

Title	Impacts from initialization techniques – An optimal computational resource allocation problem
Author(s)	Sun, MY; Li, VOK
Citation	The Workshop On Computational Intelligence, City University Of Hong Kong, Hong Kong, China, 5-7 December 2014
Issued Date	2015
URL	http://hdl.handle.net/10722/217389
Rights	Creative Commons: Attribution 3.0 Hong Kong License

Impacts from Initialization techniques – An optimal computational resource allocation problem Mike Yi SUN and Victor O.K. Li

Department of Electrical and Electronic Engineering, The University of Hong Kong

Background & Purpose

- Initialization techniques are always considered as "computational-resource-free"
- Not true under computational expensive environment where single FE costs a lot
- Optimally allocate the limited computational resources becomes important

Optimal Computational Resource Allocation Problem (OCRAP):

Under given amount of computational resources (*R*), objective function of the base problem (f), initialization technique (*IniT*) and optimization algorithm (*OA*), to find an resource allocation scheme (RA=IniR/(IniR+OptR)) where *IniR* and *OptR* are the resources consumed by *IniT* and *OA* so that either the optimal solution

Simulation results

- Notations & settings:
 - M1: without considering *IniR*
 - M2: IniR considered
 - M3 = r_init/r_rand, the ratio between results from using *IniT* and using PRNG.
 M3<1 means *IniT* better
 M3>1 means PRNG better
 - D=10,30 & 100; MaxFE(R)=50*D; No. of run=50
- Comparison between *IniR* considered and not considered:

Dimension	Function	OBL				QOBL				QI			
		M1		M2		MI		M2		M1		M2	
		mean	M3										
D = 10	f_1	292.688	0.896	320.001	0.98	303.638	0.93	341.753	1.047	206.56	0.633	225.633	0.694
	f_2	1425.08	0.867	1678.31	1.022	1651.54	1.005	1660.1	1.01	814.83	0.496	811.026	0.494
	f_3	1829.25	0.929	2034.93	1.033	2032.96	1.032	2230.04	1.133	1038.26	0.527	1120.04	0.569
	f_4	305.76	0.979	330.92	1.06	311.94	0.999	329.26	1.055	182.32	0.584	198.8	0.637
	f_5	18.624	1.002	19.8205	1.067	18.567	0.999	18.807	1.012	16.499	0.888	16.3709	0.881
	f_6	79.4	0.926	82.361	0.961	87.439	1.02	92.705	1.082	73.167	0.854	78.779	0.919
	f_7	798.859	0.88	883.785	0.973	904.741	0.996	1108.49	1.221	506.106	0.557	592.475	0.652
	f_8	102.563	1.013	101.49	1.003	99.74	0.985	101.496	1.003	85.656	0.846	88.84	0.878
D = 30	f_1	1952.7	0.974	2064.7	1.03	2039.07	1.017	2115.44	1.055	1373.82	0.685	1331.04	0.664
	f_2	27010.3	0.946	27700.6	0.97	27624.2	0.968	28722	1.006	17210.8	0.603	17850.1	0.625
	f_3	42243	1.002	41434.4	0.983	41594.8	0.986	44373.7	1.052	26003.1	0.617	25415.6	0.603
	f_4	2000.08	1.003	2007.02	1.007	2014.52	1.01	2037.34	1.022	1156.22	0.58	1210.7	0.607
	f_5	20.15	0.998	20.1741	1	20.1708	0.999	20.2353	1.003	18.734	0.928	18.4395	0.914
	f_6	444.645	0.972	455.463	0.995	463.495	1.013	481.687	1.053	441.425	0.965	455.731	0.996
	f_7	12117.4	0.933	12914.4	0.995	13199.3	1.017	14311.4	1.102	7357.16	0.567	8023.41	0.618
	f_8	454.58	0.977	460.919	0.991	459.388	0.987	467.537	1.005	396.179	0.851	392.518	0.844
<i>D</i> = 100	f_1	9951.52	1.005	9935.93	1.004	9953.54	1.006	10128.4	1.023	6433.26	0.65	6453.96	0.652
	f_2	462924	1.003	469329	1.017	464419	1.006	467461	1.013	294942	0.639	290347	0.629
	f_3	704188	0.993	713346	1.006	702866	0.992	721093	1.017	472779	0.667	481583	0.679
	f_4	9741.92	0.994	9906.98	1.011	9819.86	1.002	10106.1	1.031	6172.86	0.63	6208.14	0.633
	f_5	20.744	1	20.754	1	20.751	1	20.7547	1	19.814	0.955	19.8229	0.955
	f_6	1937.39	0.937	1952.19	0.944	2072.97	1.002	2110.65	1.021	2047.43	0.99	2083.3	1.007
	f_7	114970	0.995	119493	1.034	117515	1.017	120207	1.04	66601.9	0.576	67878.6	0.587
	f_8	1936.96	0.998	1941.86	1.001	1941.51	1.001	1961.03	1.011	1631.54	0.841	1611.6	0.831

(y=y*) of the objective function (y=f(x)) is achieved with the least total resources (IniR+OptR<R) or the best suboptimal solution (y!=y*) is achieved when resources are used up (IniR+OptR=R).

Computational resource is defined as number of FE used under computational expensive environment. Due to the extreme long time required by FE, other calculations are negligible.

Problem Formulation:

• General version:

$$\min_{IniT,OA,f(\bullet)} \{ (IniR + OptR), |y - y^*| \} = F(RA)$$

s.t. IniR + OptR $\leq R$
IniR > 0
OptR > 0

• Simulation version:
$$\min_{IniT,OA,f(\bullet)} \{ (IniFE + OptFE), |y - y^*| \} = F(RA)$$

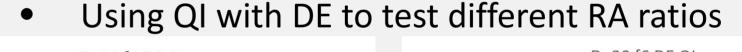
s.t. IniFE + OptFE \leq TotalFE
IniFE > 0
OptFE > 0

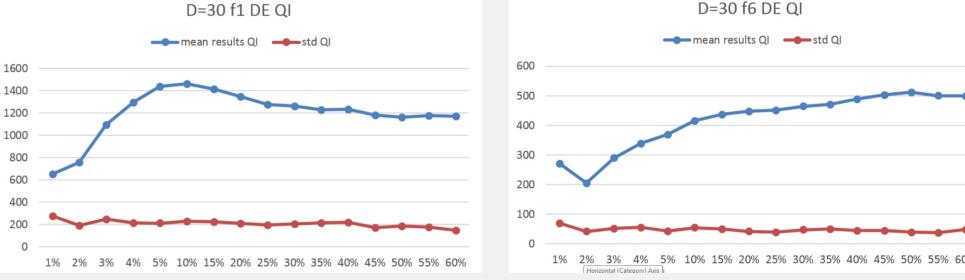
Simulation cases

Initialization techniques:

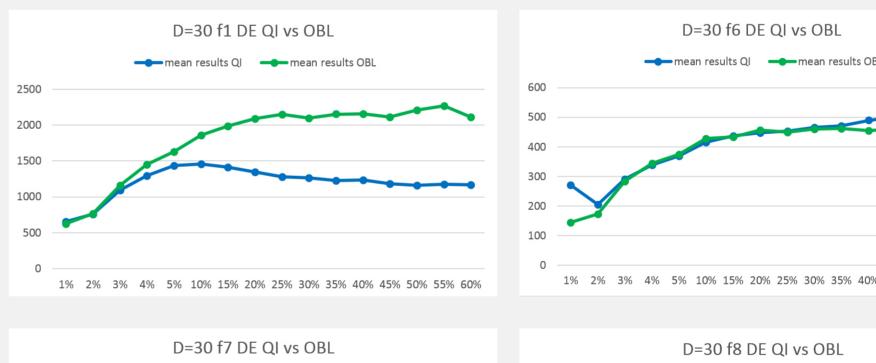
- Pseudo Random Number Generator (PRNG)
- Opposition-Based Learning (OBL) [1]
- Quasi-Opposition-Based Learning (QOBL) [2]
- Quadratic Interpolation (QI) [3]

• Some curves





Comparing QI, OBL under different RA



-----mean results QI -----mean results OBL

Optimization algorithms:

- Differential Evolution (DE) [4]
- Chemical Reaction Optimization (CRO) [5]

Benchmark functions:

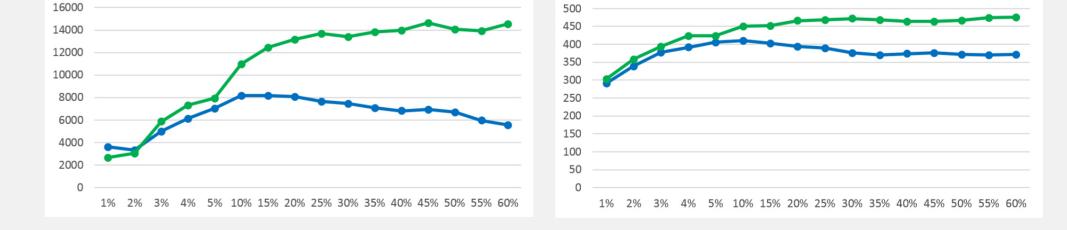
CEC14 computational expensive problem set

Functions	Search Ranges	
Shifted Sphere function	[-20, 20]	$f_1(x) = \sum_{i=1}^{D} y_i^2, y = x - o_1$
Shifted Ellipsoid function	[-20, 20]	$f_{2}\left(x ight)=\sum\limits_{i=1}^{D}iy_{i}{}^{2},$ $y=x-o_{2}$
Shifted Rotated Ellipsoid function	[-20, 20]	${f_3}\left(x ight) = \sum\limits_{i = 1}^D {{{i{y_i}}^2}},\;y = {M_3}\left({x - {o_3}} ight)$
Shifted Step function	[-20, 20]	$f_4(x) = \sum_{i=1}^{D} (\lfloor y_i + 0.5 \rfloor)^2, y = x - o_4$
Shifted Ackley's function	[-32, 32]	$f_5(x) = -20 \exp\left(-0.2\sqrt{\frac{1}{D}\sum_{i=1}^D y_i^2}\right) - \exp\left(\frac{1}{D}\sum_{i=1}^D \cos\left(2\pi y_i\right)\right) + 20 + e, \ y = x - o_5$
Shifted Griewank's function	[-600, 600]	$f_6(x) = \sum_{i=1}^{D} \frac{(y_i)^2}{4000} - \prod_{i=1}^{D} \cos\left(\frac{y_i}{\sqrt{i}}\right) + 1, \ y = x - o_6$
Shifted Rotated Rosenbrock's function	[-20, 20]	$f_7(x) = \sum_{i=1}^{D-1} \left(100 \left(y_i^2 - y_{i+1} \right)^2 + (y_i - 1)^2 \right), y = M_7 \left(\frac{2.048(x - o_7)}{20} \right) + 1$
Shifted Rotated Rastrigin's function	[-20, 20]	$f_8(x) = \sum_{i=1}^{D} \left(y_i^2 - 10\cos\left(2\pi y_i\right) + 10 \right), \ y = M_8 \frac{5.12(x - o_8)}{20}$

CEC14 COMPUTATIONAL EXPENSIVE PROBLEM SET

Metrics:

- Without *IniR* considered (traditional way)
- Considering *IniR*
- Solve the OCRAP



mean results QI mean results OB

Conclusion

- Formulate and solve the optimal computational resource allocation problem
- Define the computational resource under the expensive environment
- Conduct simulations analyze performances from different initialization techniques

Reference

[1] S. Rahnamayan, H. Tizhoosh, and M. Salama, "Opposition-based differential evolution," Evolutionary Computation, IEEE Transactions on, vol. 12, no. 1, pp. 64–79, Feb 2008.

[2] S. Rahnamayan, H. Tizhoosh, and M. Salama, "Quasi-oppositional differential evolution," in Evolutionary Computation, 2007. CEC 2007. IEEE Congress on, Sept 2007, pp. 2229–2236.

[3] M. Pant, M. Ali, and V. Singh, "Differential evolution using quadratic interpolation for initializing the population," in Advance Computing Conference, 2009. IACC 2009. IEEE International, March 2009, pp. 375–380.

[4] R. Storn and K. Price, "Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces," 1995

[5] A. Lam, V. Li, and J. Yu, "Real-coded chemical reaction optimization," Evolutionary Computation, IEEE Transactions on, vol. 16, no.3, pp. 339–353, June 2012.