) Time (min) Mem. (GB)

PERGA O§25 149.9 99.54 22/60k 229.5 99.58 21/30k 169 9.3

IDBA-UD default 66.7 99.74 44/152k 174.3 98.51 58/1.24M 144 8.7

ABySS k545 11.4 94.98 377/354k 30.2 83.40 1109/11M 331 6.0

Velvet k545 8.6 92.24 1642/3.4M 78.6 24.87 1655/67M 147 13.5

SGA O§31 2.7 85.36 146/43k 5.5 80.10 1980/5M 1360 17

CABOG default 69.3 76.43 285/19M 82.8 67.40 318/26.6M 2742 11

MaSuRCA Could not be run correctly because of unknown running error

doi:10.1371/journal.pone.0114253.t010

PERGA: A Paired-End Read Guided De Novo Assembler

PLOS ONE | DOI:10.1371/journal.pone.0114253 December 2, 2014 21 / 27



The overall performance of all other assemblers dropped because of the short

insert size dropped from 370 bp to 215 bp, and some repeats with length falling in

this range could not be resolved. PERGA still had the best performance in N50

size, maximal size, and genome coverage. It may suggest that the SVM model used

by PERGA can capture the properties in real datasets. PERGA was the fastest

assembler and generated the longest contigs (scaffolds) (133.5 kbp and 154.8 kbp)

with the highest coverage (99.99%), while others assemblers had much lower N50

except scaffolds of IDBA-UD (148.5 kbp). Since PERGA generated very long and

accurate contigs, the scaffolds produced by PERGA had the largest N50 and

highest coverage even though it did not connect many contigs in scaffolding. As

the sequencing depth increased from 50x to 600x, the contigs (scaffolds) N50 size

of MaSuRCA decreased from 172 kbp to 77 kbp and the number of contigs

(scaffolds) increased from 70 to 240, which may indicate that MaSuRCA is not

suitable for high coverage datasets.

After scaffolding, ABySS and Velvet produced longer scaffolds with lower

coverage, while PERGA and IDBA-UD did not have coverage difference between

contigs and scaffolds as they produced accurate assemblies. ABySS and Velvet

both had.200 kbp mis-assembled contigs and .300 kbp mis-assembled

scaffolds, thus their contig coverage dropped dramatically from 96% to 86%,

MaSuRCA also generated a few erroneous contigs and scaffolds (.100 kbp), and

SGA generated accurate contigs and scaffolds, however, its N50 sizes are very

small (19.3 kbp and 21.3 kbp), and it used more time than others. This shows that

ABySS, Velvet, SGA and MaSuRCA might not be suitable for high coverage

sequencing data. They can have good performance on low coverage data but

might not be good on high coverage data.

Performance on S.pombe genome

We also tested the performance of PERGA on S.pombe 50x simulated dataset D5

and 52x real dataset D6, and the reads of real S.pombe dataset were error-corrected

using Quake [31] prior to assembly, the results were shown in Tables 8–9.

From Table 8, MaSuRCA, PERGA and Velvet were the top three assemblers in

scaffold N50 size (417.9 kbp, 386.7 kbp and 293.2 kbp), whereas the scaffold N50

Table 11. Evaluation for human chromosome 14 real short reads data (D8, 406).

Contigs Scaffolds

k/O N50 (kbp) Cov. (%) Misass. (#/sum) N50 (kbp) Cov. (%) Misass. (#/sum) Time (min) Mem. (GB)

PERGA O§25 11.8 95.86 435/2.8M 20.2 91.96 423/6.1M 194 7.9

IDBA-UD default 16.3 94.81 351/4.1M 21.8 92.94 335/5.8M 122 8.0

ABySS k545 3.9 92.06 485/574k 4.1 91.61 547/975k 161 6.4

Velvet k545 3.8 89.62 1199/2.8M 6.6 70.44 4342/21M 68 6.5

SGA O§31 2.4 84.36 255/95k 2.7 84.21 247/1.5M 826 16

CABOG default 13.0 87.65 527/7.3M 20.6 82.07 560/13M 1757 10

MaSuRCA default 6.8 95.38 165/616k 6.9 95.28 170/710k 478 2.7

doi:10.1371/journal.pone.0114253.t011

PERGA: A Paired-End Read Guided De Novo Assembler

PLOS ONE | DOI:10.1371/journal.pone.0114253 December 2, 2014 22 / 27



size of other assemblers were all less than 300 kbp with a few assembly errors, and

however, the genome coverage of MaSuRCA was only 90.76% because of its 6

mis-assembled large scaffolds (1.3 Mbp). ABySS generated more mis-assembled

scaffolds than others (2.7 Mbp), so its genome coverage dropped from 99.78% to

76.7%. IDBA-UD generated the short contigs and fewer mis-assemblies than

ABySS and Velvet, and its scaffolds have more errors than Velvet. SGA had the

most number but shortest contigs and scaffolds (N50 size 43.0 kbp and

155.1 kbp), and CABOG generated short scaffolds (N50 size 157.1 kbp) with a few

errors (778 kbp). Overall, PERGA outperformed other assemblers on D5 in

assembly length, accuracy, coverage and running time.

The results for S.pombe real dataset D6 were listed in Table 9. From the table,

all assemblers produced similar results in terms of length, accuracy and coverage.

PERGA generated the largest contigs and scaffolds (N50 size 37.0 kbp and

70.3 kbp) with highest genome coverage (98.97%) and fewer assembly errors

(73 kbp). PERGA, MaSuRCA and IDBA-UD were the top three assemblers in

scaffold N50 size (.54 kbp), whereas the N50 size of others were less than 50 kbp.

PERGA and IDBA-UD generated the largest scaffold size (334.7 kbp and

270.3 kbp), and MaSuRCA was more error prone and more likely to produce

erroneous contigs and scaffolds (210 kbp and 672 kbp). Velvet and PERGA were

much faster than other assemblers; however, Velvet produced more errors

(175 kbp and 239 kbp) with a high memory cost (3.9 GB). SGA and CABOG

needed more time than others, and CABOG required the most time and memory

consumption among all the assemblers, whereas ABySS had the least memory

consumption (0.8 GB).

In summary, PERGA generated better results than other assemblers for both the

simulated and real S.pombe datasets D5,D6, which indicated that the SVM model

and the look-ahead approach were suitable for the assembly of other genomes and

resulted in good performance.

Performance on human chromosome 14

To highlight the performance of PERGA, we used the human chromosome 14

simulated 50x dataset D7 and real 40x dataset D8 to test its performance.

MaSuRCA could not be run correctly on the simulated dataset because of

unknown running error, and the results for the assemblers were shown in

Tables 10–11.

From Table 10, PERGA generated the least number of contigs with the largest

contigs (N50 size 149.9 kbp, maximal size 1 Mbp, mean size 36 kbp) and largest

scaffolds (N50 size 229.5 kbp, maximal size 1 Mbp, mean size 39 kbp) with fewer

mis-assemblies than others. PERGA and IDBA-UD were the top two assemblers in

scaffold N50 size (230 kbp and 174 kbp), maximal size (about 1 Mbp) and

accuracy (mis-assembled scaffolds 30 kbp and 1.2 Mbp), whereas the scaffold N50

size and maximal size of others were ,90 kbp and ,500 kbp, respectively, and

they generated more mis-assembled scaffolds (.5 Mbp) than PERGA and IDBA-

UD. IDBA-UD was the fastest assembler and it generated much longer and more

PERGA: A Paired-End Read Guided De Novo Assembler

PLOS ONE | DOI:10.1371/journal.pone.0114253 December 2, 2014 23 / 27



accurate results than ABySS and Velvet. Velvet, CABOG and ABySS generated the

least accurate results and their contig sizes and scaffold sizes were also short, and

the genome coverage of Velvet dropped greatly from 92.24% to 24.87% because of

its lots of mis-assembled scaffolds (67 Mbp). SGA generated the most number

(32077) of scaffolds with the shortest length (N50 size 5.5 kbp), and about

10 Mbp genome regions were missing, so its genome coverage was no more than

86%.

From Table 11, PERGA generated large contigs and scaffolds (N50 size

11.8 kbp and 20.2 kbp) with the high genome coverage (95.86% and 91.96%) and

fewer mis-assemblies (2.8 Mbp and 6.1 Mbp), that is because PERGA tried to

extend contigs in more accurate way. IDBA-UD, CABOG and PERGA were the

top three assemblers in terms of N50 size (.10 kbp and .20 kbp for contigs and

scaffolds, respectively) and maximal size (.100 kbp and .140 kbp for contigs

and scaffolds), however, CABOG produced more errors (7.3 Mbp and 13 Mbp for

contigs and scaffolds, respectively) than IDBA-UD and PERGA, and the N50 size

of other assemblers were less than 7 kbp for contigs and scaffolds. MaSuRCA,

ABySS and SGA generated the most accurate results; however, their lengths were

short (scaffold N50 size ,7 kbp), and also, the total summed assembly length of

SGA was only 85% (75 Mbp) of the reference (88 Mbp), about 10 Mbp (10%) of

genome regions were missing, which decreased its genome coverage (,85%).

Velvet generated short (N50 size 3.8 kbp) but accurate contigs (error contigs

2.8 Mbp), however, its scaffolds were also short (6.6 kbp) and contained much

more errors (21 Mbp), so its genome coverage dropped dramatically from 89% to

70%.

From the experiments on D1,D8, PERGA performed faster than other

assemblers because of several reasons. First, the k-mer hash table enabled the fast

way of aligning reads to contigs while assembling. Second, reads from other

genome regions with only a few bases aligned onto contigs were prevented from

assembly, which reduced the computations of spurious overlap. Third, PERGA

adopted the variable overlap size approach and used paired-end reads with the

highest priority, which reduced the computations and speeded up the algorithm.

Therefore, PERGA performed faster than other assemblers.

In summary, PERGA outperformed most of other assemblers when the genome

sizes increase from small bacterial genomes (e.g. E.coli) to large human

chromosomes (e.g. chromosome 14) in longer and more accurate assembly

results, and IDBA-UD was the second best assembler and had similar

performance, whereas other assemblers (e.g. Velvet, SGA, and ABySS) might be

more suitable for small bacterial genomes rather than large genomes.

The experiments showed that the greedy-like prediction extension strategy has

better performance than graph-based assemblers because it uses the SVM

prediction model to eliminate sequencing errors, and uses the look-ahead

approach to deal with sequencing errors and resolve short tandem repeats in

genome, thus resulting longer and more accurate assembly results.

PERGA: A Paired-End Read Guided De Novo Assembler

PLOS ONE | DOI:10.1371/journal.pone.0114253 December 2, 2014 24 / 27



Conclusions

In this article, we present PERGA, a novel de novo paired-end reads assembler,

which can generate large and accurate assemblies using the greedy-like prediction

strategy to handle branches and errors to give much better extensions. By using

look-ahead approach, PERGA distinguishes sequencing errors and repeats

accurately and separates different copies of short repeats to make the extension

much longer and more accurate. Moreover, instead of using single-end reads to

construct contigs, PERGA uses paired-end reads in the first step and gives

different priority to different read overlap thresholds ranging from Omax to Omin

to resolve the gap and branch problem. Experiments showed that PERGA could

generate very long and accurate contigs and scaffolds with fewer mis-assembly

errors both for simulated reads data and real data sets for both low and high

coverage datasets than the existing methods on both small bacterial genomes (e.g.,

E.coli and S.pombe) and large complex genomes (e.g., human chromosome 14).

Supporting Information

File S1. Example of tandem repeats in human chromosome and detailed

assembly results. The reference region 58,287,977–58,288,418 (region size

442 bp) of human chromosome 14 consists of three complex repeats A, B and C,

with A appears three times, B appears four times, C appears five times, and A

contains B as sub-repeat, B contains C as sub-repeat. PERGA can correctly resolve

this repeat region but others fail.

doi:10.1371/journal.pone.0114253.s001 (DOC)

File S2. The detailed view of resolving tandem repeats in human chromosome

14 by PERGA.

doi:10.1371/journal.pone.0114253.s002 (PDF)

Acknowledgments

The authors thank Qinghua Jiang and Yongdong Xu at Harbin Institute of

Technology for informative suggestions. We also thank the reviewers for their

constructive comments.

Author Contributions
Conceived and designed the experiments: YW. Performed the experiments: XZ

HCML. Analyzed the data: XZ HCML FYLC SMY BL. Wrote the paper: XZ

HCML SMY. Guided the development in early studies: GQ.

References

1. Shendure J, Porreca GJ, Reppas NB, Lin XX, McCutcheon JP, et al. (2005) Accurate multiplex
polony sequencing of an evolved bacterial genome. Science 309: 1728–1732.

PERGA: A Paired-End Read Guided De Novo Assembler

PLOS ONE | DOI:10.1371/journal.pone.0114253 December 2, 2014 25 / 27

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0114253.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0114253.s002


2. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, et al. (2005) Genome sequencing in
microfabricated high-density picolitre reactors. Nature 437: 376–380.

3. Li RQ, Fan W, Tian G, Zhu HM, He L, et al. (2010) The sequence and de novo assembly of the giant
panda genome. Nature 463: 311–317.

4. Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, et al. (2008) Accurate whole
human genome sequencing using reversible terminator chemistry. Nature 456: 53–59.

5. Li H (2012) Exploring single-sample SNP and INDEL calling with whole-genome de novo assembly.
Bioinformatics 28: 1838–1844.

6. Blanca JM, Pascual L, Ziarsolo P, Nuez F, Canizares J (2011) ngs_backbone: a pipeline for read
cleaning, mapping and SNP calling using Next Generation Sequence. BMC Genomics 12: 285.

7. Schatz MC, Delcher AL, Salzberg SL (2010) Assembly of large genomes using second-generation
sequencing. Genome Res 20: 1165–1173.

8. Surget-Groba Y, Montoya-Burgos JI (2010) Optimization of de novo transcriptome assembly from
next-generation sequencing data. Genome Res 20: 1432–1440.

9. Treangen TJ, Salzberg SL (2012) Repetitive DNA and next-generation sequencing: computational
challenges and solutions. Nat Rev Genet 13: 36–46.

10. Flicek P, Birney E (2009) Sense from sequence reads: methods for alignment and assembly. Nat
Methods 6: S6–S12.

11. Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotechnol 26: 1135–1145.

12. Warren RL, Sutton GG, Jones SJ, Holt RA (2007) Assembling millions of short DNA sequences using
SSAKE. Bioinformatics 23: 500–501.

13. Jeck WR, Reinhardt JA, Baltrus DA, Hickenbotham MT, Magrini V, et al. (2007) Extending assembly
of short DNA sequences to handle error. Bioinformatics 23: 2942–2944.

14. Dohm JC, Lottaz C, Borodina T, Himmelbauer H (2007) SHARCGS, a fast and highly accurate short-
read assembly algorithm for de novo genomic sequencing. Genome Res 17: 1697–1706.

15. Hernandez D, Francois P, Farinelli L, Osteras M, Schrenzel J (2008) De novo bacterial genome
sequencing: millions of very short reads assembled on a desktop computer. Genome Res 18: 802–809.

16. Miller JR, Delcher AL, Koren S, Venter E, Walenz BP, et al. (2008) Aggressive assembly of
pyrosequencing reads with mates. Bioinformatics 24: 2818–2824.

17. Burrows M, Wheeler DJ (1994) A block-sorting lossless data compression algorithm. Technical Report
124: Palo Alto, CA, Digital Equipment Corporation.

18. Simpson JT, Durbin R (2012) Efficient de novo assembly of large genomes using compressed data
structures. Genome Res 22: 549–556.

19. Ferragina P, Manzini G (2000) Opportunistic Data Structures with Applications; 2000. pp. IEEE
Computer Society, 390–398.

20. Myers EW, Sutton GG, Delcher AL, Dew IM, Fasulo DP, et al. (2000) A whole-genome assembly of
Drosophila. Science 287: 2196–2204.

21. Zimin AV, Marcais G, Puiu D, Roberts M, Salzberg SL, et al. (2013) The MaSuRCA genome
assembler. Bioinformatics 29: 2669–2677.

22. Pevzner PA, Tang H, Waterman MS (2001) An Eulerian path approach to DNA fragment assembly.
Proc Natl Acad Sci USA 98: 9748–9753.

23. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs.
Genome Res 18: 821–829.

24. Chaisson MJ, Pevzner PA (2008) Short read fragment assembly of bacterial genomes. Genome Res
18: 324–330.

25. Butler J, MacCallum I, Kleber M, Shlyakhter IA, Belmonte MK, et al. (2008) ALLPATHS: de novo
assembly of whole-genome shotgun microreads. Genome Res 18: 810–820.

26. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, et al. (2009) ABySS: A parallel assembler
for short read sequence data. Genome Res 19: 1117–1123.

PERGA: A Paired-End Read Guided De Novo Assembler

PLOS ONE | DOI:10.1371/journal.pone.0114253 December 2, 2014 26 / 27



27. Peng Y, Leung HCM, Yiu SM, Chin FYL (2010) IDBA - A Practical Iterative de Bruijn Graph De Novo
Assembler. Research in Computational Molecular Biology, Proceedings 6044: 426–440.

28. Peng Y, Leung HC, Yiu SM, Chin FY (2012) IDBA-UD: a de novo assembler for single-cell and
metagenomic sequencing data with highly uneven depth. Bioinformatics 28: 1420–1428.

29. Li R, Zhu H, Ruan J, Qian W, Fang X, et al. (2009) De novo assembly of human genomes with
massively parallel short read sequencing. Genome Res 20: 265–272.

30. McElroy KE, Luciani F, Thomas T (2012) GemSIM: general, error-model based simulator of next-
generation sequencing data. BMC Genomics 13: 74.

31. Kelley DR, Schatz MC, Salzberg SL (2010) Quake: quality-aware detection and correction of
sequencing errors. Genome Biol 11: R116.

32. Salzberg SL, Phillippy AM, Zimin A, Puiu D, Magoc T, et al. (2012) GAGE: A critical evaluation of
genome assemblies and assembly algorithms. Genome Res 22: 557–567.

33. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol
Biol 215: 403–410.

PERGA: A Paired-End Read Guided De Novo Assembler

PLOS ONE | DOI:10.1371/journal.pone.0114253 December 2, 2014 27 / 27


	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	TABLE_1
	TABLE_2
	TABLE_3
	TABLE_4
	TABLE_5
	TABLE_6
	TABLE_7
	TABLE_8
	TABLE_9
	TABLE_10
	TABLE_11
	Section_28
	Section_30
	Reference 1
	Reference 2
	Reference 3
	Reference 4
	Reference 5
	Reference 6
	Reference 7
	Reference 8
	Reference 9
	Reference 10
	Reference 11
	Reference 12
	Reference 13
	Reference 14
	Reference 15
	Reference 16
	Reference 17
	Reference 18
	Reference 19
	Reference 20
	Reference 21
	Reference 22
	Reference 23
	Reference 24
	Reference 25
	Reference 26
	Reference 27
	Reference 28
	Reference 29
	Reference 30
	Reference 31
	Reference 32
	Reference 33

