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The Classical n-Port Resistive Synthesis Problem

Michael Z. Q. Chen∗

Introduction
An n-port resistive network is an n-port circuit consisting of only passive resistors, which is an impor-

tant class of passive networks. An n-port resistive network is usually characterized by its impedance or
admittance matrix. Since there are no reactive elements, passivity and reciprocity imply that the impedance
and admittance matrices of n-port resistive networks must be nonnegative definite if they exist [21]. Since
no transformers are present, there are further constraints. The realizability problem of n-port resistive net-
works was an active topic and was widely investigated from the 1950s to the 1970s. Recently, the invention
of a new mechanical element named inerter [25] has revived research into passive network synthesis. In-
vestigation on n-port resistive network synthesis can be a critical step towards solving transformerless
realizations of multi-port passive networks, and its results can be directly applied to minimal realizations
of one-port mechanical and electrical networks based on element extraction [11,12]. Therefore, the signif-
icance of this topic has become apparent again.

Problem: What are testable necessary and sufficient conditions for a real symmetric n × n matrix to be
realizable as the admittance (resp. impedance) of an n-port resistive network?

In [24], Tellegen has shown that paramountcy is a necessary and sufficient condition for any second-
order or third-order real symmetric matrix to be realizable as the impedance (resp. admittance) of a two-
port or three-port resistive network. Since Tellegen’s proof is in Dutch and there is no English version, [10,
Appendix A] presents a full and better structured reworking of Tellegen’s discussion.

A question arose whether the condition of paramountcy can be generalized to the case of n > 3. Utiliz-
ing the graph theory, Cederbaum [8] first showed that if a matrix Yn ∈ S

n (resp. Zn ∈ S
n) is the admittance

(resp. impedance) of an n-port resistive network, then Yn (resp. Zn) must be paramount. In [9], Cederbaum
presented a paramount matrix that cannot be realized as either the impedance or the admittance of an n-port
resistive network and presented a matrix that is realizable as the impedance but not the admittance of an
n-port resistive network. Hence, when n > 3, paramountcy is only a necessary but not a sufficient condition
for the realization, and realizability conditions of admittances and impedances are not the same.

Investigation on the synthesis of n-port resistive networks when n > 3 has primarily focused on the
admittance synthesis. For the realizability of admittances as n-port resistive networks, the least number of
terminals is (n + 1). Brown et al. [5–7, 14] obtained the necessary and sufficient conditions for Yn ∈ S

n

to be realizable as admittances of n-port resistive networks with (n + 1) terminals when the port graph
Gp is a path tree or a Lagrangian tree. Systematic approaches to determine the possible port graphs for
realizability are available in [1–4,14,16], and the corresponding realizability can be tested by transforming
the port graph into a Lagrangian tree based on the discussion in [7]. Unlike the (n + 1)-terminal case, the
realizability of admittances as n-port resistive networks with more than (n + 1) terminals for n > 3 has not
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been completely solved, although a series of results have been derived [13,15,17–20,22,23]. Specifically,
Chen et al. [13] recently derived some new results on the realization problem of n-port resistive networks
containing 2n terminals, which can be an important step towards solving the realizability with more than
(n + 1) terminals. However, there are still three challenges in completely solving this problem.

The first challenge of solving this problem is to deal with parameters in realizability conditions with
more than (n + 1) terminals when n > 3. Although some results for the realizability of admittances with
(n + 2) and 2n terminals have been presented in [23] and [13], the conditions are based on the existence
of a set of parameters, which are not directly testable. How to eliminate the parameters or to establish a
systematic procedure of testing the existence of parameters for n > 3 is far from being solved.

The second challenge is the complexity of different cases for the realizability when n > 3. The number
of possible topological connections becomes increasingly large when n increases. It is difficult to establish
a unified framework for the discussion when n is a large number.

The third challenge is the synthesis of impedances when n > 3. As shown in [9], the necessary and
sufficient conditions for the realizability of impedances and admittances as n-port resistive networks are
different when n > 3. Therefore, it is necessary to discuss them separately. At present there are few
investigations available on realizability of impedances as n-port resistive networks when n > 3. It is also
difficult to generalize the methodology of investigation on the admittance synthesis to the impedance case.

Conclusion

In summary, the classical n-port resistive synthesis problem is solved in the case of n ≤ 3, but there
exist significant challenges when n > 3.
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