
Title Positive state-bounding observer for interval positive systems
under L1 performance

Author(s) Chen, X; Lam, J

Citation
The 33rd Chinese Control Conference (CCC 2014), Nanjing,
China, 28-30 July 2014. In Chinese Control Conference, 2014, p.
4627-4272

Issued Date 2014

URL http://hdl.handle.net/10722/217498

Rights

Chinese Control Conference. Copyright © Institute of Electrical
and Electronics Engineers.; ©2014 IEEE. Personal use of this
material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale
or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.; This work is licensed
under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/38082353?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Positive State-bounding Observer for Interval Positive Systems
under L1 Performance

Xiaoming Chen1, James Lam1

1. Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong.
E-mail: xmingchen@hku.hk, james.lam@hku.hk

Abstract: In this paper, the positive observer problem is investigated for interval positive systems under the L1-induced perfor-
mance. To estimate the state of positive systems, a pair of state-bounding positive observers is designed. A novel characterization
is first proposed under which the augmented system is stable and satisfies the L1-induced performance. Necessary and sufficient
conditions are then presented to design the observers. The results obtained in this paper are expressed in terms of linear pro-
gramming problems, and can be easily solved by standard software. In the end, we present a numerical example to show the
effectiveness of the derived design procedures.
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Positive systems

1 Introduction

Positive systems exist in different fields such as engineer-

ing, physical and social sciences [1], [2]. The inputs, s-

tates, and outputs of such systems take non-negative values

at all times since they usually denote the concentrations or

amounts of material in application fields. In other word-

s, such systems involve quantities which are naturally non-

negative. Different from general systems, positive systems

are defined on cones rather than linear spaces. Due to the

positivity of the variables, new problems appear and previ-

ous methods developed for general systems cannot be used

for positive systems.

In recent years, the property characterization, behavioral

analysis and stabilization of positive systems have been in-

vestigated by many researchers. After the unifying approach

of system theory has been proposed for positive systems in

[3], many contributions can be found in [4], [5], [6] and [7].

For example, the positive realization problem has been inves-

tigated to a great extent in [8], [9]. Controllability and reach-

ability for positive systems have been developed in [10],

[11]. The controller synthesis problem for positive systems

has been addressed through the linear matrix inequality (L-

MI) approach and the linear programming approach in [12],

[13], respectively. Some fundamental problems for compart-

mental dynamic systems has been studied in [14]. Positivity

preserving filtering problem for positive systems has been

solved in [15]. In [16], the linear time-invariant exponen-

tially stable systems have been transformed into cooperative

systems. Moreover, the exponentially stable observers have

been established. The analysis and synthesis of 2-D positive

systems has been studied in [17]. For positive systems with

delays, some basic problems has been thoroughly addressed

in [18], [19], [20], [21], [22]. In addition, the model reduc-

tion problem for positive systems has been tackled in [23],

[24].

It is noted that previous approach developed for general

systems cannot be directly used for positive systems, since

the estimated state cannot be guaranteed to be always non-

negative. Due to the positivity of the system state, a valid es-

This work was partially supported by GRF HKU 7138/10E.

timate is required to be nonnegative. Recently, many results

which can guarantee the positivity of the observer have been

reported in [25], [26]. Unfortunately, these approaches lead

to some constraint on the structure of positive observers and

are not applicable to positive systems with parameter uncer-

tainties. In addition, we note that most of the previous result-

s about the positive systems are obtained with the quadratic

Lyapunov function. Correspondingly, many results are treat-

ed under the linear matrix inequality (LMI) framework [27].

In recent years, some researchers are devoted to investigat-

ing positive systems with the linear Lyapunov function [28],

[29], [30], [31], [32]. Due to the positivity of the state of pos-

itive systems, a linear Lyapunov function can be chosen as a

valid candidate. This forms the motivation for using linear

Lyapunov functions. By using a linear Lyapunov function,

a novel method can be derived to address the observer de-

sign problem for positive systems. Moreover, we note that

the system state can only be estimated in an asymptotic way

with conventional observers. Consequently, it is meaningful

to design new observers which can give the information of

the transient state of positive systems. This motivates our

research.

In this paper, we study the problem of L1-performance

based observer design for interval positive systems with their

positivity preserved in the observer. More specifically, a pair

of L1-performance based positive observers is first proposed.

Then, we establish necessary and sufficient conditions to de-

sign the positive observers. It should be mentioned that the

results obtained in this paper are expressed in terms of linear

programming problems.

The rest of this paper is organized as follows. In Sec-

tion 2, some notations and preliminaries are introduced. The

problem of state-bounding positivity preserving observers is

formulated in Section 3. In Section 4, the positive state-

bounding observer is designed for positive systems. To show

the application of the theoretical results, an example is given

in Section 5. Finally, the results are summarized in Section

6.

2 Preliminaries

In this section, we introduce notations and preliminaries

about positive systems.
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Let R be the set of real numbers; Rn denotes the n-column

real vectors; Rn×m is the set of all real matrices of dimen-

sion n × m. For a matrix A ∈ R
m×n, [A]ij denotes the

element located at the ith row and the jth column; [A]r,i,
and [A]c,j denote the ith row, and the jth column, respec-

tively. A ≥≥ 0 (respectively, A >> 0) means that for all

i and j, [A]ij ≥ 0 (respectively, [A]ij > 0). A matrix A is

called Metzler, if all its off-diagonal elements are nonnega-

tive, i.e., ∀(i, j), i �= j, [A]ij ≥ 0. The notation A ≥≥ B
(respectively, A >> B) means that the matrix A−B ≥≥ 0
(respectively, A−B >> 0). For matrices A,A,A ∈ R

n×m,

the notation A ∈ [A,A] means that A ≤≤ A ≤≤ A.

Let R̄n
+ denote the nonnegative orthants of R

n; that is, if

x ∈ R
n, then x ∈ R̄

n
+ is equivalent to x ≥≥ 0. The su-

perscript “T ” denotes matrix transpose. ‖·‖ represents the

Euclidean norm for vectors. The 1-norm of a vector x(t) =

(x1(t), x2(t), . . . , xn(t)) is defined as ‖x(t)‖1 �
n∑

i=1

|xi(t)|.
The L1-norm of a Lebesgue integrable function x is defined

as ‖x‖L1
�

∫∞
0

‖x(t)‖1dt. The space of all vector-valued

functions defined on R̄
n
+ with finite L1 norm is denoted by

L1(R̄
n
+). Matrices, if their dimensions are not explicitly stat-

ed, are assumed to have compatible dimensions for algebraic

operations. Vector 1 = [1, 1, . . . , 1]T .

Consider a continuous-time linear system:{
ẋ(t) = Ax(t) +Bw(t),
y(t) = Cx(t) +Dw(t),

(1)

where x(t) ∈ R
n, w(t) ∈ R

m and y(t) ∈ R
p are the system

state, input and output, respectively; A, B, C and D are

system matrices with compatible dimensions.

In this paper, the system matrices A, B, C and D belong

to the following interval uncertainty domain:

A ∈ [A,A], B ∈ [B,B], C ∈ [C,C], D ∈ [D,D]. (2)

Some definitions are introduced in the following.

Definition 1 System (1) is said to be a continuous-time pos-
itive linear system if for all x(0) ≥≥ 0 and w(t) ≥≥ 0, we
have x(t) ≥≥ 0 and y(t) ≥≥ 0 for t > 0.

Definition 2 System (1) is said to be positive and robustly
stable if it is positive and stable over all interval uncertainty
domain in (2).

Then, some useful results are introduced and they will be

used throughout this paper.

Lemma 1 ([33]) The system in (1) is a continuous-time pos-
itive linear system if and only if

A is Metzler, B ≥≥ 0, C ≥≥ 0, D ≥≥ 0.

Proposition 1 ([34]) The positive linear system given by (1)
with input w(t) = 0 is stable if and only if there exists a
vector p ≥≥ 0 (or p >> 0) satisfying

pTA << 0. (3)

In the following, the definition of L1-induced norm is p-

resented. For a stable positive linear system given in (1), its

L1-induced norm is defined as

‖�‖(L1,L1) � sup
w �=0, w∈L1(R̄n

+)

‖y‖L1

‖w‖L1

, (4)

where � : L1 → L1 denotes the convolution operator, that

is, y(t) = (�∗w)(t). We say that system (1) has L1-induced

performance at the level γ if, under zero initial conditions,

‖�‖(L1,L1) < γ, (5)

where γ > 0 is a given scalar.

The following lemma serves as a fundamental character-

ization on the stability of system (1) with the L1-induced

performance in (5).

Lemma 2 ([32]) The positive linear system in (1) is stable
and satisfies ‖y‖L1 < γ‖w‖L1 if and only if there exists a
vector p ≥≥ 0 satisfying

1TC + pTA << 0, (6)

pTB + 1TD − γ1T << 0. (7)

Then, an important theorem is provided as the performance

characterization for positive system (1) over all interval un-

certainty domain in (2).

Theorem 1 The positive linear system in (1) is robustly sta-
ble and satisfies ‖y‖L1 < γ‖w‖L1 for any A ∈ [A,A],
B ∈ [B,B], C ∈ [C,C] and D ∈ [D,D] under zero ini-
tial conditions if and only if there exists a vector p ≥≥ 0
satisfying

1TC + pTA << 0, (8)

pTB + 1TD − γ1T << 0. (9)

Proof: (Sufficiency) For any A ∈ [A,A], B ∈ [B,B], C ∈
[C,C] and D ∈ [D,D],

1TC + pTA ≤≤ 1TC + pTA << 0,

pTB + 1TD − γ1T ≤≤ pTB + 1TD − γ1T << 0,

which, by Lemma 2, implies that system (1) is robust stable

and satisfies ‖y‖L1
< γ‖w‖L1

over all interval uncertain-

ty domain under zero initial conditions. The sufficiency is

proved.

(Necessity) Assume that system (1) is robustly stable and

satisfies ‖y‖L1 < γ‖w‖L1 under zero initial conditions.

From Lemma 2, we have

1TC + pTA << 0,

pTB + 1TD − γ1T << 0,

which implies that (8) and (9) hold. This completes the w-

hole proof. �

3 Problem Formulation

It is noted that we cannot obtain the information of the

transient state by designing conventional observers, since

they only give an estimate of the state in an asymptotic way.

To design a observer which can be used to estimate the state

at all times, we intend to find a lower-bounding estimate x̌(t)
and an upper-bounding one x̂(t). With the two estimates, the

signal x(t) can be encapsulated at all times. In the following,

a pair of observers is proposed as follows:

˙̌x(t) = F̌ x̌(t) + Ǧy(t) + Ǩw(t), (10)
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and
˙̂x(t) = F̂ x̂(t) + Ĝy(t) + K̂w(t), (11)

where x̂(t) ∈ R
n, x̌(t) ∈ R

n. F̌ , Ǧ, Ǩ, F̂ , Ĝ and K̂ are

observer parameters to be determined.

In the following, we first consider the lower-bounding

case.

Define the error state ě(t) = x(t) − x̌(t); then it follows

from systems (1) and (10) that

˙̌e(t) = (A− F̌ − ǦC)x(t) + F̌ ě(t)

+(B − ǦD − Ǩ)w(t). (12)

Suppose that

ž(t) = Lě(t) (13)

stands for the output of error states and here L ≥≥ 0 is

known. Now, by defining

ξ̌(t) =

[
x(t)
ě(t)

]
, Ǎξ =

[
A 0

A− F̌ − ǦC F̌

]
,

B̌ξ =

[
B

B − ǦD − Ǩ

]
, Čξ =

[
0 L

]
, (14)

and with (1), (15) and (13), the augmented system is ob-

tained as follows:{
˙̌ξ(t) = Ǎξ ξ̌(t) + B̌ξw(t),

ž(t) = Čξ ξ̌(t).
(15)

The observer in (10) is designed for the positive system

in (1) to approximate x(t) by x̌(t). Consequently, the

estimate x̌(t) is required to be positive, like system state

x(t) itself, which implies that the observer in (10) should

be a positive system. From Lemma 1, we see that F̌ is

Metzler, Ǧ ≥≥ 0 and Ǩ ≥≥ 0 are needed. In the following,

the positive lower-bounding observer problem is established.

Positive Lower-bounding Observer Design (PLOD):
Given a positive system (1) with A ∈ [A,A], B ∈ [B,B],
C ∈ [C,C], and D ∈ [D,D], design a positive observer of
the form (10) with F̌ being Metzler, Ǧ ≥≥ 0 and Ǩ ≥≥ 0
such that the augmented system (15) is positive, robustly
stable and satisfies the performance ‖ž‖L1 < γ‖w‖L1

under zero initial conditions.

Similarly, one may define ê(t) = x̂(t) − x(t) and ξ̂(t) =
[xT (t), êT (t)]T . Suppose that

ẑ(t) = Lê(t) (16)

stands for the output of error states. Then we have the aug-

mented system{
˙̂
ξ(t) = Âξ ξ̂(t) + B̂ξw(t),

ẑ(t) = Ĉξ ξ̂(t),
(17)

where

Âξ =

[
A 0

F̂ + ĜC −A F̂

]
,

B̂ξ =

[
B

ĜD + K̂ −B

]
, Ĉξ =

[
0 L

]
.

In the following, the positive upper-bounding observer

design (PUOD) problem is formulated.

Positive Upper-bounding Observer Design (PUOD): Giv-
en a positive system (1) with A ∈ [A,A], B ∈ [B,B],
C ∈ [C,C], and D ∈ [D,D], design a positive observer of
the form (11) with F̂ being Metzler, Ĝ ≥≥ 0 and K̂ ≥≥ 0
such that the augmented system (17) is positive, robustly sta-
ble and satisfies the performance ‖ẑ‖L1 < γ‖w‖L1 under
zero initial conditions.

4 Main Results

In this section, we propose a pair of positive state-

bounding observers which bound the state x(t) at all times,

and satisfies the L1-induced performance. To achieve this,

we first establish the performance characterization result for

the lower-bounding augmented system (15). Then, neces-

sary and sufficient conditions are presented for the design

of lower-bounding observer. Finally, parallel results are ob-

tained for upper-bounding case.

Based on Theorem 1, the following result is derived to

serve as a characterization on the stability of lower-bounding

augmented system (15) with the performance ‖ž‖L1
<

γ‖w‖L1
. The proof is omitted here.

Theorem 2 The lower-bounding augmented system in (15)
is positive, robustly stable and satisfies ‖ž‖L1

< γ‖w‖L1
for

any A ∈ [A,A], B ∈ [B,B], C ∈ [C,C] and D ∈ [D,D]
under zero initial conditions if and only if there exist Metzler
matrix Ǎξ, B̌ξ ≥≥ 0, Čξ ≥≥ 0 and a vector p ≥≥ 0
satisfying

1T Čξ + pT Ǎξ << 0, (18)

pT B̌ξ − γ1T << 0, (19)

where

Ǎξ =

[
A 0

A− F̌ − ǦC F̌

]
, B̌ξ =

[
B

B − ǦD − Ǩ

]
,

Ǎξ =

[
A 0

A− F̌ − ǦC F̌

]
, B̌ξ =

[
B

B − ǦD − Ǩ

]
.

Then, a necessary and sufficient condition is further estab-

lished for the existence of the lower-bounding observer.

Theorem 3 Given a stable continuous-time positive system
(1), a lower-bounding observer (10) exists such that the aug-
mented system (15) is positive, robustly stable and satis-
fies ‖ž‖L1 < γ‖w‖L1 for any A ∈ [A,A], B ∈ [B,B],
C ∈ [C,C] and D ∈ [D,D] under zero initial condition-
s if and only if there exist Metzler matrix M̌F , M̌G ≥≥ 0,
M̌K ≥≥ 0 and vectors p1 ≥≥ 0, p2 ≥≥ 0 satisfying

[
M̌F

]
ij
≥ 0, i, j = 1, . . . , n, i �= j, (20)[

M̌G

]
il
≥ 0, i = 1, . . . , n, l = 1, . . . , p, (21)[

M̌K

]
ik

≥ 0, i = 1, . . . , n, k = 1, . . . ,m, (22)
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pT2i
[
A

]
ij
− [

M̌G

]
r,i

[
C

]
c,j

− [
M̌F

]
ij
≥ 0, (23)

pT2i
[
B

]
ik
− [

M̌G

]
r,i

[
D

]
c,k

− [
M̌K

]
ik

≥ 0, (24)

pT1 A+ pT2 A−
n∑

i=1

[
M̌F

]
r,i

−
p∑

i=1

[
M̌G

]
r,i

C << 0, (25)

n∑
i=1

[
M̌F

]
r,i

+ 1TL << 0, (26)

pT1 B + pT2 B −
p∑

i=1

[
M̌G

]
r,i

D

−
m∑
i=1

[
M̌K

]
r,i

− γ1T << 0. (27)

Moreover, a suitable set of F̌ , Ǧ and Ǩ is given by[
F̌

]
ij

= p−1
2i

[
M̌F

]
ij
,[

Ǧ
]
il

= p−1
2i

[
M̌G

]
il
,[

Ǩ
]
ik

= p−1
2i

[
M̌K

]
ik
. (28)

Proof: (Sufficiency) Note that p2 ≥≥ 0, it follows from

(20)–(22) and (28) that F̌ is Metzler, Ǧ ≥≥ 0 and Ǩ ≥≥ 0,

which implies that the lower-bounding observer (10) is pos-

itive.

From (28) and p2 ≥≥ 0, (23)–(24) become[
A

]
ij
− [

Ǧ
]
r,i

[
C

]
c,j

− [
F̌

]
ij
≥ 0, (29)[

B
]
ik
− [

Ǧ
]
r,i

[
D

]
c,k

− [
Ǩ

]
ik

≥ 0, (30)

and we have

A− ǦC − F̌ ≥≥ 0, B − ǦD − Ǩ ≥≥ 0. (31)

Combining (31) with Ǧ ≥≥ 0 yields the following: for any

A ∈ [A,A], B ∈ [B,B], C ∈ [C,C] and D ∈ [D,D],

A− ǦC − F̌ ≥≥ A− ǦC − F̌ ≥≥ 0,

B − ǦD − Ǩ ≥≥ B − ǦD − Ǩ ≥≥ 0.

Together with F̌ being Metzler and L ≥≥ 0, from (14), it

shows that the augmented system (15) is positive.

From (28), we have

n∑
i=1

[
M̌F

]
r,i

= pT2 F̌ ,

p∑
i=1

[
M̌G

]
r,i

= pT2 Ǧ,

m∑
i=1

[
M̌K

]
r,i

= pT2 Ǩ. (32)

With (32), inequalities (25)–(27) equal to

pT1 A+ pT2 A− pT2 F̌ − pT2 ǦC << 0,

pT2 F̌ + 1TL << 0,

pT1 B + pT2 B − pT2 ǦD − pT2 Ǩ − γ1T << 0,

which further imply that

1T
[
0 L

]
+ pT

[
A 0

A− F̌ − ǦC F̌

]
<< 0,

pT
[

B
B − ǦD − Ǩ

]
− γ1T << 0, (33)

where pT =
[
pT1 pT2

]
.

Therefore, by Theorem 2, we have that the lower-

bounding augmented system (15) is robustly stable and sat-

isfies ‖ž‖L1 < γ‖w‖L1 . The sufficiency is proved.

(Necessity) Assume that the augmented system (15) is ro-

bustly stable and satisfies ‖ž‖L1 < γ‖w‖L1 . Then, ac-

cording to Theorem 2, the inequalities (33) hold. Denote

pT �
[
pT1 pT2

]
and we have that the following inequali-

ties hold

pT1 A+ pT2 A− pT2 F̌ − pT2 ǦC << 0,

pT2 F̌ + 1TL << 0,

pT1 B + pT2 B − pT2 ǦD − pT2 Ǩ − γ1T << 0,

Noting that

pT2 F̌ =

n∑
i=1

p2i
[
F̌

]
r,i

, pT2 Ǧ =

p∑
i=1

p2i
[
Ǧ

]
r,i

,

pT2 Ǩ =
m∑
i=1

p2i
[
Ǩ

]
r,i

,

it turns out that the change of variables[
M̌F

]
ij

= p2i
[
F̌

]
ij
,
[
M̌G

]
il
= p2i

[
Ǧ

]
il
,[

M̌K

]
ik

= p2i
[
Ǩ

]
ik

linearizes the problem and yields (25)–(28).

Since the lower-bounding observer (10) is positive, we

have F̌ is Metzler, Ǧ ≥≥ 0 and Ǩ ≥≥ 0. With p2 ≥≥ 0,

the conditions F̌ is Metzler, Ǧ ≥≥ 0 and Ǩ ≥≥ 0 equal to

(20)–(22).

In addition, if the lower-bounding augmented system (15)

is positive, we have

A− ǦC − F̌ ≥≥ 0, B − ǦD − Ǩ ≥≥ 0,

which, together with p2 ≥≥ 0, implies (23)–(24). This com-

pletes the whole proof. �
For the performance analysis in the upper-bounding case,

the parallel result is presented as follows.

Theorem 4 The upper-bounding augmented system in (17)
is positive, robustly stable and satisfies ‖ẑ‖L1 < γ‖w‖L1 for
any A ∈ [A,A], B ∈ [B,B], C ∈ [C,C] and D ∈ [D,D]
under zero initial conditions if and only if there exist Metzler
matrix Âξ, B̂ξ ≥≥ 0, Ĉξ ≥≥ 0 and a vector p ≥≥ 0
satisfying

1T Ĉξ + pT Âξ << 0, (34)

pT B̂ξ − γ1T << 0, (35)

where

Âξ =

[
A 0

F̂ + ĜC −A F̂

]
, B̂ξ =

[
B

ĜD + K̂ −B

]
,

Âξ =

[
A 0

F̂ + ĜC −A F̂

]
, B̂ξ =

[
B

ĜD + K̂ −B

]
.
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In the following, a necessary and sufficient condition is fur-

ther established for the existence of the upper-bounding ob-

server. The proof is omitted here.

Theorem 5 Given a stable continuous-time positive system
(1), an upper-bounding observer (11) exists such that the
augmented system (17) is positive, robustly stable and sat-
isfies ‖ẑ‖L1 < γ‖w‖L1 for any A ∈ [A,A], B ∈ [B,B],
C ∈ [C,C] and D ∈ [D,D] under zero initial conditions
if and only if there exist vectors p1 ≥≥ 0, p2 ≥≥ 0 and
matrices M̂F , M̂G, M̂K satisfying[

M̂F

]
ij
≥ 0, i, j = 1, . . . , n, i �= j,[

M̂G

]
il
≥ 0, i = 1, . . . , n, l = 1, . . . , p,[

M̂K

]
ik

≥ 0, i = 1, . . . , n, k = 1, . . . ,m,

[
M̂F

]
ij
+

[
M̂G

]
r,i

[
C

]
c,j

−pT2i
[
A

]
ij
≥ 0,[

M̂K

]
ik
+
[
M̂G

]
r,i

[
D

]
c,k

−pT2i
[
B

]
ik

≥ 0,

pT1 A+
n∑

i=1

[
M̂F

]
r,i

+

p∑
i=1

[
M̂G

]
r,i

C − pT2 A << 0,

n∑
i=1

[
M̂F

]
r,i

+ 1TL << 0,

pT1 B +

p∑
i=1

[
M̂G

]
r,i

D

+
m∑
i=1

[
M̂K

]
r,i

− pT2 B − γ1T << 0.

Moreover, a suitable set of F̂ , Ĝ and K̂ is given by[
F̂

]
ij

= p−1
2i

[
M̂F

]
ij
,[

Ĝ
]
il

= p−1
2i

[
M̂G

]
il
,[

K̂
]
ik

= p−1
2i

[
M̂K

]
ik
.

5 Illustrative Example

An illustrative example is presented in this section to il-

lustrate the effectiveness of the theoretical results.

Consider system{
ẋ(t) = Ax(t) +Bw(t),
y(t) = Cx(t) +Dw(t),

(36)

with

A =

⎡
⎣ −1.8± 0.03 0.1 0.1± 0.03

0.2 −1.6± 0.01 0.6
0.5 0.2 −1.4± 0.03

⎤
⎦ ,

B =

⎡
⎣ 0.2± 0.02

0.5
0.1± 0.03

⎤
⎦ ,

C =
[
0.1 0.5± 0.01 0.2

]
, D = 0.1± 0.03.

Here, we choose L =
[
0.2 0.5 0.2

]
and assume that

γ = 0.15. By solving the conditions in Theorem 3 via

Yalmip, we obtain a feasible solution as follows:

p1 =
[
0.0937 0.0470 0.0223

]T
,

p2 =
[
0.4424 0.4350 0.9906

]T
,

which further yields the matrices of the lower-bounding ob-

server as

F̌ =

⎡
⎣ −1.9063 0.0561 0.0300

0.1361 −1.7054 0.2606
0.4592 0.1570 −1.1489

⎤
⎦ ,

Ǧ =

⎡
⎣ 0.0454

0.1272
0.0567

⎤
⎦ , Ǩ =

⎡
⎣ 0.1641

0.4730
0.0582

⎤
⎦ .

Similarly, by solving the conditions in Theorem 5, with

γ = 0.15, a feasible solution is achieved with

p1 =
[
0.0486 0.0870 0.0930

]T
,

p2 =
[
0.2825 0.1911 0.7894

]T
,

which further yields the matrices of the upper-bounding ob-

server as

F̂ =

⎡
⎣ −1.7845 0.0074 0.0941

0.2023 −1.0645 0.6040
0.4608 0.0006 −1.4504

⎤
⎦ ,

Ĝ =

⎡
⎣ 0.1940

0.0074
0.4091

⎤
⎦ , K̂ =

⎡
⎣ 0.2084

0.5025
0.1021

⎤
⎦ .

With input w(t) = 4.5e−t| cos(2t)| and zero initial condi-

tions, Figure 1 depicts the state x(t), the lower estimate x̌(t)
and the upper estimate x̂(t).

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

state x(t)

upper estimate x̂(t)

lower estimate x̌(t)

Fig. 1: State x(t) and its state-bounding estimate.

6 Conclusion

In this paper, the problem of positive observers for inter-

val positive systems with L1-induced performance has been

studied. A new characterization on the L1-induced perfor-

mance of the augmented system has been established. Based
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on the novel performance characterization, conditions have

been derived for the existence of state-bounding positivity

preserving observers. Moreover, the observers designed in

this paper can provide an estimate of the state in an asymp-

totic way. In addition, all the conditions are given under the

LP framework and thus can be easily verified. Finally, we

have proposed an example to demonstrate the effectiveness

of the proposed approach.
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