

The HKU Scholars Hub

Title	Repressor activator protein 1 induces pro-inflammatory cytokines production in macrophages through NFKB signaling
Author(s)	Cai, Y; Vanhoutte, PM; Tang, EHC
Citation	The 18th Annual Scientific Meeting of the Institute of Cardiovascular Science and Medicine (ICSM 2014), Hong Kong, 1 November 2014. In Journal of the Hong Kong College of Cardiology, 2014, v. 22 n. 2, p. 51, abstract no. OP-5
Issued Date	2014
URL	http://hdl.handle.net/10722/217609
Rights	Creative Commons: Attribution 3.0 Hong Kong License

REPRESSOR ACTIVATOR PROTEIN 1 INDUCES PROINFLAMMATORY CYTOKINES PRODUCTION IN MACROPHAGES THROUGH NFKB SIGNALING *Y Cai, PM Vanhoutte, EHC Tang*

Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong

OBJECTIVES: Repressor activator protein 1 (Rap1), an established telomere-associated protein migrates to the cytoplasm and activates nuclear factor kappa B (NF κ B) in human carcinoma cell lines. The present study tested the hypothesis that Rap1 induces production of pro-inflammatory cytokines via NF κ B signaling in macrophages, a cell type involved in the development and progression of atherosclerotic lesions.

METHODS: Small interfering RNA technology was used to knockdown Rap1 in THP-1 monocytic cells. The expression of lipopolysaccharide-(LPS) induced NFkB dependent genes and proteins in wild type (Rap1WT) and Rap1 knockdown (Rap1KD) cells were measured using real-time PCR and enzyme-linked immunosorbent assays. Co-immunoprecipitation assay was used to identify the protein-protein interaction. Western blotting was applied to determine the expression of Rap1 and proteins involved NFê B signaling pathway (including IKK α , IKK β , I κ B α , p65 and their phosphorylation forms) in Rap1WT and Rap1KD THP-1 cells. The expression of Rap1 and macrophages in human atheromatous lesions was detected by immunohistochemistry.

RESULTS: Rap1 was present in the cytoplasm of differentiated THP-1 cells and associated with IKK. Knockdown of Rap1 suppressed LPS-mediated activation of NF κ B, and phosphorylation of I κ B α and p65 in THP-1. The reduction of NF κ B activity was paralleled by a decreased production NF κ Bdependent pro-inflammatory cytokines [including interleukin (IL)-8, IL-1 α , IL-6 and monocyte chemotactic protein-1], and an increased expression of IL-10, an NF κ B-dependent anti-inflammatory cytokine. Immunostaining revealed that Rap1 localized to macrophage-rich areas in human atherosclerotic plaques and that the presence of Rap1 was positively correlated to the advancement of the disease process.

CONCLUSIONS: In macrophages, Rap1 promotes cytokine production via NF κ B activation favoring a pro-inflammatory environment which may aggravate the development and progression of atherosclerosis.